IRLR024ZPbF
IRLU024ZPbF
HEXFET® Power MOSFET
VDSS = 55V
RDS(on) = 58m
ID = 16A
10/01/10
www.irf.com 1
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low on-
resistance per silicon area. Additional features of this
design are a 175°C junction operating temperature,
fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in a wide variety of applications.
S
D
G
Description
Features
nLogic Level
nAdvanced Process Technology
nUltra Low On-Resistance
n175°C Operating Temperature
nFast Switching
nRepetitive Avalanche Allowed up to Tjmax
nLead-Free
D-Pak
IRLR024ZPbF
I-Pak
IRLU024ZPbF
HEXFET® is a registered trademark of International Rectifier.
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 10C Continuous Drain Current, VGS @ 10V A
IDM Pulsed Drain Current
c
PD @TC = 25°C Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS (Thermally limited) Single Pulse Avalanche Energy
d
mJ
EAS (Tested ) Single Pulse Avalanche Energy Tested Value
h
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
g
mJ
TJ Operating Junction and
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 4.28
RθJA Junction-to-Ambient (PCB mount)
i
––– 40 °C/W
RθJA Junction-to-Ambient ––– 110
Max.
16
11
64
-55 to + 175
300 (1.6mm from case )
35
0.23
± 16
25
25
See Fig.12a, 12b, 15, 16
PD - 95773B
IRLR/U024ZPbF
2www.irf.com
S
D
G
S
D
G
Electr
i
cal
C
haracter
i
st
i
cs
@
TJ = 25°
C
(
unless otherw
i
se spec
ifi
ed
)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V
V(BR)DSS
/
TJ Breakdown Voltage Temp. Coefficient ––– 0.053 ––– V/°C
––– 46 58
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 80 m
––– ––– 100
VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V
gfs Forward Transconductance 7.4 ––– –– S
IDSS Drain-to-Source Leakage Current ––– –– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– –– 200 nA
Gate-to-Source Reverse Leakage ––– –– -200
QgTotal Gate Charge –– 6.6 9.9
Qgs Gate-to-Source Charge –– 1.6 ––– nC
Qgd Gate-to-Drain ("Miller") Charge ––– 3.9 –––
td(on) Turn-On Delay Time ––– 8.2 –––
trRise Time ––– 43 –––
td(off) Turn-Off Delay Time ––– 19 –– ns
tfFall Time ––– 16 –––
LDInternal Drain Inductance ––– 4.5 –– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 –– from package
and center of die contact
Ciss Input Capacitance ––– 380 ––
Coss Output Capacitance ––– 62 –––
Crss Reverse Transfer Capacitance ––– 39 ––– pF
Coss Output Capacitance ––– 180 –––
Coss Output Capacitance ––– 50 –––
Coss eff. Effective Output Capacitance ––– 81 –––
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– –– 16
(Body Diode) A
ISM Pulsed Source Current ––– –– 64
(Body Diode)
c
VSD Diode Forward Voltage ––– –– 1.3 V
trr Reverse Recovery Time ––– 16 24 ns
Qrr Reverse Recovery Charge ––– 11 17 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 5.0V, ID = 5.0A
e
VGS = 4.5V, ID = 3.0A
e
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VDS = 25V, ID = 9.6A
ID = 5.0A
VDS = 44V
VGS = 16V
VGS = -16V
VGS = 5.0V
e
VDD = 28V
ID = 5.0A
RG = 28
TJ = 25°C, IS = 9.6A, VGS = 0V
e
TJ = 25°C, IF = 9.6A, VDD = 28V
di/dt = 100A/
µ
s
e
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 9.6A
e
VDS = VGS, ID = 250µA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
MOSFET symbol
showing the
integral reverse
p-n junction diode.
Conditions
VGS = 5.0V
e
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
f
IRLR/U024ZPbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
vs. Drain Current
0.1 110
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
3.0V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
0.1 110
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
VGS
TOP 10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
60µs PULSE WIDTH
Tj = 25°C
3.0V
0246810 12
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 10V
60µs PULSE WIDTH
0 2 4 6 8 10 12 14 16
ID,Drain-to-Source Current (A)
0
5
10
15
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 8.0V
300µs PULSE WIDTH
IRLR/U024ZPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0.0 0.5 1.0 1.5 2.0 2.5 3.0
VSD, Source-to-Drain Voltage (V)
1
10
100
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
01234567
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
VGS, Gate-to-Source Voltage (V)
VDS= 44V
VDS= 28V
VDS= 11V
ID= 5.0A
IRLR/U024ZPbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
2
4
6
8
10
12
14
16
ID, Drain Current (A)
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
2.354 0.000354
1.926 0.001779
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 5.0A
VGS = 5.0V
IRLR/U024ZPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
1K
VCC
DUT
0
L
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 1.2A
1.8A
BOTTOM 9.6A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRLR/U024ZPbF
www.irf.com 7
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
5
10
15
20
25
30
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 9.6A
IRLR/U024ZPbF
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRLR/U024ZPbF
www.irf.com 9
D-Pak (TO-252AA) Part Marking Information
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
INTERNAT IONAL
AS SE MBLED ON WW 16, 2001
IN THE ASSEMBLY LINE "A"
OR
Note: "P" in assembly line position
EXAMPLE:
LOT CODE 1234
THIS IS AN IRFR120
WIT H AS S E MB L Y
indi cates "L ead-F ree"
PRODUCT (OPTIONAL)
P = DES IGNAT E S LEAD-FREE
A = AS S E MB L Y S I T E CODE
PART NUMBER
WE E K 16
DAT E CODE
YEAR 1 = 2001
RECTIFIER
INTERNATIONAL
LOGO
LOT CODE
AS S E MB L Y
3412
IR F R120
116A
LINE A
34
RECTIFIER
LOGO
IR F R120
12
AS S E MB L Y
LOT CODE
YEAR 1 = 2001
DAT E CODE
PART NUMBER
WE E K 1 6
"P" in assembly line position indicates
"L ead- F r ee" quali fication to the cons umer -l evel
P = DES IGNAT E S LEAD-FREE
PRODUCT QUALIFIED TO THE
CONS UMER LE VEL (OPTIONAL)
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRLR/U024ZPbF
10 www.irf.com
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
78
LINE A
LOGO
INTERNATIONAL
RECT IFIER
OR
PRODUCT (OPT IONAL)
P = DESIGNATES LEAD-FREE
A = AS S E MB L Y S IT E CODE
IRF U120
PART NUMBER
WEEK 19
DAT E CODE
YEAR 1 = 2001
RECTIFIER
INTERNATIONAL
LOGO
ASSEMBLY
LOT CODE
IR F U120
56
DAT E CODE
PART NUMBER
LOT CODE
AS S E MB L Y
56 78
YEAR 1 = 2001
WEEK 19
119A
indicates Lead-Free"
AS S EMBLED ON WW 19, 2001
IN THE ASSEMBLY LINE "A"
Note: "P" in as s embly line pos ition
EXAMPLE:
WI T H AS S E MB L Y
THIS IS AN IRFU120
LOT CODE 5678
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRLR/U024ZPbF
www.irf.com 11
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.54mH
RG = 25, IAS = 9.6A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to
80% VDSS .
Notes:
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
repetitive avalanche performance.
This value determined from sample failure population.
100% tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material)
For recommended footprint and soldering techniques
refer to application note #AN-994.
Rθ is measured at TJ of approximately 90°C.
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH