Graphics & Speciality DRAMs
256 Mbit DDR Reduced Latency DRAM
Version 1.60
July 2003
HYB18RL25632AC
HYB18RL25616AC
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 2 Infineon Technologies
This specification is preliminary and subject to change without notice
Edition Jun. 2002
This edition was realized using the software system FrameMaker.
Published by Infineon Technologies,
Marketing-Kommunikation,
Balanstraße 73,
81541 München
© Infineon Technologies 6/30/2002.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits imple-
mented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies
and Representatives worldwide (see address list).
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest In-
fineon Technologies Office.
Infineon Technologies is an approved CECC manufacturer.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing
material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components1 of Infineon Technologies, may only be used in life-support devices or systems2 with the express written approval of Infineon Tech-
nologies.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-
support device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they
fail, it is reasonable to assume that the health of the user may be endangered.
HYB18RL25616/32AC
Revision History: Current Version 1.60
Subjects (major changes since last revision)
Previous Version: 1.42
29,30 29,30 Reversed scan reg order to match device
Previous Version: 1.43
29,30 29,30 Renumbered scan registers starting with 0 to n-1
31 31 Added numbers to the scan chain portion of Figure 27
Previous Version: 1.44
36 36 added preliminary current values to the table.
23 23 Suppressed note 4 for tQSQ, restored to min and max value instead of absolute
16 16 Remove MRS only after power up restriction.
Previous Version: 1.50
15 15 Suppressed note that 2k NOPs not needed in HSTL mode, 2k NOPs are needed.
23 23 changed tCKDQS from 2.7...3.7 to 2.9...3.9 ns.
23 23 Increased tQSQ from +/-0.3ns to +/-0.35 ns
34 34 VDDQ nominal changed to 1.85V, +/- 100mV
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 3 Infineon Technologies
This specification is preliminary and subject to change without notice
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.3 Ball Configuration Package and Ballout . . . . . . . . . . . . . . . . . . . . . . .6
1.3.1 Ball Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.4 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.5.1 Command Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.5.2 Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Clocks, Commands and Addresses . . . . . . . . . . . . . . . . . . . . . . . . .15
2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.3 Mode Register Set Command (MRS) . . . . . . . . . . . . . . . . . . . . . . . .17
2.4 Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.5 Writes (WR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.5.1 Write - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.5.2 Write - Cyclic Bank Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.5.2.1 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.5.2.2 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.5.3 Write Data Mask Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.5.3.1 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.5.3.2 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.5.4 Write followed by Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.5.4.1 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.5.4.2 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.6 Reads (RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2.6.1 Read - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2.6.2 Read - Cyclic Bank Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.6.2.1 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.6.2.2 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.6.3 Read followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3 IEEE 1149.1 Serial Boundary Scan (JTAG) . . . . . . . . . . . . . . 29
3.1 Test Access Port (TAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.1.1 Test Clock (TCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.1.2 Test Mode Select (TMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.1.3 Test Data-In (TDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.1.4 Test Data-Out (TDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.2 TAP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.2.1 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.2.2 Bypass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.2.3 Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.2.4 Identification (ID) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.3 TAP Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.4 Boundary Scan Exit Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.4.1 x16 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.4.2 x32 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.5 TAP Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.6 JTAG TAP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.7 JTAG TAP Controller State Diagram . . . . . . . . . . . . . . . . . . . . . . . . .34
3.8 JTAG DC Operating Conditons . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.9 JTAG AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.10 JTAG AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.11 JTAG Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 4 Infineon Technologies
This specification is preliminary and subject to change without notice
4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
4.2 Recommended Power & DC Operation Ratings . . . . . . . . . . . . . . . .37
4.3 AC Operation Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.4 Output Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.5 Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.6 Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 5 Infineon Technologies
This specification is preliminary and subject to change without notice
1Overview
1.1 Features
z256 Megabit (256M)
z0.17µm process technology
zCyclic bank addressing for maximum data out bandwidth
zOrganization 8M x 32, 16M x 16 in 8 banks
zNon-multiplexed addresses
zNon-interruptible sequential bursts of 2 (2-bit prefetch) and 4 (4-bit prefetch), DDR
z Up to 600Mb/sec/pin data rate
zProgrammable Read Latency (RL) of 5..6
zData valid signal (DVLD) activated as Read Data is available
zData Mask signals (DM0 / DM1) to mask first and second part of write data burst
z IEEE 1149.1 compliant JTAG Boundary Scan
z Pseudo-HSTL 1.8V IO Supply
z Internal autoprecharge
z Refresh requirements: 32ms at 100°C junction temperature (8k refresh for each bank, 64k refresh
commands must be issued in total each 32ms)
z Package T-FBGA 144
z 2.5V VEXT, 1.8V VDD, 1.8V VDDQ
Table 1 Key timing parameters (Configuration Example x32, x16 device)
Speed Sort -3.3 -4.0 -5.0 Units
Frequency 300 250 200 MHz
tRC
26.7 28.0 25.0 ns
8 7 5 cycles
Read latency 6 5 5 cyles
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 6 Infineon Technologies
This specification is preliminary and subject to change without notice
1.2 General Description
The Infineon 256M Reduced Latency DRAM (RLDRAM) contains 8 banks x 32 Mb of memory accessible
with 32bit or 16bit I/O’s in a double data rate (DDR) format where the data is provided and synchronized with
a differential echo clock signal. RLDRAM does not require row/column address multiplexing and is optimized
for fast random access and high data bandwidth.
RLDRAM is designed for communication data storages like transmit or receive buffers in telecommunication
systems as well as data or instruction cache applications requiring large amounts of memory.
