Order this document by MJE13002/D SEMICONDUCTOR TECHNICAL DATA ! *Motorola Preferred Device 1.5 AMPERE NPN SILICON POWER TRANSISTORS 300 AND 400 VOLTS 40 WATTS These devices are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits. SPECIFICATION FEATURES: * Reverse Biased SOA with Inductive Loads @ TC = 100_C * Inductive Switching Matrix 0.5 to 1.5 Amp, 25 and 100_C . . . tc @ 1 A, 100_C is 290 ns (Typ). * 700 V Blocking Capability * SOA and Switching Applications Information. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIII IIIIII IIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIII IIIIII IIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIII IIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII v CASE 77-08 TO-225AA TYPE MAXIMUM RATINGS Rating Symbol MJE13002 MJE13003 Unit VCEO(sus) 300 400 Vdc Collector-Emitter Voltage VCEV 600 700 Vdc Emitter Base Voltage VEBO 9 Vdc Collector Current -- Continuous -- Peak (1) IC ICM 1.5 3 Adc Base Current -- Continuous -- Peak (1) IB IBM 0.75 1.5 Adc Emitter Current -- Continuous -- Peak (1) IE IEM 2.25 4.5 Adc Total Power Dissipation @ TA = 25_C Derate above 25_C PD 1.4 11.2 Watts mW/_C Total Power Dissipation @ TC = 25_C Derate above 25_C PD 40 320 Watts mW/_C TJ, Tstg - 65 to + 150 _C Symbol Max Unit Thermal Resistance, Junction to Case RJC 3.12 _C/W Thermal Resistance, Junction to Ambient RJA 89 _C/W TL 275 _C Collector-Emitter Voltage Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Characteristic Maximum Load Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%. Designer's Data for "Worst Case" Conditions -- The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves -- representing boundaries on device characteristics -- are given to facilitate "worst case" design. Preferred devices are Motorola recommended choices for future use and best overall value. Designer's and SWITCHMODE are trademarks of Motorola, Inc. REV 4 Motorola, Inc. 1995 Motorola Bipolar Power Transistor Device Data 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII v IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII v ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic Symbol Min Typ Max 300 400 -- -- -- -- -- -- -- -- 1 5 -- -- 1 Unit OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (IC = 10 mA, IB = 0) VCEO(sus) MJE13002 MJE13003 Collector Cutoff Current (VCEV = Rated Value, VBE(off) = 1.5 Vdc) (VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C) ICEV Emitter Cutoff Current (VEB = 9 Vdc, IC = 0) IEBO Vdc mAdc mAdc SECOND BREAKDOWN Second Breakdown Collector Current with bass forward biased Clamped Inductive SOA with base reverse biased IS/b See Figure 11 RBSOA See Figure 12 ON CHARACTERISTICS (1) DC Current Gain (IC = 0.5 Adc, VCE = 2 Vdc) (IC = 1 Adc, VCE = 2 Vdc) hFE -- 8 5 -- -- 40 25 -- -- -- -- -- -- -- -- 0.5 1 3 1 -- -- -- -- -- -- 1 1.2 1.1 fT 4 10 -- MHz Cob -- 21 -- pF td -- 0.05 0.1 s tr -- 0.5 1 s ts -- 2 4 s tf -- 0.4 0.7 s tsv -- 1.7 4 s tc -- 0.29 0.75 s tfi -- 0.15 -- s Collector-Emitter Saturation Voltage (IC = 0.5 Adc, IB = 0.1 Adc) (IC = 1 Adc, IB = 0.25 Adc) (IC = 1.5 Adc, IB = 0.5 Adc) (IC = 1 Adc, IB = 0.25 Adc, TC = 100_C) VCE(sat) Base-Emitter Saturation Voltage (IC = 0.5 Adc, IB = 0.1 Adc) (IC = 1 Adc, IB = 0.25 Adc) (IC = 1 Adc, IB = 0.25 Adc, TC = 100_C) VBE(sat) Vdc Vdc DYNAMIC CHARACTERISTICS Current-Gain -- Bandwidth Product (IC = 100 mAdc, VCE = 10 Vdc, f = 1 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time (VCC = 125 Vdc, IC = 1 A, IB1 = IB2 = 0.2 A, tp = 25 s, Duty Cycle 1%) Fall Time Inductive Load, Clamped (Table 1, Figure 13) Storage Time Crossover Time (IC = 1 A, Vclamp = 300 Vdc, IB1 = 0.2 A, VBE(off) = 5 Vdc, TC = 100_C) Fall Time (1) Pulse Test: PW = 300 s, Duty Cycle 2 2%. Motorola Bipolar Power Transistor Device Data VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) 80 60 hFE , DC CURRENT GAIN TJ = 150C 40 30 25C 20 - 55C 10 8 VCE = 2 V VCE = 5 V 6 4 0.02 0.03 0.2 0.3 0.5 0.7 0.05 0.07 0.1 IC, COLLECTOR CURRENT (AMP) 1 2 2 TJ = 25C 1.6 1.2 IC = 0.1 A 1.5 A 0.4 0 0.002 0.005 0.01 0.02 0.05 0.1 0.2 IB, BASE CURRENT (AMP) 1 2 0.35 VBE(sat) @ IC/IB = 3 VBE(on) @ VCE = 2 V 1 0.3 V, VOLTAGE (VOLTS) 1.2 TJ = - 55C 25C 0.8 25C 0.6 0.05 0.07 0.1 0.2 0.3 0.25 IC/IB = 3 TJ = - 55C 0.2 0.15 25C 0.1 150C 150C 0.4 0.02 0.03 0.05 0.5 0.7 1 0 0.02 0.03 2 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1 2 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 3. Base-Emitter Voltage Figure 4. Collector-Emitter Saturation Region 104 500 VCE = 250 V 300 103 TJ = 25C Cib C, CAPACITANCE (pF) 200 TJ = 150C 102 125C 100C 101 75C 50C 100 70 50 30 20 100 25C 10-1 - 0.4 0.5 Figure 2. Collector Saturation Region 1.4 V, VOLTAGE (VOLTS) 1A 0.8 Figure 1. DC Current Gain IC, COLLECTOR CURRENT ( A) 0.3 A 0.5 A REVERSE FORWARD 0 - 0.2 + 0.2 + 0.4 VBE, BASE-EMITTER VOLTAGE (VOLTS) Figure 5. Collector Cutoff Region Motorola Bipolar Power Transistor Device Data + 0.6 10 7 5 0.1 0.2 Cob 0.5 2 5 10 20 50 100 200 500 1000 1 VR, REVERSE VOLTAGE (VOLTS) Figure 6. Capacitance 3 Table 1. Test Conditions for Dynamic Performance RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING +5 V VCC 33 1N4933 +125 V MJE210 TEST CIRCUITS 0.001 F L 5V 2N2222 PW DUTY CYCLE 10% tr, tf 10 ns MR826* RC 33 1N4933 Vclamp IC RB 1k 68 1k +5 V 5.1 k IB TUT SCOPE RB *SELECTED FOR 1 kV D1 VCE 51 1k 1N4933 T.U.T. - 4.0 V 2N2905 270 MJE200 CIRCUIT VALUES 0.02 F NOTE PW and VCC Adjusted for Desired IC RB Adjusted for Desired IB1 47 100 1/2 W Coil Data: Ferroxcube Core #6656 Full Bobbin (~200 Turns) #20 - VBE(off) GAP for 30 mH/2 A Lcoil = 50 mH VCC = 125 V RC = 125 D1 = 1N5820 or Equiv. RB = 47 VCC = 20 V Vclamp = 300 Vdc OUTPUT WAVEFORMS TEST WAVEFORMS t1 Adjusted to Obtain IC IC(pk) t t1 VCE Lcoil (ICpk) t1 VCC tf VCE or Vclamp t2 t - 8.5 V Lcoil (ICpk) Vclamp tr, tf < 10 ns Duty Cycle = 1.0% RB and RC adjusted for desired IB and IC Vclamp 90% Vclamp tsv 90% IC trv tc 10% Vclamp 90% IB1 IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII Table 2. Typical Inductive Switching Performance ICPK IC 0 Test Equipment Scope-Tektronics 475 or Equivalent t2 TIME VCE IB 25 s +10.3 V tf CLAMPED IC tfi tti 10% ICPK 2% IC IC AMP TC _C tsv s trv s tfi s tti s tc s 0.5 25 100 1.3 1.6 0.23 0.26 0.30 0.30 0.35 0.40 0.30 0.36 1 25 100 1.5 1.7 0.10 0.13 0.14 0.26 0.05 0.06 0.16 0.29 1.5 25 100 1.8 3 0.07 0.08 0.10 0.22 0.05 0.08 0.16 0.28 NOTE: All Data Recorded in the Inductive Switching Circuit in Table 1 TIME Figure 7. Inductive Switching Measurements 4 Motorola Bipolar Power Transistor Device Data SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10 - 90% Vclamp tfi = Current Fall Time, 90 - 10% IC tti = Current Tail, 10 - 2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc)f In general, t rv + t fi t c. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25_C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C. ] RESISTIVE SWITCHING PERFORMANCE 2 VCC = 125 V IC/IB = 5 TJ = 25C 1 tr 2 0.3 0.2 0.1 td @ VBE(off) = 5 V 1 0.7 0.5 0.07 0.05 tf 0.3 0.2 0.03 0.02 0.02 0.03 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) VCC = 125 V IC/IB = 5 TJ = 25C ts 3 t, TIME ( s) t, TIME ( s) 0.7 0.5 10 7 5 0.05 0.07 0.1 1 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.3 0.5 0.7 10 20 0.1 0.02 0.03 0.05 0.07 0.1 0.2 0.3 1 2 500 1000 0.5 0.7 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 8. Turn-On Time Figure 9. Turn-Off Time 0.2 0.1 0.1 0.07 0.05 0.02 0.03 0.02 ZJC(t) = r(t) RJC RJC = 3.12C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RJC(t) 0.05 0.01 SINGLE PULSE 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20 t, TIME OR PULSE WIDTH (ms) 50 P(pk) t1 t2 DUTY CYCLE, D = t1/t2 100 200 Figure 10. Thermal Response Motorola Bipolar Power Transistor Device Data 5 The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown. SAFE OPERATING AREA INFORMATION FORWARD BIAS IC, COLLECTOR CURRENT (AMP) 10 5 2 100 s 1 10 s 5.0 ms dc 0.5 1.0 ms TC = 25C 0.2 0.1 0.05 0.02 0.01 5 THERMAL LIMIT (SINGLE PULSE) BONDING WIRE LIMIT SECOND BREAKDOWN LIMIT CURVES APPLY BELOW RATED VCEO MJE13002 MJE13003 10 20 50 100 200 300 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 500 Figure 11. Active Region Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on TC = 25_C; T J(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. T J(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS IC, COLLECTOR CURRENT (AMP) 1.6 For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives RBSOA characteristics. 1.2 VBE(off) = 9 V TJ 100C IB1 = 1 A 0.8 MJE13003 MJE13002 0.4 5V 3V 0 0 100 200 300 1.5 V 400 500 700 600 800 VCEV, COLLECTOR-EMITTER CLAMP VOLTAGE (VOLTS) Figure 12. Reverse Bias Safe Operating Area POWER DERATING FACTOR 1 SECOND BREAKDOWN DERATING 0.8 0.6 THERMAL DERATING 0.4 0.2 0 20 40 60 80 100 120 140 160 TC, CASE TEMPERATURE (C) Figure 13. Forward Bias Power Derating 6 Motorola Bipolar Power Transistor Device Data PACKAGE DIMENSIONS -B- U F Q -A- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. C M 1 2 3 H K J V G S R 0.25 (0.010) A M M B M D 2 PL 0.25 (0.010) M A M B M DIM A B C D F G H J K M Q R S U V INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.130 0.094 BSC 0.050 0.095 0.015 0.025 0.575 0.655 5 _ TYP 0.148 0.158 0.045 0.055 0.025 0.035 0.145 0.155 0.040 --- MILLIMETERS MIN MAX 10.80 11.04 7.50 7.74 2.42 2.66 0.51 0.66 2.93 3.30 2.39 BSC 1.27 2.41 0.39 0.63 14.61 16.63 5 _ TYP 3.76 4.01 1.15 1.39 0.64 0.88 3.69 3.93 1.02 --- STYLE 3: PIN 1. BASE 2. COLLECTOR 3. EMITTER CASE 77-08 TO-225AA TYPE ISSUE V Motorola Bipolar Power Transistor Device Data 7 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315 MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 8 Motorola Bipolar Power Transistor Device Data *MJE13002/D* MJE13002/D