Pb
RoHS
EC312010-100.000M
EC31 20 10 -100.000M
Series
RoHS Compliant (Pb-free) 5.0V 14 Pin DIP Metal
Thru-Hole HCMOS/TTL VCXO
Frequency Tolerance/Stability
±20ppm Maximum
Package
Duty Cycle
50 ±10(%)
Nominal Frequency
100.000MHz
Operating Temperature Range
0°C to +70°C
Linearity
±10% Maximum
Frequency Deviation
±50ppm Minimum
ELECTRICAL SPECIFICATIONS
Nominal Frequency 100.000MHz
Frequency Tolerance/Stability ±20ppm Maximum (Inclusive of all conditions: Calibration Tolerance at 25°C, Frequency Stability over the
Operating Temperature Range, Supply Voltage Change, Output Load Change, First Year Aging at 25°C,
Shock, and Vibration)
Aging at 25°C ±5ppm/year Maximum
Operating Temperature Range 0°C to +70°C
Supply Voltage 5.0Vdc ±5%
Input Current 50mA Maximum
Output Voltage Logic High (Voh) 2.4Vdc Minimum with TTL Load, Vdd-0.5Vdc with HCMOS Load
Output Voltage Logic Low (Vol) 0.4Vdc Maximum with TTL Load, 0.5Vdc Maximum with HCMOS Load
Rise/Fall Time 5nSec Maximum (0.4Vdc to 2.4Vdc w/TTL Load, 20% to 80% of waveform w/HCMOS Load)
Duty Cycle 50 ±10(%) (Measured at 1.4Vdc with TTL Load or at 50% of waveform with HCMOS Load)
Load Drive Capability 10TTL Load or 15pF HCMOS Load Maximum
Output Logic Type CMOS
Control Voltage 2.5Vdc ±2.0Vdc
Frequency Deviation ±50ppm Minimum
Linearity ±10% Maximum
Transfer Function Positive Transfer Characteristic
Absolute Clock Jitter ±200pSec Maximum
One Sigma Clock Period Jitter ±50pSec Maximum
Start Up Time 10mSec Maximum
Storage Temperature Range -55°C to +125°C
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
Fine Leak Test MIL-STD-883, Method 1014, Condition A
Gross Leak Test MIL-STD-883, Method 1014, Condition C
Lead Integrity MIL-STD-883, Method 2004
Mechanical Shock MIL-STD-202, Method 213, Condition C
Resistance to Soldering Heat MIL-STD-202, Method 210
Resistance to Solvents MIL-STD-202, Method 215
Solderability MIL-STD-883, Method 2003
Temperature Cycling MIL-STD-883, Method 1010
Vibration MIL-STD-883, Method 2007, Condition A
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 1 of 7
EC312010-100.000M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
MARKING
ORIENTATION
7.620
±0.203
13.2
MAX
20.8 MAX
15.240
±0.203
1 7
8
14
DIA 0.457
±0.100 (X4)
5.08 MIN
5.08 MAX
0.9 MAX
PIN CONNECTION
1 Control Voltage
7 Ground/Case Ground
8 Output
14 Supply Voltage
LINE MARKING
1ECLIPTEK
2EC31
EC31=Product Series
3100.00M
4XXYZZ
XX=Ecliptek Manufacturing
Code
Y=Last Digit of the Year
ZZ=Week of the Year
OUTPUT WAVEFORM
VOH
VOL
80% or 2.4VDC
50% or 1.4VDC
20% or 0.4VDC
Fall
Time
Rise
Time TW
T
Duty Cycle (%) = TW/T x 100
CLOCK OUTPUT
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 2 of 7
EC312010-100.000M
Test Circuit for TTL Output
Output
Supply
Voltage
(VDD)
Ground
Power
Supply Voltage
Meter
Current
Meter
0.01µF
(Note 1) 0.1µF
(Note 1) CL
(Note 3)
RL
(Note 4)
Power
Supply
Oscilloscope Frequency
Counter
Probe
(Note 2)
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and VDD pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value CL includes sum of all probe and fixture capacitance.
Note 4: Resistance value RL is shown in Table 1. See applicable specification sheet for 'Load Drive Capability'.
Note 5: All diodes are MMBD7000, MMBD914, or equivalent.
Table 1: RL Resistance Value and CL Capacitance
Value Vs. Output Load Drive Capability
Output Load
Drive Capability RL Value
(Ohms) CL Value
(pF)
10TTL
5TTL
2TTL
10LSTTL
1TTL
390
780
1100
2000
2200
15
15
6
15
3
Power
Supply Voltage
Meter
Note 5
Voltage
Control
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 3 of 7
EC312010-100.000M
Supply
Voltage
(VDD)
Test Circuit for CMOS Output
Output
Voltage
Control
Ground
Power
Supply
0.01µF
(Note 1) 0.1µF
(Note 1) CL
(Note 3)
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and VDD pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value CL includes sum of all probe and fixture capacitance.