1.3 Ball Configuration Package and Ballout
Figure 1 T-FBGA 144 package 256 Mbit DDR Reduced Latency DRAM
Note: All dimensions in mm
3
BOTTOM VIEW
4
0.8
8.8
11
17
18.5
1
12 11 10 9 8 7 654 21
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
Ø 0.51 typ
1.20 max
SIDE VIEW
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 7 Infineon Technologies
This specification is preliminary and subject to change without notice
Figure 2 Ballout of 256 Mbit Reduced Latency DRAM (x32 configuration)
VDD
VREFVEXT
VSS
VSSVSS
DQ10
DQ9 VSSQ
VSSQ
VSSQ
VDDQ
VDDQ
DQS1
DQ11VSS
VSS
DQ15
VSS
DQS1#
DQ13DQ12
DQ14DM0
VDD
VSS
VDD
VSS
VDD
VSSQ
VDDQ
A5 A6 A7
A8 A9 VSS
A18
BA2 VDDAS#
REF# VDDVDDWE#
CS# VSS
A15 A16 A17
DM1
VSS
VSS
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
VSS
VSS VREF
VSSQ
VSS
VDDQ
VSSQ
DQ16VSS
VEXT
DQ17
DQ18 DQ19
DQ24
DQ20
DVLD
DQ22
DQ21
DQ23
VSS VEXT
VSS
TCK
VSS
DQ1 DQ0VSSQ
VSSVDDQ DQ2
VSSQ
DQ3
DQS0#
DQ8
TMS
DQ5VDDQ DQ4
VSSQ DQ7 DQ6
A0A1A2VDD
VSS VSS A4 A3
VDD VDD BA0 CK
VDD VDD BA1 CK#
VSSVSS A14 A13
VDD A12 A11 A10
VSSQ
DQ29VDDQ
VSSQ
VSS
VDDQ
VSSQ
VEXT
VSS
TDITDO
VSS
VSS
DQ28
DQ30
DQS3
DQ26
DQ25
DQ27
DQ31
DQS3#
VSS
1234 91011125678
DQS0
DQS2#DQS2
NC
VSS
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 8 Infineon Technologies
This specification is preliminary and subject to change without notice
Figure 3 Ballout of 256Mbit Reduced Latency DRAM (x16 configuration)
VDD
VREFVEXT
VSS
VSSVSS
NC VSSQ
VSSQ
VSSQ
VDDQ
VDDQ
NCVSS
VSS
NC
VSS
NC
NC
DM0
VDD
VSS
VDD
VSS
VDD
VSSQ
VDDQ
A5 A6 A7
A8 A9 VSS
AS# BA2 VDD
WE# REF# VDDVDD
A19 CS# VSS
A15 A16 A17
DM1
VSS
VSS
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
VSS
VREFVSS
VSSQ
VSS
VDDQ
VSSQ
VSS
VEXT
NC
NC
DVLD
NC
NC
VSS VEXT
VSS
TCK
VSS
DQ1VSSQ
VSSVDDQ
VSSQ
DQ3
DQS0#
TMS
DQ5VDDQ
VSSQ DQ7
A0A1A2VDD
VSS VSS A4 A3
VDD VDD BA0 CK
VDD VDD BA1 CK#
VSSVSS A14 A13
VDD A12 A11 A10
VSSQ
DQ13
A18
VDDQ
VSSQ
VSS
VDDQ
VSSQ
VEXT
VSS
TDITDO
VSS
VSS
DQ9
DQ11
DQ15
DQS1#
VSS
1234 91011125678
DQS0
NCNC
NC
NC
NC
NC
NC
NC
NC
NC
NC
DQ10
DQS1
DQ12
DQ14
DQ0
DQ2
DQ4
DQ6
DQ8
VSS
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 9 Infineon Technologies
This specification is preliminary and subject to change without notice
Note: NC : No Connect : These signals are internally connected and have parasitic characterisitcs of an IO. They may optionally be
connected to ground for improved heat dissipation.
1.3.1 Ball Description
Table 2 Ball description
Ball Type Detailed Function
CK, CK# Input
Input Clock: CK and CK# are differential clock inputs. Addresses and commands are
latched on the rising edge of CK, input data is latched on the both edges of CK. CK# is
ideally 180 degrees out of phase with CK.
CS# Input
Chip Select: CS# enables the command decoder when low and disables it when high.
When the command decoder is disabled new commands are ignored, but internal
operations continue.
AS#, WE#,
REF# Input Command Inputs: Sampled at the positive edge of CK. AS#, WE# and REF# define
(together with CS#) the command to be executed.
A[19:0] Input
Address Inputs: A[19:0] define the row and column addresses for READ and WRITE
operations. During an MODE REGISTER SET the address inputs A[17:0] define the
register settings. The addresses are sampled at the rising edge of CK. In the x32
configuration, A[19] is not used. In the x16 configuration with BL2, A[19] is used.
BA[0:2] Input Bank select: Select to which internal bank a command is being applied.
DQ[31:0] Input/
Output
Data Input / Output: The DQ signals form the 32 bit data bus. During READ commands the
data is referenced to both edges of DQS/DQS#. During WRITE commands the data is
sampled at both edges of CK.
DQSx,
DQSx# Output
Data read strobes : DQSx and DQSx# are the differential data read strobes. During
READs, they are transmitted by the RLDRAM and edge-aligned with data. DQSx is ideally
180 degrees out of phase with DQSx#. DQS0, DQS0# are aligned with DQ0-DQ7. DQS1,
DQS1# are aligned with DQ8-DQ15. DQS2, DQS2# are aligned with DQ16-DQ23. DQS3,
DQS3# are aligned with DQ24-DQ31.
DVLD Output Data Valid: The DVLD indicates valid output data. DVLD is edge-aligned with DQSx,
DQSx#.
DM0, DM1 Input
Data Mask: DM0 and DM1 are the input masks for WRITE data. The first half of the Input
data burst is masked when DM0 is sampled HIGH along with the WRITE command. The
second half of the input data burst is masked when DM1 is sampled HIGH along with the
WRITE command.
TCK Input IEEE 1149.1 Clock Input: JEDEC standard 1.8V IO levels. These pin must be tied to VSS
if the JTAG function is not used in the circuit.
TMS, TDI Input IEEE 1149.1 Test Inputs: JEDEC standard 1.8V IO levels. These pins may be left not
connected if the JTAG function is not used in the circuit.
TDO Output IEEE 1149.1 Test Output: JEDEC standard 1.8V IO level tracking VDDQ.
VREF Supply Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input
buffers.
VEXT Supply Power Supply: 2.5V nominal. See DC Electrical Characteristics and Operating Conditions
for range.
VDD Supply Power Supply: 1.8V nominal. See DC Electrical Characteristics and Operating Conditions
for range.
VDDQ Supply Power Supply: Isolated Output Buffer Supply. 1.8V nominal. See DC Electrical
Characteristics and Operating Conditions for range.
VSS Supply Power Supply: GND
VSSQ Supply Power Supply: Isolated Output Buffer Supply. GND
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 10 Infineon Technologies
This specification is preliminary and subject to change without notice
NC - No Connect : These pins may be connected to ground to improve heat dissipation.
Table 2 Ball description
Ball Type Detailed Function
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 11 Infineon Technologies
This specification is preliminary and subject to change without notice
1.4 Functional Block Diagram
Figure 4 Functional Block Diagram 8M x 32 Configuration
Note: When the BL4 setting is used, A18 is a "Don’t Care"
A0-A18, B0, B1, B2
Column Address
Counter Column Address Buffer Row Address Buffer Refresh Counter
Input Buffers
Row Decoder
Memory Array
Bank 0
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 1
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 2
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 3
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 7
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 6
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 5
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 4
Sense Amp and Data Bus
Column Decoder
Output BuffersData read strobeOutput Data Valid Control Logic and Timing Generators
DVLD DQS[3:0], DQS#[3:0] DQ0-DQ31
CK
CK#
AS#
DM0
WE#
CS#
REF#
DM1
VREF
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 12 Infineon Technologies
This specification is preliminary and subject to change without notice
Figure 5 Functional Block Diagram 16M x 16 Configuration
Note: 1 When the BL4 setting is used, A19 is a "Don’t Care".
Note: 2 In the 16Mx16 configuration, only DQS[1:0] & DQS#[1:0] are used
A0-A19, B0, B1, B2
Column Address
Counter Column Address Buffer Row Address Buffer Refresh Counter
Input Buffers
Row Decoder
Memory Array
Bank 0
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 1
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 2
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 3
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 7
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 6
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 5
Sense Amp and Data Bus
Column Decoder
Row Decoder
Memory Array
Bank 4
Sense Amp and Data Bus
Column Decoder
Output BuffersData read strobeOutput Data Valid Control Logic and Timing Generators
DVLD DQS[1:0], DQS#[1:0] DQ0-DQ15
CK
CK#
AS#
DM0
WE#
CS#
REF#
DM1
VREF
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 13 Infineon Technologies
This specification is preliminary and subject to change without notice
1.5 Commands
1.5.1 Command Table
According to the functional signal description the following command sequences are possible. All input
states or sequences not shown are illegal or reserved. All command and address inputs must meet setup
and hold times around the rising edge of CK.
