19-5002; Rev 0; 10/09 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Features The MAX2044 single, high-linearity upconversion/downconversion mixer provides +32.5dBm input IP3, 8.5dB noise figure, and 7.7dB conversion loss for 2300MHz to 4000MHz LTE, WiMAXK, and MMDS wireless infrastructure applications. With an ultra-wide 2600MHz to 4300MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. S 2300MHz to 4000MHz RF Frequency Range In addition to offering excellent linearity and noise performance, the MAX2044 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2044 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = 5.0V or 121mA at VCC = 3.3V. S 21dBm Typical Input 1dB Compression Point The MAX2044 is pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers and the MAX2039/MAX2041/ MAX2042 1700MHz to 3000MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX2044 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range. S 2600MHz to 4300MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 7.7dB Conversion Loss S 8.5dB Noise Figure S +32.5dBm Typical Input IP3 S 68dBc Typical 2RF - 2LO Spurious Rejection at PRF = -10dBm S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended Inputs S Low -3dBm to +3dBm LO Drive S Pin Similar with the MAX2029/MAX2031 Series of 650MHz to 1000MHz Mixers and the MAX2039/ MAX2041/MAX2042 Series of 1700MHz to 3000MHz Mixers S Single 5.0V or 3.3V Supply S External Current-Setting Resistor Provides Option for Operating Device in Reduced-Power/ReducedPerformance Mode Applications Ordering Information 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems PART TEMP RANGE PIN-PACKAGE MAX2044ETP+ -40NC to +85NC 20 Thin QFN-EP* MAX2044ETP+T -40NC to +85NC 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. WiMAX is a trademark of WiMAX Forum. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. MAX2044 General Description MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer ABSOLUTE MAXIMUM RATINGS VCC to GND...........................................................-0.3V to +5.5V IF+, IF-, LOBIAS to GND........................... -0.3V to (VCC + 0.3V) RF, LO Input Power........................................................ +20dBm RF, LO Current (RF and LO is DC shorted to GND through a balun).................................................50mA Continuous Power Dissipation (Note 1)..................................5W BJA (Notes 2, 3)............................................................. +38NC/W BJC (Notes 1, 3)............................................................. +13NC/W Operating Case Temperature Range (Note 4)...................................... TC = -40NC to +85NC Junction Temperature......................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 4.75 5.0 5.25 V 138 155 mA 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX 3.0 3.3 3.6 V 121 135 mA TYP MAX UNITS Total supply current, VCC = 3.3V UNITS RECOMMENDED AC OPERATING CONDITIONS PARAMETER RF Frequency Range LO Frequency IF Frequency LO Drive SYMBOL CONDITIONS MIN Typical Application Circuit with C1 = 3.3nH and C12 = 0.3pF, see Table 1 for details (Note 5) 2300 Typical Application Circuit with C1 = 8.2pF and C12 not installed, see Table 1 for details (Note 5) 3000 4000 fLO (Note 5) 2600 4300 MHz fIF Using an M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) 50 500 MHz (Note 5) -3 +3 dBm fRF PLO 3000 MHz 0 2 _______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss SYMBOL LC Loss Variation vs. Frequency DLC CONDITIONS TC = +25NC (Notes 7, 8) 0.01 dB/NC 21 dBm IP1dB (Note 9) Noise Figure Under Blocking Conditions 2RF - 2LO Spurious Rejection dB fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone (Note 7, 8) 28.3 32.5 fRF = 3500MHz, fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone. TC = +25NC (Notes 7, 8) 30.0 32.5 dBm fRF = 3100MHz to 3900MHz, fIF = 300MHz, fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC 0.5 dBm Single sideband, no blockers present (Notes 7, 10) 8.5 10 Single sideband, no blockers present, TC = +25NC (Notes 7, 10) 8.5 9.2 TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.018 NFB +8dBm blocker tone applied to RF port, fBLOCKER = 3750MHz, fRF = 3500MHz, fLO = 3200MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 7, 10, 11) 17.5 NFSSB Noise Figure Temperature Coefficient dB 0.25 Input Compression Point Noise Figure UNITS 8.5 fRF = 3100MHz to 3900MHz, over any 200MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC Third-Order Input Intercept Point Variation Over Temperature MAX 7.7 0.15 TCCL IIP3 TYP 7.2 fRF = 3100MHz to 3900MHz, over any 100MHz band Conversion Loss Temperature Coefficient Third-Order Input Intercept Point MIN 2x2 fSPUR = fLO + 150MHz, TC = +25NC fSPUR = fLO + 150MHz dB PRF = -10dBm (Notes 7, 10) 62 68 PRF = 0dBm (Notes 7, 8) 52 58 PRF = -10dBm (Notes 7, 10) 60 68 PRF = 0dBm (Notes 7, 8) 50 58 dB/NC 20 dB dBc _______________________________________________________________________________________ 3 MAX2044 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6) PARAMETER 3RF - 3LO Spurious Rejection SYMBOL 3x3 CONDITIONS fSPUR = fLO + 100MHz, TC = +25NC fSPUR = fLO + 100MHz MIN TYP PRF = -10dBm (Notes 7, 10) 82 89 PRF = 0dBm (Notes 7, 8) 62 69 PRF = -10dBm (Notes 7, 10) 81 89 PRF = 0dBm (Notes 7, 8) 61 69 MAX UNITS dBc RF Input Return Loss RLRF LO on and IF terminated into a matched impedance LO Input Return Loss RLLO RF and IF terminated into a matched impedance 14 dB IF Output Impedance ZIF Nominal differential impedance at the IC's IF outputs 50 I RLIF RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit 16 dB IF Output Return Loss 33 16 dB RF-to-IF Isolation fRF = 3500MHz, PLO = +3dBm (Note 8) 42 dB LO Leakage at RF Port fLO = 2500MHz to 4000MHz, PLO = +3dBm (Notes 7, 8) -31 dBm 2LO Leakage at RF Port PLO = +3dBm -35 dBm LO Leakage at IF Port PLO = +3dBm (Note 8) -28 dBm 4 _______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss SYMBOL CONDITIONS LC fRF = 3100MHz to 3900MHz, over any 100MHz band MIN TYP MAX UNITS 7.7 dB 0.1 dB Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC 0.009 dB/NC Input Compression Point IP1dB (Note 9) 19.5 dBm fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone 29.5 dBm fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC 0.2 dB Third-Order Input Intercept Point