   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DTrimmed Offset Voltage:
TLC27L7 . . . 500 µV Max at 25°C,
VDD = 5 V
DInput Offset Voltage Drift . . . Typically
0.1 µV/Month, Including the First 30 Days
DWide Range of Supply Voltages Over
Specified Temperature Range:
0°C to 70°C...3 V to 16 V
−40°C to 85°C...4 V to 16 V
−55°C to 125°C...4 V to 16 V
DSingle-Supply Operation
DCommon-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix,
I-Suffix Types)
DUltra-Low Power ...Typically 95 µW
at 25°C, VDD = 5 V
DOutput Voltage Range Includes Negative
Rail
DHigh Input Impedance ...10
12 Typ
DESD-Protection Circuitry
DSmall-Outline Package Option Also
Available in Tape and Reel
DDesigned-In Latch-Up immunity
description
The TLC27L2 and TLC27L7 dual operational
amplifiers combine a wide range of input offset
voltage grades with low offset voltage drift, high
input impedance, extremely low power, and high
gain.
AVAILABLE OPTIONS
PACKAGE
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
0°C
500 µV
TLC27L7CD
TLC27L7CP
0°C
to
500 µV
2 mV
TLC27L7CD
TLC27L2BCD
TLC27L7CP
TLC27L2BCP
to
70°C
2 mV
5 mV
TLC27L2BCD
TLC27L2ACD
TLC27L2BCP
TLC27L2ACP
70
°
C
5 mV
10 mV
TLC27L2ACD
TLC27L2CD
TLC27L2ACP
TLC27L2CP
−40°C
500 µV
TLC27L7ID
TLC27L7IP
−40°C
to
500 µV
2 mV
TLC27L7ID
TLC27L2BID
TLC27L7IP
TLC27L2BIP
to
85°C
2 mV
5 mV
TLC27L2BID
TLC27L2AID
TLC27L2BIP
TLC27L2AIP
85
°
C
5 mV
10 mV
TLC27L2AID
TLC27L2ID
TLC27L2AIP
TLC27L2IP
−55°C
to
500 µV
TLC27L7MD
TLC27L2MD
TLC27L7MFK
TLC27L7MJG
TLC27L7MP
to
125°C
500 µV
10 mV
TLC27L2MD
TLC27L2MDRG4
TLC27L7MFK
TLC27L2MFK
TLC27L7MJG
TLC27L2MJG
TLC27L7MP
TLC27L2MP
The D package is available taped and reeled. Add R suffix to the device type
(e.g., TLC27L7CDR).
Copyright 2005, Texas Instruments Incorporated
       !"# $%
$   ! ! &   ' 
$$ ()% $ !* $  #) #$
*  ## !%
LinCMOS is a trademark of Texas Instruments.
800
Percentage of Units − %
V
IO
− Input Offset Voltage − µV
30
800
0400 0 400
5
10
15
20
25
DISTRIBUTION OF TLC27L7
INPUT OFFSET VOLTAGE
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
GND
VDD
2OUT
2IN
2IN+
D, JG, OR P PACKAGE
(TOP VIEW)
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN+
NC
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
NC NC
NC
GND
NC
NC − No internal connection
2IN + DD
V
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
335 Units Tested From 2 Wafer Lots
VDD = 5 V
TA = 25°C
P Package
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description (continued)
These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage
stability far exceeding the stability available with conventional metal-gate processes.
The extremely high input impedance, low bias currents, and low power consumption make these cost-effective
devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available
(C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7
(500 µV). These advantages, in combination with good common-mode rejection and supply voltage rejection,
make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.
In general, many features associated with bipolar technology are available in LinCMOS operational amplifiers,
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and
TLC27L7. The devices also exhibit low voltage single-supply operation and ultra-low power consumption,
making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input
voltage range includes the negative rail.
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density
system applications.
The device inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up.
The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in
handling th e s e d e v i c e s a s exposure to ESD may result in the degradation of th e device parametric performance.
The C-Suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from −40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of −55°C to 125°C.
equivalent schematic (each amplifier)
P5 P6
OUT
N7N6
R7
N4
C1
R5
N3
GND
N2 D2R4D1R3
N1
IN+
IN
P1
R1
P2
R2 N5
R6
P3 P4
VDD
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input) 0.3 V to VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO (each output) ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD 45 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of GND 45 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C. . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at IN+ with respect to IN−.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application section).
DISSIPATION RATING TABLE
TA
25
°
C
DERATING FACTOR
TA = 70
°
C
TA = 85
°
C
TA = 125
°
C
TA 25 C
POWER RATING
DERATING FACTOR
ABOVE T
A
= 25°C
TA = 70 C
POWER RATING
TA = 85 C
POWER RATING
TA = 125 C
POWER RATING
D725 mW 5.8 mW/°C464 mW 377 mW
FK 1375 mW 11 mW/°C 880 mW 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW
P1000 mW 8 mW/°C640 mW 520 mW
recommended operating conditions
C SUFFIX I SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD 3 16 4 16 4 16 V
Common-mode input voltage, VIC
VDD = 5 V 0.2 3.5 0.2 3.5 0 3.5
V
Common-mode input voltage, VIC VDD = 10 V 0.2 8.5 0.2 8.5 0 8.5 V
Operating free-air temperature, TA0 70 −40 85 −55 125 °C
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27L2C
TLC27L2AC
TLC27L2BC
TLC27L7C UNIT
MIN TYP MAX
TLC27L2C
VO = 1.4 V,
25°C 1.1 10
TLC27L2C
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 12
mV
TLC27L2AC
VO = 1.4 V,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27L2AC
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 6.5
VIO Input offset voltage
TLC27L2BC
VO = 1.4 V,
25°C 204 2000
TLC27L2BC
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 3000
V
TLC27L7C
VO = 1.4 V,
25°C 170 500 µV
TLC27L7C
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 1500
VIO
Average temperature coefficient of input
25
°
C to
1.1
V/°C
αVIO
Average temperature coefficient of input
offset voltage
25 C to
70°C1.1 µV/°C
IIO
Input offset current (see Note 4)
VO = 2.5 V,
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V 70°C7 300 pA
IIB
Input bias current (see Note 4)
VO = 2.5 V,
25°C 0.6 60
pA
IIB Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V 70°C50 600 pA
0.2
0.3
25
°
C
0.2
to
0.3
to
V
VICR
Common-mode input voltage range
25 C
to
4
to
4.2
V
VICR
Common-mode input voltage range
(see Note 5)
0.2
(see Note 5)
Full range
0.2
to
V
Full range
to
3.5
V
25°C 3.2 4.1
V
OH
High-level output voltage V
ID
= 100 mV, R
= 1 M0°C3 4.1 V
VOH
High-level output voltage
VID = 100 mV,
70°C 3 4.2
V
25°C 0 50
V
OL
Low-level output voltage V
ID
= −100 mV, I
= 0 0°C0 50 mV
VOL
Low-level output voltage
VID = −100 mV,
70°C 0 50
mV
Large-signal differential voltage
25°C 50 700
A
VD
Large-signal differential voltage
amplification
V
O
= 0.25 V to 2 V, R
= 1 M0°C50 700 V/mV
AVD
amplification
VO = 0.25 V to 2 V,
70°C 50 380
V/mV
25°C 65 94
CMRR Common-mode rejection ratio V
IC
= V
ICR
min 0°C 60 95 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
70°C 60 95
dB
Supply-voltage rejection ratio
25°C 70 97
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
DD
= 5 V to 10 V, V
= 1.4 V 0°C60 97 dB
kSVR
(VDD/VIO)
VDD = 5 V to 10 V,
70°C 60 98
dB
VO = 2.5 V,
25°C 20 34
I
DD
Supply current (two amplifiers) VO = 2.5 V,
No load
VIC = 2.5 V, 0°C24 42 µA
IDD
Supply current (two amplifiers)
No load
70°C 16 28
µA
Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27L2C
TLC27L2AC
TLC27L2BC
TLC27L7C UNIT
MIN TYP MAX
TLC27L2C
VO = 1.4 V,
25°C 1.1 10
TLC27L2C
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 12
mV
TLC27L2AC
VO = 1.4 V,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27L2AC
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 6.5
VIO Input offset voltage
TLC27L2BC
VO = 1.4 V,
25°C 235 2000
TLC27L2BC
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 3000 µV
TLC27L7C
VO = 1.4 V,
25°C 190 800
TLC27L7C
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 1900
αVIO Average temperature coefficient of input
offset voltage 25°C to
70°C1µV/°C
IIO
Input offset current (see Note 4)
VO = 5 V,
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 5 V, VIC = 5 V 70°C8 300 pA
IIB
Input bias current (see Note 4)
VO = 5 V,
25°C 0.7 60
pA
IIB Input bias current (see Note 4) VO = 5 V, VIC = 5 V 70°C50 600 pA
0.2
0.3
25
°
C
0.2
to
0.3
to
V
VICR
Common-mode input voltage range
25 C
to
9
to
9.2
V
VICR
Common-mode input voltage range
(see Note 5)
0.2
(see Note 5)
Full range
0.2
to
V
Full range
to
8.5
V
25°C 8 8.9
V
OH
High-level output voltage V
ID
= 100 mV, R
= 1 M0°C7.8 8.9 V
VOH
High-level output voltage
VID = 100 mV,
70°C 7.8 8.9
V
25°C 0 50
V
OL
Low-level output voltage V
ID
= −100 mV, I
= 0 0°C0 50 mV
VOL
Low-level output voltage
VID = −100 mV,
70°C 0 50
mV
Large-signal differential voltage
25°C 50 860
A
VD
Large-signal differential voltage
amplification
V
O
= 1 V to 6 V, R
= 1 M0°C50 1025 V/mV
AVD
amplification
VO = 1 V to 6 V,
70°C 50 660
V/mV
25°C 65 97
CMRR Common-mode rejection ratio V
IC
= V
ICR
min 0°C 60 97 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
70°C 60 97
dB
Supply-voltage rejection ratio
25°C 70 97
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
DD
= 5 V to 10 V, V
= 1.4 V 0°C60 97 dB
kSVR
(VDD/VIO)
VDD = 5 V to 10 V,
70°C 60 98
dB
VO = 5 V,
25°C 29 46
I
DD
Supply current (two amplifiers) VO = 5 V,
No load
VIC = 5 V, 0°C36 66 µA
IDD
Supply current (two amplifiers)
No load
70°C 22 40
µA
Full range is 0°C to 70°C.
NOTES: 4 The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5 This range also applies to each input individually.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27L2I
TLC27L2AI
TLC27L2BI
TLC27L7I UNIT
MIN TYP MAX
TLC27L2I
VO = 1.4 V,
VIC = 0,
25°C 1.1 10
TLC27L2I
VO = 1.4 V,
RS = 50 ,
VIC = 0,
RL = 1 MFull range 13
mV
TLC27L2AI
VO = 1.4 V,
VIC = 0,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27L2AI
VO = 1.4 V,
RS = 50 ,
VIC = 0,
RL = 1 MFull range 7
VIO Input offset voltage
TLC27L2BI
VO = 1.4 V,
VIC = 0,
25°C 240 2000
TLC27L2BI
VO = 1.4 V,
RS = 50 ,
VIC = 0,
RL = 1 MFull range 3500
V
TLC27L7I
VO = 1.4 V,
VIC = 0,
25°C 170 500 µV
TLC27L7I
VO = 1.4 V,
RS = 50 ,
VIC = 0,
RL = 1 MFull range 2000
VIO
Average temperature coefficient of
25
°
C to
1.1
V/°C
αVIO
Average temperature coefficient of
input offset voltage
25 C to
85°C1.1 µV/°C
IIO
Input offset current (see Note 4)
VO = 2.5 V,
VIC = 2.5 V
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V 85°C24 1000 pA
IIB
Input bias current (see Note 4)
VO = 2.5 V,
VIC = 2.5 V
25°C 0.6 60
pA
IIB Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V 85°C200 2000 pA
0.2
0.3
25
°
C
0.2
to
0.3
to
V
VICR
Common-mode input voltage range
25 C
to
4
to
4.2
V
VICR
Common-mode input voltage range
(see Note 5)
0.2
(see Note 5)
Full range
0.2
to
V
Full range
to
3.5
V
25°C 3.2 4.1
V
OH
High-level output voltage V
ID
= 100 mV, R
L
= 1 M−40°C3 4.1 V
VOH
High-level output voltage
VID = 100 mV,
RL = 1 M
85°C 3 4.2
V
25°C 0 50
V
OL
Low-level output voltage V
ID
= −100 mV, I
OL
= 0 −40°C0 50 mV
VOL
Low-level output voltage
VID = −100 mV,
IOL = 0
85°C 0 50
mV
Large-signal differential
25°C 50 480
A
VD
Large-signal differential
voltage amplification
V
O
= 0.25 V to 2 V, R
L
= 1 M−40°C50 900 V/mV
AVD
voltage amplification
VO = 0.25 V to 2 V,
RL = 1 M
85°C 50 330
V/mV
25°C 65 94
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −40°C 60 95 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
85°C 60 95
dB
Supply-voltage rejection ratio
25°C 70 97
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
DD
= 5 V to 10 V, V
O
= 1.4 V −40°C60 97 dB
kSVR
(VDD/VIO)
VDD = 5 V to 10 V,
VO = 1.4 V
85°C 60 98
dB
VO = 2.5 V,
VIC = 2.5 V,
25°C 20 34
I
DD
Supply current (two amplifiers) VO = 2.5 V,
No load
VIC = 2.5 V, −40°C31 54 µA
IDD
Supply current (two amplifiers)
No load
85°C 15 26
µA
Full range is −40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27L2I
TLC27L2AI
TLC27L2BI
TLC27L7I UNIT
MIN TYP MAX
TLC27L2I
VO = 1.4 V,
25°C 1.1 10
TLC27L2I
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 13
mV
TLC27L2AI
VO = 1.4 V,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27L2AI
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 7
VIO Input offset voltage
TLC27L2BI
VO = 1.4 V,
25°C 235 2000
TLC27L2BI
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 3500
V
TLC27L7I
VO = 1.4 V,
25°C 190 800 µV
TLC27L7I
VO = 1.4 V,
RS = 50 ,
RL = 1 MFull range 2900
VIO
Average temperature coefficient of input
25
°
C to
1
V/°C
αVIO
Average temperature coefficient of input
offset voltage
25 C to
85°C1µV/°C
IIO
Input offset current (see Note 4)
VO = 5 V,
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 5 V, VIC = 5 V 85°C26 1000 pA
IIB
Input bias current (see Note 4)
VO = 5 V,
25°C 0.7 60
pA
IIB Input bias current (see Note 4) VO = 5 V, VIC = 5 V 85°C220 2000 pA
0.2
0.3
25
°
C
0.2
to
0.3
to
V
VICR
Common-mode input voltage range
25 C
to
9
to
9.2
V
VICR
Common-mode input voltage range
(see Note 5)
0.2
(see Note 5)
Full range
0.2
to
V
Full range
to
8.5
V
25°C 8 8.9
V
OH
High-level output voltage V
ID
= 100 mV, R
= 1 M−40°C7.8 8.9 V
VOH
High-level output voltage
VID = 100 mV,
85°C 7.8 8.9
V
25°C 0 50
V
OL
Low-level output voltage V
ID
= −100 mV, I
= 0 −40°C0 50 mV
VOL
Low-level output voltage
VID = −100 mV,
85°C 0 50
mV
Large-signal differential voltage
25°C 50 860
A
VD
Large-signal differential voltage
amplification
V
O
= 1 V to 6 V, R
= 1 M−40°C50 1550 V/mV
AVD
amplification
VO = 1 V to 6 V,
85°C 50 585
V/mV
25°C 65 97
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −40°C 60 97 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
85°C 60 98
dB
Supply-voltage rejection ratio
25°C 70 97
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
DD
= 5 V to 10 V, V
= 1.4 V −40°C60 97 dB
kSVR
(VDD/VIO)
VDD = 5 V to 10 V,
85°C 60 98
dB
VO = 5 V,
25°C 29 46
I
DD
Supply current (two amplifiers) VO = 5 V,
No load
VIC = 5 V, −40°C49 86 µA
IDD
Supply current (two amplifiers)
No load
85°C 20 36
µA
Full range is −40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLC27L2M
TLC27L7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
TLC27L2M
VO = 1.4 V,
VIC = 0,
25°C 1.1 10
mV
VIO
Input offset voltage
TLC27L2M
VO = 1.4 V,
RS = 50 ,
VIC = 0,
RL = 1 MFull range 12
mV
V
IO
Input offset voltage
TLC27L7M
VO = 1.4 V,
VIC = 0,
25°C 170 500
µV
TLC27L7M
VO = 1.4 V,
RS = 50 ,
VIC = 0,
RL = 1 MFull range 3750 µ
V
αVIO
Average temperature coefficient of
25
°
C to
1.4
µV/°C
αVIO
Average temperature coefficient of
input offset voltage
25 C to
125°C
1.4
µ
V/
°
C
IIO
Input offset current (see Note 4)
VO = 2.5 V,
VIC = 2.5 V
25°C 0.1 60 pA
I
IO
Input offset current (see Note 4)
V
O
= 2.5 V,
V
IC
= 2.5 V
125°C 1.4 15 nA
IIB
Input bias current (see Note 4)
VO = 2.5 V,
VIC = 2.5 V
25°C 0.6 60 pA
I
IB
Input bias current (see Note 4)
V
O
= 2.5 V,
V
IC
= 2.5 V
125°C 9 35 nA
0
0.3
25
°
C
0
to
0.3
to
V
VICR
Common-mode input voltage range
25 C
to
4
to
4.2
V
V
ICR
Common-mode input voltage range
(see Note 5)
0
(see Note 5)
Full range
0
to
V
Full range
to
3.5
V
25°C 3.2 4.1
V
OH
High-level output voltage V
