F = VIN
2S x R1 x C2 x VHYS
L = VIN - VSD - VOUT
'IxF
D
LM3475
www.ti.com
SNVS239C –OCTOBER 2004–REVISED OCTOBER 2015
8.2.2.3 Using a Feed-forward Capacitor
The operating frequency and output ripple voltage can also be significantly influenced using a speed up
capacitor, Cff, as shown in Figure 11. Cff is connected in parallel with the high side feedback resistor, R1. The
output ripple causes a current to be sourced or sunk through this capacitor. This current is essentially a square
wave. Since the input to the feedback pin (FB) is a high impedance node, the bulk of the current flows through
R2. This superimposes a square wave ripple voltage on the FB node. The end result is a reduction in output
ripple and an increase in operating frequency. When adding Cff, calculate the formula above with α= 1. The value
of Cff depends on the desired operating frequency and the value of R2. A good starting point is 1nF ceramic at
100kHz decreasing linearly with increased operating frequency. Also note that as the output voltage is
programmed below 1.6V, the effect of Cff will decrease significantly.
8.2.2.4 Inductor Selection
The most important parameters for the inductor are the inductance and the current rating. The LM3475 operates
over a wide frequency range and can use a wide range of inductance values. Minimum inductance can be
calculated using the following equation:
where
• D is the duty cycle, defined as VOUT/VIN
•ΔI is the allowable inductor ripple current (6)
Maximum allowable inductor ripple current should be calculated as a function of output current (IOUT) as shown
below:
ΔImax = IOUT x 0.3
The inductor must also be rated to handle the peak current (IPK) and RMS current given by:
IPK = (IOUT +ΔI/2) x 1.1 (7)
(8)
The inductance value and the resulting ripple is one of the key parameters controlling operating frequency.
8.2.2.5 Output Capacitor Selection
Once the desired operating frequency and inductance value are selected, ESR must be selected based on
Equation 4. This process may involve a few iterations to select standard ESR and inductance values.
In general, the ESR of the output capacitor and the inductor ripple current create the output ripple of the
regulator. However, the comparator hysteresis sets the first order value of this ripple. Therefore, as ESR and
ripple current vary, operating frequency must also vary to keep the output ripple voltage regulated. The hysteretic
control topology is well suited to using ceramic output capacitors. However, ceramic capacitors have a very low
ESR, resulting in a 90° phase shift of the output voltage ripple. This results in low operating frequency and
increased output ripple. To fix this problem a low value resistor could be added in series with the ceramic output
capacitor. Although counter intuitive, this combination of a ceramic capacitor and external series resistance
provide highly accurate control over the output voltage ripple. Another method is to add an external ramp at the
FB pin as shown in Figure 12. By proper selection of R1 and C2, the FB pin sees faster voltage change than the
output ripple can cause. As a result, the switching frequency is higher while the output ripple becomes lower. The
switching frequency is approximately:
(9)
Other types of capacitor, such as Sanyo POSCAP, OS-CON, and Nichicon ’NA’ series are also recommended
and may be used without additional series resistance. For all practical purposes, any type of output capacitor
may be used with proper circuit verification.
Copyright © 2004–2015, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM3475