Table 3 Truth table
Note: 1: X = “Don’t Care” ; H = Logic HIGH; L = Logic LOW
Note: 2: Only A[17:0] are used for the MRS command.
Note: 3: See Table 4
Table 4 Address Width table
Note: 1: The x32 and x16 configurations have different ballouts (see Fig. 2 & Fig. 3)
Operation Device
State Code CS# AS# WE# REF# A[19:0]1)3) BA]2:0] DM]1:0]
No Operation Any NOP L H H H X X X
Deselect4) Any H X X X X X X
Mode Register Set2) Idle MRS L L L L Valid X X
Read Any READ L L H H Valid Valid X
Write Any WRITE L L L H Valid Valid Valid
Auto Refresh Idle L H H L X Valid X
Data Width 32 16
Burst Length
BL 2 A[18:0] A[19:0]
BL 4 A[17:0] A[18:0]
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 14 Infineon Technologies
This specification is preliminary and subject to change without notice
1.5.2 Description of Commands
Table 5 Description of Commands
Note: 1: Actual refresh is 32ms/8K/8 = 0.488µs
Note: 2: Actual refresh is 32ms/8K = 3.90µs
Command Description
DESEL /
NOP
The NOP command is used to perform a no operation to the RLDRAM; this is equal to deselecting
the chip. Use NOP command to prevent unwanted commands from being registered during idle
or wait states. Operations already in progress are not affected. Output values depend on
command history.
MRS
The Mode Register is set via the address inputs A[17:0]. See the mode register description in the
register description section. The MRS command can only be issued when all banks are idle and
no bursts are in progress.
READ
The READ command is used to initiate a burst read access to a bank. The value on the BA[2:0]
inputs selects the bank, and the address provided on inputs A[19:0] selects the data location
within the bank.
WRITE
The WR command is used to initiate a burst write access to a bank. The value on the BA[2:0]
inputs selects the bank, and the address provided on inputs A[19:0] selects the data location
within the bank. Input data appearing on the DQs is written to the memory array subject to the
DMx input logic levels appearing coincident with the WRITE command. If DM0 is registered LOW,
the first half of the burst Write data will be written to the memory array, if registerd HIGH this data
will be ignored i.e, this part of the data word will not be written. If DM1 is registered LOW the
second half of the burst Write data will be written to the memory array, if registerd HIGH this data
will be ignored i.e, this part of the data word will not be written.
AREF
The AREF is used during normal operation of the RLDRAM to refresh the memory content of a
bank. The value on the BA[2:0] inputs selects the bank. The refresh address is generated by the
internal refresh controller. This makes the address bits “Don’t Care” during an AREF command.
The RLDRAM requires 64k AREF cycles at an average periodic interval of 0.49 µs1) (maximum).
To improve efficiency a burst of eight AREF commands (One AREF for each bank) can be posted
to the RLDRAM at an average periodic interval of 3.9µs2).
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 14 Infineon Technologies
This specification is preliminary and subject to change without notice
2 Functional Description
2.1 Clocks, Commands and Addresses
Figure 6 Clock Command/Address Timings
Table 6 General Timing Parameters for -2.5, -3.3 and -5.0 ns speed sorts
Note: 1. All timings are measured relatively to the crossing point of CK/CK# and to the crossing point with VREF of the Command and
Address signals.
Note: 2. The signal imput slew rate must be 1V/ns.
Note: 3. CK/CK# input slew rate must be 1V/ns ( 2V/ns if measured differentially).
Parameter Symbol
-3.3 -4.0 -5.0
Units
min max min max min max
Clock
Clock Cycle Time tCK 3.3 - 4.0 - 5.0 - ns
Clock high level width tCKH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
Clock low level width tCKL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
Setup Times
Address/Command input setup time tAS, tCS 1.0 1.0 1.0 ns
Hold Times
Address/Command input hold time tAH, tCH 1.0 1.0 1.0 ns
Don't Care
CK#
CK
t
CKH
t
CKL
t
AS,
t
CS
t
CK
CMD,
ADDR VaildVaild Vaild
t
AH,
t
CH
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 15 Infineon Technologies
This specification is preliminary and subject to change without notice
2.2 Initialization
The RLDRAM must be powered up and initialized in a predefined manner. Operational procedures other
than those specified may result in undefined operation or permanent damage to the device.
The following sequence is used for Power-Up:
1. Apply power (VEXT, VDD, VDDQ, VREF) and start clock as soon as the supply voltages are stable. Apply
VDD and VEXT before or at the same time as VDDQ, apply VDDQ before or at the same time as VREF.
There is no timing relation between VEXT and VDD, the chip starts the power up sequence only when
both voltages are at their nominal level. However, the pad supply must not be applied before the core
supplies. Maintain all pins in NOP conditions.
2. Maintain stable conditions for 200 µs minimum.
3. Issue three Mode Register Set commands - 2 dummies plus 1 valid MRS (Figure 7).
4. After tMRSC issue 8 Auto Refresh commands, one on each bank and separated by 2048 cycles.
5. After tRC the chip is ready for normal operation.
Figure 7 Power Up Sequence
Don't Care
MRS: MRS command
A.C.: Any command
RF: REFRESH
CK
MRS
t
MRSC
MRSMRS
min. 200 µs
Com.
VDD
VDDQ
VREF
CK#
VEXT
min. 2048
cycles
RF A.C.RF RF
6 x 2048
cycles
t
RC
Add BA0 BA1 BA7
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 16 Infineon Technologies
This specification is preliminary and subject to change without notice
2.3 Mode Register Set Command (MRS)
The mode register stores the data for controlling the operating modes of
the memory. It programs the RLDRAM configuration, burst length, test
mode and IO options. During a Mode Register Set command the address
inputs A<17:0> are sampled and stored in the mode register. tMRSC
must be met before any command can be issued to the RLDRAM. The
mode register may be set anytime as long as all command are
completed, and the RLDRAM is in an idle state (no persistent
commands).
Figure 9 Mode Register Set Timing
Table 7 Timing Parameters MRS
Figure 10 Mode Register Bitmap
Note: 1 HSTL compliant current specification
Note: 2 Bits A<17:6> must be set to zero
Note: 3 Automatic IO impedance calibration is activated in Matched Mode
Parameter Symbol
-3.3 -4.0 -5.0
Units Notes
min max min max min max
Mode Register Set cycle time tMRSC 4–4–4–t
CK
CK#
CK
WE#
REF#
A[17:0]
Don't Care
COD: Code to be loaded into
the register
CS#
COD
A[19:18]
BA<2:0>
AS#
Figure 8
Mode Register Set
CK#
CK
Don't Care
t
MRSC
Command
MRS: MRS
command
A.C.: Any command
MRS NOP A.C.NOP
RLDRAM Configuration
A3
0
1
Burst Length
2 (default)
4
RLDRAM
configuration
A2 A1 A0
Do not use110
4100
Do not use101
A2
A4A5A6A<17:7> A3
3011
1001
2010
3 (default)000
Burst
Length
Matched
Mode
Driver
Strength
Test Mode
Reserved
2
A1 A0
A4
0
1
Matched Mode
inactive (default)
active
3
A5
0
1
Driver Strength
1
8mA (default)
Do not use
A6
0
1
Test Mode
(default)
test mode
111 Do not use
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 17 Infineon Technologies
This specification is preliminary and subject to change without notice
2.4 Configuration Table
The following table shows, for different operating frequencies, the different RLDRAM configurations that can
be programmed into the Mode Register. The Read Latency (tRL) and the Write Latency (tWL) used by the
RLDRAM for the two Burst Lengths (BL) are also indicated. Finally the minimum row cycle time (tRC) in clock
cycles and in ns are shown as well. The shaded areas correspond to configurations that are not allowed.