ID
= 100 mV, R
L
= 1 M−55°C3 4.1 V
VOH
High-level output voltage
VID = 100 mV,
RL = 1 M
125°C 3 4.2
V
25°C 0 50
V
OL
Low-level output voltage V
ID
= −100 mV, I
OL
= 0 −55°C0 50 mV
VOL
Low-level output voltage
VID = −100 mV,
IOL = 0
125°C 0 50
mV
Large-signal differential voltage
25°C 50 500
A
VD
Large-signal differential voltage
amplification
V
O
= 0.25 V to 2 V, R
L
= 1 M−55°C25 1000 V/mV
AVD
amplification
VO = 0.25 V to 2 V,
RL = 1 M
125°C 25 200
V/mV
25°C 65 94
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −55°C 60 95 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
125°C 60 85
dB
Supply-voltage rejection ratio
25°C 70 97
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
DD
= 5 V to 10 V, V
O
= 1.4 V −55°C60 97 dB
kSVR
(VDD/VIO)
VDD = 5 V to 10 V,
VO = 1.4 V
125°C 60 98
dB
VO = 2.5 V,
VIC = 2.5 V,
25°C 20 34
I
DD
Supply current (two amplifiers) VO = 2.5 V,
No load
VIC = 2.5 V, −55°C35 60 µA
IDD
Supply current (two amplifiers)
No load
125°C 14 24
µA
Full range is −55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLC27L2M
TLC27L7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
TLC27L2M
VO = 1.4 V,
VIC = 0,
25°C 1.1 10
mV
VIO
Input offset voltage
TLC27L2M
VO = 1.4 V,
R
S
= 50 ,
VIC = 0,
R
L
= 1 MFull range 12
mV
V
IO
Input offset voltage
TLC27L7M
VO = 1.4 V,
VIC = 0,
25°C 190 800
µV
TLC27L7M
VO = 1.4 V,
R
S
= 50 ,
VIC = 0,
R
L
= 1 MFull range 4300 µ
V
αVIO
Average temperature coefficient of
25
°
C to
1.4
µV/°C
αVIO
Average temperature coefficient of
input offset voltage
25 C to
125°C
1.4
µ
V/
°
C
IIO
Input offset current (see Note 4)
VO = 5 V,
VIC = 5 V
25°C 0.1 60 pA
I
IO
Input offset current (see Note 4)
V
O
= 5 V,
V
IC
= 5 V
125°C 1.8 15 nA
IIB
Input bias current (see Note 4)
VO = 5 V,
VIC = 5 V
25°C 0.7 60 pA
I
IB
Input bias current (see Note 4)
V
O
= 5 V,
V
IC
= 5 V
125°C 10 35 nA
0
0.3
25°C
0
to
0.3
to V
VICR
Common-mode input voltage range
25 C
to
9
to
9.2
V
V
ICR
Common-mode input voltage range
(see Note 5)
0
(see Note 5)
Full range
0
to V
Full range
to
8.5
V
25°C 8 8.9
V
OH
High-level output voltage V
ID
= 100 mV, R
L
= 1 M−55°C7.8 8.8 V
VOH
High-level output voltage
VID = 100 mV,
RL = 1 M
125°C 7.8 9
V
25°C 0 50
V
OL
Low-level output voltage V
ID
= −100 mV, I
OL
= 0 −55°C0 50 mV
VOL
Low-level output voltage
VID = −100 mV,
IOL = 0
125°C 0 50
mV
Large-signal differential voltage
25°C 50 860
A
VD
Large-signal differential voltage
amplification
V
O
= 1 V to 6 V, R
L
= 1 M−55°C25 1750 V/mV
AVD
amplification
VO = 1 V to 6 V,
RL = 1 M
125°C 25 380
V/mV
25°C 65 97
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −55°C 60 97 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
125°C 60 91
dB
Supply-voltage rejection ratio
25°C 70 97
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
DD
= 5 V to 10 V, V
O
= 1.4 V −55°C60 97 dB
kSVR
(VDD/VIO)
VDD = 5 V to 10 V,
VO = 1.4 V
125°C 60 98
dB
VO = 5 V,
VIC = 5 V,
25°C 29 46
I
DD
Supply current (two amplifiers) VO = 5 V,
No load
VIC = 5 V, −55°C56 96 µA
IDD
Supply current (two amplifiers)
No load
125°C 18 30
µA
Full range is −55 °C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC27L2C
TLC27L2AC
TLC27L2BC
TLC27L7C UNIT
MIN TYP MAX
25°C 0.03
V
= 1 V 0°C 0.04
SR
Slew rate at unity gain
RL = 1 M,
70°C 0.03
V/ s
SR Slew rate at unity gain
L
25°C 0.03 V/µs
V
= 2.5 V 0°C 0.03
70°C 0.02
Vn
Equivalent input noise voltage
25°C
68
nV/Hz
VnEquivalent input noise voltage
See Figure 2
25°C 68 nV/Hz
25°C 5
B
OM
Maximum output-swing bandwidth VO = VOH,
CL = 20 pF,
0°C 6 kHz
BOM
Maximum output-swing bandwidth
70°C 4.5
kHz
25°C 85
B
1
Unity-gain bandwidth VI = 10 mV,
CL = 20 pF, 0°C100 kHz
B1
Unity-gain bandwidth
70°C 65
kHz
25°C 34°
φ
m
Phase margin VI = 10 mV,
f = B1,
0°C 36°
φm
Phase margin
70°C 30°
operating characteristics, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC27L2C
TLC27L2AC
TLC27L2BC
TLC27L7C UNIT
MIN TYP MAX
25°C 0.05
V
= 1 V 0°C 0.05
SR
Slew rate at unity gain
RL = 1 M,
70°C 0.04
V/ s
SR Slew rate at unity gain
L
25°C 0.04 V/µs
V
= 5.5 V 0°C 0.05
70°C 0.04
Vn
Equivalent input noise voltage
25°C
68
nV/Hz
VnEquivalent input noise voltage
See Figure 2
25°C 68 nV/Hz
25°C 1
B
OM
Maximum output-swing bandwidth VO = VOH,
CL = 20 pF,
0°C 1.3 kHz
BOM
Maximum output-swing bandwidth
70°C 0.9
kHz
25°C110
B
1
Unity-gain bandwidth VI = 10 mV,
CL = 20 pF, 0°C125 kHz
B1
Unity-gain bandwidth
70°C 90
kHz
25°C 38°
φ
m
Phase margin VI = 10 mV,
f = B1,
0°C 40°
φm
Phase margin
70°C 34°
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC27L2I
TLC27L2AI
TLC27L2BI
TLC27L7I UNIT
MIN TYP MAX
25°C 0.03
V
= 1 V −40°C 0.04
SR
Slew rate at unity gain
RL = 1 M,
85°C 0.03
V/ s
SR Slew rate at unity gain
L
25°C 0.03 V/µs
V
= 2.5 V −40°C 0.04
85°C 0.02
Vn
Equivalent input noise voltage
25°C
68
nV/Hz
VnEquivalent input noise voltage
See Figure 2
25°C 68 nV/Hz
25°C 5
B
OM
Maximum output-swing bandwidth VO = VOH,
CL = 20 pF,
−40°C 7 kHz
BOM
Maximum output-swing bandwidth
85°C 4
kHz
25°C 85
B
1
Unity-gain bandwidth VI = 10 mV,
