1
File Number
2308.3
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 |Copyright © Intersil Corporation 1999
IRF440
8A, 500V, 0.850 Ohm, N-Channel
Power MOSFET
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
Formerly developmental type TA17425.
Features
8A, 500V
•r
DS(ON) = 0.850
Single Pulse Avalanche Energy Rated
SOA is Power-Dissipation Limited
Nanosecond Switching Speeds
Linear Transfer Characteristics
High Input Impedance
Majority Carrier Device
Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
JEDEC TO-204AE
Ordering Information
PART NUMBER PACKAGE BRAND
IRF440 TO-204AE IRF440
NO TE: When ordering, use the entire part number .
D
G
S
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
Data Sheet March 1999
2
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified
IRF440 UNITS
Drain To Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS 500 V
Drain To Gate Voltage (RGS = 20kΩ) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 500 V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID8.0
5.0 A
A
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 32 A
Gate To Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD125 W
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS 510 A
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG -55 to 150 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain To Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 10) 500 - - V
Gate Threshold Voltage VGS(TH) VDS = VGS, ID = 250µA 2.0 - 4.0 V
Zero Gate Voltage Drain Current IDSS VDS = Rated BVDSS, VGS = 0V - - 25 µA
VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ = 125oC - - 250 µA
On-State Drain Current (Note 2) ID(ON) VDS > ID(ON) x rDS(ON)MAX, VGS = 10V 8.0 - - A
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
Drain to Source On Resistance (Note 2) rDS(ON) ID = 4.4A, VGS = 10V (Figures 8, 9) - 0.70 0.850
Forward Transconductance (Note 2) gfs VDS = 50V, ID = 4.4A (Figure 12) 4.9 7.5 - S
Turn-On Delay Time td(ON) VDD = 250V, ID 8.0A, RG = 9.1, RL = 30Ω,
(Figure 17, 18) MOSFET Switching Times are
Essentially Independent of Operating Temperature
-1521ns
Rise Time tr-2235ns
Turn-Off Delay Time td(OFF) -4974ns
Fall Time tf-2030ns
Total Gate Charge
(Gate to Source + Gate to Drain) Qg(TOT) VGS = 10V, ID = 8.0A, VDS = 0.8 x Rated BVDSS,
Ig(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is
Essentially Independent of Operating Temperature
-4263nC
Gate to Source Charge Qgs - 9 - nC
Gate to Drain “Miller” Charge Qgd -22-nC
Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 1225 - pF
Output Capacitance COSS - 200 - pF
Reverse Transfer Capacitance CRSS -85-pF
Internal Drain Inductance LDMeasured between the
Contact Screw on Header
thatis Closerto Sourceand
Gate Pins and Center of
Die
Modified MOSFET
Symbol Showing the
Internal Device
Inductances
- 5.0 - nH
Internal Source Inductance LSMeasured from the Source
Lead, 6mm (0.25in) from
Header and Source
Bonding Pad
- 12.5 - nH
Thermal Resistance Junction to Case RθJC - - 1.0 oC/W
Thermal Resistance Junction to Ambient RθJA Free Air Operation - - 30 oC/W
LS
LD
G
D
S
IRF440
3
Source To Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current ISD Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction
Rectifier
- - 8.0 A
Pulse Source to Drain Current
(Note 3) ISDM - - 32 A
Drain to Source Diode Voltage (Note 2) VSD TJ = 25oC, ISD = 8.0A, VGS = 0V (Figure 13) - - 2.0 V
Reverse Recovery Time trr TJ = 25oC, ISD = 8.0A, dISD/dt = 100A/µs 210 460 970 ns
Reverse Recovery Charge QRR TJ = 25oC, ISD = 8.0A, dISD/dt = 100A/µs 2 4 8.9 µC
NOTE:
2. Pulse Test: Pulse Width 300µs, Duty Cycle 2%.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance Curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 14mH, RG = 25Ω, peak IAS = 8.0A (Figures 15, 16).
Typical Performance Curves
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
G
D
S
0 50 100 150
0
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0.2
0.4
0.6
0.8
1.0
1.2
25 50 75 100 125 150
10
8
6
4
2
0
TC, CASE TEMPERATURE (oC)
ID, DRAIN CURRENT (A)
10-5 10-4 10-3 10-2 0.1 1 10
10-3
1
0.1
10-2
ZθJC, TRANSIENT THERMAL IMPEDANCE
RECTANGULAR PULSE DURATION (s)
SINGLE PULSE PDM
t1t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
0.5
0.2
0.1
0.05
0.02
0.01
2
IRF440
4
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
Typical Performance Curves
(Continued)
110102103
VDS, DRAIN TO SOURCE VOLTAGE (V)
102
10
1
0.1
ID, DRAIN CURRENT (A)
TC = 25oC
TJ = 150oC
SINGLE PULSE
OPERATION IN
THIS AREA LIMITED
BY rDS(ON)
100µs
10µs
1ms
10ms
DC
0 50 100 150 200 250
VDS, DRAIN TO SOURCE VOLTAGE (V)
15
12
9
6
3
0
ID, DRAIN CURRENT (A)
80µs PULSE TEST
VGS = 10V
VGS = 4V VGS = 4.5V
VGS = 5V
VGS = 6V
VGS = 5.5V
0 3 6 9 12 15
VDS, DRAIN TO SOURCE VOLTAGE (V)
15
12
9
6
3
0
ID, DRAIN CURRENT (A)
80µs PULSE TEST
VGS = 5.5V
VGS = 5V
VGS = 4.5V
VGS = 6V
VGS = 10V
VGS = 4V
0246810
VGS, GATE TO SOURCE VOLTAGE (V)
10
1
0.1
10-2
IDS(ON), DRAIN TO SOURCE
TJ = 150oCTJ = 25oC
VDS 50V
80µs PULSE TEST
CURRENT (A)
0 8 16 24 32 40
10
8
6
4
2
0
ID, DRAIN CURRENT (A)
rDS(ON), DRAIN TO SOURCE
80µs PULSE TEST
VGS = 20V
VGS = 10V
ON RESISTANCE
3.0
2.4
1.8
1.2
0.6
0
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
-60 0 60 120 180
TJ, JUNCTION TEMPERATURE (oC)
ID = 8.0A
VGS = 10V
IRF440
5
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Typical Performance Curves
(Continued)
1.25
1.15
1.05
0.95
0.85
0.75
-60 0 60 120 180
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA3000
2400
1800
1200
600
0110
100
VDS, DRAIN TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGS
CISS
CRSS
COSS
TJ = 150oC
TJ = 25oC
0 3 6 9 12 15
ID, DRAIN CURRENT (A)
15
12
9
6
3
0
gfs, TRANSCONDUCTANCE (S)
VDS 50V
80µs PULSE TEST
0 0.3 0.6 0.9 1.2 1.5
VSD, SOURCE TO DRAIN VOLTAGE (V)
100
10
1
0.1
ISD, SOURCE TO DRAIN CURRENT (A)
TJ = 150oCTJ = 25oC
20
16
12
8
4
00 1224364860
Qg(TOT), TOTAL GATE CHARGE (nC)
VGS, GATE TO SOURCE VOLTAGE (V)
ID = 8.0A VDS = 400V
VDS = 250V
VDS = 100V
IRF440
6
Test Circuits and Waveforms
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS
RL
RG
DUT
+
-VDD
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
0.3µF
12V
BATTERY 50k
VDS
S
DUT
D
G
Ig(REF)
0
(ISOLATED
VDS
0.2µF
CURRENT
REGULATOR
ID CURRENT
SAMPLING
IG CURRENT
SAMPLING
SUPPLY)
RESISTOR RESISTOR
SAME TYPE
AS DUT
Qg(TOT)
Qgd
Qgs
VDS
0
VGS
VDD
Ig(REF)
0
IRF440
7
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is gr anted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see w eb site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
IRF440