Note: 1: The speed sort -3.3 provides parts functional up to 300MHz in the configuration 4 only. The functionality of the configurations
1,2 and 3 is not guaranteed for speed sort -3.3.
Note: 2: The speed sort -4.0 provides parts functional up to 250MHz in the configurations 3 and 4 only. The functionality of the
configurations 1 and 2 is not guaranteed for speed sort -4.0.
Note: 3: The speed sort -5.0 provides parts functional in all configurations.
Table 8 RLDRAM configuration table
Configuration
Frequency Unit 1 2 3 4
tRC cycles 5 6 7 8
tRL cycles 5 5 5 6
tWL (BL2) cycles 2 2 2 3
tWL (BL4) cycles 1 1 1 2
300 MHz (-3.3)
tRC ns 26.7
tRL ns 20
tWL (BL2) ns 10
tWL (BL4) ns 6.7
250 MHz (-4.0)
tRC ns 28.0 32.0
tRL ns 20.0 24.0
tWL (BL2) ns 8.0 12.0
tWL (BL4) ns 4.0 8.0
200 MHz (-5.0)
tRC ns 25.0 30.0 35.0 40.0
tRL ns 25.0 25.0 25.0 30.0
tWL (BL2) ns 10.0 10.0 10.0 15.0
tWL (BL4) ns 5.0 5.0 5.0 10.0
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 18 Infineon Technologies
This specification is preliminary and subject to change without notice
2.5 Writes (WR)
2.5.1 Write - Basic Information
Write accesses are initiated with a WRITE command, as shown in
Figure 11. Row and bank addresses are provided together with the
WRITE command.
During WRITE commands, data will be registered at both edges of CK
according to the programmed burst length BL. The first valid data is
registered with the first rising CK edge WL (Write Latency) cycles after
the WRITE command has been issued.
Any WRITE burst may be followed by a subsequent READ command.
Figure 17 and Figure 18 illustrate the timing requirements for a WRITE
followed by a READ for a burst of 2 and 4 respectively.
Setup and hold time for incoming DQs relative to the CK edges are
specified as tDS and tDH.
The first or the second part of the incoming data burst is masked if the
corresponding DMx signal is sampled HIGH along with the WRITE
command. Setup and hold time for DM is the same as for addresses
and commands.
Figure 12 Basic Write Burst Timing
Table 9 WRITE Timing Parameters
Note: 1. All timings are measured relatively to the crossing point of CK/CK# and to the crossing point with VREF of the Command and
Address signals.
Note: 2. The signal imput slew rate must be 1V/ns.
Note: 3. CK/CK# input slew rate must be 1V/ns ( 2V/ns if measured differentially).
Parameter Symbol
-3.3 -4.0 -5.0
Units Notes
min max min max min max
Data-in to CK Setup Time tDS 0.5–0.5–0.5– ns
Data-in to CK Hold Time tDH 0.5–0.5–0.5– ns
CK#
CK
BA[2:0]
A
BA
A: Address
BA: Bank Address
Don't Care
CS#
WE#
REF#
A[19:0]
DMDM[1:0]
DM: Data Mask
AS#
Figure 11
Write command
DQ
Don't Care
D0 D1 D2 D3
CK#
CK
Write Latency
t
DH
t
DS
t
DH
t
DS
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 19 Infineon Technologies
This specification is preliminary and subject to change without notice
2.5.2 Write - Cyclic Bank Access
2.5.2.1 Burst Length (BL) = 2
Figure 13 Write Burst Basic Sequence, BL = 2, WL = 3
2.5.2.2 Burst Length (BL) = 4
Figure 14 Write Burst Basic Sequence, BL = 4, WL = 2
CK#
CK
Com
012345678
Add
WL = 3
DQ D0a D0dD1aD0b D1b D2a D2b D3a D3b D4a
WR
A
BA0
A
BA1
A
BA2
A
BA3
A
BA4
A
BA5
A
BA6
A
BA7
A
BA0
WR WR WR WR WR WR WR WR
Don't Care
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency
D4b D5a
CK#
CK
Com
012345678
Addr
WL = 2
DQ D0a D0dD0cD0b D0d D1a D1b D1c D1d D2b
WR
A
BA0
A
BA1
NOP WR WR WR WRNOP NOP NOP
A
BA3
A
BA0
A
BA2
Don't Care
WR: WRITE
Dxy: Data part y to bank x
A / BAx: address A of bank x
WL: Write Latency
D2a D2c D2d D3a
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 20 Infineon Technologies
This specification is preliminary and subject to change without notice
2.5.3 Write Data Mask Timing
2.5.3.3 Burst Length (BL) = 2
Figure 15 Write Data Mask Timing, BL = 2, WL = 2
2.5.3.4 Burst Length (BL) = 4
Figure 16 Write Data Mask Timing, BL=4, WL = 1
CK#
CK
Com
012345678
Add
WL = 2
DQ D0a D0dD0b D1b D2a D4a
WR
A
BA0
A
BA1
A
BA2
A
BA3
A
BA4
A
BA5
A
BA6
A
BA7
A
BA0
WR WR WR WR WR WR WR WR
D4b D5a D5b D6a
Data not written
into the memory
Don't Care
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency
DM1
DM0
CK#
CK
Com
012345678
Addr
WL = 1
DQ
WR
A
BA0
A
BA1
NOP WR WR WR WRNOP NOP NOP
A
BA3
A
BA0
A
BA2
Don't Care
WR: WRITE
Dxy: Data part y to bank x
A / BAx: address A of bank x
WL: Write Latency
D0a D0dD0cD0b D0d D1c D1d D2bD2a
DM0
DM1
Data not written
into the memory
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 21 Infineon Technologies
This specification is preliminary and subject to change without notice
2.5.4 Write followed by Read
2.5.4.5 Burst Length (BL) = 2
Figure 17 Write followed by Read BL = 2, RL = 5, WL = 2
2.5.4.6 Burst Length (BL) = 4
Figure 18 Write followed by Read BL = 4, RL = 5, WL = 1
CK#
CK
Com
012345678
Addr
WL = 2
DQ
9
D0a D0b
RL = 5
WR RD RD NOP NOP NOPNOP NOP NOPNOP
A
BA0
A
BA1
A
BA2
DQS
DQS#
t
CKDQS
Q1a Q2bQ2aQ1b
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency Don't Care
RD: READ
Qxy: Data part y of bank x
RL: Read Latency
CK#
CK
Com
012345678
Addr
WL = 1
DQ
9
Q1a Q1b
D0a
RL = 5
WR RD RDNOP NOP NOPNOP NOP NOPNOP
A
BA0
A
BA1
DQS
DQS#
t
CKDQS
D0b D0c D0d
Q1c Q1d Q2a Q2b Q2c
A
BA1
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency Don't Care
RD: READ
Qxy: Data part y of bank x
RL: Read Latency
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 22 Infineon Technologies
This specification is preliminary and subject to change without notice
2.6 Reads (RD)
2.6.1 Read - Basic Information
Read accesses are initiated with a READ command, as shown in
Figure 19. Row and bank addresses are provided with the READ
command.
During READ bursts the memory device drives the read data edge
aligned with the DQS signal. After a programmable read latency, data
is available at the outputs. The data valid signal indicates that valid
read data will be present on the bus after 0.5clock cycles.
The skew between DQS and CK is specified as tCKDQS.
tQSQ is the skew between DQS edge and the last valid data edge.
tQSQ is derived at each DQS clock edge and is not cumulative over
time.
After completion of a burst, assuming no other commands have been
initiated, output data will go High-Z. Back to back READ commands are
possible, producing a continuous flow of output data.
The data valid window is derived for each DQS transition and is defined
as: min(tDQSH, tDQSL) - 2* tQSQmax.
Any READ burst may be followed by a subsequent WRITE command.
Figure 23 shows the corresponding timing requirements for a READ
followed by a WRITE. A READ to WRITE delay has to be buit in in order
to prevent bus contention. Some systems having long line lengths or
severe skews may need additional idle cycles inserted.
Figure 20 Basic Read Burst Timing
CK#
CK
WE#
CS#
REF#
BA<2:0>
A
BA
A: Address
BA: Bank Address
Don't Care
A<19:0>
AS#
Figure 19
READ command
D0 D1 D2 D3
t
CKH
t
CKL
t
CKDQS
t
CK
Don't Care
t
QSQ
t
QSQ
data
valid
window
DQS
DQS#
DVLD
DQ
t
QSVLD
t
QSVLD
CK#
CK
t
DQSL
t
DQSH
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 23 Infineon Technologies
This specification is preliminary and subject to change without notice
Table 10 READ Timing Parameters for -2.5, -3-3 and -5.0 speed sorts
Note: 1 All timings are measured relatively to the crossing point of CK/CK# (DQSx/DQSx#), and to the crossing point with VREF of
the Command and Address signals.
Note: 2. The signal imput slew rate must be 1V/ns.
Note: 3. CK/CK# input slew rate must be 1V/ns ( 2V/ns if measured differentially).
Note: 4. tDQSQ and tQSQHZ are absolute values.
Parameter Symbol -3.3 -4.0 -5.0 Units Notes
min max min max min max
Read Cycle Timing Parameters for Data and Data Strobe
DQS / DQS# high pulse width tDQSH 0.40.60.40.60.40.6t
CK
DQS / DQS# low pulse width tDQSL 0.40.60.40.60.40.6t
CK
DQS edge to Clock edge skew tCKDQS 2.9 3.9 2.9 3.9 2.9 3.9 ns
DQS edge to output data edge tQSQ -0.35 0.35 -0.35 0.35 -0.35 0.35 ns
DQS edge to Data Out HiZ tQSQHZ 0.4 0.4 0.4 ns 4
DQS edge to DVLD edge tQSVLD -0.40.4-0.40.4-0.40.4 ns
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 24 Infineon Technologies
This specification is preliminary and subject to change without notice
2.6.2 Read - Cyclic Bank Access
2.6.2.1 Burst Length (BL) = 2
Figure 21 Read Burst, BL = 2, RL = 5
2.6.2.2 Burst Length (BL) = 4
Figure 22 Read Burst, BL = 4, RL = 5
Q0a Q1aQ0b Q1b Q2a Q2b Q3a
CK#
CK
Com.
012345678
Addr.
RL = 5
DQS
DQS#
DQ
RD
A
BA0
A
BA1
A
BA2
A
BA3
A
BA4
A
BA5
A
BA6
A
BA7
A
BA0
RD RD RD RD RD RD RD RD
Don't Care
A / BAx: address A of bank x
RD: READ
Qxy: Data part y from bank x
RL: Read Latency
t
CKDQS
Q0a Q0cQ0b Q0d Q1a Q1b Q1c
CK#
CK
Com.
012345678
Addr.
RL = 5
DQS
DQS#
DQ
RD RD RD RD RD
Don't Care
A / BAx: address A of bank x
RD: READ
Qxy: Data part y from bank x
RL: Read Latency
t
CKDQS
NOP NOP NOP NOP
A
BA0
A
BA1
A
BA3
A
BA0
A
BA2
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 25 Infineon Technologies
This specification is preliminary and subject to change without notice
2.6.3 Read followed by Write
Figure 23 Read followed by Write, BL=2, RL = 5, WL = 2
Figure 24 Read followed by Write, Write data on bus prior Read data, BL=2, RL=5, WL=2
Q0a Q0b D1a D2bD2aD1b
CK#
CK
Com.
01234567
Addr.
RL = 5
DQ
WL = 2
NOPRD NOP WRNOP
8
WR NOP NOPNOP
A
BA0
A
BA1
A
BA2
DQS
DQS#
t
CKDQS
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency Don't Care
RD: READ
Qxy: Data part y from bank x
RL: Read Latency
CK#
CK
Com.
01234567
Addr.
RL = 5
DQ
WL = 2
NOPRD NOP NOP
8
NOP NOP NOPWR
A
BA0
A
BA1
DQS
DQS#
t
CKDQS
Q0a Q0bD1a D1b
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency Don't Care
RD: READ
Qxy: Data part y from bank x
RL: Read Latency
NOP
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 26 Infineon Technologies
This specification is preliminary and subject to change without notice
Figure 25 Read followed by Write, BL=4, RL = 5, WL = 1
Figure 26 Read followed by Write, write data on system bus prior read data, BL=4, RL=5, WL=1
CK#
CK
Com.
012345
Addr.
RL = 5
DQ
WL = 1
NOPRD NOP NOP NOPNOP
A
BA0
NOP
DQS
DQS#
t
CKDQS
Q0a
Q0dQ0c
Q0b
67
WR
89
NOPNOP NOP
D1a D1dD1cD1b
A
BA1
10
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency Don't Care
RD: READ
Qxy: Data part y from bank x
RL: Read Latency
CK#
CK
Com.
012345
Addr.
RL = 5
DQ
WL = 1
NOPRD NOP NOP NOPNOP
A
BA0
WR
DQS
DQS#
t
CKDQS
Q0a
Q0dQ0c
Q0b
67
NOP
8
NOP
D1a D1dD1cD1b
A
BA1
WR: WRITE
Dxy: Data part y to bank x
A/BAx: address A of bank x
WL: Write Latency Don't Care
RD: READ
Qxy: Data part y from bank x
RL: Read Latency
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 27 Infineon Technologies
This specification is preliminary and subject to change without notice
3 IEEE 1149.1 Serial Boundary Scan (JTAG)
The RLDRAM incorporates a serial boundary scan Test Access Port (TAP). This port operates fully
complient with IEEE Standard 1149.1-1990. It contains a TAP controller, instruction register, boundary scan
register, bypass register, and ID code register.