CL = 20 pF, −40°C130 kHz
B1
Unity-gain bandwidth
85°C 55
kHz
25°C 34°
φ
m
Phase margin VI = 10 mV,
f = B1,
−40°C 38°
φm
Phase margin
85°C 29°
operating characteristics, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC27L2I
TLC27L2AI
TLC27L2BI
TLC27L7I UNIT
MIN TYP MAX
25°C 0.05
V
= 1 V −40°C 0.06
SR
Slew rate at unity gain
RL = 1 M,
85°C 0.03
V/ s
SR Slew rate at unity gain
L
25°C 0.04 V/µs
V
= 5.5 V −40°C 0.05
85°C 0.03
Vn
Equivalent input noise voltage
25°C
68
nV/Hz
VnEquivalent input noise voltage
See Figure 2
25°C 68 nV/Hz
25°C 1
B
OM
Maximum output-swing bandwidth VO = VOH,
CL = 20 pF,
−40°C 1.4 kHz
BOM
Maximum output-swing bandwidth
85°C 0.8
kHz
25°C110
B
1
Unity-gain bandwidth VI = 10 mV,
CL = 20 pF, −40°C155 kHz
B1
Unity-gain bandwidth
85°C 80
kHz
25°C 38°
φ
m
Phase margin VI = 10 mV,
f = B1,
−40°C 42°
φm
Phase margin
85°C 32°
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLC27L2M
TLC27L7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
25°C 0.03
V
= 1 V −55°C 0.04
SR
Slew rate at unity gain
RL = 1 M,
125°C 0.02
V/ s
SR Slew rate at unity gain
L
25°C 0.03 V/µs
V
= 2.5 V −55°C 0.04
125°C 0.02
Vn
Equivalent input noise voltage
25°C
68
nV/Hz
VnEquivalent input noise voltage
See Figure 2
25°C 68 nV/Hz
25°C 5
B
OM
Maximum output-swing bandwidth VO = VOH,
CL = 20 pF,
−55°C 8 kHz
BOM
Maximum output-swing bandwidth
125°C 3
kHz
25°C 85
B
1
Unity-gain bandwidth VI = 10 mV,
CL = 20 pF, −55°C140 kHz
B1
Unity-gain bandwidth
125°C 45
kHz
25°C 34°
φ
m
Phase margin VI = 10 mV,
f = B1,
−55°C 39°
φm
Phase margin
125°C 25°
operating characteristics, VDD = 10 V
PARAMETER
TEST CONDITIONS
TA
TLC27L2M
TLC27L7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
25°C 0.05
V
= 1 V −55°C 0.06
SR
Slew rate at unity gain
RL = 1 M,
125°C 0.03
V/ s
SR Slew rate at unity gain
L
25°C 0.04 V/µs
V
= 5.5 V −55°C 0.06
125°C 0.03
Vn
Equivalent input noise voltage
25°C
68
nV/Hz
VnEquivalent input noise voltage
See Figure 2
25°C 68 nV/Hz
25°C 1
B
OM
Maximum output-swing bandwidth VO = VOH,
CL = 20 pF,
−55°C 1.5 kHz
BOM
Maximum output-swing bandwidth
125°C 0.7
kHz
25°C110
B
1
Unity-gain bandwidth VI = 10 mV,
CL = 20 pF, −55°C165 kHz
B1
Unity-gain bandwidth
125°C 70
kHz
25°C 38°
φ
m
Phase margin VI = 10 mV,
f = B1,
−55°C 43°
φm
Phase margin
125°C 29°
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC27L2 and TLC27L7 are optimized for single-supply operation, circuit configurations used for
the various tests often present some inconvenience since the input signal, in many cases, must be offset from
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to
the negative rail. A comparison of single-supply versus split-supply test circuits is shown in Figure 1. The use
of either circuit gives the same result.
VDD
VDD+
+
CLRL
VO
VI
VI
VO
RL
CL
VDD
+
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 1. Unity-Gain Amplifier
VO
2 k
20 20
VDD
20
2 k
VO
20
1/2 VDD
+
VDD+
+
VDD
(b) SPLIT SUPPLY(a) SINGLE SUPPLY
Figure 2. Noise-Test Circuit
VDD
VDD+
+
10 k
VO
100
CL
VI
VI
1/2 VDD CL
100
VO
10 k
+
VDD
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 3. Gain-of-100 Inverting Amplifier
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC27L2 and TLC27L7 operational amplifiers, attempts to measure
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are
offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources.Use a grounded shield around and between the
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the open-socket leakage readings from the readings obtained with a device in the test
socket.
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage
drop across the series resistor is measured and the bias current is calculated). This method requires that a
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not
feasible using this method.
85
14
V = VIC
Figure 4. Isolation Metal Around Device Inputs
(JG and P packages)
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise
results in the device low-level output being dependent on both the common-mode input voltage level as well
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted
in the electrical specifications, these two conditions should be observed. If conditions other than these are to
be used, please refer to Figure 14 through Figure 19 in the Typical Characteristics of this data sheet.
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This
parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these
measurements be performed at temperatures above freezing to minimize error.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
full-power response
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal
input signal until the maximum frequency is found above which the output contains significant distortion. The
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full
peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained
(see Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum
peak-to-peak output is reached.
