Anode
Cathode
VDD
RSVOUT
LM4040
Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
LM4040-N/-Q1 Precision Micropower Shunt Voltage Reference
1
1 Features
1 SOT-23 AEC Q-100 Grades 1 and 3 Available
Small Packages: SOT-23, TO-92, and SC70
No Output Capacitor Required
Tolerates Capacitive Loads
Fixed Reverse Breakdown Voltages of 2.048 V,
2.5 V, 3 V, 4.096 V, 5 V, 8.192 V, and 10 V
Key Specifications (2.5-V LM4040-N)
Output Voltage Tolerance (A Grade, 25°C):
±0.1% (Maximum)
Low Output Noise (10 Hz to 10 kHz): 35 μVrms
(Typical)
Wide Operating Current Range: 60 μA to 15
mA
Industrial Temperature Range: 40°C to +85°C
Extended Temperature Range: 40°C to
+125°C
Low Temperature Coefficient: 100 ppm/°C
(Maximum)
2 Applications
Portable, Battery-Powered Equipment
Data Acquisition Systems
Instrumentation
Process Controls
Energy Management
Product Testing
Automotives
Precision Audio Components
3 Description
Ideal for space-critical applications, the LM4040-N
precision voltage reference is available in the sub-
miniature SC70 and SOT-23 surface-mount package.
The advanced design of the LM4040-N eliminates the
need for an external stabilizing capacitor while
ensuring stability with any capacitive load, thus
making the LM4040-N easy to use. Further reducing
design effort is the availability of several fixed reverse
breakdown voltages: 2.048 V, 2.5 V, 3 V, 4.096 V, 5
V, 8.192 V, and 10 V. The minimum operating current
increases from 60 μA for the 2.5-V LM4040-N to 100
μA for the 10-V LM4040-N. All versions have a
maximum operating current of 15 mA.
The LM4040-N uses a fuse and Zener-zap reverse
breakdown voltage trim during wafer sort to ensure
that the prime parts have an accuracy of better than
±0.1% (A grade) at 25°C. Bandgap reference
temperature drift curvature correction and low
dynamic impedance ensure stable reverse
breakdown voltage accuracy over a wide range of
operating temperatures and currents.
Also available is the LM4041-N with two reverse
breakdown voltage versions: adjustable and 1.2 V.
See the LM4041-N data sheet (SNOS641).
Device Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)
LM4040-N TO-92 (3) 4.30 mm × 4.30 mm
SC70 (5) 2.00 mm × 1.25 mm
SOT-23 (3) 2.92 mm × 1.30 mm
LM4040-N-Q1 SOT-23 (3) 2.92 mm × 1.30 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Shunt Reference Application Schematic
2
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Table of Contents
1 Features.................................................................. 1
2 Applications ........................................................... 1
3 Description............................................................. 1
4 Revision History..................................................... 3
5 Pin Configuration and Functions......................... 4
6 Specifications......................................................... 5
6.1 Absolute Maximum Ratings ...................................... 5
6.2 ESD Ratings.............................................................. 5
6.3 Recommended Operating Conditions....................... 6
6.4 Thermal Information.................................................. 6
6.5 Electrical Characteristics: 2-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade 'I' 7
6.6 Electrical Characteristics: 2-V LM4040-N VR
Tolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'I'...................................................................... 8
6.7 Electrical Characteristics: 2-V LM4040-N VR
Tolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E' .................................................................. 10
6.8 Electrical Characteristics: 2.5-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade 'I'
(AEC Grade 3)......................................................... 11
6.9 Electrical Characteristics: 2.5-V LM4040-N VR
Tolerance Grades 'C', 'D', and 'E'; Temperature Grade
'I' (AEC Grade 3)...................................................... 13
6.10 Electrical Characteristics: 2.5-V LM4040-N VR
Tolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E' (AEC Grade 1) ......................................... 15
6.11 Electrical Characteristics: 3-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade
'I'............................................................................... 17
6.12 Electrical Characteristics: 3-V LM4040-N VR
Tolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'I'.................................................................... 18
6.13 Electrical Characteristics: 3-V LM4040-N VR
Tolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E' .................................................................. 20
6.14 Electrical Characteristics: 4.1-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade
'I'............................................................................... 21
6.15 Electrical Characteristics: 4.1-V LM4040-N VR
Tolerance Grades 'C' and 'D'; Temperature Grade
'I'............................................................................... 22
6.16 Electrical Characteristics: 5-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade
'I'............................................................................... 23
6.17 Electrical Characteristics: 5-V LM4040-N VR
Tolerance Grades 'C' And 'D'; Temperature Grade
'I'............................................................................... 24
6.18 Electrical Characteristics: 5-V LM4040-N VR
Tolerance Grades 'C' And 'D'; Temperature Grade
'E' ............................................................................. 26
6.19 Electrical Characteristics: 8.2-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade
'I'............................................................................... 27
6.20 Electrical Characteristics: 8.2-V Lm4040-N VR
Tolerance Grades 'C' And 'D'; Temperature Grade
'I'............................................................................... 28
6.21 Electrical Characteristics: 10-V LM4040-N VR
Tolerance Grades 'A' And 'B'; Temperature Grade
'I'............................................................................... 29
6.22 Electrical Characteristics: 10-V LM4040-N VR
Tolerance Grades 'C' And 'D'; Temperature Grade
'I'............................................................................... 30
6.23 Typical Characteristics.......................................... 31
7 Parameter Measurement Information ................ 32
8 Detailed Description............................................ 33
8.1 Overview................................................................. 33
8.2 Functional Block Diagram....................................... 33
8.3 Feature Description................................................. 33
8.4 Device Functional Modes........................................ 33
9 Application and Implementation ........................ 34
9.1 Application Information............................................ 34
9.2 Typical Applications ................................................ 34
10 Power Supply Recommendations ..................... 41
11 Layout................................................................... 41
11.1 Layout Guidelines ................................................. 41
11.2 Layout Example .................................................... 41
12 Device and Documentation Support................. 42
12.1 Documentation Support ........................................ 42
12.2 Related Links ........................................................ 42
12.3 Community Resources.......................................... 42
12.4 Trademarks........................................................... 42
12.5 Electrostatic Discharge Caution............................ 42
12.6 Glossary................................................................ 42
13 Mechanical, Packaging, And Orderable
Information........................................................... 42
13.1 SOT-23 and SC70 Package Marking Information 42
3
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision J (August 2015) to Revision K Page
Updated pinout diagrams ...................................................................................................................................................... 4
Changes from Revision I (April 2015) to Revision J Page
Added ESD Ratings table, Feature Description section, Device Functional Modes section, Application and
Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation
Support section, and Mechanical, Packaging, and Orderable Information section ............................................................... 1
Changes from Revision H (April 2013) to Revision I Page
Added some of the latest inclusions from new TI formatting and made available of the automotive grade for the
SOT-23 package..................................................................................................................................................................... 1
Changes from Revision G (July 2012) to Revision H Page
Changed layout of National Data Sheet to TI format ............................................................................................................. 1
1
34
±
+
2
NC(2)
5NC
NC
+±NC
1
2
3(1)
+
±
4
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
5 Pin Configuration and Functions
DBZ Package
3-Pin SOT-23
Top View LP Package
3-Pin TO-92
Bottom View
(1) This pin must be left floating or connected to pin 2.
(2) This pin must be left floating or connected to pin 1.
DCK Package
5-Pin SC70
Top View
Pin Functions
PIN I/O DESCRIPTION
NAME SOT-23 TO-92 SC70
Anode 2 1 1 O Anode pin, normally grounded
Cathode 1 2 3 I/O Shunt Current/Output Voltage
NC 3(1) 2(2) Must float or connect to anode
NC 3 4, 5 No connect
5
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature),
RθJA (junction to ambient thermal resistance), and TA(ambient temperature). The maximum allowable power dissipation at any
temperature is PDmax = (TJmax TA)/RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N,
TJmax = 125°C, and the typical thermal resistance (RθJA), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with
0.4lead length and 170°C/W with 0.125lead length for the TO-92 package and 415°C/W for the SC70 Package.