It is possible to operate the RLDRAM without using the JTAG feature. To disable the TAP controller, TCK
must be tied low while TDI, TMS and TDO may be left unconnected. Upon power-up, the TAP will come up
in a reset state which will not interfere with the normal operation of the device.
3.1 Test Access Port (TAP)
3.1.1 Test Clock (TCK)
The test clock is used only with the TAP controller. The pin must be tied low if the TAP is not used.
3.1.2 Test Mode Select (TMS)
The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK.
This pin may be left unconnected if the TAP is not used.
3.1.3 Test Data-In (TDI)
The TDI pin is used to serially input information into the registers. The register between TDI and TDO is
chosen by the instruction that is loaded into the TAP instruction register. TDI is connected to the most
significant bit (MSB) of any register (see Figure 27). This pin may be left unconnected if the TAP is not used.
3.1.4 Test Data-Out (TDO)
The TDO output pin is used to serially clock data-out from the registers. The output is active depending upon
the current state of the TAP state machine (see Figure 28). The output changes on the falling edge of TCK.
TDO is connected to the least significant bit (LSB) of any register (see Figure 27). This pin may be left
unconnected if the TAP is not used.
3.2 TAP Registers
Registers are connected between the TDI and TDO pins and allow data to be scanned into and shifted out
of the RLDRAM test circuitry (see Figure 27). Only one register is selected at a time through the instruction
register. Data is serially loaded into the TDI pin on the rising edge of TCK. Data is output on the TDO pin on
the falling edge of TCK.
3.2.1 Instruction Register
Eight-bit instructions can be serially loaded into the instruction register. This register is loaded when it is
placed between the TDI and TDO pins as shown in Figure 27. Upon power-up, the instruction register is
internally preloaded with the IDCODE instruction.
When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary "01"
pattern to allow for fault isolation of the board-level serial test data path.
3.2.2 Bypass Register
The bypass register is a single-bit register that can be placed between the TDI and TDO pins. This allows
data to be shifted through the RLDRAM with minimal delay.
The bypass register is set LOW during the Capture-DR state when the BYPASS instruction is loaded in the
instruction register.
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 28 Infineon Technologies
This specification is preliminary and subject to change without notice
3.2.3 Boundary Scan Register
The boundary scan register is connected to all the IO pins on the RLDRAM. It allows to observe and control
the data flowing into and out of the device, depending on the instruction being loaded in the instruction
register.
The boundary scan register is 104 bits long. The register is the same for the x16 and x32 configurations of
the RLDRAM. Pins not used in the x16 configurations read a HIGH into the boundary scan register in the
Capture-DR controller state.
Differential inputs (CK/CK#) and outputs (DQSx/DQSx#) are equipped with two boundary scan cells each.
Thus, the differential nature of these pins is not visible to the test circuitry. However, it is recommended that
during testing differential signals are always applied to these pin pairs.
3.2.4 Identification (ID) Register
The ID register is loaded with a hardwired, vendor-specific, 32-bit code during the Capture-DR state when
the IDCODE instruction is loaded in the instruction register. The code can be shifted out when the TAP
controller is in the Shift-DR state. Two different codes are implemented for the x16 and x32 configurations
of the RLDRAM (see Table 11).
.
3.3 TAP Instructions
The TAP implements the 6 instructions BYPASS, EXTEST, SAMPLE/PRELOAD and IDCODE for user
access (see Table 12). The implementation of these instructions fully complies with the IEEE standard. All
other instructions are reserved and should not be used.
Table 12 JTAG Instruction Register
Table 11 ID Register Definition
Revision
Number
Part Number Infineon JEDEC Code L
S
B
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9876543210
x16 00010000000010100111000010000011
x32 00100000000010100111000010000011
Instruction Register
Code
Instruction Description
Hex x7 .. x0
00 0000 0000 EXTEST Selects the boundary scan register to be connected between TDI
and TDO. Data received at input pins are sampled and loaded into
the boundary scan register. Data driven by output pins are
determined from values contained in the boundary scan register.
05 0000 0101 SAMPLE / PRELOAD Selects the boundary scan register to be connected between TDI
and TDO. Data receivedat input pins are sampled and loaded int the
boundary scan register. initial ouput data are shifted into the
boundary scan register prior to an EXTEST intruction. Instruction
does not interfere with the normal operation of the device.
21 0010 0001 IDCODE Selects the ID code register to be connected to TDI and TDO.
Instructin does not interfere with the normal operation of the device.
FF 1111 1111 BYPASS Selects the bypass register to be connected between TDI and TDO.
Instruction does not interfere with the normal operation of the
device.
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 29 Infineon Technologies
This specification is preliminary and subject to change without notice
3.4 Boundary Scan Exit Order
3.4.1 x16 Configuration
Note: 1: Input pins are connected to Observe-Only Boundary Scan Register Cells.
Note: 2: Output pins are connected to Force-Only Boundary Scan Register Cells.
Note: 3: IO pins are connected to Control-and-Observe Boundary Scan Register Cells.
Note: 4: For BL 4 the content of the register 101 will be set to 0 if A19 is not connected. Otherwise, the register content will be equal
to the logical value applied to pin A19.
Scan
Reg#
Reg
Content
Pin
Descr
.
Pin
Name Ball # Ball # Pin
Name
Pin
Descr
.
Reg
Content
Scan
Reg #
77
76
Data
Enb I/O DQ1 B10 B3 DQ9 I/O Enb
Data
78
79
75
74
Data
Enb I/O DQ0 B11 B2 DQ8 I/O Enb
Data
80
81
73
72
Data
Enb I/O DQ3 C10 C3 DQ11 I/O Enb
Data
82
83
71
70
Data
Enb I/O DQ2 C11 C2 DQ10 I/O Enb
Data
84
85
69 Data O DQS0# D10 D3 DQS1# O Data 86
68 Data O DQS0 D11 D2 DQS1 O Data 87
67
66
Data
Enb I/O DQ4 E11 E2 DQ12 I/O Enb
Data
88
89
65
64
Data
Enb I/O DQ5 E10 E3 DQ13 I/O Enb
Data
90
91
63
62
Data
Enb I/O DQ6 F11 F2 DQ14 I/O Enb
Data
92
93
61
60
Data
Enb I/O DQ7 F10 F3 DQ15 I/O Enb
Data
94
95
59 Data O DVLD F12 F1 DM0 I Data 96
58 Data I A1 G11 G2 A6 I Data 97
57 Data I A2 G10 G3 A7 I Data 98
56 Data I A0 G12 G1 A5 I Data 99
55 Data I A3 H12 H1 A8 I Data 100
54 Data I A4 H11 H2 A9 I Data 101
53 Data I B0 J11 J2 B2 I Data 102
52 Data I CK J12 J1 AS# I Data 103
51 Data I CK# K12 K1 WE# I Data 0
50 Data I B1 K11 K2 REF# I Data 1
49 Data I A14 L11 L2 CS# I Data 2
48 Data I A13 L12 L1 A19 I Data 3
47 Data I A10 M12 M1 A15 I Data 4
46 Data I A12 M10 M3 A17 I Data 5
45 Data I A11 M11 M2 A16 I Data 6
44 Data I A18 N12 N1 DM1 I Data 7
43
42
Data
Enb I/O DQ31 N10 N3 DQ23 I/O Enb
Data
8
9
41
40
Data
Enb I/O DQ30 N11 N2 DQ22 I/O Enb
Data
10
11
39
38
Data
Enb I/O DQ29 P10 P3 DQ21 I/O Enb
Data
12
13
37
36
Data
Enb I/O DQ28 P11 P2 DQ20 I/O Enb
Data
14
15
35 Data O DQS3 R11 R2 DQS2 O Data 16
34 Data O DQS3# R10 R3 DQS2# O Data 17
33
32
Data
Enb I/O DQ26 T11 T2 DQ18 I/O Enb
Data
18
19
31
30
Data
Enb I/O DQ27 T10 T3 DQ19 I/O Enb
Data
20
21
29
28
Data
Enb I/O DQ24 U11 U2 DQ16 I/O Enb
Data
22
23
27
26
Data
Enb I/O DQ25 U10 U3 DQ17 I/O Enb
Data
24
25
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 30 Infineon Technologies
This specification is preliminary and subject to change without notice
3.4.2 x32 Configuration
Note: 1: Input pins are connected to Observe-Only Boundary Scan Register Cells.
Note: 2: Output pins are connected to Force-Only Boundary Scan Register Cells.
Note: 3: IO pins are connected to Control-and-Observe Boundary Scan Register Cells.
Note: 4: For BL 4 the content of the register 101 will be set to 0 if A18 is not connected. Otherwise, the register content will be equal
to the logical value applied to pin A18.
Scan
Reg#
Reg
Content
Pin
Descr
.
Pin
Name Ball # Ball # Pin
Name
Pin
Descr
.
Reg
Content
Scan
Reg #
77
76
Data
Enb I/O DQ1 B10 B3 DQ9 I/O Enb
Data
78
79
75
74
Data
Enb I/O DQ0 B11 B2 DQ8 I/O Enb
Data
80
81
73
72
Data
Enb I/O DQ3 C10 C3 DQ11 I/O Enb
Data
82
83
71
70
Data
Enb I/O DQ2 C11 C2 DQ10 I/O Enb
Data
84
85
69 Data O DQS0# D10 D3 DQS1# O Data 86
68 Data O DQS0 D11 D2 DQS1 O Data 87
67
66
Data
Enb I/O DQ4 E11 E2 DQ12 I/O Enb
Data
88
89
65
64
Data
Enb I/O DQ5 E10 E3 DQ13 I/O Enb
Data
90
91
63
62
Data
Enb I/O DQ6 F11 F2 DQ14 I/O Enb
Data
92
93
61
60
Data
Enb I/O DQ7 F10 F3 DQ15 I/O Enb
Data
94
95
59 Data O DVLD F12 F1 DM0 I Data 96
58 Data I A1 G11 G2 A6 I Data 97
57 Data I A2 G10 G3 A7 I Data 98
56 Data I A0 G12 G1 A5 I Data 99
55 Data I A3 H12 H1 A8 I Data 100
54 Data I A4 H11 H2 A9 I Data 101
53 Data I B0 J11 J2 B2 I Data 102
52 Data I CK J12 J1 AS# I Data 103
51 Data I CK# K12 K1 WE# I Data 0
50 Data I B1 K11 K2 REF# I Data 1
49 Data I A14 L11 L2 CS# I Data 2
48 Data I A13 L12 L1 A19 I Data 3
47 Data I A10 M12 M1 A15 I Data 4
46 Data I A12 M10 M3 A17 I Data 5
45 Data I A11 M11 M2 A16 I Data 6
44 Data I A18 N12 N1 DM1 I Data 7
43
42
Data
Enb I/O DQ31 N10 N3 DQ23 I/O Enb
Data
8
9
41
40
Data
Enb I/O DQ30 N11 N2 DQ22 I/O Enb
Data
10
11
39
38
Data
Enb I/O DQ29 P10 P3 DQ21 I/O Enb
Data
12
13
37
36
Data
Enb I/O DQ28 P11 P2 DQ20 I/O Enb
Data
14
15
35 Data O DQS3 R11 R2 DQS2 O Data 16
34 Data O DQS3# R10 R3 DQS2# O Data 17
33
32
Data
Enb I/O DQ26 T11 T2 DQ18 I/O Enb
Data
18
19
31
30
Data
Enb I/O DQ27 T10 T3 DQ19 I/O Enb
Data
20
21
29
28
Data
Enb I/O DQ24 U11 U2 DQ16 I/O Enb
Data
22
23
27
26
Data
Enb I/O DQ25 U10 U3 DQ17 I/O Enb
Data
24
25
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 31 Infineon Technologies
This specification is preliminary and subject to change without notice
3.5 TAP Operation
The user must be aware that the TAP controller clock can only operate at a frequency up to 50 MHz, while
the RLDRAM clock operates much faster. As a consequence, it is possible that an input or output will
undergo a transition right at the moment when the TAP takes the snapshot in the Capture-DR state of the
SAMPLE/PRELOAD instruction. The TAP may then try to capture a signal while in transition (metastable
state). This will not harm the device, but there is no guarantee as to the value that will be captured. To
guarantee that the boundary scan register will capture the correct value of a signal, the signal must meet the
TAP's setup and hold time ( tCS plus tCH) around the rising edge of TCK.
3.6 JTAG TAP Block Diagram
Figure 27 TAP Block Diagram
Test Access Port (TAP) Controller
TMS
TCK
0
34 2 1 0567
3031 1 0
Bypass Register
Instruction Register
ID Code Register
103 0
102 1
TDI TDO
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 32 Infineon Technologies
This specification is preliminary and subject to change without notice
3.7 JTAG TAP Controller State Diagram
Figure 28 TAP Controller State Diagram
3.8 JTAG DC Operating Conditons
Parameter Symbol Limit Values Unit Notes
min. typ. max.
Input logic high voltage,
DC
VTIH VREF
+ 0.15
-V
DDQ
+ 0.3
V
Input logic low voltage,
DC
VTIL VSSQ
-0.3
-V
REF
- 0.15
V
Output logic high
voltage (IOH = -tbd mA)
VTOH VREF
+ tbd
--V
Output logic low voltage
(IOL = tbd mA)
VTOL --V
REF
- tbd
V
Test Access Port (TAP) Controller
TMS
TCK
0
34 2 1 0567
3031 1 0
Bypass Register
Instruction Register
ID Code Register
103 0
102 1
TDI TDO
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 33 Infineon Technologies
This specification is preliminary and subject to change without notice
3.9 JTAG AC Operating Conditions
3.10 JTAG AC Electrical Characteristics
3.11 JTAG Timing Diagram
Parameter Symbol min. typ. max. Unit Notes
Input logic high voltage, AC VTIH VREF+0.3 - VDDQ+0.3 V
Input logic low voltage, AC VTIL VSSQ-0.3 - VREF-0.3 V
Input Slew Rate TTSL 1.0 - - V/ns
Input and Output Timing
Reference Level
VREF VDDQ/2 V
Parameter Symbol min. max. Unit Notes
TCK Cycle Time TTCK 20 - ns
TCK High Pulse Width TTCKH 10 - ns
TCK Low Pulse Width TTCKL 10 - ns
TCK Low to TDO Valid TTCKDO -10ns
TDI Set Up Time TTDIS 5-ns
TMS Set Up Time TTMSS 5-ns
TDI Hold Time TTDIH 5-ns
TMS Hold Time TTMSH 5-ns
TTCK
TTCKH TTCKL
TTMSH TTMSS
TTDIH TTDIS
TTCKDO
TCK
TMS
TDI
TDO
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 34 Infineon Technologies
This specification is preliminary and subject to change without notice
4 Electrical Characteristics
4.1 Absolute Maximum Ratings
zStorage temperature range............................................– 55 to + 150 °C
zInput/output pins voltage........................................– 0.3 to VDDQ + 0.3V
zInputs and VREF voltage.......................................– 0.3 to VDDQ + 0.3V
zPower supply voltage VDD ............................................... – 0.3 to + 2.1V
zPower supply voltage VEXT ................................ ........... – 0.3 to + 2.8V
zPower supply voltage VDDQ ............................................ – 0.3 to + 2.1V
zJunction Temperature......................................................... 0°C to 100°C
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage of the device. This is a stress
rating only, and functional operation of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
4.2 Recommended Power & DC Operation Ratings
All values are recommended operating conditions unless otherwise noted.
Table 13 Power & DC Operating Conditions
Note: 1. Typically the value of Vref is expected to be 0.5 * VDDQ of the transmitting device. Vref is expected to track variations in VDDQ
Note: 2. Peak to peak AC noise on Vref may not exceed 2% Vref (DC)
Note: 3. Vtt of the transmitting device must track Vref of the receiving device.
Note: 4. Recommanded on board decouping capacitors : VDDQ: 2 x 0.1µF / device, VDD: 2 x 0.1µF / device, VREF : 0.1µF / device,
VEXT: 0.1µF / device.
Parameter Symbol min. typ. max. Unit Notes
Power Supply Voltages VEXT 2.38 2.5 2.63 V
VDD 1.75 1.8 1.85 V
Power Supply Voltage for I/O VDDQ 1.75 1.85 1.95 V
Reference Voltage Vref 0.49*
VDDQ
0.9 0.51*
VDDQ
V 1,2,3
Input leakage current IIL-5 +5 µA
CLK Input leakage current IILC -5 +5 µA
Output leakage current IOL -5 +5 µA
VREF Current IREF -5 +5 µA
Matched Impedance 1.8V
Input logic high voltage, DC VIHVref + 0.15 VDDQ + 0.3 V
Input logic low voltage, DC VILVSSQ - 0.3 Vref - 0.15 V
Output high voltage VOH VDDQ - - V
Output low voltage VOL --0V
HSTL strong
Input logic high voltage, DC VIHVref + 0.1 VDDQ + 0.3 V
Input logic low voltage, DC VILVSSQ - 0.3 Vref - 0.1 V
Output high voltage VOH VDDQ-0.4 - - V
Output low voltage VOL --0.4V
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 35 Infineon Technologies
This specification is preliminary and subject to change without notice
4.3 AC Operation Ratings
Table 14 AC Operation Conditions for Matched Impedance mode
4.4 Output Test Conditions
Figure 29 Output Test Circuits
Note: VDDQ=1.8V ±0.1V, TJ = 0 °C to 100 ° C
4.5 Pin Capacitances
Table 15 Pin Capacitances
Parameter Symbol min. typ. max. Unit Notes
Matched Impedance 1.8V
Input logic high voltage, AC DDR VIHVref + 0.3 VDDQ + 0.3 V
Input logic low voltage, AC DDR VILVSSQ - 0.3 Vref - 0.3 V
Clock Differential Input Voltage (CLK/ CLK#) VID0.6 VDDQ + 0.6 V
Clock Input Crossing Point (CLK/ CLK#) VIXVref - 0.15 Vref Vref + 0.15 V
I/O Reference Voltage Vref 0.49*VDDQ 0.51*VDDQ V
HSTL strong
Input logic high voltage, AC DDR VIHVref + 0.3 VDDQ + 0.3 V
Input logic low voltage, AC DDR VILVSSQ - 0.3 Vref - 0.3 V
Clock Differential Input Voltage (CLK/ CLK#) VID0.6 VDDQ + 0.6 V
Clock Input Crossing Point (CLK/ CLK#) VIXVref - 0.15 Vref Vref + 0.15 V
I/O Reference Voltage Vref 0.49*VDDQ 0.51*VDDQ V
Pin Min Typ. Max Unit
A<19:0>, BA<2:0>, CS#, AREF#, WE# 2.0 3.0 4.0 pF
CLK, CLK# 2.0 3.0 4.0 pF
DQ<31:0>, DQS0, DQS0#, DQS1, DQS1#, DVLD, DM 2.0 3.0 4.0 pF
10 pF
DQ Test point
20 pF
DQ
50 Ohm
Test point
+ V
tt
= 0.5 x V
DDQ
HSTL Matched Impedance Mode
HYB18RL25616/32AC
256 Mbit DDR Reduced Latency DRAM
Version 1.60 Page 36 Infineon Technologies
This specification is preliminary and subject to change without notice
4.6 Operating Currents
Table 16 IDD Specifications and Conditions (these values are preliminary and will change)
Parameter Symbol/
Freq
Limit Values Unit Notes
x16 x32
IDD1 (*)
Operating Current
(Average Power
Supply Current)
300MHz VDD
VEXT
tbd
tbd
tbd
tbd
mA
mA
Burst Length = 2
tCK=min, tRC=min,
1 bank active,
Address change one time
during min tRC,
Read/Write command
cycling1.)
250MHz VDD
VEXT
205
tbd
tbd
tbd
mA
mA
200MHz VDD
VEXT
200
85
230
85
mA
mA
IDD4R (*)
Operating Current
(Average Power
Supply Current)
300MHz VDD
VEXT
tbd
tbd
tbd
tbd
mA
mA
Burst Length = 4
tCK=min, tRC=min,
4 banks interleave,
address change with
each bank activation,
continuous read
operation 1.)
250MHz VDD
VEXT
500
75
tbd
tbd
mA
mA
200MHz VDD
VEXT
415
115
480
115
mA
mA
IDD8 (*)
Operating Current
(Average Power
Supply Current)
300MHz VDD
VEXT
tbd
tbd
tbd
tbd
mA
mA
Burst Length = 2
tCK=min, tRC=min,
8banks interleave,
address change with
each bank activation,
continuous read
operation 1.)
250MHz VDD
VEXT
435
135
tbd
tbd
mA
mA
200MHz VDD
VEXT
375
115
480
115
mA
mA
Standby Current
300MHz VDD
VEXT
tbd
tbd
tbd
tbd
mA
mA
tCK=min
All banks idle, CS=1
address/data toggling
one time/4 clk clock
inputs
250MHz VDD
VEXT
150
75
tbd
tbd
mA
mA
200MHz VDD
VEXT
120
75
135
80
mA
mA
Auto Refresh Current
300MHz VDD
VEXT
tbd
tbd
tbd
tbd
mA
mA
tCK=min
All banks idle, CS=1
64k refresh commands/
32ms
250MHz VDD
VEXT
155
135
tbd
tbd
mA
mA
200MHz VDD
VEXT
125
120
135
tbd
mA
mA