www.irf.com 1
08/1/07
IRF8736PbF
HEXFET® Power MOSFET
Notes through are on page 9
Benefits
lVery Low RDS(on) at 4.5V VGS
lLow Gate Charge
lFully Characterized Avalanche Voltage
and Current
l100% Tested for RG
lLead -Free
Applications
lSynchronous MOSFET for Notebook
Processor Power
lSynchronous Rectifier MOSFET for
Isolated DC-DC Converters in
Networking Systems
Top View
8
1
2
3
45
6
7
D
D
D
DG
S
A
S
S
A
SO-8
PD - 97120
Absolute Maximum Ratings
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V A
IDM Pulsed Drain Current
c
PD @TA = 25°C Power Dissipation
f
W
PD @TA = 70°C Power Dissipation
f
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJL Junction-to-Drain Lead
g
––– 20 °C/W
RθJA Junction-to-Ambient
fg
––– 50
Max.
18
14.4
144
± 20
30
-55 to + 150
2.5
0.02
1.6
VDSS RDS(on) max Qg Typ.
30V 4.8m
:
@VGS = 10V 17nC
http://store.iiic.cc/
IRF8736PbF
2www.irf.com
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. T
y
p. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 30 ––– –– V
∆ΒVDSS
/
TJ Breakdown Voltage Temp. Coefficient ––– 0.022 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 3.9 4.8 m
––– 5.5 6.8
VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V
VGS(th) Gate Threshold Voltage Coefficient ––– -6.1 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– –– 1.0 µA
––– –– 150
IGSS Gate-to-Source Forward Leakage ––– –– 100 nA
Gate-to-Source Reverse Leakage ––– –– -100
gfs Forward Transconductance 52 ––– ––– S
QgTotal Gate Charge ––– 17 26
Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.4 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 1.9 ––– nC
Qgd Gate-to-Drain Charge ––– 5.8 –––
Qgodr Gate Charge Overdrive ––– 4.9 ––– See Fig. 16
Qsw Switch Char
g
e (Qgs2 + Qgd)––– 7.7 ––
Qoss Output Charge ––– 7.1 ––– nC
RGGate Resistance ––– 1.3 2.2
td(on) Turn-On Delay Time ––– 12 ––
trRise Time ––– 15 –––
td(off) Turn-Off Delay Time –– 13 –– ns
tfFall Time –– 7.5 –––
Ciss Input Capacitance ––– 2315 ––
Coss Output Capacitance ––– 449 –– pF
Crss Reverse Transfer Capacitance ––– 219 ––
Avalanche Characteristics
Parameter Units
EAS
Si
n
gl
e
P
u
l
se
A
va
l
anc
h
e
E
ner
gy
d
mJ
IAR
A
va
l
anc
h
e
C
urrent
c
A
Diode Characteristics
Parameter Min. T
y
p. Max. Units
ISContinuous Source Current ––– ––– 3.1
(Body Diode) A
ISM Pulsed Source Current ––– –– 144
Bod
Diode
c
VSD Diode Forward Voltage –– –– 1.0 V
trr Reverse Recovery Time ––– 16 24 ns
Qrr Reverse Recovery Charge ––– 19 29 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
See Fig. 14
Max.
126
14.4
ƒ = 1.0MHz
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 18A
e
MOSFET symbol
VDS = 10V, VGS = 0V
VDD = 15V, VGS = 4.5V
e
ID = 14.4A
VDS = 15V
VGS = 20V
VGS = -20V
VDS = 24V, VGS = 0V
TJ = 25°C, IF = 14.4A, VDD = 10V
di/dt = 300A/
µ
s
e
TJ = 25°C, IS = 14.4A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
VGS = 4.5V, ID = 14.4A
e
VGS = 4.5V
Typ.
–––
VDS = VGS, ID = 50µA
RG = 1.8
VDS = 15V, ID = 14.4A
VDS = 24V, VGS = 0V, TJ = 125°C
–––
ID = 14.4A
VGS = 0V
VDS = 15V
http://store.iiic.cc/
IRF8736PbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.001
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
2.3V
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 150°C
2.3V
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
1.0 2.0 3.0 4.0 5.0
VGS, Gate-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VDS = 15V
60µs PULSE WIDTH
TJ = 25°C
TJ = 150°C
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 18A
VGS = 10V
http://store.iiic.cc/
IRF8736PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0.2 0.4 0.6 0.8 1.0 1.2
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TA = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
0 4 8 12 16 20
Qg, Total Gate Charge (nC)
0
1
2
3
4
5
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 14.4A
http://store.iiic.cc/
IRF8736PbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
Fig 10. Threshold Voltage Vs. Temperature
25 50 75 100 125 150
TA, Ambient Temperature (°C)
0
4
8
12
16
20
ID , Drain Current (A)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1, Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
RiC/W)
τι (sec)
1.396574 0.000246
7.206851 0.037927
27.1278 1.0882
14.26877 30.3
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci
i
/
Ri
Ci= τi/Ri
τ
a
τ
4
τ
4
R
4
R
4
-75 -50 -25 025 50 75 100 125 150
TJ, Temperature ( °C )
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGS(th) Gate threshold Voltage (V)
ID = 50µA
http://store.iiic.cc/
IRF8736PbF
6www.irf.com
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 13. Gate Charge Test Circuit
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
100
200
300
400
500
600
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 1.28A
1.75A
BOTTOM 14.4A
Fig 14a. Switching Time Test Circuit
Fig 14b. Switching Time Waveforms
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
VDS
90%
10%
VGS
td(on) trtd(off) tf
http://store.iiic.cc/
IRF8736PbF
www.irf.com 7
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Fig 16. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
http://store.iiic.cc/
IRF8736PbF
8www.irf.com
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
SO-8 Part Marking Information
3 ',6*1$7(6/($')5((
(;$03/(7+,6,6$1,5)026)(7
)
;;;;
,17(51$7,21$/
/2*2
5(&7,),(5
3$57180%(5
/27&2'(
352'8&7237,21$/
'$7(&2'(<::
< /$67',*,72)7+(<($5
:::((.
$ $66(0% /<6,7(&2' (
H
'
(
\
E
$
$
+
.
/




%$6,&























%$6,&








0,1 0$;
0,//,0(7(56,1& +(6
0,1 0$;
',0

H
F  
%$6,& %$6,&


' %
(
$
H
;
+
>@ $
.[
;/ ;F
\
>@ & $ %
H $
$
;E
&
>@

)22735,17
;>@
>@
;>@ ;
>

@
287/,1(&21)250672-('(&287/,1(06$$
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
',0(16,21'2(6127,1&/8'(02/'3527586,216
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
02/'3527586,21612772(;&(('>@
http://store.iiic.cc/
IRF8736PbF
www.irf.com 9
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 1.21mH, RG = 25, IAS = 14.4A.
Pulse width 400µs; duty cycle 2%.
When mounted on 1 inch square copper board
Rθ is measured at TJ approximately 90°C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.8/2007
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
FEED DIRECTION
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
http://store.iiic.cc/