(d) f > BOM
(c) f = BOM
(b) BOM > f > 100 kHz(a) f = 100 kHz
Figure 5. Full-Power-Response Output Signal
test time
Inadequate test time is a frequent problem, especially when testing CMOS high-volume, short-test-time
environment. Internal capacitances are inherently higher in CMOS devices and require longer test times than
their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and
lower temperatures.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution 6, 7
αVIO Temperature coefficient of input offset voltage Distribution 8, 9
vs High-level output current
10, 11
VOH
High-level output voltage
vs High-level output current
vs Supply voltage
10, 11
12
VOH
High-level output voltage
vs Supply voltage
vs Free-air temperature
12
13
vs Differential input voltage
14,16
VOL
Low-level output voltage
vs Differential input voltage
vs Free-air temperature
14,16
15,17
VOL Low-level output voltage
vs Free-air temperature
vs Low-level output current
15,17
18, 19
VOL
Low-level output voltage
vs Free-air temperature
vs Low-level output current
15,17
18, 19
vs Supply voltage
20
AVD
Large-signal differential voltage amplification
vs Supply voltage
vs Free-air temperature
20
21
AVD
Large-signal differential voltage amplification
vs Free-air temperature
vs Frequency
21
32, 33
IIB Input bias current vs Free-air temperature 22
IIO Input offset current vs Free-air temperature 22
VIC Common-mode input voltage vs Supply voltage 23
IDD
Supply current
vs Supply voltage
24
IDD Supply current
vs Supply voltage
vs Free-air temperature
24
25
SR
Slew rate
vs Supply voltage
26
SR Slew rate
vs Supply voltage
vs Free-air temperature
26
27
Normalized slew rate vs Free-air temperature 28
VO(PP) Maximum peak-to-peak output voltage vs Frequency 29
B1
Unity-gain bandwidth
vs Free-air temperature
30
B1Unity-gain bandwidth
vs Free-air temperature
vs Supply voltage
30
31
vs Supply voltage
34
φm
Phase margin
vs Supply voltage
vs Free-air temperature
34
35
φm
Phase margin
vs Free-air temperature
vs Capacitive Load
35
36
VnEquivalent input noise voltage vs Frequency 37
Phase shift vs Frequency 32, 33
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
60
50
40
30
20
10
43210−1−2−3−4
70
5
VIO − Input Offset Voltage − mV
Percentage of Units − %
0−5
DISTRIBUTION OF TLC27L2
INPUT OFFSET VOLTAGE
P Package
TA = 25°C
VDD = 5 V
905 Amplifiers Tested From 6 Wafer Lots
Figure 7
−5
0
Percentage of Units − %
VIO − Input Offset Voltage − mV 5
70
−4 −3 −2 −1 0 1 2 3 4
10
20
30
40
50
60
DISTRIBUTION OF TLC27L2
INPUT OFFSET VOLTAGE
905 Amplifiers Tested From 6 Wafer Lots
VDD = 10 V
TA = 25°C
P Package
Figure 8
−10
0
Percentage of Units − %
αVIO − Temperature Coefficient − µV/°C10
70
−8 −6 −4 −2 0 2 4 6 8
10
20
30
40
50
60
DISTRIBUTION OF TLC27LC AND TLC27L7
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
356 Amplifiers Tested From 8 Wafer Lots
VDD = 5 V
TA = 25°C to 125°C
P Package
Outliers:
(1) 19.2 µV/°C
(1) 12.1 µV/°C
Figure 9
60
50
40
30
20
10
86420−2−4−6−8
70
10
αVIO − Temperature Coefficient − µV/°C
Percentage of Units − %
0
−10
DISTRIBUTION OF TLC27LC AND TLC27L7
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
(1) 11.6 µV/°C
(1) 18.7 µV/°C
Outliers:
P Package
TA = 25°C to 125°C
VDD = 10 V
356 Amplifiers Tested From 8 Wafer Lots
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
VDD = 3 V
VDD = 4 V
VDD = 5 V
4
3
2
1
−8−6−4−2
5
−10
IOH − High-Level Output Current − mA
VOH − High-Level Output Voltage − V
00
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOH
TA = 25°C
VID = 100 mV
Figure 11
TA = 25°C
VID = 100 mV
VDD = 10 V
14
12
10
8
6
4
2
−30−20−10
16
40
IOH − High-Level Output Current − mA
00
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VOH − High-Level Output Voltage − V
ÁÁ
ÁÁ
ÁÁ
VOH
−5 −15 −25 −35
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 16 V
Figure 12
ÎÎÎÎÎ
ÎÎÎÎÎ
TA = 25°C
ÎÎÎÎÎÎ
RL = 10 k
ÎÎÎÎÎ
VID = 100 mV
0
16
2
4
6
8
10
12
14
1412108642 16
VDD − Supply Voltage − V
0
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VOH − High-Level Output Voltage − V
ÁÁ
ÁÁ
ÁÁ
VOH
Figure 13
VDD = 10 V
VDD = 5 V
−75
2.4
TA − Free-Air Temperature − °C12
5
VDD1.6
−50 −25 0 20 50 75 100
2.3
2.2
2.1
−2
1.9
1.8
1.7
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOH − High-Level Output Voltage − V
ÁÁ
ÁÁ
ÁÁ
VOH
ÁÁÁÁÁ
ÁÁÁÁÁ
VID = 100 mA
IOH = −5 mA
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
VID = −1 V
VID = −100 mV
VDD = 5 V
IOL = 5 mA
TA = 25°C
600
500
400
321
700
4
VIC − Common-Mode Input Voltage − V
VOL − Low-Level Output Voltage − mV
300 0
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
0.5 1.5 2.5 3.3
ÁÁ
ÁÁ
VOL
Figure 15
VID = −100 mV
VID = − 2.5 V
VID = −1 V
TA = 25°C
IOL = 5 mA
VDD = 10 V
108642
500
450
400
350
300
VIC − Common-Mode Input Voltage − V
0
250
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL − Low-Level Output Voltage − mV
ÁÁ
ÁÁ
VOL
13 579
Figure 16
TA = 25°C
VIC = |VID/2|
IOL = 5 mA
0
100
200
300
400
500
600
700
800
−8−6−4−2 −10
VID − Differential Input Voltage − V
0
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
−1 −3 −5 −7 −9
VOL − Low-Level Output Voltage − mV
ÁÁ
ÁÁ
VOL
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
Figure 17
VDD = 5 V
800
700
600
500
400
300
200
100
1007550250−25−50
900
125
TA − Free-Air Temperature − °C
0−75
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL − Low-Level Output Voltage − mV
ÁÁÁ
ÁÁÁ
VOL
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
IOL = 5 mA
VID = −1 V
VIC = 0.5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 4 V
VDD = 3 V
ÎÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VIC = 0.5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VID = −1 V
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
7654321
08
1
IOL − Low-Level Output Current − mA
0
VOL − Low-Level Output Voltage − V
ÁÁ
ÁÁ
ÁÁ
VOL
ÎÎÎÎÎ
VDD = 5 V
Figure 19
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 16 V
VDD = 10 V
ÎÎÎÎÎÎ
VID = −1 V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VIC = 0.5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
TA = 25°C
2.5
2
1.5
1
0.5
252015105
030
3
IOL − Low-Level Output Current − mA
0
VOL − Low-Level Output Voltage − V
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 20
0VDD − Supply Voltage − V
2000
16
02 4 6 8 10 12 14
200
400
600
800
1000
1200
1400
1600
1800 RL = 1 MTA = −55°C
−40°C
TA = 0°C
ÎÎ
ÎÎ
70°C
ÎÎ
85°C
125°C
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
ÎÎ
25°C
AVD − Large-Signal Differential
Á
Á
Á
AVD
Voltage Amplification − V/mV
Figure 21
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1007550250−25−50
0125
TA − Free-Air Temperature − °C
−75
RL = 1 M
VDD = 5 V
VDD = 10 V
1800
1600
1400
1200
1000
800
600
400
200
2000
AVD − Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification − V/mV
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 22
0.1 125
10000
45 65 85 105
1
10
100
1000
25
IIB and IIO − Input Bias and Offset Currents − pA
TA − Free-Air Temperature − °C
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
IB
I
IIO
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VDD = 10 V
VIC = 5 V
See Note A
ÎÎ
IIB
ÎÎ
IIO
N
OTE A: The typical values of input bias current and input offset
c
urrent below 5 pA were determined mathematically. Figure 23
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
vs
SUPPLY VOLTAGE
0
VI − Common-Mode Input Voltage − V
VDD − Supply Voltage − V
16
16
0246 8 10 12 14
2
4
6
8
10
12
14 TA = 25°C
ÁÁ
ÁÁ
VIC
Figure 24
No Load
VO = VDD/2
0°C
−40°C
80
70
60
50
40
30
20
10
1412108642
016
90
VDD − Supply Voltage − V
IDD − Supply Current − mA
0
125°C
70°C
25°C
TA = −55°C
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
DD
IAµ
Figure 25
50
40
30
20
10
1007550250−25−50
0125
60
TA − Free-Air Temperature − °C
−75
VDD = 5 V
VDD = 10 V
No Load
VO = VDD/2
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
IDD − Supply Current − mA
ÁÁ
ÁÁ
DD
IAµ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 26
See Figure 1
TA = 25°C
0
SR − Slew Rate − V/s
VDD − Supply Voltage − V
0.07
16
0.00 2 4 6 8 10 12 14
0.01
0.02
0.03
0.04
0.05
0.06
SLEW RATE
vs
SUPPLY VOLTAGE
CL = 20 pF
RL =1 M
VI(PP) = 1 V
AV = 1
sµ
Figure 27
VI(PP) = 5.5 V
VDD = 10 V
−75 TA − Free-Air Temperature − °C
0.07
125
0.00 −50 −25 0 25 50 75 100
0.01
0.02
0.03
0.04
0.05
0.06
SLEW RATE
vs
FREE-AIR TEMPERATURE
RL =1 M
CL = 20 pF
AV = 1
See Figure 1
VI(PP) = 1 V
VDD = 10 V
VI(PP) = 1 V
VDD = 5 V
VI(PP) = 2.5 V
VDD = 5 V
SR − Slew Rate − V/s sµ
Figure 28
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1007550250−2550 125
TA − Free-Air Temperature − °C
Normalized Slew Rate
−75
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
CL = 20 pF
RL =1 M
VIPP = 1 V
AV = 1
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
VDD = 5 V
Figure 29
101
9
8
7
6
5
4
3
2
1
0100
10
f − Frequency − kHz
0.1
MAXIMUM-PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
RL = 1 M
See Figure 1
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
TA = −55°C
TA = 25°C
TA = 125°C
ÎÎÎÎ
ÎÎÎÎ
VDD = 10 V
− Maximum Peak-to-Peak Output Voltage − V
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 30
VDD = 5 V
VI = 10 mV
CL = 20 pF
See Figure 3
−75
B1 − Unity-Gain Bandwidth − kHz
TA − Free-Air Temperature − °C
150
125
30 −50 −25 0 25 50 75 100
50
70
90
110
130
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
B1
Figure 31
0VDD − Supply Voltage − V
140
16
50 2 4 6 8 10 12 14
60
70
80
90
100
110
120
130
See Figure 3
TA = 25°C
CL = 20 pF
VI = 10 mV
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
B1 − Unity-Gain Bandwidth − kHz
B1
1f − Frequency − Hz 1 M10 100 1 k 10 k 100 k
Phase Shift
AVD
ÎÎÎÎÎ
Phase Shift
180°
0°
30°
60°
90°
120°
150°
107
106
0.1
1
105
104
103
102
101
VDD = 10 V
RL = 1 M
TA = 25°C
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
AVD − Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD Voltage Amplification
Figure 32
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
AVD
VDD = 10 V
RL = 1 M
TA = 25°C
Phase Shift
180°
0°
30°
60°
90°
120°
150°
100 k10 k1 k10010 1 M
f − Frequency − Hz
1
10 7
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
10 6
0.1
1
10 5
10 4
10 3
10 2
10 1
AVD − Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD Voltage Amplification
Figure 33
Figure 34
0
m − Phase Margin
VDD − Supply Voltage − V
42°
16
30°2 4 6 8 10 12 14
32°
34°
36°
38°
40°
See Figure 3
VI = 10 mV
TA = 25°C
CL = 20 pF
Á
Á
m
φ
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 35
See Figure 3
VI = 10 mV
CL = 20 pF
VDD = 5 mV
−75
TA − Free-Air Temperature − °C
40°
125
20°−50 −25 0 25 50 75 100
24°
28°
32°
36°
m − Phase Margin
ÁÁ
ÁÁ
m
φ
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 36
VDD = 5 mV
TA = 25°C
See Figure 3
VI = 10 mV
0CL − Capacitive Load − pF
37°
100
25°20 40 60 80
27°
29°
31°
33°
35°
PHASE MARGIN
vs
CAPACITIVE LOAD
m − Phase Margin
ÁÁ
ÁÁ
m
φ
10 30 50 70 90
Figure 37
See Figure 2
RS = 20
VDD = 5 V
1
VN − Equivalent Input Noise Voltage − nV/Hz
f − Frequency − Hz 10
00
10 100
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
TA = 25°C
200
175
150
125
100
75
50
25
0
Vn
ÁÁ
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
single-supply operation
While the TLC27L2 and TLC27L7 perform well using dual power supplies (also called balanced or split
supplies), the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The
supply voltage range extends down to 3 V (C-suf fix types), thus allowing operation with supply levels commonly
available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is
recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level that
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).
The low input bias current of the TLC27L2 and TLC27L7 permits the use of very large resistive values to
implement the voltage divider, thus minimizing power consumption.
The TLC27L2 and TLC27L7 work well in conjunction with digital logic; however, when powering both linear
devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
+
0.01 µF
C
R3
VREF
VI
R1 R2
VDD
VO
R4
VREF +VDD R3
R1 )R3
VO+ǒVREF –VIǓR4
R2 )VREF
Figure 38. Inverting Amplifier With Voltage Reference
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)
(a) COMMON SUPPLY RAILS
+
+
Logic Logic Logic
Supply
Power
LogicLogicLogic
Supply
Power
VO
VO
Figure 39. Common Versus Separate Supply Rails
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input characteristics
The TLC27L2 and TLC27L7 are specified with a minimum and a maximum input voltage that, if exceeded at
either input, could cause the device to malfunction. Exceeding this specified range is a common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper
range limit is specified at VDD1 V at TA = 25°C and at VDD1.5 V at all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L2 and TLC27L7
very good input of fset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage
drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of
operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L2 and
TLC27L7 are well suited for low-level signal processing; however, leakage currents on printed circuit boards
and sockets can easily exceed bias current requirements and cause a degradation in device performance. It
is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement
Information section). These guards should be driven from a low-impedance source at the same voltage level
as the common-mode input (see Figure 40).
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.
noise performance
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage
differential amplifier. The low input bias current requirements of the TLC27L2 and TLC27L7 result in a low noise
current, which is insignificant in most applications. This feature makes the devices especially favorable over
bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit greater
noise currents.
VI
+
+
VI
(b) INVERTING AMPLIFIER
+
(c) UNITY-GAIN AMPLIFIER(a) NONINVERTING AMPLIFIER
VI
VOVOVO
Figure 40. Guard-Ring Schemes
output characteristics
The output stage of the TLC27L2 and TLC27L7 is designed to sink and source relatively high amounts of current
(see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can
cause device damage under certain conditions. Output current capability increases with supply voltage.
All operating characteristics of the TLC27L2 and TLC27L7 were measured using a 20-pF load. The devices
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole
occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many
cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
output characteristics (continued)
(b) CL = 260 pF, RL = NO LOAD(a) CL = 20 pF, RL = NO LOAD
VI
2.5 V
CL
VO
2.5 V
+
TA = 25°C
f = 1 kHz
VI(PP) = 1 V
(d) TEST CIRCUIT
(c) C
L
= 310 pF, R
L
= NO LOAD
Figure 41. Effect of Capacitive Loads and Test Circuit
Although the TLC27L2 and TLC27L7 possess excellent high-level output voltage and current capability,
methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup
resistor ( R P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages
to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a
comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance
between approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With
very low values of RP, a voltage offset from 0 V at the output occurs. Second, pullup resistor RP acts as a
drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not
supplying the output current.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
output characteristics (continued)
Figure 42. Resistive Pullup to Increase VOH
IL
IF
IP
RL
R1 R2
VO
RP
VDD
VI
+
RP+VDD–VO
IF)IL)IP
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
IP = Pullup current required
by the operational amplifier
(typically 500 µA) Figure 43. Compensation for
Input Capacitance
C
+
VO
feedback
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
electrostatic discharge protection
The TLC27L2 and TLC27L7 incorporate an internal electrostatic discharge (ESD) protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care
should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation
of the device parametric performance. The protection circuit also causes the input bias currents to be
temperature dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L2 and
TLC27L7 inputs and outputs were designed to withstand −100-mA surge currents without sustaining latch-up;
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the
supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and can
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of
latch-up occurring increases with increasing temperature and supply voltages.
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
+
+
500 k
500 k
5 V
500 k
0.1 µF
500 k
VO2
VO1
1/2
TLC27L2
TLC27L2
1/2
Figure 44. Multivibrator
Reset
Set
TLC27L2
1/2
+
100 k
VDD
33 k
100 k
100 k
NOTE: VDD = 5 V to 16 V
Figure 45. Set/Reset Flip-Flop
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
+
VDD
VO
90 k
9 k
X1
11B
TLC4066
VDD
VI
S1
S2
C
A
C
A2
X2 2B
1 k
Analog
Switch
1/2
TLC27L7
SELECT: S1S2
AV10 100
NOTE: VDD = 5 V to 12 V
Figure 46. Amplifier With Digital Gain Selection
+
10 k
VO
100 k
VDD
20 k
VI
1/2
TLC27L2
NOTE: VDD = 5 V to 16 V
Figure 47. Full-Wave Rectifier
   
    
SLOS052D − O CTOBER 1987 − REVISED OCTOBER 2005
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
TLC27L2
1/2
VI
0.016 µF
VO
10 k
5 V
+
10 k
0.016 µF
NOTE: Normalized to fc = 1 kHz and RL = 10 k
Figure 48. Two-Pole Low-Pass Butterworth Filter
+
VO
1/2
TLC27L7
R2
100 k
R1
10 k
100 k
R2
VIB
VDD
VIA
R1
10 k
NOTE: VDD = 5 V to 16 V
VO+R2
R1ǒVIB –V
IAǓ
Figure 49. Difference Amplifier
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-89494032A OBSOLETE LCCC FK 20 TBD Call TI Call TI
5962-8949403PA OBSOLETE CDIP JG 8 TBD Call TI Call TI
5962-89494042A OBSOLETE LCCC FK 20 TBD Call TI Call TI
5962-8949404PA OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLC27L2ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2ACDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2ACPSLE OBSOLETE SO PS 8 TBD Call TI Call TI
TLC27L2AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2AMFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TLC27L2AMJG OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLC27L2AMJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLC27L2BCD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BCDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC27L2BCDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BCDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BCP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2BCPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2BID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2BIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2BIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2CPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC27L2CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L2IPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLC27L2IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2MD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2MDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2MDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L2MFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TLC27L2MJG OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLC27L2MJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC27L7CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L7CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L7CPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC27L7IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L7IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC27L7MFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TLC27L7MJG OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLC27L7MJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 5
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLC27L2, TLC27L2M :
Catalog: TLC27L2
Military: TLC27L2M
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLC27L2ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L2AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L2BCDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L2BIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L2CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L2CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TLC27L2CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLC27L2IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L2IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLC27L2MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L7CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC27L7CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TLC27L7IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLC27L2ACDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L2AIDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L2BCDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L2BIDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L2CDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L2CPSR SO PS 8 2000 367.0 367.0 38.0
TLC27L2CPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLC27L2IDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L2IPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLC27L2MDR SOIC D 8 2500 367.0 367.0 35.0
TLC27L7CDR SOIC D 8 2500 340.5 338.1 20.6
TLC27L7CPSR SO PS 8 2000 367.0 367.0 38.0
TLC27L7IDR SOIC D 8 2500 340.5 338.1 20.6
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated