01/20/06
Benefits
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
www.irf.com 1
IRFB3507PbF
IRFS3507PbF
IRFSL3507PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
l Lead-Free
S
D
G
VDSS 75V
RDS
(
on
)
typ. 7.0m
:
max. 8.8m
:
ID97A
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
IDM Pulsed Drain Current
d
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
dv/dt Peak Diode Recovery
f
V/ns
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited) Sin
g
le Pulse Avalanche Ener
g
y
e
mJ
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Ener
g
y
g
mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RθJC Junction-to-Case
k
––– 0.77
RθCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– °C/W
RθJA Junction-to-Ambient, TO-220
k
––– 62
RθJA Junction-to-Ambient (PCB Mount) , D2Pak
jk
––– 40
280
See Fig. 14, 15, 16a, 16b
190
5.0
-55 to + 175
± 20
1.3
10lb
x
in (1.1N
x
m)
300
Max.
97
c
69
c
390
D2Pak
IRFS3507PbF
TO-220AB
IRFB3507PbF
TO-262
IRFSL3507PbF
GD
SGDS
GD
S
PD - 95935B
IRFB/S/SL3507PbF
2www.irf.com
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.17mH,
RG = 25, IAS = 58A, VGS =10V. Part not recommended for use
above this value.
ISD 58A, di/dt 390A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
S
D
G
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Volta
g
e 75 ––– ––– V
V(BR)DSS
/
TJ Breakdown Volta
g
e Temp. Coefficient ––– 0.070 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 7.0 8.8 m
VGS(th) Gate Threshold Volta
g
e 2.0 ––– 4.0 V
IDSS Drain-to-Source Leaka
g
e Current ––– ––– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leaka
e ––– ––– 200 nA
Gate-to-Source Reverse Leaka
g
e ––– ––– -200
RGGate Input Resistance ––– 1.3 ––– f = 1MHz, open drain
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
g
fs Forward Transconductance 86 ––– ––– S
QgTotal Gate Char
g
e ––– 88 130 nC
Qgs Gate-to-Source Char
g
e ––– 24 –––
Qgd Gate-to-Drain ("Miller") Char
g
e ––– 36 –––
td(on) Turn-On Delay Time ––– 20 ––– ns
trRise Time ––– 81 –––
td(off) Turn-Off Delay Time ––– 52 –––
tfFall Time ––– 49 –––
Ciss Input Capacitance ––– 3540 ––– pF
Coss Output Capacitance ––– 340 –––
Crss Reverse Transfer Capacitance ––– 210 –––
Coss eff. (ER) Effective Output Capacitance (Ener
g
y Related) ––– 460 –––
Coss eff. (TR) Effective Output Capacitance (Time Related)
h
––– 520 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 97
c
A
(Body Diode)
ISM Pulsed Source Current ––– ––– 390 A
(Body Diode)
d
VSD Diode Forward Volta
g
e ––– ––– 1.3 V
trr Reverse Recovery Time ––– 37 56 ns TJ = 25°C VR = 64V,
––– 45 68 TJ = 125°C IF = 58A
Qrr Reverse Recovery Char
g
e ––– 32 48 nC TJ = 25°C di
/
dt = 100A
/
µs
g
––– 51 77 TJ = 125°C
IRRM Reverse Recovery Current ––– 1.7 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is ne
g
li
g
ible (turn-on is dominated by LS+LD)
Conditions
VDS = 50V, ID = 58A
ID = 58A
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
VDS = 60V
Conditions
VGS = 10V
g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V
i
, See Fig.11
VGS = 0V, VDS = 0V to 60V
h
, See Fig. 5
TJ = 25°C, IS = 58A, VGS = 0V
g
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
d
VGS = 10V, ID = 58A
g
VDS = VGS, ID = 100µA
VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
ID = 58A
RG = 5.6
VGS = 10V
g
VDD = 48V
IRFB/S/SL3507PbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
2 4 6 8 10
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 97A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20406080100
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 60V
VDS= 38V
VDS= 15V
ID= 58A
IRFB/S/SL3507PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.4 0.8 1.2 1.6 2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
ID, Drain Current (A)
Limited By Package
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Temperature ( °C )
70
75
80
85
90
95
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
0 1020304050607080
VDS, Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
Energy (µJ)
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 8.9A
12A
BOTTOM 58A
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
IRFB/S/SL3507PbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)
is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.2963 0.000504
0.4738 0.013890
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 58A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
IRFB/S/SL3507PbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 100µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
0
2
4
6
8
10
12
14
IRRM (A)
IF = 19A
VR = 64V
TJ = 25°C _____
TJ = 125°C ----------
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
0
2
4
6
8
10
12
14
IRRM (A)
IF = 39A
VR = 64V
TJ = 25°C _____
TJ = 125°C ----------
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
0
50
100
150
200
250
300
350
Qrr (nC)
IF = 19A
VR = 64V
TJ = 25°C _____
TJ = 125°C ----------
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
0
50
100
150
200
250
300
Qrr (nC)
IF = 39A
VR = 64V
TJ = 25°C _____
TJ = 125°C ----------
IRFB/S/SL3507PbF
www.irf.com 7
Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
Fig 21b. Unclamped Inductive Waveforms
Fig 21a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
1K
VCC
DUT
0
L
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
IRFB/S/SL3507PbF
8www.irf.com
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
/27&2'(
(;$03/( 7+,6,6$1,5)
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17+($66(0%/</,1(&
$66(0%/('21:: ,17(51$7,21$/ 3$57180%(5
5(&7,),(5
/27&2'(
$66(0%/<
/2*2
<($5 
'$7(&2'(
:((.
/,1(&
IRFB/S/SL3507PbF
www.irf.com 9
TO-262 Part Marking Information
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
/2*2
5(&7,),(5
,17(51$7,21$/
/27&2'(
$66(0%/<
/2*2
5(&7,),(5
,17(51$7,21$/
'$7(&2'(
:((.
<($5
3$57180%(5
$ $66(0%/<6,7(&2'(
25
352'8&7237,21$/
3 '(6,*1$7(6/($')5((
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/<
3$57180%(5
'$7(&2'(
:((.
/,1(&
/27&2'(
<($5
$66(0%/('21::
,17+($66(0%/</,1(&
IRFB/S/SL3507PbF
10 www.irf.com
D2Pak (TO-263AB) Part Marking Information
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
'$7(&2'(
<($5
:((.
$ $66(0%/<6,7(&2'(
5(&7,),(5
,17(51$7,21$/ 3$57180%(5
3 '(6,*1$7 (6/($' )5((
352'8&7237,21$/
)6
,17+($66(0%/</,1(/
$66(0%/('21::
7+,6,6$1,5)6:,7+
/27&2'( ,17(51$7,21$/
/2*2
5(&7,),(5
/27&2'(
$66(0%/< <($5
3$57180%(5
'$7(&2'(
/,1(/
:((.
25
)6
/2*2
$66(0%/<
/27&2'(
IRFB/S/SL3507PbF
www.irf.com 11
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/06
D2Pak (TO-263AB) Tape & Reel Information
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/