Voltage
Meter
Current
Meter
Oscilloscope Frequency
Counter
Probe
(Note 2)
Power
Supply Voltage
Meter
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 4 of 7
T Min
S
T Max
S
Critical Zone
T to T
L P
Ramp-up Ramp-down
TL
TP
t 25°C to Peak
t Preheat
StL
tP
Temperature (T)
Time (t)
Recommended Solder Reflow Methods
EC312010-100.000M
High Temperature Solder Bath (Wave Solder)
TS MAX to TL (Ramp-up Rate) 3°C/second Maximum
Preheat
- Temperature Minimum (TS MIN) 150°C
- Temperature Typical (TS TYP) 175°C
- Temperature Maximum (TS MAX) 200°C
- Time (tS MIN) 60 - 180 Seconds
Ramp-up Rate (TL to TP)3°C/second Maximum
Time Maintained Above:
- Temperature (TL)217°C
- Time (tL)60 - 150 Seconds
Peak Temperature (TP)260°C Maximum for 10 Seconds Maximum
Target Peak Temperature (TP Target) 250°C +0/-5°C
Time within 5°C of actual peak (tp)20 - 40 seconds
Ramp-down Rate 6°C/second Maximum
Time 25°C to Peak Temperature (t) 8 minutes Maximum
Moisture Sensitivity Level Level 1
Additional Notes Temperatures shown are applied to back of PCB board and device leads
only. Do not use this method for product with the Gull Wing option.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 5 of 7
T Min
S
T Max
S
Critical Zone
T to T
L P
Ramp-up Ramp-down
TL
TP
t 25°C to Peak
t Preheat
StL
tP
Temperature (T)
Time (t)
Recommended Solder Reflow Methods
EC312010-100.000M
Low Temperature Infrared/Convection 185°C
TS MAX to TL (Ramp-up Rate) 5°C/second Maximum
Preheat
- Temperature Minimum (TS MIN) N/A
- Temperature Typical (TS TYP) 150°C
- Temperature Maximum (TS MAX) N/A
- Time (tS MIN) 60 - 120 Seconds
Ramp-up Rate (TL to TP)5°C/second Maximum
Time Maintained Above:
- Temperature (TL)150°C
- Time (tL)200 Seconds Maximum
Peak Temperature (TP)185°C Maximum
Target Peak Temperature (TP Target) 185°C Maximum 2 Times
Time within 5°C of actual peak (tp)10 seconds Maximum 2 Times
Ramp-down Rate 5°C/second Maximum
Time 25°C to Peak Temperature (t) N/A
Moisture Sensitivity Level Level 1
Additional Notes Temperatures shown are applied to body of device. Use this method only
for product with the Gull Wing option.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 6 of 7
T Min
S
T Max
S
Critical Zone
T to T
L P
Ramp-up Ramp-down
TL
TP
t 25°C to Peak
t Preheat
StL
tP
Temperature (T)
Time (t)
Recommended Solder Reflow Methods
EC312010-100.000M
Low Temperature Solder Bath (Wave Solder)
TS MAX to TL (Ramp-up Rate) 5°C/second Maximum
Preheat
- Temperature Minimum (TS MIN) N/A
- Temperature Typical (TS TYP) 150°C
- Temperature Maximum (TS MAX) N/A
- Time (tS MIN) 30 - 60 Seconds
Ramp-up Rate (TL to TP)5°C/second Maximum
Time Maintained Above:
- Temperature (TL)150°C
- Time (tL)200 Seconds Maximum
Peak Temperature (TP)245°C Maximum
Target Peak Temperature (TP Target) 245°C Maximum 1 Time / 235°C Maximum 2 Times
Time within 5°C of actual peak (tp)5 seconds Maximum 1 Time / 15 seconds Maximum 2 Times
Ramp-down Rate 5°C/second Maximum
Time 25°C to Peak Temperature (t) N/A
Moisture Sensitivity Level Level 1
Additional Notes Temperatures shown are applied to back of PCB board and device leads
only. Do not use this method for product with the Gull Wing option.
Low Temperature Manual Soldering
185°C Maximum for 10 seconds Maximum, 2 times Maximum. (Temperatures listed are applied to device leads only.
This method can be utilized with both Gull Wing and Non-Gull Wing devices.)
High Temperature Manual Soldering
260°C Maximum for 5 seconds Maximum, 2 times Maximum. (Temperatures listed are applied to device leads only. This
method can be utilized with both Gull Wing and Non-Gull Wing devices.)
www.ecliptek.com | Specification Subject to Change Without Notice | Rev Q 2/17/2010 | Page 7 of 7