IIP3 Third-Order Input Intercept Variation Over Temperature Noise Figure NFSSB Single sideband, no blockers present 8.5 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.018 dB/NC 2RF - 2LO Spurious Rejection 2x2 fSPUR = fLO + 150MHz PRF = -10dBm 69 PRF = 0dBm 64 3RF - 3LO Spurious Rejection 3x3 fSPUR = fLO + 100MHz PRF = -10dBm 73.3 PRF = 0dBm 63.3 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 18 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 19 dB IF Output Impedance ZIF Nominal differential impedance at the IC's IF outputs 50 I RLIF RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit 14.5 dB IF Output Return Loss dBc dBc RF-to-IF Isolation fRF = 3100MHz to 3900MHz, PLO = +3dBm 41 dB LO Leakage at RF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -30 dBm 2LO Leakage at RF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -25.6 dBm LO Leakage at IF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -27 dBm _______________________________________________________________________________________ 5 MAX2044 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss SYMBOL Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL Third-Order Input Intercept Point CONDITIONS LC IIP3 Third-Order Input Intercept Variation Over Temperature MIN TYP MAX UNITS 8.1 dB fRF = 2300MHz to 2900MHz, over any 100MHz band 0.15 dB fRF = 2300MHz to 2900MHz, TC = -40NC to +85NC 0.008 dB/NC fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone 34 dBm fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC 0.2 dB PRF = -10dBm 67 PRF = 0dBm 62 PRF = -10dBm 79 PRF = 0dBm 69 2LO - 2RF Spurious Rejection 2x2 fSPUR = fLO - 150MHz 3LO - 3RF Spurious Rejection 3x3 fSPUR = fLO - 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 23 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 17 dB IF Output Impedance ZIF Nominal differential impedance at the IC's IF outputs 50 I RLIF RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit 13.6 dB IF Output Return Loss dBc dBc RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 39 dB LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -29.5 dBm 2LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -43 dBm LO Leakage at IF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -28.6 dBm 6 _______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6) PARAMETER Conversion Loss SYMBOL CONDITIONS LC Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL Third-Order Input Intercept Point IIP3 Third-Order Input Intercept Variation Over Temperature MIN TYP MAX UNITS 7.8 dB fRF = 3100MHz to 3900MHz, over any 100MHz band 0.15 dB fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC 0.008 dB/NC fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone 31.5 dBm fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone, TC = -40NC to +85NC 0.2 dB PRF = -10dBm 67 PRF = 0dBm 62 2LO - 2RF Spurious Rejection 2x2 fSPUR = fLO - 150MHz 3LO - 3RF Spurious Rejection 3x3 fSPUR = fLO - 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 17.7 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 16.3 dB IF Output Impedance ZIF Nominal differential impedance at the IC's IF outputs 50 I RLIF RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit 15 dB RF-to-IF Isolation fRF = 3100MHz to 3900MHz, PLO = +3dBm 41 dB LO Leakage at RF Port fLO = 3400MHz to 4200MHz, PLO = +3dBm -30 dBm 2LO Leakage at RF Port fLO = 3400MHz to 4200MHz, PLO = +3dBm -21 dBm LO Leakage at IF Port fLO = 3400MHz to 4200MHz, PLO = +3dBm -27.2 dBm IF Output Return Loss PRF = -10dBm 76.7 PRF = 0dBm 66.7 dBc dBc _______________________________________________________________________________________ 7 MAX2044 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3300MHz, fIF = 200MHz, unless otherwise noted.) PARAMETER Conversion Loss SYMBOL Conversion Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL Input Third-Order Intercept Point CONDITIONS MIN LC IIP3 IIP3 Variation with TC LO 2IF Spur 1x2 LO 3IF Spur 1x3 Output Noise Floor TYP MAX UNITS 7.7 dB fRF = 3100MHz to 3900MHz, over any 100MHz band 0.2 fRF = 3100MHz to 3900MHz, over any 200MHz band 0.25 TC = -40NC to +85NC 0.01 dB/NC fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone 33.5 dBm fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone, TC = -40NC to +85NC 0.2 dB LO - 2IF 61.6 LO + 2IF 60.2 LO - 3IF 78.2 LO + 3IF 80.3 POUT = 0dBm (Note 11) -165 dB dBc dBc dBm/Hz 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.) PARAMETER Conversion Loss SYMBOL Conversion Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL Input Third-Order Intercept Point IIP3 Variation with TC CONDITIONS LC IIP3 MIN TYP 8 MAX UNITS dB fRF = 3100MHz to 3900MHz, over any 100MHz band 0.2 fRF = 3100MHz to 3900MHz, over any 200MHz band 0.25 TC = -40NC to +85NC 0.01 dB/NC fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone 29.5 dBm fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone, TC = -40NC to +85NC 0.2 dB dB 8 _______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.) PARAMETER SYMBOL LO 2IF Spur 1x2 LO 3IF Spur 1x3 Output Noise Floor CONDITIONS MIN TYP LO - 2IF 58.9 LO + 2IF 57.8 LO - 3IF 69.4 LO + 3IF 69.5 POUT = 0dBm (Note 11) -165 MAX UNITS dBc dBc dBm/Hz Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 7: Guaranteed by design and characterization. Note 8: 100% production tested for functional performance. Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20dBm from a 50I source. Note 10: Not production tested. Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 5: Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25C 8 7 9 CONVERSION LOSS (dB) TC = +85C CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc02 MAX2044 toc01 9 CONVERSION LOSS (dB) CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 10 8 PLO = -3dBm, 0dBm, +3dBm 7 MAX2044 toc03 CONVERSION LOSS vs. RF FREQUENCY 10 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = -40C 6 6 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 6 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX2044 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25C 33 31 PLO = 0dBm TC = +85C 29 PLO = -3dBm 29 27 3600 3800 4000 3200 RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY 3400 3600 3800 4000 3000 2RF - 2LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 2RF - 2LO RESPONSE (dBc) 70 TC = +85C 65 TC = -40C 60 55 PLO = 0dBm 70 PLO = +3dBm 65 60 PRF = 0dBm 3800 4000 3000 3200 3400 3600 3800 4000 55 75 65 3600 RF FREQUENCY (MHz) 3800 4000 3400 3600 3800 4000 3RF - 3LO RESPONSE vs. RF FREQUENCY 85 MAX2044 toc11 PLO = +3dBm PLO = 0dBm PLO = -3dBm 55 3400 3200 RF FREQUENCY (MHz) PRF = 0dBm TC = +85C 3200 3000 PRF = 0dBm 3RF - 3LO RESPONSE (dBc) TC = +25C 65 3000 60 3RF - 3LO RESPONSE vs. RF FREQUENCY 3RF - 3LO RESPONSE (dBc) TC = -40C VCC = 4.75V 65 VCC = 5.0V 85 MAX2044 toc10 PRF = 0dBm 4000 VCC = 5.25V 70 RF FREQUENCY (MHz) 3RF - 3LO RESPONSE vs. RF FREQUENCY 3800 50 RF FREQUENCY (MHz) 85 3600 55 50 3600 3400 2RF - 2LO RESPONSE vs. RF FREQUENCY PLO = -3dBm 50 75 3200 75 55 TC = +25C 3400 VCC = 4.75V RF FREQUENCY (MHz) 75 MAX2044 toc07 PRF = 0dBm 3200 VCC = 5.0V RF FREQUENCY (MHz) 75 3000 31 27 3000 2RF - 2LO RESPONSE (dBc) 3400 MAX2044 toc08 3200 33 29 27 3000 2RF - 2LO RESPONSE (dBc) 35 MAX2044 toc09 31 35 PRF = 0dBm/TONE VCC = 5.25V MAX2044 toc12 33 PLO = +3dBm INPUT IP3 (dBm) TC = -40C PRF = 0dBm/TONE INPUT IP3 (dBm) INPUT IP3 (dBm) 35 MAX2044 toc04 PRF = 0dBm/TONE INPUT IP3 vs. RF FREQUENCY 37 MAX2044 toc06 INPUT IP3 vs. RF FREQUENCY 37 MAX2044 toc05 INPUT IP3 vs. RF FREQUENCY 37 3RF - 3LO RESPONSE (dBc) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 75 VCC = 5.25V 65 VCC = 5.0V VCC = 4.75V 55 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 10 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer NOISE FIGURE vs. RF FREQUENCY 10 8 7 TC = -40C 8 PLO = -3dBm, 0dBm, +3dBm 6 5 3600 3800 4000 3200 INPUT P1dB vs. RF FREQUENCY 3800 4000 3000 23 TC = +25C 21 TC = +85C 23 21 PLO = 0dBm 19 3400 3600 3800 4000 3800 21 VCC = 5.0V VCC = 4.75V 17 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = -40C -30 TC = +25C MAX2044 toc20 -20 -30 PLO = -3dBm, 0dBm, +3dBm -10 LO LEAKAGE AT IF PORT (dBm) -20 -10 LO LEAKAGE AT IF PORT (dBm) MAX2044 toc19 -10 4000 VCC = 5.25V 19 17 3200 3600 INPUT P1dB vs. RF FREQUENCY PLO = +3dBm PLO = -3dBm 3400 25 MAX2044 toc17 MAX2044 toc16 TC = -40C 3000 3200 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY INPUT P1dB (dBm) INPUT P1dB (dBm) 3600 25 17 LO LEAKAGE AT IF PORT (dBm) 3400 RF FREQUENCY (MHz) 25 19 VCC = 5.0V 7 5 3000 RF FREQUENCY (MHz) 23 8 MAX2044 toc18 3400 INPUT P1dB (dBm) 3200 VCC = 5.25V 6 5 3000 VCC = 4.75V 9 4000 MAX2044 toc21 6 9 7 10 NOISE FIGURE (dB) 9 NOISE FIGURE vs. RF FREQUENCY 11 MAX2044 toc14 TC = +25C NOISE FIGURE (dB) NOISE FIGURE (dB) MAX2044 toc13 TC = +85C 10 11 MAX2044 toc15 NOISE FIGURE vs. RF FREQUENCY 11 -20 -30 VCC = 4.75V, 5.0V, 5.25V TC = +85C -40 -40 2700 2900 3100 3300 LO FREQUENCY (MHz) 3500 3700 -40 2700 2900 3100 3300 LO FREQUENCY (MHz) 3500 3700 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 40 TC = -40C TC = +25C 20 PLO = -3dBm, 0dBm, +3dBm 30 20 3200 3400 3600 3800 4000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +25C TC = -40C -40 -50 -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 3000 4000 3500 -30 VCC = 4.75V, 5.0V, 5.25V -40 -50 2500 3000 3500 4000 2500 3000 3500 LO FREQUENCY (MHz) LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +25C TC = +85C -40 -50 PLO = +3dBm -30 PLO = 0dBm PLO = -3dBm -40 -50 3000 3500 LO FREQUENCY (MHz) 4000 -20 2LO LEAKAGE AT RF PORT (dBm) -30 2LO LEAKAGE AT RF PORT (dBm) MAX2044 toc28 TC = -40C -20 MAX2044 toc29 LO FREQUENCY (MHz) -20 4000 MAX2044 toc27 -20 LO LEAKAGE AT RF PORT (dBm) -30 -20 MAX2044 toc26 MAX2044 toc25 TC = +85C 2500 VCC = 4.75V, 5.0V, 5.25V 30 RF FREQUENCY (MHz) -20 2500 40 20 3000 LO LEAKAGE AT RF PORT (dBm) 3000 LO LEAKAGE AT RF PORT (dBm) 40 50 4000 MAX2044 toc30 30 50 RF-TO-IF ISOLATION (dB) TC = +85C RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2044 toc23 MAX2044 toc22 50 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2044 toc24 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 2LO LEAKAGE AT RF PORT (dBm) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer VCC = 4.75V -30 VCC = 5.0V -40 VCC = 5.25V -50 2500 3000 3500 LO FREQUENCY (MHz) 4000 2500 3000 3500 LO FREQUENCY (MHz) 12 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer IF PORT RETURN LOSS vs. IF FREQUENCY 5 0 fLO = 3200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 PLO = -3dBm, 0dBm, +3dBm 25 15 20 VCC = 4.75V, 5.0V, 5.25V 25 30 30 3000 3200 3400 3600 3800 4000 50 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 150 MAX2044 toc33 PLO = 0dBm PLO = +3dBm VCC = 5.25V 145 SUPPLY CURRENT (mA) PLO = -3dBm 10 20 140 RF FREQUENCY (MHz) 0 LO PORT RETURN LOSS (dB) 10 500 MAX2044 toc34 RF PORT RETURN LOSS (dB) fIF = 300MHz MAX2044 toc31 0 MAX2044 toc32 RF PORT RETURN LOSS vs. RF FREQUENCY 140 135 VCC = 5.0V VCC = 4.75V 130 125 30 120 2500 3000 3500 LO FREQUENCY (MHz) 4000 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 13 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +85C 8 7 9 8 PLO = -3dBm, 0dBm, +3dBm 7 MAX2044 toc37 MAX2044 toc35 TC = +25C CONVERSION LOSS vs. RF FREQUENCY 10 CONVERSION LOSS (dB) 9 VCC = 3.3V CONVERSION LOSS (dB) CONVERSION LOSS (dB) VCC = 3.3V CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc36 CONVERSION LOSS vs. RF FREQUENCY 10 9 8 VCC = 3.0V, 3.3V, 3.6V 7 TC = -40C 6 3600 3800 4000 6 3000 3200 RF FREQUENCY (MHz) MAX2044 toc38 VCC = 3.3V PRF = 0dBm/TONE TC = +25C TC = -40C 26 3000 VCC = 3.3V PRF = 0dBm/TONE 30 28 3600 3800 4000 PLO = -3dBm, 0dBm, +3dBm VCC = 3.3V VCC = 3.0V 3400 3600 3800 3000 4000 3200 RF FREQUENCY (MHz) 2RF - 2LO RESPONSE (dBc) 70 TC = +85C 60 VCC = 3.3V PRF = 0dBm PLO = +3dBm 70 60 PLO = 0dBm TC = -40C 3400 3600 3800 4000 RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY MAX2044 toc41 VCC = 3.3V PRF = 0dBm TC = +25C 28 24 3200 RF FREQUENCY (MHz) 80 4000 30 26 3000 2RF - 2LO RESPONSE vs. RF FREQUENCY 3800 VCC = 3.6V 32 2RF - 2LO RESPONSE vs. RF FREQUENCY 80 2RF - 2LO RESPONSE (dBc) 3400 3600 PRF = 0dBm/TONE MAX2044 toc42 3200 3400 INPUT IP3 vs. RF FREQUENCY 24 3000 3200 34 26 24 80 4000 RF FREQUENCY (MHz) 32 TC = +85C 30 28 3800 INPUT IP3 vs. RF FREQUENCY 34 INPUT IP3 (dBm) INPUT IP3 (dBm) 32 3600 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 34 3400 MAX2044 toc40 3400 INPUT IP3 (dBm) 3200 MAX2044 toc39 3000 MAX2044 toc43 6 2RF - 2LO RESPONSE (dBc) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer PRF = 0dBm 70 VCC = 3.6V VCC = 3.3V 60 VCC = 3.0V PLO = -3dBm 50 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 14 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer TC = +85C 55 45 65 PLO = -3dBm, 0dBm, +3dBm 55 45 3400 3600 3800 4000 3200 RF FREQUENCY (MHz) 3800 4000 MAX2044 toc47 9 8 TC = -40C 3000 PLO = -3dBm PLO = 0dBm 9 8 PLO = +3dBm 7 10 3600 3800 4000 3200 RF FREQUENCY (MHz) 3400 3600 3800 17 15 19 PLO = -3dBm, 0dBm, +3dBm RF FREQUENCY (MHz) 3200 3800 4000 3400 3600 3800 23 VCC = 3.6V MAX2044 toc46 4000 19 VCC = 3.3V VCC = 3.0V 17 15 3600 3000 21 17 3400 VCC = 3.6V 7 INPUT P1dB vs. RF FREQUENCY VCC = 3.3V INPUT P1dB (dBm) TC = +85C 3200 8 RF FREQUENCY (MHz) 23 MAX2044 toc50 19 3000 VCC = 3.3V 4000 21 TC = +25C 4000 9 INPUT P1dB vs. RF FREQUENCY VCC = 3.3V TC = -40C 21 VCC = 3.0V RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 23 3800 5 3000 INPUT P1dB (dBm) 3400 3600 6 MAX2044 toc51 3200 3400 NOISE FIGURE vs. RF FREQUENCY 5 3000 3200 11 6 5 VCC = 3.3V RF FREQUENCY (MHz) VCC = 3.3V 10 6 INPUT P1dB (dBm) 3600 11 NOISE FIGURE (dB) NOISE FIGURE (dB) TC = +25C 7 3400 NOISE FIGURE vs. RF FREQUENCY VCC = 3.3V TC = +85C 10 VCC = 3.0V 55 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 11 65 45 3000 NOISE FIGURE (dB) 3200 MAX2044 toc48 3000 PRF = 0dBm VCC = 3.6V MAX2044 toc49 TC = -40C VCC = 3.3V PRF = 0dBm MAX2044 toc52 65 3RF - 3LO RESPONSE vs. RF FREQUENCY 75 3RF - 3LO RESPONSE (dBc) MAX2044 toc44 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) VCC = 3.3V PRF = 0dBm TC = +25C 3RF - 3LO RESPONSE vs. RF FREQUENCY 75 MAX2044 toc45 3RF - 3LO RESPONSE vs. RF FREQUENCY 75 15 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = +25C -30 TC = +85C -40 PLO = -3dBm, 0dBm, +3dBm -30 -40 3100 3300 3500 3700 2900 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 40 3300 3500 3700 3400 TC = +25C 3600 3800 50 40 PLO = -3dBm, 0dBm, +3dBm 30 4000 3100 3300 3500 50 40 VCC = 3.0V, 3.3V, 3.6V 30 20 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40C, +25C, +85C -40 -50 VCC = 3.3V -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 3000 3500 LO FREQUENCY (MHz) 4000 -20 LO LEAKAGE AT RF PORT (dBm) -30 -20 LO LEAKAGE AT RF PORT (dBm) MAX2044 toc59 RF FREQUENCY (MHz) VCC = 3.3V 3700 RF-TO-IF ISOLATION vs. RF FREQUENCY RF FREQUENCY (MHz) -20 2500 2900 60 20 3200 MAX2044 toc55 2700 LO FREQUENCY (MHz) VCC = 3.3V 20 3000 VCC = 3.0V, 3.3V, 3.6V RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) TC = +85C TC = -40C 3100 60 MAX2044 toc56 VCC = 3.3V 30 -30 LO FREQUENCY (MHz) 60 50 -20 -40 2700 RF-TO-IF ISOLATION (dB) 2900 MAX2044 toc57 2700 RF-TO-IF ISOLATION (dB) MAX2044 toc54 -20 -10 MAX2044 toc58 TC = -40C VCC = 3.3V 4000 MAX2044 toc61 -20 -10 MAX2044 toc60 LO LEAKAGE AT IF PORT (dBm) VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) MAX2044 toc53 -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer -30 VCC = 3.0V, 3.3V, 3.6V -40 -50 2500 3000 3500 LO FREQUENCY (MHz) 4000 2500 3000 3500 LO FREQUENCY (MHz) 16 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer TC = +25C -45 -55 VCC = 3.0V -25 -35 PLO = -3dBm, 0dBm, +3dBm -45 -55 3000 4000 3500 VCC = 3.3V VCC = 3.6V -35 -45 -55 2500 3000 LO FREQUENCY (MHz) 4000 3500 2500 3000 LO FREQUENCY (MHz) VCC = 3.3V fIF = 300MHz 0 10 15 20 fLO = 3200MHz 5 IF PORT RETURN LOSS (dB) 5 4000 IF PORT RETURN LOSS vs. IF FREQUENCY MAX2044 toc65 0 3500 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY RF PORT RETURN LOSS (dB) 25 10 15 VCC = 3.0V, 3.3V, 3.6V 20 25 PLO = -3dBm, 0dBm, +3dBm 30 30 3200 3400 3600 3800 4000 140 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs.TEMPERATURE (TC) VCC = 3.3V 10 PLO = -3dBm 20 PLO = 0dBm 30 3500 LO FREQUENCY (MHz) 130 VCC = 3.6V 125 120 115 VCC = 3.3V VCC = 3.0V 110 PLO = +3dBm 3000 135 4000 500 MAX2044 toc68 0 2500 50 RF FREQUENCY (MHz) SUPPLY CURRENT (mA) 3000 MAX2044 toc67 2500 -25 MAX2044 toc66 TC = +85C -35 -15 2LO LEAKAGE AT RF PORT (dBm) -25 LO PORT RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V TC = -40C -15 MAX2044 toc62 -15 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc64 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc63 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 105 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 17 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 7 TC = -40C 6 9 8 PLO = -3dBm, 0dBm, +3dBm 7 6 2600 2750 2900 RF FREQUENCY (MHz) 33 TC = +25C TC = +85C 29 2750 2900 PRF = 0dBm/TONE PLO = +3dBm 2450 2600 2750 PLO = 0dBm 2900 2750 37 35 PLO = -3dBm PRF = 0dBm/TONE VCC = 5.25V 33 31 VCC = 4.75V 29 27 2300 2450 2600 2750 2900 2300 2450 2600 2750 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY 70 60 TC = +25C PLO = +3dBm 70 60 PLO = 0dBm PLO = -3dBm TC = -40C 50 2600 2750 RF FREQUENCY (MHz) 2900 2900 PRF = 0dBm VCC = 4.75V 70 VCC = 5.0V 60 VCC = 5.25V 50 2450 80 MAX2044 toc76 PRF = 0dBm 2LO - 2RF RESPONSE (dBc) 2LO - 2RF RESPONSE (dBc) MAX2044 toc75 TC = +85C 80 2900 VCC = 5.0V RF FREQUENCY (MHz) PRF = 0dBm 2300 2600 INPUT IP3 vs. RF FREQUENCY 33 31 2450 RF FREQUENCY (MHz) 27 2300 MAX2044 toc71 2300 29 27 80 2600 MAX2044 toc77 31 2450 35 INPUT IP3 (dBm) INPUT IP3 (dBm) 35 VCC = 4.75V, 5.0V, 5.25V 7 INPUT IP3 vs. RF FREQUENCY 37 MAX2044 toc72 TC = -40C 8 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 9 6 2300 INPUT IP3 (dBm) 2450 MAX2044 toc73 2300 37 CONVERSION LOSS (dB) 8 CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc70 MAX2044 toc69 TC = +25C CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85C 9 CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc74 CONVERSION LOSS vs. RF FREQUENCY 10 2LO - 2RF RESPONSE (dBc) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 50 2300 2450 2600 2750 RF FREQUENCY (MHz) 2900 2300 2450 2600 2750 RF FREQUENCY (MHz) 18 2900 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer TC = +25C 75 65 TC = -40C 55 2450 2600 2750 PLO = +3dBm 75 65 PLO = 0dBm PLO = -3dBm 2900 VCC = 5.25V 65 VCC = 5.0V VCC = 4.75V 55 2300 2450 2600 2750 2900 2300 2450 2600 2750 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = -40C -40 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 3050 3200 TC = +85C 30 20 2900 3050 3200 2600 2750 RF FREQUENCY (MHz) VCC = 5.25V 2600 2900 2750 2900 3050 3200 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2044 toc85 50 40 PLO = -3dBm, 0dBm, +3dBm 30 20 2450 VCC = 5.0V -35 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) TC = +25C 2750 60 MAX2044 toc84 50 40 -30 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY TC = -40C VCC = 4.75V -40 2600 LO FREQUENCY (MHz) 60 -25 MAX2044 toc86 2900 RF-TO-IF ISOLATION (dB) 2750 2900 MAX2044 toc83 MAX2044 toc82 -25 -20 LO LEAKAGE AT IF PORT (dBm) -30 -20 LO LEAKAGE AT IF PORT (dBm) MAX2044 toc81 LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = +85C 2300 75 RF FREQUENCY (MHz) TC = +25C 2600 PRF = 0dBm RF FREQUENCY (MHz) -25 -35 MAX2044 toc80 85 RF FREQUENCY (MHz) -20 LO LEAKAGE AT IF PORT (dBm) PRF = 0dBm 55 2300 RF-TO-IF ISOLATION (dB) 3LO - 3RF RESPONSE vs. RF FREQUENCY 3LO - 3RF RESPONSE (dBc) TC = +85C 85 MAX2044 toc78 PRF = 0dBm 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 85 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc79 3LO - 3RF RESPONSE vs. RF FREQUENCY 50 40 VCC = 4.75V, 5.0V, 5.25V 30 20 2300 2450 2600 2750 RF FREQUENCY (MHz) 2900 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 19 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -30 TC = -40C TC = +25C -40 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -50 -30 PLO = -3dBm, 0dBm, +3dBm -40 -20 -50 2725 3150 3575 4000 -40 2725 3150 3575 4000 2300 2725 3150 3575 LO FREQUENCY (MHz) LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40C TC = +25C -50 TC = +85C -60 -30 PLO = +3dBm PLO = 0dBm -40 -50 PLO = -3dBm -60 2725 3150 3575 LO FREQUENCY (MHz) 4000 -20 4000 MAX2044 toc92 -20 2LO LEAKAGE AT RF PORT (dBm) MAX2044 toc90 -30 2300 VCC = 4.75V, 5.0V, 5.25V LO FREQUENCY (MHz) -20 -40 -30 -50 2300 2LO LEAKAGE AT RF PORT (dBm) 2300 MAX2044 toc89 MAX2044 toc88 -20 MAX2044 toc91 LO LEAKAGE AT RF PORT (dBm) TC = +85C LO LEAKAGE AT RF PORT (dBm) MAX2044 toc87 -20 LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer -30 VCC = 5.25V VCC = 5.0V -40 -50 VCC = 4.75V -60 2300 2725 3150 3575 LO FREQUENCY (MHz) 4000 2300 2725 3150 3575 LO FREQUENCY (MHz) 20 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5 VCC = 4.75V, 5.0V, 5.25V 5 IF PORT RETURN LOSS (dB) fIF = 300MHz 10 0 MAX2044 toc93 PLO = -3dBm, 0dBm, +3dBm 15 20 25 10 15 20 fLO = 2600MHz fLO = 2900MHz 25 30 30 2450 2600 2750 2900 50 140 230 320 410 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 0 PLO = -3dBm 20 PLO = +3dBm 30 VCC = 5.25V 145 SUPPLY CURRENT (mA) 10 PLO = 0dBm 150 MAX2044 toc95 2300 LO PORT RETURN LOSS (dB) fLO = 3200MHz 500 MAX2044 toc96 RF PORT RETURN LOSS (dB) 0 MAX2044 toc94 IF PORT RETURN LOSS vs. IF FREQUENCY RF PORT RETURN LOSS vs. RF FREQUENCY 140 135 VCC = 5.0V VCC = 4.75V 130 125 120 40 2500 3000 3500 LO FREQUENCY (MHz) 4000 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 21 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 8 7 9 CONVERSION LOSS (dB) TC = +25C TC = +85C CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc98 MAX2044 toc97 9 CONVERSION LOSS (dB) CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 10 8 PLO = -3dBm, 0dBm, +3dBm 7 MAX2044 toc99 CONVERSION LOSS vs. RF FREQUENCY 10 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = -40C 6 3400 3600 3800 4000 6 3000 3200 RF FREQUENCY (MHz) TC = -40C 31 TC = +25C TC = +85C 3000 PRF = 0dBm/TONE PLO = +3dBm 33 31 PLO = -3dBm 3200 3400 3600 3800 4000 3400 3600 3800 PRF = 0dBm/TONE 35 VCC = 5.0V 33 VCC = 5.25V 31 PLO = 0dBm VCC = 4.75V 29 27 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY 60 TC = -40C TC = +25C PRF = 0dBm PLO = +3dBm 70 PLO = 0dBm 60 80 2LO - 2RF RESPONSE (dBc) TC = +85C 2LO - 2RF RESPONSE (dBc) 70 80 4000 MAX2044 toc105 RF FREQUENCY (MHz) MAX2044 toc104 RF FREQUENCY (MHz) MAX2044 toc103 RF FREQUENCY (MHz) PRF = 0dBm 4000 INPUT IP3 vs. RF FREQUENCY 37 27 3000 3200 RF FREQUENCY (MHz) 29 27 80 4000 35 INPUT IP3 (dBm) INPUT IP3 (dBm) 35 29 3800 INPUT IP3 vs. RF FREQUENCY 37 MAX2044 toc100 PRF = 0dBm/TONE 33 3600 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 37 3400 INPUT IP3 (dBm) 3200 MAX2044 toc101 3000 MAX2044 toc102 6 2LO - 2RF RESPONSE (dBc) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer PRF = 0dBm VCC = 5.25V 70 VCC = 5.0V 60 VCC = 4.75V PLO = -3dBm 50 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 22 3800 4000 SiGe, High-Linearity, 3000MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer TC = -40C 65 TC = +25C 75 PLO = +3dBm PLO = 0dBm 65 55 3200 3400 3600 3800 65 55 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY -30 -40 3900 4100 4300 3500 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 3700 3900 4100 4300 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) TC = +25C, +85C 40 TC = -40C 20 RF FREQUENCY (MHz) 3500 3800 4000 3700 3900 4100 4300 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2044 toc113 50 40 PLO = -3dBm, 0dBm, +3dBm 30 20 3600 3300 LO FREQUENCY (MHz) 60 MAX2044 toc112 50 3400 -30 LO FREQUENCY (MHz) 60 3200 VCC = 4.75V, 5.0V, 5.25V -40 3300 RF-TO-IF ISOLATION (dB) 3700 -20 TC = +85C -40 3500 MAX2044 toc111 MAX2044 toc110 PLO = -3dBm, 0dBm, +3dBm 4000 MAX2044 toc114 TC = +25C -20 -10 LO LEAKAGE AT IF PORT (dBm) -30 -10 LO LEAKAGE AT IF PORT (dBm) TC = -40C 3000 VCC = 5.0V RF FREQUENCY (MHz) MAX2044 toc109 LO LEAKAGE AT IF PORT (dBm) 4000 -20 30 VCC = 5.25V RF FREQUENCY (MHz) -10 3300 75 VCC = 4.75V 55 3000 PRF = 0dBm PLO = -3dBm TC = +85C RF-TO-IF ISOLATION (dB) 85 MAX2044 toc108 PRF = 0dBm 3LO - 3RF RESPONSE (dBc) 75 85 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc107 PRF = 0dBm 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 85 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX2044 toc106 3LO - 3RF RESPONSE vs. RF FREQUENCY 50 40 VCC = 4.75V, 5.0V, 5.25V 30 20 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 23 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -30 TC = +85C -40 TC = -40C LO LEAKAGE AT RF PORT vs. LO FREQUENCY -30 -40 TC = +25C -20 4000 4500 -50 3000 3500 4000 4500 3000 3500 4000 LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -30 TC = +25C TC = +85C -20 PLO = 0dBm -30 PLO = -3dBm -40 4500 MAX2044 toc120 PLO = +3dBm -10 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT (dBm) TC = -40C -10 MAX2044 toc119 LO FREQUENCY (MHz) MAX2044 toc118 LO FREQUENCY (MHz) -10 -40 -40 VCC = 4.75V, 5.0V, 5.25V -50 3500 -30 PLO = -3dBm, 0dBm, +3dBm -50 3000 MAX2044 toc117 MAX2044 toc116 -20 LO LEAKAGE AT RF PORT (dBm) MAX2044 toc115 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer -20 VCC = 4.75V -30 VCC = 5.0V -40 VCC = 5.25V -50 -50 3000 3400 3800 LO FREQUENCY (MHz) 4200 -50 3000 3400 3800 LO FREQUENCY (MHz) 4200 3000 3400 3800 LO FREQUENCY (MHz) 24 4200 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 5 10 15 20 PLO = -3dBm, 0dBm, +3dBm 25 0 10 15 VCC = 4.75V, 5.0V, 5.25V 20 25 30 3200 3400 3600 3800 4000 50 140 230 320 410 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 150 MAX2044 toc123 0 PLO = -3dBm 20 PLO = 0dBm PLO = +3dBm 40 VCC = 5.25V 145 SUPPLY CURRENT (mA) 10 500 MAX2044 toc124 3000 LO PORT RETURN LOSS (dB) fLO = 3800MHz 5 30 30 MAX2044 toc122 fIF = 300MHz IF PORT RETURN LOSS (dB) RF PORT RETURN LOSS (dB) 0 IF PORT RETURN LOSS vs. IF FREQUENCY MAX2044 toc121 RF PORT RETURN LOSS vs. RF FREQUENCY 140 135 VCC = 5.0V 130 VCC = 4.75V 125 120 50 3000 3500 4000 LO FREQUENCY (MHz) 4500 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 25 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25C 8 7 9 CONVERSION LOSS (dB) TC = +85C CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc126 MAX2044 toc125 9 CONVERSION LOSS (dB) CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 10 8 PLO = -3dBm, 0dBm, +3dBm 7 MAX2044 toc127 CONVERSION LOSS vs. RF FREQUENCY 10 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = -40C 6 3600 3800 4000 6 3000 3200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 3800 4000 3000 PIF = 0dBm/TONE PLO = +3dBm 34 INPUT IP3 (dBm) 34 TC = +25C TC = +85C 30 32 PLO = 0dBm 34 PLO = -3dBm 3800 4000 LO - 2IF RESPONSE vs. RF FREQUENCY 3200 3400 3600 3800 4000 LO - 2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm LO - 2IF RESPONSE (dBc) TC = +25C 65 55 75 45 65 PLO = 0dBm 55 PLO = -3dBm 45 3400 3600 RF FREQUENCY (MHz) 3200 3800 4000 3400 3600 3800 4000 LO - 2IF RESPONSE vs. RF FREQUENCY PLO = +3dBm TC = -40C 3200 3000 RF FREQUENCY (MHz) 85 MAX2044 toc131 PIF = 0dBm 3000 VCC = 4.75V RF FREQUENCY (MHz) 85 TC = +85C VCC = 5.0V 28 3000 RF FREQUENCY (MHz) 75 32 30 85 PIF = 0dBm VCC = 5.0V LO - 2IF RESPONSE (dBc) 3600 4000 PIF = 0dBm/TONE MAX2044 toc132 3400 3800 VCC = 5.25V 28 3200 3600 36 30 28 3400 INPUT IP3 vs. RF FREQUENCY 36 MAX2044 toc128 PIF = 0dBm/TONE 3000 3200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY TC = -40C INPUT IP3 (dBm) 3600 RF FREQUENCY (MHz) 36 32 3400 MAX2044 toc130 3400 INPUT IP3 (dBm) 3200 MAX2044 toc129 3000 75 MAX2044 toc133 6 LO - 2IF RESPONSE (dBc) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer VCC = 5.25V 65 VCC = 4.75V 55 45 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 26 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 65 TC = +25C 55 65 PLO = 0dBm 55 TC = -40C 45 3600 3800 4000 LO - 3IF RESPONSE vs. RF FREQUENCY 3200 3400 3600 3800 3000 MAX2044 toc137 TC = +25C 80 TC = +85C PIF = 0dBm 60 90 3800 4000 PLO = -3dBm, 0dBm, +3dBm 3200 3600 3800 3400 3600 RF FREQUENCY (MHz) 3000 3200 3800 4000 3400 3600 3800 4000 90 LO + 3IF RESPONSE vs. RF FREQUENCY 80 PLO = -3dBm, 0dBm, +3dBm 70 60 3200 70 4000 100 PIF = 0dBm LO + 3IF RESPONSE (dBc) TC = +25C 60 3000 80 RF FREQUENCY (MHz) PIF = 0dBm LO + 3IF RESPONSE (dBc) 80 70 VCC = 4.75V, 5.0V, 5.25V LO + 3IF RESPONSE vs. RF FREQUENCY TC = -40C TC = +85C 3400 100 MAX2044 toc140 PIF = 0dBm 90 90 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY 4000 60 3000 RF FREQUENCY (MHz) 100 3800 PIF = 0dBm MAX2044 toc141 3600 3600 LO - 3IF RESPONSE vs. RF FREQUENCY 80 70 3400 100 60 3400 3200 RF FREQUENCY (MHz) LO - 3IF RESPONSE vs. RF FREQUENCY TC = -40C 3200 55 4000 100 LO - 3IF RESPONSE (dBc) LO - 3IF RESPONSE (dBc) PIF = 0dBm 3000 VCC = 4.75V RF FREQUENCY (MHz) 100 70 65 45 3000 RF FREQUENCY (MHz) 90 VCC = 5.25V 75 MAX2044 toc139 3400 LO - 3IF RESPONSE (dBc) 3200 MAX2044 toc138 3000 PIF = 0dBm PLO = -3dBm 45 LO + 3IF RESPONSE (dBc) PLO = +3dBm VCC = 5.0V 90 MAX2044 toc142 TC = +85C 75 LO + 2IF RESPONSE (dBc) LO + 2IF RESPONSE (dBc) 75 PIF = 0dBm LO + 2IF RESPONSE vs. RF FREQUENCY 85 MAX2044 toc136 MAX2044 toc134 PIF = 0dBm LO + 2IF RESPONSE (dBc) LO + 2IF RESPONSE vs. RF FREQUENCY 85 MAX2044 toc135 LO + 2IF RESPONSE vs. RF FREQUENCY 85 VCC = 5.25V 80 VCC = 5.0V 70 VCC = 4.75V 60 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 27 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +85C TC = +25C -30 TC = -40C -40 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 3000 3200 3400 3600 3800 -30 VCC = 4.75V, 5.0V, 5.25V -35 3000 3200 3400 3600 3800 2800 3000 3200 3400 3600 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY -70 -80 TC = +25C TC = +85C -90 -100 -60 PLO = +3dBm -70 -80 PLO = 0dBm PLO = -3dBm -90 -100 3000 3200 3400 LO FREQUENCY (MHz) 3600 3800 -50 IF LEAKAGE AT RF PORT (dBm) TC = -40C -60 -50 MAX2044 toc147 MAX2044 toc146 -50 2800 -25 -40 2800 IF LEAKAGE AT RF PORT (dBm) 2800 MAX2044 toc145 MAX2044 toc144 -25 -20 VCC = 5.25V -60 3800 MAX2044 toc148 -35 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 LO LEAKAGE AT RF PORT (dBm) -25 MAX2044 toc143 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT (dBm) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer -70 -80 VCC = 5.0V VCC = 4.75V -90 -100 2800 3000 3200 3400 LO FREQUENCY (MHz) 3600 3800 2800 3000 3200 3400 LO FREQUENCY (MHz) 28 3600 3800 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer PLO = -3dBm, 0dBm, +3dBm 10 15 20 fLO = 3200MHz 5 25 VCC = 4.75V, 5.0V, 5.25V 10 15 20 25 30 30 3000 3200 3400 3600 3800 4000 50 140 230 320 410 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 150 MAX2044 toc151 0 5 PLO = -3dBm 10 PLO = 0dBm 15 20 PLO = +3dBm VCC = 5.25V 145 SUPPLY CURRENT (mA) LO PORT RETURN LOSS (dB) MAX2044 toc150 5 0 VCC = 5.0V 500 MAX2044 toc152 RF PORT RETURN LOSS (dB) fIF = 200MHz IF PORT RETURN LOSS (dB) 0 IF PORT RETURN LOSS vs. IF FREQUENCY MAX2044 toc149 RF PORT RETURN LOSS vs. RF FREQUENCY 140 135 VCC = 4.75V 130 125 25 120 30 2500 3000 3500 LO FREQUENCY (MHz) 4000 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 29 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 8 7 9 CONVERSION LOSS (dB) TC = +25C CONVERSION LOSS vs. RF FREQUENCY 10 MAX2044 toc154 MAX2044 toc153 TC = +85C VCC = 3.3V CONVERSION LOSS (dB) CONVERSION LOSS (dB) VCC = 3.3V 9 CONVERSION LOSS vs. RF FREQUENCY 10 8 PLO = -3dBm, 0dBm, +3dBm 7 MAX2044 toc155 CONVERSION LOSS vs. RF FREQUENCY 10 9 8 VCC = 3.0V, 3.3V, 3.6V 7 TC = -40C 6 3200 3400 3600 3800 4000 6 3000 3200 RF FREQUENCY (MHz) 3600 3800 4000 3000 3200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY VCC = 3.3V PIF = 0dBm/TONE 32 3600 3800 4000 INPUT IP3 vs. RF FREQUENCY 34 MAX2044 toc156 VCC = 3.3V PIF = 0dBm/TONE 3400 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 34 32 3400 34 MAX2044 toc157 3000 MAX2044 toc158 6 PIF = 0dBm/TONE 32 VCC = 3.6V TC = +25C 28 TC = +85C 30 28 26 24 3800 4000 3200 RF FREQUENCY (MHz) 3400 3600 3800 4000 LO - 2IF RESPONSE vs. RF FREQUENCY LO - 2IF RESPONSE vs. RF FREQUENCY VCC = 3.3V PIF = 0dBm LO - 2IF RESPONSE (dBc) 75 TC = +85C 65 TC = +25C 75 PLO = +3dBm PLO = -3dBm TC = -40C 45 3400 3600 RF FREQUENCY (MHz) 3800 4000 3600 3800 4000 LO - 2IF RESPONSE vs. RF FREQUENCY 65 55 3400 85 PIF = 0dBm 75 VCC = 3.6V 65 55 VCC = 3.3V PLO = 0dBm 45 3200 3200 RF FREQUENCY (MHz) 85 MAX2044 toc159 VCC = 3.3V PIF = 0dBm 3000 3000 RF FREQUENCY (MHz) 85 55 VCC = 3.3V 24 3000 LO - 2IF RESPONSE (dBc) 3600 MAX2044 toc160 3400 VCC = 3.0V 26 24 3200 28 PLO = -3dBm, 0dBm, +3dBm 26 3000 30 MAX2044 toc161 30 INPUT IP3 (dBm) INPUT IP3 (dBm) INPUT IP3 (dBm) TC = -40C LO - 2IF RESPONSE (dBc) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer VCC = 3.0V 45 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 RF FREQUENCY (MHz) 30 3800 4000 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer PLO = +3dBm 65 55 PLO = 0dBm TC = -40C 3800 4000 3000 3200 LO - 3IF RESPONSE vs. RF FREQUENCY VCC = 3.3V PIF = 0dBm 3800 4000 3000 TC = +25C 70 TC = +85C 60 TC = -40C VCC = 3.3V PIF = 0dBm 50 3800 70 PLO = -3dBm, 0dBm, +3dBm 60 4000 3200 70 VCC = 3.0V 60 3600 3800 4000 VCC = 3.3V 3000 70 TC = +25C TC = +85C VCC = 3.3V PIF = 0dBm 80 3800 4000 PIF = 0dBm PLO = -3dBm, 0dBm, +3dBm 80 VCC = 3.6V 70 VCC = 3.3V 60 VCC = 3.0V 50 50 3200 3600 LO + 3IF RESPONSE vs. RF FREQUENCY 70 60 3400 90 TC = -40C 3000 3200 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY LO + 3IF RESPONSE (dBc) 80 60 3400 90 MAX2044 toc168 VCC = 3.3V PIF = 0dBm MAX2044 toc164 PIF = 0dBm RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY 4000 50 3000 RF FREQUENCY (MHz) 90 3800 VCC = 3.6V LO + 3IF RESPONSE (dBc) 3600 3600 LO - 3IF RESPONSE vs. RF FREQUENCY MAX2044 toc169 3400 3400 80 50 3200 3200 RF FREQUENCY (MHz) LO - 3IF RESPONSE vs. RF FREQUENCY LO - 3IF RESPONSE (dBc) LO - 3IF RESPONSE (dBc) 3600 80 MAX2044 toc165 80 LO + 3IF RESPONSE (dBc) 3400 RF FREQUENCY (MHz) LO - 3IF RESPONSE (dBc) 3600 RF FREQUENCY (MHz) 3000 VCC = 3.3V 45 MAX2044 toc166 3400 55 VCC = 3.0V 45 3200 VCC = 3.6V 65 PLO = -3dBm 45 3000 75 MAX2044 toc167 TC = +25C 75 PIF = 0dBm LO + 2IF RESPONSE (dBc) TC = +85C 65 55 VCC = 3.3V PIF = 0dBm LO + 2IF RESPONSE (dBc) 75 LO + 2IF RESPONSE vs. RF FREQUENCY 85 MAX2044 toc163 MAX2044 toc162 VCC = 3.3V PIF = 0dBm LO + 2IF RESPONSE (dBc) LO + 2IF RESPONSE vs. RF FREQUENCY 85 MAX2044 toc170 LO + 2IF RESPONSE vs. RF FREQUENCY 85 3400 3600 RF FREQUENCY (MHz) 3800 4000 50 3000 3200 3400 3600 RF FREQUENCY (MHz) 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 31 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -30 TC = +25C TC = -40C -35 -40 -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 -20 -40 3000 3200 3400 3600 3800 -30 VCC = 3.0V, 3.3V, 3.6V -35 -40 2800 3000 3200 3400 3600 3800 2800 3000 3200 3400 3600 LO FREQUENCY (MHz) LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40C -80 -90 TC = +25C VCC = 3.3V -70 PLO = 0dBm PLO = -3dBm -80 -90 PLO = +3dBm -100 3200 VCC = 3.0V -70 -80 -90 VCC = 3.6V VCC = 3.3V TC = +85C -100 3000 -60 3800 MAX2044 toc176 -70 -60 IF LEAKAGE AT RF PORT (dBm) VCC = 3.3V IF LEAKAGE AT RF PORT (dBm) -60 2800 -25 LO FREQUENCY (MHz) MAX2044 toc174 2800 MAX2044 toc173 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) TC = +85C -20 MAX2044 toc172 -25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc175 LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2044 toc171 LO LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT (dBm) MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer 3400 LO FREQUENCY (MHz) 3600 3800 -100 2800 3000 3200 3400 LO FREQUENCY (MHz) 3600 3800 2800 3000 3200 3400 LO FREQUENCY (MHz) 32 3600 3800 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer IF PORT RETURN LOSS vs. IF FREQUENCY VCC = 3.3V fIF = 200MHz 5 10 PLO = -3dBm, 0dBm, +3dBm 15 20 0 fLO = 3200MHz 5 IF PORT RETURN LOSS (dB) MAX2044 toc177 25 15 20 25 30 30 3200 3400 3600 3800 4000 140 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) VCC = 3.3V 5 10 PLO = -3dBm 15 20 PLO = +3dBm 135 130 SUPPLY CURRENT (mA) 0 25 50 RF FREQUENCY (MHz) MAX2044 toc179 3000 LO PORT RETURN LOSS (dB) VCC = 3.0V, 3.3V, 3.6V 10 PLO = 0dBm 500 MAX2044 toc180 RF PORT RETURN LOSS (dB) 0 MAX2044 toc178 RF PORT RETURN LOSS vs. RF FREQUENCY VCC = 3.6V VCC = 3.3V 125 120 115 VCC = 3.0V 110 105 30 2500 3000 3500 LO FREQUENCY (MHz) 4000 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 33 MAX2044 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz, LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Pin Configuration/Functional Diagram VCC 1 RF GND IF+ IF- GND GND + TOP VIEW 20 19 18 17 16 15 GND 2 14 VCC GND 3 13 GND GND 4 12 GND GND 5 11 LO MAX2044 6 7 8 9 10 VCC LOBIAS VCC GND GND EP* *EXPOSED PAD Pin Description PIN NAME 1, 6, 8, 14 VCC FUNCTION 2 RF 3, 9, 13, 15 GND Ground. Not internally connected. Pins can be grounded. 4, 5, 10, 12, 17 GND Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed pad together. 7 LOBIAS LO Output Bias Resistor for LO Buffer. Connect a 698I 1% resistor (138mA bias condition) from LOBIAS to ground. 11 LO 16, 20 GND 18, 19 IF-, IF+ -- EP Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input/Output. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Ground. Connect pins to ground. Mixer Differential IF Output/Input. Provide DC-blocking capacitors if required. These ports are internally biased to VCC/2. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. 34 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer The MAX2044 is a high-linearity passive mixer targeting 2.5GHz and 3.5GHz wireless infrastructure applications. With an ultra-wide 2600MHz to 4300MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all WiMAX, LTE, and MMDS receive and transmit applications. When used as a low-side LO injection downconverting mixer in the 3000MHz to 4000MHz band, the MAX2044 provides +32.5dBm of input IP3, with typical conversion loss and noise figure values of only 7.7dB and 8.5dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO port. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2044's input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO or 2LO - 2RF performance. Specifications are guaranteed over broad frequency ranges to allow for use in WiMAX, LTE, and MMDS base stations. The MAX2044 is specified to operate over a 2300MHz to 4000MHz RF input range, a 2600MHz to 4300MHz LO range, and a 50MHz to 500MHz IF range. Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). RF Input and Balun The MAX2044 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically better than 13dB over the 3300MHz to 3900MHz RF frequency range. A return loss of 15dB over the 2400MHz to 2700MHz range is achievable by changing the input matching components per Tables 1 and 2. Other combinations of C1 and C12 can be used to optimize RF return loss in the 2300MHz to 4000MHz band. LO Inputs, Buffer, and Balun With a broadband LO drive circuit spanning 2600MHz to 4300MHz, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. High-Linearity Mixer The core of the MAX2044 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2RF - 2LO rejection, and noise figure performance are typically +32.5dBm, 68dBc, and 8.5dB, respectively. Differential IF Output The MAX2044 has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX2044's differential ports are ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance. Single-ended IF applications require a 1:1 (impedance ratio) balun to transform the 50I differential IF impedance to a 50I single-ended system. An MABAES0029 1:1 transformer is used to characterize the part and its loss is included in the data presented in this data sheet. The user can connect a differential IF amplifier or SAW filter to the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Capacitors C4 and C7 are required DC blocks since the IF+ and IF- terminals are internally biased to VCC/2. Applications Information Input and Output Matching The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 3000MHz to 4000MHz. See Tables 1 and 2 for alternative components that provide an excellent match over the 2300MHz to 3000MHz band. The LO input is internally matched to 50I; use a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range. The IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). ______________________________________________________________________________________ 35 MAX2044 Detailed Description MAX2044 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer Reduced-Power Mode The MAX2044 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. Nominal values for this resistor are shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer at a supply voltage of 3.3V. Doing so reduces the overall power consumption by typically 42%. See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs. Layout Considerations A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. Power-Supply Bypassing Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1. Table 1. Downconverter Mode Component Values DESIGNATION C1 QTY 1 DESCRIPTION COMPONENT SUPPLIER 3.3nH microwave inductor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. Coilcraft, Inc. 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 4000MHz. Murata Electronics North America, Inc. C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, microwave capacitors (0402) -- C4, C7 2 470pF microwave capacitors (0402) Murata Electronics North America, Inc. C5 0 Not installed, microwave capacitor (0402) -- C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. 1 0.3pF microwave capacitor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. Murata Electronics North America, Inc. 0 Microwave capacitor (0402) not installed for RF frequencies ranging from 3000MHz to 4000MHz. -- 698I 1% resistor (0402). Use for VCC = +5.0V applications. Digi-Key Corp. 698I 1% resistor (0402). Use for VCC = +3.3V applications. Digi-Key Corp. C12 R1 1 T1 1 1:1 IF balun MABAES0029 M/A-Com U1 1 MAX2044 IC (20 TQFN) Maxim Integrated Products, Inc. 36 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. Table 2. Upconverter Mode Component Values DESIGNATION C1 QTY 1 DESCRIPTION COMPONENT SUPPLIER 3.3nH microwave inductor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. Coilcraft, Inc. 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 4000MHz. Murata Electronics North America, Inc. C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, microwave capacitors (0402) -- C4, C7 2 470pF microwave capacitors (0402) Murata Electronics North America, Inc. C5 0 Not installed, microwave capacitor (0402) -- C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. 1 0.3pF microwave capacitor (0402). Use for RF frequencies ranging from 2300MHz to 3000MHz. Murata Electronics North America, Inc. 0 Microwave capacitor (0402) not installed for RF frequencies ranging from 3000MHz to 4000MHz. -- 698I 1% resistor (0402). Use for VCC = +5.0V applications. Digi-Key Corp. 698I 1% resistor (0402). Use for VCC = +3.3V applications. Digi-Key Corp. C12 R1 1 T1 1 1:1 IF balun MABAES0029 M/A-Com U1 1 MAX2044 IC (20 TQFN) Maxim Integrated Products, Inc. ______________________________________________________________________________________ 37 MAX2044 Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX2044's 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2044 is mounted be designed to conduct heat from SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2044 Typical Application Circuit N.C. 3 5 2 T1 IF 1 C7 C4 4 1:1 20 C3 C2 C1 VCC RF RF 19 18 GND GND IF- IF+ GND C5 VCC 17 1 16 15 U1 MAX2044 2 GND VCC 14 C11 C12* GND GND 3 13 4 12 GND GND EP 11 5 VCC C6 9 LO C10 LO INPUT 10 GND 8 GND 7 LOBIAS VCC 6 VCC GND R1 NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. C8 VCC C9 PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. *C12 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS. 38 SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer PROCESS: SiGe BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 20 TQFN-EP T2055+3 21-0140 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2009 Maxim Integrated Products 39 Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX2044 Chip Information Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Maxim Integrated: MAX2044ETP+ MAX2044ETP+T