PD-9.481C Intemational | IRFP9240 Rectifier HEXFET Power MOSFET Dynamic dv/dt Rating Repetitive Avalanche Rated D @ P-Channel Isolated Central Mounting Hole Fast Switching @ Ease of Paralleling Simple Drive Requirements Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low AJ BF Voss = -200V Rpscon) = 0.50Q s Ip = -12A on-resistance and cost-effectiveness. The TO-247 package is preferred for commercialindustrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications. TO-247AC Absolute Maximum Ratings Parameter Max. Units Ip @ Tc = 25C Continuous Drain Current, Ves @ -10 V -12 Ip @ Te = 100C | Continuous Drain Current, Vas @ -10 V 75 A Ibm Pulsed Drain Current -48 Pp @ Tc = 25C | Power Dissipation 150 W Linear Derating Factor 1.2 WC Vas Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy 790 mJ lar Avalanche Current -12 A Ear Repetitive Avalanche Energy 15 mJ dv/dt Peak Diode Recovery dv/dt -5.0 Vins Ty Operating Junction and -55 to +150 Tste Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting Torque, 6-32 or M3 screw 10 Ibfsin (1.1 Nem) Thermal Resistance Parameter Min. | Typ. Max. Units Rec Junction-to-Case = 0.83 Recs Case-to-Sink, Flat, Greased Surface _ 0.24 _ C/W Raa Junction-to-Ambient _ | _ 40 1037IRFP9240 Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max, | Units Test Conditions Vierypss Drain-to-Source Breakdown Voltage -200 | _ Vj Vas=0V, Ip=-250nA AViarjoss/ATy| Breakdown Voltage Temp. Coefficient | -0.20| | VIC | Reference to 25C, Ip=-1mA Rpston} Static Drain-to-Source On-Resistance _ _ 0.50 Q Vas=-10V, Ip=-7.2A Vast) Gate Threshold Voltage 2.0] | -40] V [Vps=Vos,Ib=-250nA Dts Forward Transconductance 42 = S__| Vps=-50V, Ip=-7.2A i loss Drain-to-Source Leakage Current {| = _| -100 WA |Vos=-200V, Ves=OV = | -500 Vos=-160V, Vag=0V, Ty=125C lass Gate-to-Source Forward Leakage | -100 nA Vas=-20V Gate-to-Source Reverse Leakage _ _ 100 Vas=20V Qg Total Gate Charge fa | 44. Ip=-11A Qgs Gate-to-Source Charge fe fe | 71 | 1 | Vog=-160V Qoa Gate-io-Drain ("Miller") Charge _ _- 27 Vas=-10V See Fig. 6 and 13 talon) Turn-On Delay Time a Vpp=-100V te Rise Time _ 42a | | ns {p=-11A tafort Turn-Off Delay Time 39900 'Re=9.10 tf Fall Time 38 | | | Pn=8.6Q See Figure 10 Lo Internal Drain Inductance _ 50} | eames io [rr ee RMR ane omer = F- -]_ | from package (lh | Ls Internal Source Inductance 13 _ and center of die contact $ Ciss Input Capacitance ~ | 1200; Vas=0V Coss Output Capacitance | 370 | | pF | Vps=-25V Ciss Reverse Transfer Capacitance | 81 | _ f=1.0MHz See Figure5 Source-Drain Ratings and Characteristics ee |. Parameter Min. | Typ. | Max. | Units | Test Conditions ts Continuous Source Current _ _ 42 | MOSFET symbol 5 (Body Diode) : showing the Ism Pulsed Source Current _ _ 48 lintegral reverse | (Body Diode) t |_| pen junetion diode. "IS. Vsp Diode Forward Voltage | -6.0 V_ | Ty=28C, Is=-12A, Vas=0V | tr Reverse Recovery Time = | 250 | 300 | ns | Ty=25C, lr=-41A }Qre Reverse Recovery Charge ~ | 2.9 | 3.6 | uc |di/dt=100A/us @ ton Forward Turn-On Time Intrinsic turn-on time is neglegible {turn-on is dominated by Ls+Lp) Notes: @ Repetitive rating; pulse width limited by Isp<-12A, di/dts150A/us, Vop SEE FIGURE 13 100 101 a) 10 20 30 40 50 60 -Vps, Drain-to-Source Voltage (volts) Qe, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 102 Q E _ 3 = so! 2 Ee = ze a ~~ o o = = to 5 oO Cc a 3 a as v a 2 TT p=28%% v _ T= 150C . Veg = OV 1 LSINGLE PULSE 1 O0 4.0 2.0 3.0 4.0 5.0 1 2 5 4190 2 5 492 2 5 403 -Vsp, Source-to-Drain Voltage (volts) -Vps, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 1040-Ip, Drain Current (Amps) IRFP9240 DB Vos WA D.U.T. 4 a Voo \T-10Vv Pulse Width < tps Duty Factor < 0.1% = Fig 10a. Switching Time Test Circuit ee t a tf Yes an ae 10% | | | | | | | | 25 50 7 100 4 SF Tc, Case Temperature (C) \ Fig 9. Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature Thermal Response (Zgjc) wae i tel. | NOTES: 1. DUTY FACTOR, O=ty/to 2. PEAK T, x +T 1075 1074 1073 10-8 0.1 4 40 ty, Rectangular Pulse Duration (seconds) Fig 11.. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1041IRFP9240 Vary tp to obtain Vos > required las Fig 12a. Unclamped Inductive Test Circuit B00 lag Eas, Single Pulse Energy (mJ) Vps DD = QO Vop 25 50 75 100 125 150 Starting Ty, Junction Temperature(C) Varios Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator T J iB < % 2 TT a gs it x a wo 2 7 a I 10V Vas Ve Charge le = b . Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1506 Appendix B: Package Outline Mechanical Drawing See page 1511 Appendix C: Part Marking Information - See page 1517 International Rectifier 1042