(4) For definitions of Peak Reflow Temperatures for Surface Mount devices, see the TI Absolute Maximum Ratings for Soldering Application
Report (SNOA549).
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Reverse current 20 mA
Forward current 10 mA
Power dissipation (TA=
25°C)(3)
SOT-23 (M3) package 306 mW
TO-92 (Z) package 550 mW
SC70 (M7) package 241 mW
Soldering temperature(4) SOT-23 (M3) Package Peak Reflow (30 sec) 260 °C
TO-92 (Z) Package Soldering (10 sec) 260 °C
SC70 (M7) Package Peak Reflow (30 sec) 260 °C
Storage temperature –65 150 °C
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.2 ESD Ratings VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-
C101(2) ±200
6
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate
conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test
conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance
characteristics may degrade when the device is not operated under the listed test conditions.
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature),
RθJA (junction to ambient thermal resistance), and TA(ambient temperature). The maximum allowable power dissipation at any
temperature is PDmax = (TJmax TA)/RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N,
TJmax = 125°C, and the typical thermal resistance (RθJA), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with
0.4lead length and 170°C/W with 0.125lead length for the TO-92 package and 415°C/W for the SC70 package.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Temperature
(Tmin TATmax)Industrial Temperature –40°C TA85 °C
Extended Temperature –40 TA125°C °C
Reverse Current
LM4040-N-2.0 60 15 μA to mA
LM4040-N-2.5 60 15 μA to mA
LM4040-N-3.0 62 15 μA to mA
LM4040-N-4.1 68 15 μA to mA
LM4040-N-5.0 74 15 μA to mA
LM4040-N-8.2 91 15 μA to mA
LM4040-N-10.0 100 15 μA to mA
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
6.4 Thermal Information
THERMAL METRIC(1) LM4040-N/LM4040-N-Q1
UNITDBZ (SOT-23) LP (TO-92) DCK (SC70)
3 PINS 3 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance 291.9 166 267 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 114.3 88.2 95.6 °C/W
RθJB Junction-to-board thermal resistance 62.3 145.2 48.1 °C/W
ψJT Junction-to-top characterization parameter 7.4 32.5 2.4 °C/W
ψJB Junction-to-board characterization parameter 61 N/A 47.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A N/A °C/W
7
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V ×
0.75% = ±19 mV.
(3) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(4) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.5 Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 2.048 V
Reverse Breakdown
Voltage Tolerance(2) IR= 100 μA
LM4040AIM3
LM4040AIZ ±2
mV
LM4040BIM3
LM4040BIZ
LM4040BIM7 ±4.1
LM4040AIM3
LM4040AIZ TA= TJ= TMIN to
TMAX ±15
mV
LM4040BIM3
LM4040BIZ
LM4040BIM7
TA= TJ= TMIN to
TMAX ±17
IRMIN Minimum Operating
Current TA= TJ= 25°C 45 60 μA
TA= TJ= TMIN to TMAX 65
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(2)
IR= 10 mA ±20 ppm/°C
IR= 1 mA TA= TJ= 25°C ±15 ppm/°C
TA= TJ= TMIN to TMAX ±100
IR= 100 μA ±15 ppm/°C
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(3)
IRMIN IR1 mA TA= TJ= 25°C 0.3 0.8 mV
TA= TJ= TMIN to TMAX 1
1 mA IR15 mA TA= TJ= 25°C 2.5 6 mV
TA= TJ= TMIN to TMAX 8
ZRReverse Dynamic
Impedance
IR= 1 mA, f = 120
Hz,
IAC = 0.1 IR0.3 0.8 Ω
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(4) ΔT = –40°C to 125°C 0.08%
8
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.6 Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 2.048 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±10
mV
TA= TJ= TMIN to TMAX ±23
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±40
LM4040EIZ
LM4040EIM7 TA= TJ= 25°C ±41
TA= TJ= TMIN to TMAX ±60
IRMIN Minimum Operating
Current
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 45 60
μA
TA= TJ= TMIN to TMAX 65
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 70
LM4040EIZ
LM4040EIM7 TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 70
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
LM4040EIZ
LM4040EIM7 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±15
9
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'I' (continued)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
ΔVR/ΔIR
Reverse Breakdown
Voltage Change
with Operating
Current Change(4)
IRMIN IR1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 0.3 0.8
mV
TA= TJ= TMIN to TMAX 1
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
LM4040EIZ
LM4040EIM7 TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
1 mA IR15 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 2.5 6
TA= TJ= TMIN to TMAX 8
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
LM4040EIZ
LM4040EIM7 TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz
IAC = 0.1 IR
LM4040CIM3
LM4040CIZ
LM4040CIM7 0.3 0.9
Ω
LM4040DIM3
LM4040DIZ
LM4040DIM7 0.3 1.1
LM4040EIZ
LM4040EIM7 0.3 1.1
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal
Hysteresis(5) ΔT = 40°C to 125°C 0.08%
10
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
6.7 Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E'
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 2.048 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CEM3 TA= TJ= 25°C ±10
mV
TA= TJ= TMIN to TMAX ±30
LM4040DEM3 TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±50
LM4040EEM3 TA= TJ= 25°C ±41
TA= TJ= TMIN to TMAX ±70
IRMIN Minimum Operating
Current
LM4040CEM3 TA= TJ= 25°C 45 60
μA
TA= TJ= TMIN to TMAX 68
LM4040DEM3 TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 73
LM4040EEM3 TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 73
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA
LM4040CEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
LM4040DEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
LM4040EEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±15
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA
LM4040CEM3 TA= TJ= 25°C 0.3 0.8
mV
TA= TJ= TMIN to TMAX 1
LM4040DEM3 TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
LM4040EEM3 TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
1 mA IR15 mA
LM4040CEM3 TA= TJ= 25°C 2.5 6
TA= TJ= TMIN to TMAX 8
LM4040DEM3 TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
LM4040EEM3 TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
11
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E' (continued)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(5) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR
LM4040CEM3 0.3 0.9
ΩLM4040DEM3 0.3 1.1
LM4040EEM3 0.3 1.1
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal
Hysteresis(5) ΔT = 40°C to 125°C 0.08%
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.8 Electrical Characteristics: 2.5-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I' (AEC Grade 3)
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 2.5 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040AIM3
LM4040AIZ
LM4040AIM3
TA= TJ= 25°C ±2.5
mV
TA= TJ= TMIN to TMAX ±19
LM4040BIM3
LM4040BIZ
LM4040BIM7
LM4040QBIM3
TA= TJ= 25°C ±5
TA= TJ= TMIN to TMAX ±21
IRMIN Minimum Operating
Current TA= TJ= 25°C 45 60 μA
TA= TJ= TMIN to TMAX 65
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
IR= 100 μA ±15
12
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 2.5-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature Grade
'I' (AEC Grade 3) (continued)
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA TA= TJ= 25°C 0.3 0.8
mV
TA= TJ= TMIN to TMAX 1
1 mA IR15 mA TA= TJ= 25°C 2.5 6
TA= TJ= TMIN to TMAX 8
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.3 0.8 Ω
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
13
