Horizontal Deflection
Transistor
. . . designed for use in televisions.
Collector–Emitter Voltages VCES 1500 Volts
Fast Switching — 400 ns Typical Fall Time
Low Thermal Resistance 1C/W Increased Reliability
Glass Passivated (Patented Photoglass). Triple Diffused Mesa
Technology for Long Term Stability
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
BU208A
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
700
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCES
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
1500
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter–Base Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VEB
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
5.0
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
5.0
7.5
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (Negative)
ÎÎÎÎÎ
ÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
4.0
3.5
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 95C
Derate above 95C
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
PD
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
12.5
0.625
ÎÎÎ
Î
Î
Î
ÎÎÎ
Watts
W/C
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction
Temperature Range
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
–65 to +115
ÎÎÎ
Î
Î
Î
ÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎ
ÎÎÎÎÎ
RθJC
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
1.6
ÎÎÎ
ÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering
Purpose, 1/8 from Case for 5 Seconds
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
TL
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
275
ÎÎÎ
Î
Î
Î
ÎÎÎ
C
NOTES:
1. Pulsed 5.0 ms, Duty Cycle 10%.
2. See page 3 for Additional Ratings on A Type.
3. Figures in ( ) are Standard Ratings ON Semiconductor Guarantees are Superior.
ON Semiconductor
Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 9 1Publication Order Number:
BU208A/D
BU208A
5.0 AMPERES
NPN SILICON
POWER TRANSISTOR
700 VOLTS
CASE 1–07
TO–204AA
(TO–3)
BU208A
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
Min
ÎÎÎÎ
ÎÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage
(IC = 100 mAdc, L = 25 mH)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎ
700
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current1ALL TYPES
(VCE = rated VCES, VBE = 0)
ÎÎÎÎÎ
ÎÎÎÎÎ
ICES
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.0
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage1
(IC = 0, IE = 10 mAdc)
(IC = 0, IE = 100 mAdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VEBO
ÎÎÎ
ÎÎÎ
5
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
7
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 4.5 Adc, VCE = 5 Vdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
hFE
2.25
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 4.5 Adc, IB = 2 Adc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 4.5 Adc, IB = 2 Adc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.5
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Current–Gain Bandwidth Product
(IC = 0.1 Adc, VCE = 5 Vdc, ftest = 1 MHz)
ÎÎÎÎÎ
ÎÎÎÎÎ
fT
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
MHz
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1 MHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Cob
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
125
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Storage Time (see test circuit fig. 1)
(IC = 4.5 Adc, IB1 = 1.8 Adc, LB = 10 µH)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ts
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
8
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Fall time (see test circuit fig. 1)
(IC = 4.5 Adc, IB1 = 1.8 Adc, LB = 10 µH)
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
µs
1Pulse test: PW = 300 µs; Duty cycle 2%.
BU208A
http://onsemi.com
3
Figure 1. Switching Time Test Circuit
+40 V +40 V
1 K 1 K
1N5242 (12 V)
10 K
3
15
1
14 2
16
10 nF
2K7
3K3
2 K
220 680 nF
820 10 nF
MPSU04
10 K
100
1 µF
400 mA
100
LB
T.U.T.
680 µF
RB
0.56
1 A
1500 V
22 nF
22 nF
6.5 mH Ly = 1.3 mH
0.5 µF 250 µF
7 mH 0.3 A
FUSE 130 V
POWER
SUPPLY
TBA920
80
60
40
20
040 80 120 160 200
Figure 2. Power Derating
TC, CASE TEMPERATURE (°C)
POWER DISSIPATION (W)
BU208A
http://onsemi.com
4
BASE DRIVE
The Key to Performance
By now, the concept of controlling the shape of the turn–of f base
current is widely accepted and applied in horizontal deflection
design. The problem stems from the fact that good saturation of the
output device, prior to turn–off, must be assured. This is
accomplished by providing more than enough IB1 to satisfy the
lowest gain output device hFE at the end of scan ICM. Worst–case
component variations and maximum high voltage loading must
also be taken into account.
If the base of the output transistor is driven by a very low
impedance source, the turn–off base current will reverse very
quickly as shown in Figure 3. This results in rapid, but only partial
collector turn–off, because excess carriers become trapped in the
high resistivity collector and the transistor is still conductive. This
is a high dissipation mode, since the collector voltage is rising very
rapidly. The problem is overcome by adding inductance to the base
circuit to slow the base current reversal as shown in Figure 4, thus
allowing access carrier recombination in the collector to occur
while the base current is still flowing.
Choosing the right LB Is usually done empirically since the
equivalent circuit is complex, and since there are several important
variables (ICM, IB1, and hFE at ICM). One method i s to plot fall time
as a function of LB, at the desired conditions, for several devices
within the hFE specification. A more informative method is to plot
power dissipation versus IB1 for a range of values of LB.
This shows the parameter that really matters, dissipation,
whether caused by switching or by saturation. For very low LB a
very narrow optimum is obtained. This occurs when IB1 hFE
ICM, and therefore would be acceptable only for the “typical”
device with constant ICM. As LB is increased, the curves become
broader and flatter above the IB1. hFE = ICM point as the turn off
“tails” are brought under control. Eventually, i f LB is raised too far ,
the dissipation all across the curve will rise, due to poor initiation
of switching rather than tailing. Plotting this type of curve family
for devices of different hFE, essentially moves the curves to the
left, or right according to the relation IB1 hFE = constant. It then
becomes obvious that, for a specified ICM, an LB can be chosen
which will give low dissipation over a range of hFE and/or IB1. The
only remaining decision is to pick IB1 high enough to
accommodate the lowest hFE part specified. Neither LB nor IB1 are
absolutely critical. Due to the high gain of ON Semiconductor
devices it is suggested that in general a low value of IB1 be used to
obtain optimum efficiency — eg. for BU208A with ICM = 4.5 A
use IB1 1.5 A, at ICM = 4 A use IB1 1.2 A. These values are
lower than for most competition devices but practical tests have
showed comparable efficiency for ON Semiconductor devices
even at the higher level of IB1.
An LB of 10 µH to 12 µH should give satisfactory operation of
BU208A with ICM of 4 to 4.5 A and IB1 between 1.2 and 2 A.
TEST CIRCUIT WAVEFORMS
Figure 3. Figure 4.
IB
IC
IB
IC
(TIME) (TIME)
TEST CIRCUIT OPTIMIZATION
The test circuit may be used to evaluate devices in the
conventional manner, i.e., to measure fall time, storage time, and
saturation voltage. However, this circuit was designed to evaluate
devices by a simple criterion, power supply input. Excessive
power input can be caused by a variety of problems, but it is the
dissipation in the transistor that is of fundamental importance.
Once the required transistor operating current is determined, fixed
circuit values may be selected.
BU208A
http://onsemi.com
5
14
0.01
Figure 5. DC Current Gain
IC, COLLECTOR CURRENT (A)
4
0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10
12
10
9
8
2.8
0.1
Figure 6. Collector–Emitter Saturation Voltage
IB, BASE CURRENT CONTINUOUS (A)
0.2 0.5 1.0 2.0 10
2.4
2.0
1.6
1.2
1.6
0.1
Figure 7. Base–Emitter Saturation Voltage
IC, COLLECTOR CURRENT (A)
0.2 0.5 1.0 2.0 10
1.5
1.4
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.1
Figure 8. Collector Saturation Region
IC, COLLECTOR CURRENT (A)
0
0.2 0.5 1.0 2.0 5.0 10
0.4
0.3
0.2
0.1
IC/IB = 3
15
1
Figure 9. Maximum Forward Bias Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (V)
13
11
hFE, DC CURRENT GAIN
VCE = 5 V
, COLLECTOR CURRENT (A)IC
0.001 2 5 10 20 50 100 200 500 1000 2000
1.3
7
6
5
VCE(sat) , COLLECTOR-EMITTER SATURATION
VOLTAGE (V)
IC/IB = 2
VBE, BASE-EMITTER VOLTAGE (V)
5.0
IC/IB = 2
0.8
0.4
5.0
IC = 3.5 A
IC = 2 A
IC = 3 A
IC = 4 A
IC = 4.5 A
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
TC 95°C
IC(max.)
ICM(max.)
1 µs
2
5
10
20
50
100
200
300
1 ms
2 ms
D.C.
BU208,A1
1Pulse width 20 µs. Duty cycle 0.25. RBE 100 Ohms.
VCE(sat) , COLLECTOR-EMITTER SATURATION
VOLTAGE (V)
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
DUTY CYCLE 1%
BU208A
http://onsemi.com
6
PACKAGE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO-204AA OUTLINE SHALL APPLY.
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A1.550 REF 39.37 REF
B--- 1.050 --- 26.67
C0.250 0.335 6.35 8.51
D0.038 0.043 0.97 1.09
E0.055 0.070 1.40 1.77
G0.430 BSC 10.92 BSC
H0.215 BSC 5.46 BSC
K0.440 0.480 11.18 12.19
L0.665 BSC 16.89 BSC
N--- 0.830 --- 21.08
Q0.151 0.165 3.84 4.19
U1.187 BSC 30.15 BSC
V0.131 0.188 3.33 4.77
A
N
E
C
K
–T– SEATING
PLANE
2 PL
D
M
Q
M
0.13 (0.005) Y M
T
M
Y
M
0.13 (0.005) T
–Q–
–Y–
2
1
UL
GB
V
H
CASE 1–07
TO–204AA (TO–3)
ISSUE Z
BU208A
http://onsemi.com
7
Notes
BU208A
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
BU208A/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland