File Number 1889 N-Channel Enhancement-Mode Power Field-Effect Transistors 3.0A and 3.5A, 150V - 200V Fosion! = 0.8Q and 1.2Q Features: @ SOA is power-dissipation limited m@ Nanosecond switching speeds @, Linear transfer characteristics @ High input impedance m@ Majority carrier device The IRFF220, IRFF221, IRFF222 and IRFF223 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings Standard Power MOSFETs IRFF220, IRFF221, |RFF222, IRFF223 N-CHANNEL ENHANCEMENT MODE 9 $ 92C8 -33741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE DRAIN (CASE) JEDEC TO-205AF Parameter IRFF220 IRFF221 IRFF222 IRFF223 Units v Drain Source Voitage @ 200 150 200 150 ov VpoGA Drain Gate Voltage (Rag = 20 kD 200 150 200 150 Vv Ip @Tc = 25C _ Continuous Drain Current 3.5 3.5 3.0 3.0 A tom Pulsed Drain Currant @ 14 14 12 12 A Vos Gate Source Voltage +20 v Py @ To = 26C Max. Powar Dissipation 20 (See Fig. 14) Ww Linear Derating Factor 0.16 {See Fig. 14) w/c ttm Inductive Current, Clamped {See Fig. 15 and 16) L = 100yH A 14 14 1 1200 12 T. i icy | Tatg ee ea Range 785 to. 160 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) c 3-269Standard Power MOSFETs IRFF220, IRFF221, IRFF222, IRFF223 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Teat Conditions BVpss Drain Source Breakdown Voltage IRFF220 _ _ = IRFF222 200 v Veg = OV IRFF221 - IRFF223 150 - - Ip = 250pA Vasith) Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Ves. Ip = 250nA 'gss Gate Source Leakage Forward ALL _ - 100 nA Vos = 20V 'ess Gate Source Leakage Reverse ALL _ - -100 nA Yes = -20V loss Zero Gate Voltage Drain Current ALL ad = 250 pA Vos = Max. Rating, Ves = QV = _ 1000 nA Vps = Max. Rating x 0.8, Vag = OV. Te = 125C lp(on) On-State Drain Current @ IRFF220 | 45 _ _ A IREF22" Vos ? !pfon) * Rosian) max.. VGS = 10V IRFF222 | 44 _ _ A IRFF223 . Rosion} Static Drain Source On-State IRFF220 _ Resistance IRFF221 0.5 0.8 a Vv tov. 1 2.0A wRFF222/ _ | oa | 42 0 gs ube IRFF223 Ofs Forward Transconductance @ ALL 1.50 | 2.25 - Sis Vos ? Ipjon) * Rosion) max. '9 . | Ciss Input Capacitance ALL = 450 _ oF Veg = OV, Vog = 25V, t= 1.0 MHz Coss Output Capacitance ALL - 150 _ pF See Fig. 10 Criss Reverse Transfer Capacitance ALL - 40 = pF tdion) _ Turn-On Delay Time ALL 20 40 ns Vop = 0.5 BVpss-_ Ip = 2.0A.Z, = 502 ty Rise Time ALL - 30 60 ns See Fig. 17 tgiott) Turn-Off Oelay Time ALL - 50 100 ns (MOSFET switching times are essentially tf Fall Time ALL _ 30 60 ns independent of operating temperature.) Qg Total Gate Charge ALL _ W 15 nc Vas = 10V, Ip = 7.0A,Vpg = 0.8V Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Ogs Gate-Source Charge ALL - 5.0 75 nc Qga Gate-Drain (Miller) Charge ALL - 6.0 |] 90 ac Lp Internal Orain Inductance ALL - 5.0 _ nH Measured from the Modified MOSFET drainlead,5mm_s symbol showing the (0.2 in.) from header internal device. to center of die. inductances. 3 Li internal Source Inductance ALL - 16 ~ nH Measured from the Ss source lead, 5mm o (0.2 in.) from header Ls to source bonding ) pad. & Thermal Resistance [Rinse Junction-to-Case [ au [~ - [ - [625 [ ecw | | RinjA _ Junction-to-Ambient I ALL I - | - I 175 [ cw [ Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRFF220 _ _ 3.5 A Modified MOSFET symbol (Body Diode} \AFF221 . showing the integral IRFF222 3.0 A reverse P-N junction rectifier. IRFF223 ) | : Ism Pulse Source Current tREF220 _ _ 14 A 6 (Body Diode} IRFF221 IRFF222 s wnre223 | ~ | ~ | 2 | A Ysp Diode Forward Voltage @ IRFF220 _ _ = _ _ IRFF221 2.0 v To = 25C, Ig = 3.54, Vag = OV IRFF222 = 7 _ IRFF223 1 ~ | 18 v To = 25C, Ig = 3.0A, Vgg = OV try Reverse Recovery Time ALL = 350 = ns Ty = 150C, ig = 3.5A, dig/dt = 100A/us Q Reverse Recovered Charge ALL - 2.3 - ac Ty = 150C, Ig = 3.5A, dig/dt = 100A/ps RR J e F: ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by ig + Lp. @Ty = 25C to 150C. 3-270 @Pulse Test: Puise width 300xs, Buty Cycle < 2%. @Repetitive Rating: Pulse width limited by max, junction temperature. See Transient Thermal Impedance Curve (Fig, 5).Standard Power MOSFETs IRFF220, IRFF221, IRFF222, IRFF223 10 80 us PULSE TEST uxPULSE Vas > \oon) * Poston! max, a a ! : # 2 = = 6 z 5 = z s 5 z z = = 2 3 Ty = 12506 2 0 20 40 60 a0 100 Q 2 4 6 8 10 Vog. ORAIN.TO-SOURCE VOLTAGE (VOLTS) Vas. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. 50 GPERATIGN IN THIS AREA 5 IS LIMITED BY a 4 p80 us PULSE 2 a ws 2 = 3 = = g 2 : = = 8 10 z 3, = z S 0s Te = 2696 5 s Ty = 18000 MAX, 02 Athuc = 6.25 K/W ' SINGLE PULSE at 6 2 8 4 10 102 5 10 20 0 100 200 500 Vos. ORAIN.TO-SOURCE VOLTAGE (VOLTS) Vps. DRAIN-TO-SGURCE VOLTAGE (VOLTS) Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. SCL 1 pat md 2 1, DUTY FACTOR, D = z . 2 o 8 2. PER UNIT BASE = Arne * 6.28 DEG. C/W. 3. Tym - Te * Pom Ztnsclt). 0.04 10-5 2 10-4 2 5 10-3 2 5 10-2 2 5 10-4 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) PULSE THERMAL IMPEDANCE) Zrnaclt/ By, NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT} n Fig. 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. 3-271Standard Power MOSFETs IRFF220, IRFF221, IRFF222, IRFF223 16 5 a 3 | z e o it in Pan ian = Vgs= lov _ < wa & = gio w z 23 IRFF220, 221 3 | A & 2 Z LA pe 20v 3 IAFF222, 223 e ae Ss Zz? 2 05 z @ 5 8 2 = 1 & Aston) MEASUREO WITH CURRENT PULSE OF 2.0 us DUAATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 ys PULSE 1S MINIMAL} 1 a 5 ta 18 20 Q 12 160 Ip, ORAIN CURRENT (AMPERES) 28 56 8 100 5 Te, CASE TEMPERATURE (C) Fig. 12 - Typical on-resistance vs. drain current. Fig. 13 - Maximum drain current vs. case temperature. VARY ty TO OBTAIN REQUIRED PEAK 4) abe Vgg = 10v Wr E1=O058Vpsg Eg = 0.75 BV pg5 Fig. 15 - Clamped inductive test circuit. Py, POWER DISSIPATION (WATTS) 0 20 40 60 80 106 12a 140 Te, CASE TEMPERATURE (C) Fig. 14 - Power vs. temperature derating curve. Fig. 16 - Clamped inductive waveforms. oO *os CURRENT (ISOLATED REGULATOR SUPPLY} SAME TYPE 12V BATTERY ADJUST A, VoD TO ORTAIN SPECIFIEO Ip Vi PULSE GENERATOR t O.U.T. TTT 7 I ~ T + 1.6m4 i $02 ' JO SCOPE 0 TT 0.0182 -Vos \ I sa 3 HIGH FREQUENCY Ig Ip L-}--- SHUNT CURRENT = CURRENT _____-_-_-__4 SAMPLING SAMPLING * RESISTOR RESISTOR Fig. 17 - Switching time test circuit. Fig. 18 - Gate charge test circuit. 3-273