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.9 Electrical Characteristics: 2.5-V LM4040-N VRTolerance Grades 'C', 'D', and 'E';
Temperature Grade 'I' (AEC Grade 3)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 2.5 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CIZ
LM4040CIM3
LM4040CIM7
LM4040QCIM3
TA= TJ= 25°C ±12
mV
TA= TJ= TMIN to TMAX ±29
LM4040DIZ
LM4040DIM3
LM4040DIM7
LM4040QDIM3
TA= TJ= 25°C ±25
TA= TJ= TMIN to TMAX ±49
LM4040EIZ
LM4040EIM3
LM4040EIM7
LM4040QEIM3
TA= TJ= 25°C ±50
TA= TJ= TMIN to TMAX ±74
IRMIN Minimum Operating
Current
LM4040CIZ
LM4040CIM3
LM4040CIM7
LM4040QCIM3
TA= TJ= 25°C 45 60
μA
TA= TJ= TMIN to TMAX 65
LM4040DIZ
LM4040DIM3
LM4040DIM7
LM4040QDIM3
TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 70
LM4040EIZ
LM4040EIM3
LM4040EIM7
LM4040QEIM3
TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 70
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA
LM4040CIZ
LM4040CIM3
LM4040CIM7
LM4040QCIM3
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
LM4040DIZ
LM4040DIM3
LM4040DIM7
LM4040QDIM3
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
LM4040EIZ
LM4040EIM3
LM4040EIM7
LM4040QEIM3
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±15
14
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 2.5-V LM4040-N VRTolerance Grades 'C', 'D', and 'E'; Temperature
Grade 'I' (AEC Grade 3) (continued)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA
LM4040CIZ
LM4040CIM3
LM4040CIM7
LM4040QCIM3
TA= TJ= 25°C 0.3 0.8
mV
TA= TJ= TMIN to TMAX 1
LM4040DIZ
LM4040DIM3
LM4040DIM7
LM4040QDIM3
TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
LM4040EIZ
LM4040EIM3
LM4040EIM7
LM4040QEIM3
TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
1 mA IR15 mA
LM4040CIZ
LM4040CIM3
LM4040CIM7
LM4040QCIM3
TA= TJ= 25°C 2.5 6
TA= TJ= TMIN to TMAX 8
LM4040DIZ
LM4040DIM3
LM4040DIM7
LM4040QDIM3
TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
LM4040EIZ
LM4040EIM3
LM4040EIM7
LM4040QEIM3
TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz
IAC = 0.1 IR
LM4040CIZ
LM4040CIM3
LM4040CIM7
LM4040QCIM3
0.3 0.9
Ω
LM4040DIZ
LM4040DIM3
LM4040DIM7
LM4040QDIM3
0.3 1.1
LM4040EIZ
LM4040EIM3
LM4040EIM7
LM4040QEIM3
0.3 1.1
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal
Hysteresis(5) ΔT= 40°C to 125°C 0.08%
15
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
6.10 Electrical Characteristics: 2.5-V LM4040-N VRTolerance Grades 'C', 'D', And 'E';
Temperature Grade 'E' (AEC Grade 1)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 2.5 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CEM3
LM4040QCEM3 TA= TJ= 25°C ±12
mV
TA= TJ= TMIN to TMAX ±38
LM4040DEM3
LM4040QDEM3 TA= TJ= 25°C ±25
TA= TJ= TMIN to TMAX ±63
LM4040EEM3
LM4040QEEM3 TA= TJ= 25°C ±50
TA= TJ= TMIN to TMAX ±88
IRMIN Minimum Operating
Current
LM4040CEM3
LM4040QCEM3 TA= TJ= 25°C 45 60
μA
TA= TJ= TMIN to TMAX 68
LM4040DEM3
LM4040QDEM3 TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 73
LM4040EEM3
LM4040QEEM3 TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 73
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA
LM4040CEM3
LM4040QCEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
LM4040DEM3
LM4040QDEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
LM4040EEM3
LM4040QEEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±15
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change
with Operating
Current Change(4)
IRMIN IR1 mA
LM4040CEM3
LM4040QCEM3 TA= TJ= 25°C 0.3 0.8
mV
TA= TJ= TMIN to TMAX 1
LM4040DEM3
LM4040QDEM3 TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
LM4040EEM3
LM4040QEEM3 TA= TJ= 25°C 0.3 1
TA= TJ= TMIN to TMAX 1.2
1 mA IR15 mA
LM4040CEM3
LM4040QCEM3 TA= TJ= 25°C 2.5 6
TA= TJ= TMIN to TMAX 8
LM4040DEM3
LM4040QDEM3 TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
LM4040EEM3
LM4040QEEM3 TA= TJ= 25°C 2.5 8
TA= TJ= TMIN to TMAX 10
16
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 2.5-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E' (AEC Grade 1) (continued)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR
LM4040CEM3
LM4040QCEM3 0.3 0.9
Ω
LM4040DEM3
LM4040QDEM3 0.3 1.1
LM4040EEM3
LM4040QEEM3 0.3 1.1
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal
Hysteresis(5) ΔT= 40°C to 125°C 0.08%
17
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.11 Electrical Characteristics: 3-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 3 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040AIM3
LM4040AIZ TA= TJ= 25°C ±3
mV
TA= TJ= TMIN to TMAX ±22
LM4040BIM3
LM4040BIZ
LM4040BIM7
TA= TJ= 25°C ±6
TA= TJ= TMIN to TMAX ±26
IRMIN Minimum Operating
Current TA= TJ= 25°C 47 62 μA
TA= TJ= TMIN to TMAX 67
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
IR= 100 μA ±15
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA TA= TJ= 25°C 0.6 0.8
mV
TA= TJ= TMIN to TMAX 1.1
1 mA IR15 mA TA= TJ= 25°C 2.7 6
TA= TJ= TMIN to TMAX 9
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.4 0.9 Ω
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
18
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.12 Electrical Characteristics: 3-V LM4040-N VRTolerance Grades 'C', 'D', And 'E';
Temperature Grade 'I'
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 3 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±15
mV
TA= TJ= TMIN to TMAX ±34
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±30
TA= TJ= TMIN to TMAX ±59
LM4040EIM7
LM4040EIZ TA= TJ= 25°C ±60
TA= TJ= TMIN to TMAX ±89
IRMIN Minimum Operating
Current
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 45 60
μA
TA= TJ= TMIN to TMAX 65
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 70
LM4040EIM7
LM4040EIZ TA= TJ= 25°C 45 65
TA= TJ= TMIN to TMAX 70
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
LM4040EIM7
LM4040EIZ TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±15
19
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 3-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'I' (continued)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change
with Operating
Current Change(4)
IRMIN IR1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 0.4 0.8
mV
TA= TJ= TMIN to TMAX 1.1
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 0.4 1.1
TA= TJ= TMIN to TMAX 1.3
LM4040EIM7
LM4040EIZ TA= TJ= 25°C 0.4 1.1
TA= TJ= TMIN to TMAX 1.3
1 mA IR15 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 2.7 6
TA= TJ= TMIN to TMAX 9
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 2.7 8
TA= TJ= TMIN to TMAX 11
LM4040EIM7
LM4040EIZ TA= TJ= 25°C 2.7 8
TA= TJ= TMIN to TMAX 11
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz
IAC = 0.1 IR
LM4040CIM3
LM4040CIZ
LM4040CIM7 0.4 0.9
Ω
LM4040DIM3
LM4040DIZ
LM4040DIM7 0.4 1.2
LM4040EIM7
LM4040EIZ 0.4 1.2
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal
Hysteresis(5) ΔT = 40°C to 125°C 0.08%
20
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
6.13 Electrical Characteristics: 3-V LM4040-N VRTolerance Grades 'C', 'D', And 'E';
Temperature Grade 'E'
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 3 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CEM3 TA= TJ= 25°C ±15
mV
TA= TJ= TMIN to TMAX ±45
LM4040DEM3 TA= TJ= 25°C ±30
TA= TJ= TMIN to TMAX ±75
LM4040EEM3 TA= TJ= 25°C ±60
TA= TJ= TMIN to TMAX ±105
IRMIN Minimum Operating
Current
LM4040CEM3 TA= TJ= 25°C 47 62
μA
TA= TJ= TMIN to TMAX 70
LM4040DEM3 TA= TJ= 25°C 47 67
TA= TJ= TMIN to TMAX 75
LM4040EEM3 TA= TJ= 25°C 47 67
TA= TJ= TMIN to TMAX 75
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±20
ppm/°CIR= 1 mA
LM4040CEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±100
LM4040DEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
LM4040EEM3 TA= TJ= 25°C ±15
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±15
ΔVR/ΔIR
Reverse Breakdown
Voltage Change
with Operating
Current Change(4)
IRMIN IR1 mA
LM4040CEM3 TA= TJ= 25°C 0.4 0.8
mV
TA= TJ= TMIN to TMAX 1.1
LM4040DEM3 TA= TJ= 25°C 0.4 1.1
TA= TJ= TMIN to TMAX 1.3
LM4040EEM3 TA= TJ= 25°C 0.4 1.1
TA= TJ= TMIN to TMAX 1.3
1 mA IR15 mA
LM4040CEM3 TA= TJ= 25°C 2.7 6.0
TA= TJ= TMIN to TMAX 9
LM4040DEM3 TA= TJ= 25°C 2.7 8
TA= TJ= TMIN to TMAX 11.0
LM4040EEM3 TA= TJ= 25°C 2.7 8
TA= TJ= TMIN to TMAX 11.0
21
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 3-V LM4040-N VRTolerance Grades 'C', 'D', And 'E'; Temperature
Grade 'E' (continued)
all other limits TA= TJ= 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1%
and ±2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
ZRReverse Dynamic
Impedance
IR= 1 mA, f = 120
Hz,
IAC = 0.1 IR
LM4040CEM3 0.4 0.9
ΩLM4040DEM3 0.4 1.2
LM4040EEM3 0.4 1.2
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 35 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal
Hysteresis(5) ΔT = 40°C to 125°C 0.08%
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
6.14 Electrical Characteristics: 4.1-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 4.096 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040AIM3
LM4040AIZ TA= TJ= 25°C ±4.1
mV
TA= TJ= TMIN to TMAX ±31
LM4040BIM3
LM4040BIZ
LM4040BIM7
TA= TJ= 25°C ±8.2
TA= TJ= TMIN to TMAX ±35
IRMIN Minimum Operating
Current TA= TJ= 25°C 50 68 μA
TA= TJ= TMIN to TMAX 73
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±30
ppm/°CIR= 1 mA TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
IR= 100 μA ±20
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA TA= TJ= 25°C 0.5 0.9
mV
TA= TJ= TMIN to TMAX 1.2
1 mA IR15 mA TA= TJ= 25°C 3 7
TA= TJ= TMIN to TMAX 10
22
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 4.1-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature Grade
'I' (continued)
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.5 1 Ω
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 80 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.15 Electrical Characteristics: 4.1-V LM4040-N VRTolerance Grades 'C' and 'D'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 4.096 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±20
mV
TA= TJ= TMIN to TMAX ±47
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±41
TA= TJ= TMIN to TMAX ±81
IRMIN Minimum Operating
Current
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 50 68
μA
TA= TJ= TMIN to TMAX 73
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 50 73
TA= TJ= TMIN to TMAX 78
ΔVR/
ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±30
ppm/°CIR= 1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±20
23
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 4.1-V LM4040-N VRTolerance Grades 'C' and 'D'; Temperature Grade
'I' (continued)
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
ΔVR/
ΔIR
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 0.5 0.9
mV
TA= TJ= TMIN to TMAX 1.2
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 0.5 1.2
TA= TJ= TMIN to TMAX 1.5
1 mA IR15 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 3 7
TA= TJ= TMIN to TMAX 10
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 3 9
TA= TJ= TMIN to TMAX 13
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR
LM4040CIM3
LM4040CIZ
LM4040CIM7 0.5 1
Ω
LM4040DIM3
LM4040DIZ
LM4040DIM7 0.5 1.3
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 80 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.16 Electrical Characteristics: 5-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 5 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040AIM3
LM4040AIZ TA= TJ= 25°C ±5
mV
TA= TJ= TMIN to TMAX ±38
LM4040BIM3
LM4040BIZ
LM4040BIM7
TA= TJ= 25°C ±10
TA= TJ= TMIN to TMAX ±43
24
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 5-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature Grade
'I' (continued)
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
IRMIN Minimum Operating
Current TA= TJ= 25°C 54 74 μA
TA= TJ= TMIN to TMAX 80
ΔVR/Δ
T
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±30
ppm/°CIR= 1 mA TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
IR= 100 μA ±20
ΔVR/Δ
IR
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA TA= TJ= 25°C 0.5 1
mV
TA= TJ= TMIN to TMAX 1.4
1 mA IR15 mA TA= TJ= 25°C 3.5 8
TA= TJ= TMIN to TMAX 12
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.5 1.1 Ω
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 80 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
6.17 Electrical Characteristics: 5-V LM4040-N VRTolerance Grades 'C' And 'D'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 5 V
Reverse Breakdown
Voltage Tolerance(3) IR= 100 μA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±25
mV
TA= TJ= TMIN to TMAX ±58
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±50
TA= TJ= TMIN to TMAX ±99
25
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Electrical Characteristics: 5-V LM4040-N VRTolerance Grades 'C' And 'D'; Temperature Grade
'I' (continued)
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
IRMIN Minimum Operating
Current
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 54 74
μA
TA= TJ= TMIN to TMAX 80
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 54 79
TA= TJ= TMIN to TMAX 85
ΔVR/Δ
T
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±30
ppm/°CIR= 1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±20
ΔVR/Δ
IR
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 0.5 1
mV
TA= TJ= TMIN to TMAX 1.4
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 0.5 1.3
TA= TJ= TMIN to TMAX 1.8
1 mA IR15 mA
LM4040CIM3
LM4040CIZ
LM4040CIM7
TA= TJ= 25°C 3.5 8
TA= TJ= TMIN to TMAX 12
LM4040DIM3
LM4040DIZ
LM4040DIM7
TA= TJ= 25°C 3.5 10
TA= TJ= TMIN to TMAX 15
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR
TA= TJ= 25°C 0.5 1.1 Ω
TA= TJ= TMIN to TMAX 1.5
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 80 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
26
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(3) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(4) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.18 Electrical Characteristics: 5-V LM4040-N VRTolerance Grades 'C' And 'D'; Temperature
Grade 'E'
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 100 μA 5 V
Reverse Breakdown
Voltage Tolerance(2) IR= 100 μA
LM4040CEM3 TA= TJ= 25°C ±25
mV
TA= TJ= TMIN to TMAX ±75
LM4040DEM3 TA= TJ= 25°C ±50
TA= TJ= TMIN to TMAX ±125
IRMIN Minimum Operating
Current
LM4040CEM3 TA= TJ= 25°C 54 74
μA
TA= TJ= TMIN to TMAX 83
LM4040DEM3 TA= TJ= 25°C 54 79
TA= TJ= TMIN to TMAX 88
ΔVR/
ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(2)
IR= 10 mA ±30
ppm/°CIR= 1 mA
LM4040CEM3 TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
LM4040DEM3 TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±150
IR= 100 μA ±20
ΔVR/
ΔIR
Reverse Breakdown
Voltage Change with
Operating Current
Change(3)
IRMIN IR1 mA
LM4040CEM3 TA= TJ= 25°C 0.5 1
mV
TA= TJ= TMIN to TMAX 1.4
LM4040DEM3 TA= TJ= 25°C 0.5 1
TA= TJ= TMIN to TMAX 1.8
1 mA IR15 mA
LM4040CEM3 TA= TJ= 25°C 3.5 8
TA= TJ= TMIN to TMAX 12
LM4040DEM3 TA= TJ= 25°C 3.5 8
TA= TJ= TMIN to TMAX 15
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.5 1.1 Ω
eNWideband Noise IR= 100 μA
10 Hz f10 kHz 80 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 100 μA120 ppm
VHYST Thermal Hysteresis(4) ΔT = 40°C to 125°C 0.08%
27
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.19 Electrical Characteristics: 8.2-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 150 μA 8.192 V
Reverse Breakdown
Voltage Tolerance(3) IR= 150 μA
LM4040AIM3
LM4040AIZ TA= TJ= 25°C ±8.2
mV
TA= TJ= TMIN to TMAX ±61
LM4040BIM3
LM4040BIZ TA= TJ= 25°C ±16
TA= TJ= TMIN to TMAX ±70
IRMIN Minimum Operating
Current TA= TJ= 25°C 67 91 μA
TA= TJ= TMIN to TMAX 95
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±40
ppm/°CIR= 1 mA TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
IR= 150 μA ±20
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA TA= TJ= 25°C 0.6 1.3
mV
TA= TJ= TMIN to TMAX 2.5
1 mA IR15 mA TA= TJ= 25°C 7 10
TA= TJ= TMIN to TMAX 18
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.6 1.5 Ω
eNWideband Noise IR= 150 μA
10 Hz f10 kHz 130 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 150 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
28
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.20 Electrical Characteristics: 8.2-V Lm4040-N VRTolerance Grades 'C' And 'D'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 150 μA 8.192 V
Reverse Breakdown
Voltage Tolerance(3) IR= 150 μA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C ±41
mV
TA= TJ= TMIN to TMAX ±94
LM4040DIM3
LM4040DIZ TA= TJ= 25°C ±82
TA= TJ= TMIN to TMAX ±162
IRMIN Minimum Operating
Current
LM4040CIM3
LM4040CIZ TA= TJ= 25°C 67 91
μA
TA= TJ= TMIN to TMAX 95
LM4040DIM3
LM4040DIZ TA= TJ= 25°C 67 96
TA= TJ= TMIN to TMAX 100
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±40
ppm/°CIR= 1 mA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
LM4040DIM3
LM4040DIZ TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±150
IR= 150 μA ±20
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C 0.6 1.3
mV
TA= TJ= TMIN to TMAX 2.5
LM4040DIM3
LM4040DIZ TA= TJ= 25°C 0.6 1.7
TA= TJ= TMIN to TMAX 3
1 mA IR15 mA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C 7 10
TA= TJ= TMIN to TMAX 18
LM4040DIM3
LM4040DIZ TA= TJ= 25°C 7 15
TA= TJ= TMIN to TMAX 24
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR
LM4040CIM3
LM4040CIZ 0.6 1.5
Ω
LM4040DIM3
LM4040DIZ 0.6 1.9
eNWideband Noise IR= 150 μA
10 Hz f10 kHz 130 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 150 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
29
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.21 Electrical Characteristics: 10-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and
±0.2%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 150 μA 10 V
Reverse Breakdown
Voltage Tolerance(3) IR= 150 μA
LM4040AIM3
LM4040AIZ TA= TJ= 25°C ±10
mV
TA= TJ= TMIN to TMAX ±75
LM4040BIM3
LM4040BIZ TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±85
IRMIN Minimum Operating
Current TA= TJ= 25°C 75 100 μA
TA= TJ= TMIN to TMAX 103
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±40
ppm/°CIR= 1 mA TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
IR= 150 μA ±20
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA TA= TJ= 25°C 0.8 1.5
mV
TA= TJ= TMIN to TMAX 3.5
1 mA IR15 mA TA= TJ= 25°C 8 12
TA= TJ= TMIN to TMAX 23
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR0.7 1.7 Ω
eNWideband Noise IR= 150 μA
10 Hz f10 kHz 180 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 150 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
30
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
(1) Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
(2) Typicals are at TJ= 25°C and represent most likely parametric norm.
(3) The (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VRtemperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VRis the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
(4) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
(5) Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature 125°C.
6.22 Electrical Characteristics: 10-V LM4040-N VRTolerance Grades 'C' And 'D'; Temperature
Grade 'I'
all other limits TA= TJ= 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and
±1%, respectively.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VR
Reverse Breakdown
Voltage IR= 150 μA 10 V
Reverse Breakdown
Voltage Tolerance(3) IR= 150 μA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C ±50
mV
TA= TJ= TMIN to TMAX ±115
LM4040DIM3
LM4040DIZ TA= TJ= 25°C ±100
TA= TJ= TMIN to TMAX ±198
IRMIN Minimum Operating
Current
LM4040CIM3
LM4040CIZ TA= TJ= 25°C 75 100
μA
TA= TJ= TMIN to TMAX 103
LM4040DIM3
LM4040DIZ TA= TJ= 25°C 75 110
TA= TJ= TMIN to TMAX 113
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient(3)
IR= 10 mA ±40
ppm/°CIR= 1 mA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±100
LM4040DIM3
LM4040DIZ TA= TJ= 25°C ±20
TA= TJ= TMIN to TMAX ±150
IR= 150 μA ±20
ΔVR/ΔI
R
Reverse Breakdown
Voltage Change with
Operating Current
Change(4)
IRMIN IR1 mA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C 0.8 1.5
mV
TA= TJ= TMIN to TMAX 3.5
LM4040DIM3
LM4040DIZ TA= TJ= 25°C 0.8 2
TA= TJ= TMIN to TMAX 4
1 mA IR15 mA
LM4040CIM3
LM4040CIZ TA= TJ= 25°C 8 12
TA= TJ= TMIN to TMAX 23
LM4040DIM3
LM4040DIZ TA= TJ= 25°C 8 18
TA= TJ= TMIN to TMAX 29
ZRReverse Dynamic
Impedance IR= 1 mA, f = 120 Hz,
IAC = 0.1 IR
LM4040CIM3
LM4040CIZ 0.7 1.7
Ω
LM4040DIM3
LM4040DIZ 2.3
eNWideband Noise IR= 150 μA
10 Hz f10 kHz 180 μVrms
ΔVRReverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR= 150 μA120 ppm
VHYST Thermal Hysteresis(5) ΔT = 40°C to 125°C 0.08%
31
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
6.23 Typical Characteristics
Figure 1. Temperature Drift For Different Average
Temperature Coefficient Figure 2. Output Impedance vs Frequency
Figure 3. Output Impedance vs Frequency Figure 4. Reverse Characteristics And Minimum Operating
Current
Figure 5. Noise Voltage vs Frequency
32
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
6.23.1 Start-Up Characteristics
RS= 30k
Figure 6. Input Voltage Step Response LM4040-N-2.5
RS= 30k
Figure 7. Input Voltage Step Response LM4040-N-5
RS= 30k
Figure 8. Input Voltage Step Response LM4040-N-10
7 Parameter Measurement Information
Figure 9. Test Circuit
33
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
8 Detailed Description
8.1 Overview
The LM4040 device is a precision micropower shunt voltage reference available in 7 different fixed-output
voltage options and three different packages to meet small footprint requirements. The part is also available in
five different tolerance grades.
8.2 Functional Block Diagram
8.3 Feature Description
The LM4040 device is effectively a precision Zener diode. The part requires a small quiescent current for
regulation, and regulates the output voltage by shunting more or less current to ground, depending on input
voltage and load. The only external component requirement is a resistor between the cathode and the input
voltage to set the input current. An external capacitor can be used on the input or output, but is not required.
8.4 Device Functional Modes
The LM4040 device is a fixed output voltage part, where the feedback is internal. Therefore, the part can only
operate is a closed loop mode and the output voltage cannot be adjusted. The output voltage will remain in
regulation as long as IRis between IRMIN, see Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'A'
And 'B'; Temperature Grade 'I', and IRMAX, 15 mA. Proper selection of the external resistor for input voltage range
and load current range will ensure these conditions are met.
34
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The LM4040-N is a precision micropower curvature-corrected bandgap shunt voltage reference. For space
critical applications, the LM4040-N is available in the sub-miniature SOT-23 and SC70 surface-mount package.
The LM4040-N has been designed for stable operation without the need of an external capacitor connected
between the + pin and the pin. If, however, a bypass capacitor is used, the LM4040-N remains stable.
Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 3 V, 4.096
V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 µA for the LM4040-N-2.048 and
LM4040-N-2.5 to 100 μA for the 10-V LM4040-N. All versions have a maximum operating current of 15 mA.
LM4040-Ns in the SOT-23 packages have a parasitic Schottky diode between pin 2 () and pin 3 (Die attach
interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2.
LM4040-Ns in the SC70 have a parasitic Schottky diode between pin 1 () and pin 2 (Die attach interface
contact). Therefore, pin 2 must be left floating or connected to pin1.
The 4.096-V version allows single 5-V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit
ADCs or DACs that operate on supplies of 10 V or greater, the 8.192-V version gives 2 mV per LSB.
The typical thermal hysteresis specification is defined as the change in 25°C voltage measured after thermal
cycling. The device is thermal cycled to temperature –40°C and then measured at 25°C. Next the device is
thermal cycled to temperature 125°C and again measured at 25°C. The resulting VOUT delta shift between the
25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced
by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature
and board mounting temperature are all factors that can contribute to thermal hysteresis.
In a conventional shunt regulator application (Figure 10) , an external series resistor (RS) is connected between
the supply voltage and the LM4040-N. RSdetermines the current that flows through the load (IL) and the
LM4040-N (IQ). Since load current and supply voltage may vary, RSshould be small enough to supply at least
the minimum acceptable IQto the LM4040-N even when the supply voltage is at its minimum and the load
current is at its maximum value. When the supply voltage is at its maximum and ILis at its minimum, RSshould
be large enough so that the current flowing through the LM4040-N is less than 15 mA.
RSis determined by the supply voltage, (VS), the load and operating current, (ILand IQ), and the LM4040-N's
reverse breakdown voltage, VR.
(1)
9.2 Typical Applications
9.2.1 Shunt Regulator
Figure 10. Shunt Regulator Schematic
IN_ MAX OUT
S _MIN
LOAD _ MIN R _ MAX
V V
RI I
-
=
+
35
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Typical Applications (continued)
9.2.1.1 Design Requirements
VIN > VOUT
Select RSsuch that:
IRMIN < IR< IRMAX where IRMAX = 15 mA
See Electrical Characteristics: 2-V LM4040-N VRTolerance Grades 'A' And 'B'; Temperature Grade 'I'
for minimum operating current for each voltage option and grade.
9.2.1.2 Detailed Design Procedure
The resistor RSmust be selected such that current IR will remain in the operational region of the part for the
entire VIN range and load current range. The two extremes to consider are VIN at its minimum, and the load at its
maximum, where RSmust be small enough for IRto remain above IRMIN. The other extreme is VIN at its
maximum, and the load at its minimum, where RSmust be large enough to maintain IR< IRMAX. For most
designs, 0.1 mA IR1 mA is a good starting point.
Use Equation 2 and Equation 3 to set RSbetween RS_MIN and RS_MAX.
(2)
(3)
9.2.1.3 Application Curve
Figure 11. Reverse Characteristics And Minimum Operating Current
5 V 4.096 V
R 904
1mA
-
= = W
36
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Typical Applications (continued)
9.2.2 4.1-V ADC Application
**Ceramic monolithic
*Tantalum
Figure 12. 4.1-V LM4040-N'S Nominal 4.096 Breakdown Voltage Gives ADC12451 1 MV/LSB
9.2.2.1 Design Requirements
The only design requirement is for an output voltage of 4.096 V.
9.2.2.2 Detailed Design Procedure
Using an LM4040-4.1, select an appropriate RSto sufficiently power the device. Set the target IRfor 1 mA. With
an input voltage of 5 V, the resistor can be calculated:
(4)
The closest available resistance of 909 is used here, which in turn yields an IRof 994 μA.
37
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Typical Applications (continued)
9.2.3 Bounded Amplifier
Nominal clamping voltage is ±11.5 V (LM4040-N's reverse breakdown voltage +2 diode VF).
Figure 13. Bounded Amplifier Reduces Saturation-Induced Delays and
Can Prevent Succeeding Stage Damage
9.2.3.1 Design Requirements
Design an amplifier with output clamped at ±11.5 V.
9.2.3.2 Detailed Design Procedure
With amplifier rails of ±15 V, the output can be bound to ±11.5 V with the LM4040-10 and two nominal diode
voltage drops of 0.7 V.
VOUTBound = 2 × VFWD + VZ (5)
VOUTBound = 1.4 V + 10 V (6)
Select RS= 15 kto keep IRlow. Calculate IRto confirm RS selection.
IR= (VIN VOUT) / R, however in this case, the negative supply must be taken into account. (7)
IR= (VIN+ VIN- VOUT)/R = (30 V 10 V) / (RS1+RS2) = 20 V / 30 k= 0.667 mA (8)
This is an acceptable value for IRthat will not draw excessive current, but prevents the part from being starved
for current.
38
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Typical Applications (continued)
9.2.4 Protecting Op-Amp Input
The bounding voltage is ±4 V with the 2.5-V LM4040-N (LM4040-N's reverse breakdown voltage + 3 diode VF).
Figure 14. Protecting Op Amp Input
9.2.4.1 Design Requirements
Limit the input voltage to the op-amp to ±4 V.
9.2.4.2 Detailed Design Procedure
Similar to Bounded Amplifier, this design uses a LM4040-2.5 and three forward diode voltage drops to create a
voltage clamp. The procedure for selecting the RSresistors, in this case 5 k, is the same as Detailed Design
Procedure.
IR= (VIN+ VIN- VOUT) / R = (10 V 2.5 V) / (RS1 + RS2) = 7.5 V / 10 k= 0.750 mA (9)
39
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
Typical Applications (continued)
9.2.5 Precision ±4.096-V Reference
Figure 15. Precision ±4.096-V Reference
9.2.5.1 Design Requirements
Use a single voltage reference to create positive and negative reference rails, ±4.096 V.
9.2.5.2 Detailed Design Procedure
The procedure for selecting the RSresistor is same as detailed in Detailed Design Procedure. The output of the
voltage reference is used as the inverting input to the op-amp, with unity gain.
40
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
Typical Applications (continued)
9.2.6 Precision Current Sink/Source
Figure 16. Precision 1-mA Current Sink
Figure 17. Precision 1-mA Current Source
9.2.6.1 Design Requirements
Create precision 1-mA current sink and/or 1-mA current source.
9.2.6.2 Detailed Design Procedure
Set R1 such that the current through the shunt reference, IR, is greater than IRMIN.
IOUT = VOUT / R2where VOUT is the voltage drop across the shunt reference. In this case,
IOUT = 2.5 / R2
RS
COUT
CIN
R physically close to device cathode
S
C physically
IN
close to device
C physically
OUT
close to device
41
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
10 Power Supply Recommendations
While a bypass capacitor is not required on the input voltage line, TI recommends reducing noise on the input
which could affect the output. A 0.1-µF ceramic capacitor or larger is recommended.
11 Layout
11.1 Layout Guidelines
Place external components as close to the device as possible. Place RS close the cathode, as well as the input
bypass capacitor, if used.
11.2 Layout Example
Figure 18. Layout Diagram
42
LM4040-N
,
LM4040-N-Q1
SNOS633K OCTOBER 2000REVISED JUNE 2016
www.ti.com
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation Feedback Copyright © 2000–2016, Texas Instruments Incorporated
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation, see the following:
LM4041-N/LM4041-N-Q1 Precision Micropower Shunt Voltage Reference,SNOS641
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 1. Related Links
PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL
DOCUMENTS TOOLS &
SOFTWARE SUPPORT &
COMMUNITY
LM4040-N Click here Click here Click here Click here Click here
LM4040-N-Q1 Click here Click here Click here Click here Click here
LM4040-N-Q1 Click here Click here Click here Click here Click here
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary
SLYZ022 TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, And Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
13.1 SOT-23 and SC70 Package Marking Information
Only three fields of marking are possible on the SOT-23's and SC70's small surface. This table gives the
meaning of the three fields.
First Field:
43
LM4040-N
,
LM4040-N-Q1
www.ti.com
SNOS633K OCTOBER 2000REVISED JUNE 2016
Product Folder Links: LM4040-N LM4040-N-Q1
Submit Documentation FeedbackCopyright © 2000–2016, Texas Instruments Incorporated
SOT-23 and SC70 Package Marking Information (continued)
R = Reference
Second Field: Voltage Option
J = 2.048-V Voltage Option
2 = 2.5-V Voltage Option
K = 3-V Voltage Option
4 = 4.096-V Voltage Option
5 = 5-V Voltage Option
8 = 8.192-V Voltage Option
0 = 10-V Voltage Option
Third Field: Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
A = ±0.1%
B = ±0.2%
C = +0.5%
D = ±1.0%
E = ±2.0%
PART MARKING FIELD DEFINITION
RJA (SOT-23 only) Reference, 2.048 V, ±0.1%
R2A (SOT-23 only) Reference, 2.5 V, ±0.1%
RKA (SOT-23 only) Reference, 3 V, ±0.1%
R4A (SOT-23 only) Reference, 4.096 V, ±0.1%
R5A (SOT-23 only) Reference, 5 V, ±0.1%
R8A (SOT-23 only) Reference, 8.192 V, ±0.1%
R0A (SOT-23 only) Reference, 10 V, ±0.1%
RJB Reference, 2.048 V, ±0.2%
R2B Reference, 2.5 V, ±0.2%
RKB Reference, 3 V, ±0.2%
R4B Reference, 4.096 V, ±0.2%
R5B Reference, 5 V, ±0.2%
R8B (SOT-23 only) Reference, 8.192 V, ±0.2%
R0B (SOT-23 only) Reference, 10 V, ±0.2%
RJC Reference, 2.048 V, ±0.5%
R2C Reference, 2.5 V, ±0.5%
RKC Reference, 3 V, ±0.5%
R4C Reference, 4.096 V, ±0.5%
R5C Reference, 5 V, ±0.5%
R8C (SOT-23 only) Reference, 8.192 V, ±0.5%
R0C (SOT-23 only) Reference, 10 V, ±0.5%
RJD Reference, 2.048 V, ±1.0%
R2D Reference, 2.5 V, ±1.0%
RKD Reference, 3 V, ±1.0%
R4D Reference, 4.096 V, ±1.0%
R5D Reference, 5 V, ±1.0%
R8D (SOT-23 only) Reference, 8.192 V, ±1.0%
R0D (SOT-23 only) Reference, 10 V, ±1.0%
RJE Reference, 2.048 V, ±2.0%
R2E Reference, 2.5 V, ±2.0%
RKE Reference, 3 V, ±2.0%
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040AIM3-10.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R0A
LM4040AIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 R0A
LM4040AIM3-2.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI RJA
LM4040AIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJA
LM4040AIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2A
LM4040AIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2A
LM4040AIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKA
LM4040AIM3-4.1 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R4A
LM4040AIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4A
LM4040AIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R5A
LM4040AIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5A
LM4040AIM3X-10 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R0A
LM4040AIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0A
LM4040AIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJA
LM4040AIM3X-2.5 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R2A
LM4040AIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2A
LM4040AIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKA
LM4040AIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4A
LM4040AIM3X-5.0 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R5A
LM4040AIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5A
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040AIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040A
IZ10
LM4040AIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040A
IZ2.5
LM4040AIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040A
IZ4.1
LM4040AIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040A
IZ5.0
LM4040BIM3-10.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R0B
LM4040BIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0B
LM4040BIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJB
LM4040BIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2B
LM4040BIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2B
LM4040BIM3-3.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI RKB
LM4040BIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKB
LM4040BIM3-4.1 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R4B
LM4040BIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4B
LM4040BIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R5B
LM4040BIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5B
LM4040BIM3-8.2 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R8B
LM4040BIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R8B
LM4040BIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0B
LM4040BIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJB
LM4040BIM3X-2.5 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R2B
LM4040BIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2B
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 3
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040BIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKB
LM4040BIM3X-4.1 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R4B
LM4040BIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4B
LM4040BIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5B
LM4040BIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJB
LM4040BIM7-2.5 NRND SC70 DCK 5 1000 TBD Call TI Call TI R2B
LM4040BIM7-2.5/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2B
LM4040BIM7-5.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5B
LM4040BIM7X-2.5/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2B
LM4040BIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040B
IZ10
LM4040BIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040B
IZ2.5
LM4040BIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040B
IZ4.1
LM4040BIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040B
IZ5.0
LM4040CEM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R2C
LM4040CEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2C
LM4040CEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKC
LM4040CEM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R5C
LM4040CEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5C
LM4040CEM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKC
LM4040CEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5C
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 4
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040CIM3-10.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R0C
LM4040CIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0C
LM4040CIM3-2.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI RJC
LM4040CIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJC
LM4040CIM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R2C
LM4040CIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2C
LM4040CIM3-3.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI RKC
LM4040CIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKC
LM4040CIM3-4.1 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R4C
LM4040CIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4C
LM4040CIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R5C
LM4040CIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5C
LM4040CIM3-8.2 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R8C
LM4040CIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R8C
LM4040CIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0C
LM4040CIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJC
LM4040CIM3X-2.5 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R2C
LM4040CIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2C
LM4040CIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKC
LM4040CIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4C
LM4040CIM3X-5.0 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R5C
LM4040CIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5C
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 5
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040CIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJC
LM4040CIM7-2.5/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2C
LM4040CIM7X-2.5/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2C
LM4040CIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040C
IZ10
LM4040CIZ-2.5/LFT8 ACTIVE TO-92 LP 3 2000 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040C
IZ2.5
LM4040CIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040C
IZ2.5
LM4040CIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040C
IZ4.1
LM4040CIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040C
IZ5.0
LM4040DEM3-2.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI RJD
LM4040DEM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJD
LM4040DEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2D
LM4040DEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKD
LM4040DEM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R5D
LM4040DEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5D
LM4040DEM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2D
LM4040DEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5D
LM4040DIM3-10.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R0D
LM4040DIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0D
LM4040DIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJD
LM4040DIM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R2D
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 6
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040DIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2D
LM4040DIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKD
LM4040DIM3-4.1 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R4D
LM4040DIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4D
LM4040DIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R5D
LM4040DIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5D
LM4040DIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R8D
LM4040DIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R0D
LM4040DIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJD
LM4040DIM3X-2.5 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R2D
LM4040DIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2D
LM4040DIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKD
LM4040DIM3X-4.1 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R4D
LM4040DIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R4D
LM4040DIM3X-5.0 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R5D
LM4040DIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5D
LM4040DIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJD
LM4040DIM7-2.5/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2D
LM4040DIM7-5.0 NRND SC70 DCK 5 1000 TBD Call TI Call TI R5D
LM4040DIM7-5.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R5D
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 7
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040DIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040D
IZ10
LM4040DIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040D
IZ2.5
LM4040DIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040D
IZ4.1
LM4040DIZ-5.0/LFT1 ACTIVE TO-92 LP 3 2000 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040D
IZ5.0
LM4040DIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS
& no Sb/Br) CU SN N / A for Pkg Type 4040D
IZ5.0
LM4040EEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2E
LM4040EIM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI R2E
LM4040EIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2E
LM4040EIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKE
LM4040EIM3X-2.5 NRND SOT-23 DBZ 3 3000 TBD Call TI Call TI R2E
LM4040EIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2E
LM4040EIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RKE
LM4040EIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM RJE
LM4040QAIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6A
LM4040QAIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6A
LM4040QBIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6B
LM4040QBIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6B
LM4040QCEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2C
LM4040QCEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 R3C
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 8
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4040QCIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6C
LM4040QCIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6C
LM4040QDEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2D
LM4040QDEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 R3D
LM4040QDIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6D
LM4040QDIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6D
LM4040QEEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R2E
LM4040QEEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 R3E
LM4040QEIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6E
LM4040QEIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM R6E
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2017
Addendum-Page 9
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LM4040-N, LM4040-N-Q1 :
Catalog: LM4040-N
Automotive: LM4040-N-Q1
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM4040AIM3-10.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-10.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-2.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-10 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-2.5 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 1
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM4040AIM3X-5.0 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040AIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-10.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-10.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-3.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-8.2 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3-8.2/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-2.5 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-4.1 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040BIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040BIM7-2.5 SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040BIM7-2.5/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040BIM7-5.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040BIM7X-2.5/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040CEM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CEM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CEM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CEM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CEM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CEM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CEM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-10.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-10.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-2.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-3.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 2
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM4040CIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-8.2 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3-8.2/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-2.5 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-5.0 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040CIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040CIM7-2.5/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040CIM7X-2.5/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040DEM3-2.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DEM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-10.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-10.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3-8.2/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-2.5 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-4.1 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 3
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM4040DIM3X-5.0 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040DIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040DIM7-2.5/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040DIM7-5.0 SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040DIM7-5.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040EEM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM3X-2.5 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040EIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3
LM4040QAIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QAIM3X2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QBIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QBIM3X2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QCEM3-2.5/NOP
BSOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QCEM3-3.0/NOP
BSOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QCIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QCIM3X2.5/NOP
BSOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QDEM3-2.5/NOP
BSOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QDEM3-3.0/NOP
BSOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QDIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QDIM3X2.5/NOP
BSOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QEEM3-2.5/NOP
BSOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QEEM3-3.0/NOP
BSOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QEIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
LM4040QEIM3X2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 4
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM4040AIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-2.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040AIM3X-10 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040AIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 5
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM4040BIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-3.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-8.2 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3-8.2/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040BIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-4.1 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040BIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040BIM7-2.5 SC70 DCK 5 1000 210.0 185.0 35.0
LM4040BIM7-2.5/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040BIM7-5.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040BIM7X-2.5/NOPB SC70 DCK 5 3000 210.0 185.0 35.0
LM4040CEM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CEM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CEM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CEM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CEM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-2.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-3.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 6
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM4040CIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-8.2 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3-8.2/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040CIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040CIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040CIM7-2.5/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040CIM7X-2.5/NOPB SC70 DCK 5 3000 210.0 185.0 35.0
LM4040DEM3-2.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DEM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DEM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DEM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DEM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DEM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3-8.2/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040DIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-4.1 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040DIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040DIM7-2.5/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 7
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM4040DIM7-5.0 SC70 DCK 5 1000 210.0 185.0 35.0
LM4040DIM7-5.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040EEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040EIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040EIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040EIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040EIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040EIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040EIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040EIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0
LM4040QAIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QAIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040QBIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QBIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040QCEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QCEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QCIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QCIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040QDEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QDEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QDIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QDIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
LM4040QEEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QEEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QEIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0
LM4040QEIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 8
4203227/C
www.ti.com
PACKAGE OUTLINE
C
TYP
0.20
0.08
0.25
2.64
2.10 1.12 MAX
TYP
0.10
0.01
3X 0.5
0.3
TYP
0.6
0.2
1.9
0.95
TYP-80
A
3.04
2.80
B
1.4
1.2
(0.95)
SOT-23 - 1.12 mm max heightDBZ0003A
SMALL OUTLINE TRANSISTOR
4214838/C 04/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration TO-236, except minimum foot length.
0.2 C A B
1
3
2
INDEX AREA
PIN 1
GAGE PLANE
SEATING PLANE
0.1 C
SCALE 4.000
www.ti.com
EXAMPLE BOARD LAYOUT
0.07 MAX
ALL AROUND 0.07 MIN
ALL AROUND
3X (1.3)
3X (0.6)
(2.1)
2X (0.95)
(R0.05) TYP
4214838/C 04/2017
SOT-23 - 1.12 mm max heightDBZ0003A
SMALL OUTLINE TRANSISTOR
NOTES: (continued)
4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
SYMM
LAND PATTERN EXAMPLE
SCALE:15X
PKG
1
3
2
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
METAL
SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK DETAILS
www.ti.com
EXAMPLE STENCIL DESIGN
(2.1)
2X(0.95)
3X (1.3)
3X (0.6)
(R0.05) TYP
SOT-23 - 1.12 mm max heightDBZ0003A
SMALL OUTLINE TRANSISTOR
4214838/C 04/2017
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
7. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:15X
SYMM
PKG
1
3
2
www.ti.com
PACKAGE OUTLINE
3X 2.67
2.03
5.21
4.44
5.34
4.32
3X
12.7 MIN
2X 1.27 0.13
3X 0.55
0.38
4.19
3.17
3.43 MIN
3X 0.43
0.35
(2.54)
NOTE 3
2X
2.6 0.2
2X
4 MAX
SEATING
PLANE
6X
0.076 MAX
(0.51) TYP
(1.5) TYP
TO-92 - 5.34 mm max heightLP0003A
TO-92
4215214/B 04/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Lead dimensions are not controlled within this area.
4. Reference JEDEC TO-226, variation AA.
5. Shipping method:
a. Straight lead option available in bulk pack only.
b. Formed lead option available in tape and reel or ammo pack.
c. Specific products can be offered in limited combinations of shipping medium and lead options.
d. Consult product folder for more information on available options.
EJECTOR PIN
OPTIONAL
PLANE
SEATING
STRAIGHT LEAD OPTION
321
SCALE 1.200
FORMED LEAD OPTION
OTHER DIMENSIONS IDENTICAL
TO STRAIGHT LEAD OPTION
SCALE 1.200
www.ti.com
EXAMPLE BOARD LAYOUT
0.05 MAX
ALL AROUND
TYP
(1.07)
(1.5) 2X (1.5)
2X (1.07)
(1.27)
(2.54)
FULL R
TYP
( 1.4)0.05 MAX
ALL AROUND
TYP
(2.6)
(5.2)
(R0.05) TYP
3X ( 0.9) HOLE
2X ( 1.4)
METAL
3X ( 0.85) HOLE
(R0.05) TYP
4215214/B 04/2017
TO-92 - 5.34 mm max heightLP0003A
TO-92
LAND PATTERN EXAMPLE
FORMED LEAD OPTION
NON-SOLDER MASK DEFINED
SCALE:15X
SOLDER MASK
OPENING
METAL
2X
SOLDER MASK
OPENING
123
LAND PATTERN EXAMPLE
STRAIGHT LEAD OPTION
NON-SOLDER MASK DEFINED
SCALE:15X
METAL
TYP
SOLDER MASK
OPENING
2X
SOLDER MASK
OPENING
2X
METAL
12 3
www.ti.com
TAPE SPECIFICATIONS
19.0
17.5
13.7
11.7
11.0
8.5
0.5 MIN
TYP-4.33.7
9.75
8.50
TYP
2.9
2.4 6.75
5.95
13.0
12.4
(2.5) TYP
16.5
15.5
32
23
4215214/B 04/2017
TO-92 - 5.34 mm max heightLP0003A
TO-92
FOR FORMED LEAD OPTION PACKAGE
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
LM4040QCIM3-2.5/NOPB LM4040QBIM3-2.5/NOPB LM4040QEIM3X2.5/NOPB LM4040QCEM3-2.5/NOPB
LM4040QAIM3X2.5/NOPB LM4040QEIM3-2.5/NOPB LM4040QDIM3-2.5/NOPB LM4040QAIM3-2.5/NOPB
LM4040QDEM3-2.5/NOPB LM4040QBIM3X2.5/NOPB LM4040QCIM3X2.5/NOPB LM4040QDIM3X2.5/NOPB
LM4040QEEM3-2.5/NOPB LM4040QCEM3-3.0/NOPB LM4040QDEM3-3.0/NOPB LM4040QEEM3-3.0/NOPB