Standard Power MOSFETs- IRF610, IRF611, IRF612, IRF613 File Number 1576 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 2.0A and 2.5A, 150V-200V fos(On) = 1.5 and2.40 Features: @ SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance Majority carrier device The JAF610, IRF611, IRF612 and IRF613 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-220AB plastic package. Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE sO s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION [ SOURCE ion bare 92CS-39528 DRAIN (FLANGE) C ) TOP VIEW JEDEC TO-220AB Parameter IRF610 IRF611 IRF612 IRFE13 Units | Ys Drain - Source Voltage 200 150 200 150 v Voar Drain - Gate Voltage (Rgg = 20K) O 200 150 200 150 v Ip @ Te = 25C Continuous Drain Current 2.5 2.5 2.0 2.0 A tp @ Te 100C Continuous Drain Current 1S 1.5 1.25 1.25 A tom Puised Drain Current @) 10 10 8.0 8.0 A Vos Gate - Source Voltage +20 v | Fp @ Te = 25C Max. Power Dissipation 20 (See Fig. 14) w Linear Derating Factor 0.16 (See Fig. 14) wee om inductive Current, Clamped {See Fig. 15 and 16) = 100aH A 10 t 8.0 {8.0 T rating Juncti oe -8510 180 c Lead Temperature 300 (0.063 in. 1.6mm) from vase for 10s) C 3-154Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVoss Drain - Source Breakdown Voltage IRFB10 | 269 _ _ Vv vgs = ov IRF612 IRF611 = iregi3 | 190 ~ - v Ip = 250A Vgsith) Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = VGs. Ip = 2504A loss Gate-Source Leakage Forward ALL = = 800 nA Vog = 20V loss Gate-Source Leakage Reverse ALL = |-s00 nA Vos = -20V Ipsg Zere Gate Voltage Drain Current ALL ~ | 250 KA Vog = Max. Rating, Vgg = OV - = - | 1000 | uA Vog = Max. Rating x 0.8, Vgg = OV, Tc = 125C Ipion On-State Drain Current @ IRE610 26 _ _ A - ps 'pioni * Roston) max.: Vas = 10 IRFE1Z | 44 _ _ A IRF613 . RoSton) Static Drain-Source On-State IRF610 _ 1.0 s a Resistance IRF611 : 1OV. In = 1.258 IRFG12 is | 2a Q Gs uD (RFGI3 : . fs Forward Transconductance @) ALL 08 | 1.3 BG Vos? Dion) *"oSion) max. p= 120A Cigg__ Input Capacitance ALL 135 [ pF Vag - OV. Vpg + 25V.f 1.0 MHz Cogg _ Output Capacitance ALL - 60 _ pF See Fig. 10 Crgg___-Reverse Transfer Capacitance ALL 16 | pF tgion) _ Tum: On Delay Time ALL 8.0 | 15 ns Vp = 9-5 8Vpgg Ip = 1-258, 2, = 508 & Rise Time ALL - 1% | 25 ns See Fig. 17 td(oft) _Turn-Off Delay Time ALL - 10 15 ns (MOSFET switching times are essentially 4 Fal Time ALL 8.0 15 ne independent of operating temperature.) Qy Total Gate Charge ALL 50 | 75 ac Vag = 10V. Ip = 3.04, Vag = 0.8 Max. Rating. {Gate Source Pius Gate Oraint See Fig. 18 for test circuit. (Gate charge is essentially Qys Gate-Source Charge ALL 20 35 nc independent of operating temperature.) Qgq __ Gate-Drain ("Miller*} Charge ALL 30] 45 ac Lo internal Drain inductance 3.5 nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device ALL inductances. 4.5 - nH Measured from the drain lead, 6mm (0.25 o in.) from package to center of die. uD Ls Internal Source Inductance ALL ~ 75 - nH Measured from the source lead, 6mm S Ls (0.25 in.) from package to source bonding pad. s Thermal Resistance Rthyc _ Junction-to-Case ALL - = 6.4 | oc7w Rincs _Case-to-Sink ALL - 1.0 = C/W Mounting surface flat, smooth, and greased. Rihya Junction-to- Ambient ALL + - 80 oC s/w Free Air Operation Source-Drain Diode Ratings and Characteristics 15 Continuous Source Current (RF610 , 7 A Modified MOSFET symbol (Borly Diode! IRF611 , showing the -tegrai TRFOTD 7 reverse P-N junction rectifier, o IRF613 20 A SM Pulse Source Current IRF610 10 A G (Body Diode} @ IRF611 IRF612 s IRF613 8.0 A Vsp Oiode Forward Voltage @) IRF610 . or IRF611 2.0 v To - 26C. Ig 2.5A,.Vgsg = OV IRF612 _9R0 ; J IRF613. 1.8 Vv Te > 25C, Ig - 2.0A.Vgs - OV ter Reverse Recovery Time ALL 290 ns Ty = 150C, Ip = 2.5A, die/dt = 100 Alys Gar _ Reverse Recovered Charge ALL 2.0 uC Ty = 150C, Ip = 2.5A, digidt = 100 Alps ton Forward Tur-on Time ALL Invrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Li, @MTy = 25C to 150C. @ Pulse Test: Pulse width < 300us. Duty Cycle < 2% @ Repetitive Rating: Pulse widtn limited by max. junction temperature. See Transient Thermal lmpedance Curve (Fig. 51. 3-155Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 3-156, 40 36 Vs > 'pton} x Roston) max. 32 = 28 o 24 0 4.0 2.0 30 40 5.0 Jg, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.03 1.06 1.06 1.02 6.99 (NORMALIZED) O97 Og BVnes, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE 092 0.8! Ty. JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 6 t= tMaz 1 t Cigg = Cgp + Cyg, Coy SHORTED Css * Coe 6 coca mw Cyst Coy , CAPACITANCE (pF) 0 10 2 xn a0 50 Vag, DRAIN-TO-SOURCE VOLTAGE (VOLTS? Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Ros{on). DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 9 $5 -M5 -14 65 27 475 68 885 109 129.5 150 Ty= 1509C y= 2506 tpg. REVERSE DRAIN CURRENT (AMPERES) Q 10 20 30 40 5.0 Vsp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage 2.04 189 V4 159 143 128 nig 0.98 0.82 067 052 $5 -MS -14 65 27 475 68 885 109 1295 150 Ty. JUNCTION TEMPERATURE (9C} Fig. 9 ~ Normalized On-Resistance Vs. Temperature = 40v Vos * 1 | IRF610, 612 Vgg. GATE-TO-SOURCE VOLTAGE {VOLTS} Ip=3A FOR TEST CIRCUIT 1a 0 2 4 6 a 19 Oy. TOTAL GATE CHARGE int) Fig. 11 ~ Typical Gate Charge Vs. Gate-to-Source VoltageZingcttY/ Runge, NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) Ip, ORAIN CURRENT (AMPERES) Ip, CRAIN CURRENT (AMPERES) 10-5 Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 50 50 45 Tye i a0 4.0 Y 3 a Ty = -580C 35 2 2 a = 3.0 = 36 80 us fa U ' t 2 Vos > 'nton} * Boston) max. 25 = s 3 20 2 70 < = 1 a 2 10 10 os 0 0 0 10 20 30 40 50 0 2 4 6 8 10 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 5.0 OPERATION IN THIS AREAS LIMITED &Y Foston) 40 a 2 2 o # z 40 = S 3 2 S 3 z 20 z = a 2 To = 25C 10 Ty = 150C MAX Ainic = 8.4 C/W IAFEI1, SINGLE PULSE 0 0 0 10 20 30 4a 5.0 id 2 5 0 20 50 100 200 $00 Vps. ORAIN-TO SOURCE VOLTAGE (VOLTS) Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 -- Maximum Safe Operating Area bt} bot 1. DUTY FACTOR, 0 = + 2. PER UNIT BASE = Rynjc = 6.4 DEG. CW. THERMAL IMPEDANCE) 3. Tym - Te Pom Zens. 2 5 4 2 5 wd 2 5 2 2 5 yt 2 6 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONOS) Fig. 5 Maxi Effective Transi Thermal | d: J ion-to-Case Vs. Pulse Duration 3-157Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 Rosion} WITH CURRENT PULSE OF 2 BS DURATION. INITIAL Ty* 25C. (HEATING OF 2.0 ws PULSE {S MINIMAL} Rosfon}- ORAIN-TO-SOURCE ON RESISTANCE (OHMS) a 2 4 6 8 Ip, DRAIN CURRENT (AMPERES) at) Fig. 12 Typical On-Resistance Vs. Drain Current 20 Pp, POWER DISSIPATION (WATTS) 6 0 20 a 60 tp. DRAIN CURRENT (AMPERES) 06 0 25 50 15 100 125 150 Tc, CASE TEMPERATURE (0C} Fig. 13 Maximum Drain Current Vs. Case Temperature 80 100 120 140 Te. CASE TEMPERATURE (9C} Fig. 14 Power Vs. Temperature Derating Curve VARY tp TO OBTAIN REQUIRED PEAK 1, Ey + OSBVpss Ve + 0.758Vog5 Vgs *20V " Fig. 15 Clamped Inductive Test Circuit ADJUST RL OE) TO OBTAIN SPECIFIED Ip y, PULSE GENERATOR Ou.T. rocco TO SCOPE 0.0382 HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit 3-158 Fig. 16 Clamped Inductive Waveforms o Yas USOLATED SUPPLY) CURRENT REGULATOR SAME TYPE AS DUT -Vos 'g i) CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit