PROCEDURE (Fixed Output Voltage Version) EXAMPLE (Fixed Output Voltage Version)
The capacitor list contains through-hole electrolytic capacitors from
four different capacitor manufacturers and surface mount tantalum
capacitors from two different capacitor manufacturers. It is
recommended that both the manufacturers and the manufacturer's
series that are listed in the table be used. A table listing the
manufacturers' phone numbers is located in Figure 11.
Surface Mount:
68 μF/10V Sprague 594D Series.
100 μF/10V AVX TPS Series.
Through Hole:
68 μF/10V Sanyo OS-CON SA Series.
220 μF/35V Sanyo MV-GX Series.
220 μF/35V Nichicon PL Series.
220 μF/35V Panasonic HFQ Series.
3. Catch Diode Selection (D1)
A. In normal operation, the average current of the catch diode is
the load current times the catch diode duty cycle, 1-D (D is the
switch duty cycle, which is approximately the output voltage divided
by the input voltage). The largest value of the catch diode average
current occurs at the maximum load current and maximum input
voltage (minimum D). For normal operation, the catch diode current
rating must be at least 1.3 times greater than its maximum average
current. However, if the power supply design must withstand a
continuous output short, the diode should have a current rating
equal to the maximum current limit of the LM2672. The most
stressful condition for this diode is a shorted output condition.
3. Catch Diode Selection (D1)
A. Refer to the table shown in Figure 12. In this example, a 1A,
20V Schottky diode will provide the best performance. If the circuit
must withstand a continuous shorted output, a higher current
Schottky diode is recommended.
B. The reverse voltage rating of the diode should be at least 1.25
times the maximum input voltage.
C. Because of their fast switching speed and low forward voltage
drop, Schottky diodes provide the best performance and efficiency.
This Schottky diode must be located close to the LM2672 using
short leads and short printed circuit traces.
4. Input Capacitor (CIN)
A low ESR aluminum or tantalum bypass capacitor is needed
between the input pin and ground to prevent large voltage
transients from appearing at the input. This capacitor should be
located close to the IC using short leads. In addition, the RMS
current rating of the input capacitor should be selected to be at least
½ the DC load current. The capacitor manufacturer data sheet must
be checked to assure that this current rating is not exceeded. The
curves shown in Figure 14 show typical RMS current ratings for
several different aluminum electrolytic capacitor values. A parallel
connection of two or more capacitors may be required to increase
the total minimum RMS current rating to suit the application
requirements.
For an aluminum electrolytic capacitor, the voltage rating should be
at least 1.25 times the maximum input voltage. Caution must be
exercised if solid tantalum capacitors are used. The tantalum
capacitor voltage rating should be twice the maximum input
voltage. The tables in Figure 15 show the recommended
application voltage for AVX TPS and Sprague 594D tantalum
capacitors. It is also recommended that they be surge current
tested by the manufacturer. The TPS series available from AVX,
and the 593D and 594D series from Sprague are all surge current
tested. Another approach to minimize the surge current stresses
on the input capacitor is to add a small inductor in series with the
input supply line.
Use caution when using ceramic capacitors for input bypassing,
because it may cause severe ringing at the VIN pin.
4. Input Capacitor (CIN)
The important parameters for the input capacitor are the input
voltage rating and the RMS current rating. With a maximum input
voltage of 12V, an aluminum electrolytic capacitor with a voltage
rating greater than 15V (1.25 × VIN) would be needed. The next
higher capacitor voltage rating is 16V.
The RMS current rating requirement for the input capacitor in a
buck regulator is approximately ½ the DC load current. In this
example, with a 1A load, a capacitor with a RMS current rating of
at least 500 mA is needed. The curves shown in Figure 14 can be
used to select an appropriate input capacitor. From the curves,
locate the 16V line and note which capacitor values have RMS
current ratings greater than 500 mA.
For a through hole design, a 330 μF/16V electrolytic capacitor
(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or
equivalent) would be adequate. Other types or other
manufacturers' capacitors can be used provided the RMS ripple
current ratings are adequate. Additionally, for a complete surface
mount design, electrolytic capacitors such as the Sanyo CV-C or
CV-BS and the Nichicon WF or UR and the NIC Components NACZ
series could be considered.
For surface mount designs, solid tantalum capacitors can be used,
but caution must be exercised with regard to the capacitor surge
current rating and voltage rating. In this example, checking Figure
15, and the Sprague 594D series datasheet, a Sprague 594D 15
μF, 25V capacitor is adequate.
LM2672
Copyright © 1999-2012, Texas Instruments Incorporated 13