Kinetis K26 Sub-Family
180 MHz ARM® Cortex®-M4F Microcontroller.
The K26 sub-family members provide greater performance,
memory options up to 2 MB total flash and 256 KB of SRAM, as
well as higher peripheral integration with features such as Dual
USB. These devices maintain hardware and software
compatibility with the existing Kinetis family.
This product also offers:
Integration of a High Speed USB Physical Transceiver
Greater performance flexibility with a High Speed Run
mode
Smarter peripherals with operation in Stop modes
Performance
Up to 180 MHz ARM Cortex-M4 based core with DSP
instructions and Single Precision Floating Point unit
Memories and memory expansion
Up to 2 MB program flash memory on non-FlexMemory
devices with 256 KB RAM
Up to 1 MB program flash memory and 256 KB of
FlexNVM on FlexMemory devices
4 KB FlexRAM on FlexMemory devices
FlexBus external bus interface and SDRAM controller
Analog modules
Two 16-bit SAR ADCs and two 12-bit DAC
Four analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
Voltage reference 1.2V
Communication interfaces
USB high-/full-/low-speed On-the-Go with on-chip high
speed transceiver
USB full-/low-speed OTG with on-chip transceiver
Two CAN, three SPI and four I2C modules
Low Power Universal Asynchronous Receiver/
Transmitter 0 (LPUART0) and five standard UARTs
Secure Digital Host Controller (SDHC)
I2S module
System and Clocks
Multiple low-power modes to provide power
optimization based on application requirements
Memory protection unit with multi-master protection
3 to 32 MHz main crystal oscillator
32 kHz low power crystal oscillator
48 MHz internal reference
Security
Hardware random-number generator
Supports DES, AES, SHA accelerator (CAU)
Multiple levels of embedded flash security
Timers
Four Periodic interrupt timers
16-bit low-power timer
Two 16-bit low-power timer PWM modules
Two 8-channel motor control/general purpose/PWM
timers
Two 2-ch quad decoder/general purpose timers
Real-time clock
Operating Characteristics
Voltage/Flash write voltage range:1.71 to 3.6 V
V-Temperature range (ambient): -40 to 105°C
C-Temperature range (ambient): -40 to 85°C
Human-machine interface
Low-power hardware touch sensor interface (TSI)
General-purpose input/output
MK26FN2M0VMD18
MK26FN2M0VMI18
MK26FN2M0VLQ18
MK26FN2M0CAC18R
144 MAPBGA (MD)
13 mm x 13 mm Pitch 1
mm
144 LQFP (LQ)
20 mm x 20 mm Pitch
0.5 mm
169 MAPBGA (MI)
9 mm x 9 mm Pitch
0.65 mm
169 WLCSP (AC)
5.6 mm x 5.5 mm Pitch
0.4 mm
NXP Semiconductors K26P169M180SF5
Data Sheet: Technical Data Rev. 4, 04/2017
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Ordering Information 1
Part Number Memory Maximum number of I\O's
Flash SRAM
MK26FN2M0VMD18 2 MB 256 KB 100
MK26FN2M0VLQ18 2 MB 256 KB 100
MK26FN2M0CAC18R 2 MB 256 KB 116
MK26FN2M0VMI18 2 MB 256 KB 116
1. To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.
Related Resources
Type Description Resource
Selector
Guide
The NXP Solution Advisor is a web-based tool that features interactive
application wizards and a dynamic product selector.
Solution Advisor
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
K26P169M180SF5RM
Data Sheet The Data Sheet includes electrical characteristics and signal
connections.
This document.
Chip Errata The chip mask set Errata provides additional or corrective information for
a particular device mask set.
Kinetis_K_0N65N 1
Package
drawing
Package dimensions are provided in package drawings. MAPBGA 144-pin :
98ASA00222D1
QFP 144-pin: 98ASS23177W1
MAPBGA 169-pin :
98ASA00628D1
WLCSP 169-pin:
98ASA00222D1
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.
2Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Memories and Memory Interfaces
Program
flash RAM
12-bit DAC
x2
6-bit DAC
x4
CRC
interface
touch-sensing
Programmable
Analog Timers Communication InterfacesSecurity
and Integrity
SPI
x3
Carrier
modulator
transmitter
FlexMemory
Clocks
Frequency-
Core
Debug
interfaces DSP
Interrupt
controller
comparator
x4
Analog
Voltage
reference
Secure
Digital
Low power
timer
Human-Machine
Interface (HMI)
GPIO
System
protection
Memory
DMA
Internal
watchdogs
and external
Low-leakage
wakeup
locked loop
Serial
programming
interface
Phase-
locked loop
reference
Internal
clocks
delay block
timers
interrupt
Periodic
External
bus
real-time
Independent
clock
oscillators
Low/high
frequency
UART
x5
Xtrinsic
®
Cortex -M4ARM
Low power
TPM x 2 (4ch)
LPUART
SDRAM
®
Kinetis K26 Sub-Family
USB DCD/
USBHSDCD
USB voltage
regulator
USB LS/FS
OTG
controller
with
transceiver
USB LS/FS/HS
OTG
controller
with
transceiver
x1
IS
2
Floating-
point unit
controller
x4
IC
2
Timers
x4 (20ch)
CAN
x2
Hardware
encryption
number
Random
generator
Cache
16-bit ADC
x2
Figure 1. K26 Block Diagram
Kinetis K26 Sub-Family, Rev. 4, 04/2017 3
NXP Semiconductors
Table of Contents
1 Ratings....................................................................................5
1.1 Thermal handling ratings................................................. 5
1.2 Moisture handling ratings................................................ 5
1.3 ESD handling ratings.......................................................5
1.4 Voltage and current operating ratings............................. 6
2 General................................................................................... 6
2.1 AC electrical characteristics.............................................6
2.2 Nonswitching electrical specifications..............................7
2.2.1 Voltage and current operating requirements.....7
2.2.2 LVD and POR operating requirements............. 8
2.2.3 Voltage and current operating behaviors.......... 9
2.2.4 Power mode transition operating behaviors......10
2.2.5 Power consumption operating behaviors.......... 12
2.2.6 EMC radiated emissions operating behaviors...17
2.2.7 Designing with radiated emissions in mind....... 18
2.2.8 Capacitance attributes...................................... 18
2.3 Switching specifications...................................................18
2.3.1 Device clock specifications............................... 18
2.3.2 General switching specifications....................... 19
2.4 Thermal specifications.....................................................20
2.4.1 Thermal operating requirements....................... 20
2.4.2 Thermal attributes............................................. 20
3 Peripheral operating requirements and behaviors.................. 22
3.1 Core modules.................................................................. 22
3.1.1 Debug trace timing specifications..................... 22
3.1.2 JTAG electricals................................................ 23
3.2 System modules.............................................................. 26
3.3 Clock modules................................................................. 26
3.3.1 MCG specifications........................................... 26
3.3.2 IRC48M specifications...................................... 29
3.3.3 Oscillator electrical specifications..................... 30
3.3.4 32 kHz oscillator electrical characteristics.........32
3.4 Memories and memory interfaces................................... 33
3.4.1 Flash (FTFE) electrical specifications............... 33
3.4.2 EzPort switching specifications......................... 38
3.4.3 Flexbus switching specifications....................... 38
3.4.4 SDRAM controller specifications.......................41
3.5 Analog............................................................................. 44
3.5.1 ADC electrical specifications.............................44
3.5.2 CMP and 6-bit DAC electrical specifications.....48
3.5.3 12-bit DAC electrical characteristics................. 51
3.5.4 Voltage reference electrical specifications........ 54
3.6 Timers..............................................................................55
3.7 Communication interfaces............................................... 55
3.7.1 USB Voltage Regulator Electrical
Specifications....................................................56
3.7.2 USB Full Speed Transceiver and High Speed
PHY specifications............................................ 57
3.7.3 USB DCD electrical specifications.................... 57
3.7.4 CAN switching specifications............................ 58
3.7.5 DSPI switching specifications (limited voltage
range)................................................................58
3.7.6 DSPI switching specifications (full voltage
range)................................................................60
3.7.7 Inter-Integrated Circuit Interface (I2C) timing....61
3.7.8 UART switching specifications.......................... 63
3.7.9 Low Power UART switching specifications....... 63
3.7.10 SDHC specifications......................................... 63
3.7.11 I2S switching specifications.............................. 65
3.8 Human-machine interfaces (HMI)....................................71
3.8.1 TSI electrical specifications...............................71
4 Dimensions............................................................................. 71
4.1 Obtaining package dimensions....................................... 71
5 Pinout......................................................................................72
5.1 MK26 Signal Multiplexing and Pin Assignments..............72
5.2 Recommended connection for unused analog and
digital pins........................................................................81
5.3 MK26 Pinouts.................................................................. 82
6 Ordering parts......................................................................... 86
6.1 Determining valid orderable parts....................................86
7 Part identification.....................................................................87
7.1 Description.......................................................................87
7.2 Format............................................................................. 87
7.3 Fields............................................................................... 87
7.4 Example...........................................................................88
8 Terminology and guidelines.................................................... 88
8.1 Definitions........................................................................88
8.2 Examples.........................................................................89
8.3 Typical-value conditions.................................................. 89
8.4 Relationship between ratings and operating
requirements....................................................................90
8.5 Guidelines for ratings and operating requirements..........90
9 Revision History...................................................................... 90
4Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
1 Ratings
1.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level For C-
temp
varian
t: 1
For V-
temp
varian
t :3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device
model
-500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA 3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
Ratings
Kinetis K26 Sub-Family, Rev. 4, 04/2017 5
NXP Semiconductors
1.4 Voltage and current operating ratings
Symbol Description Min. Max. Unit
VDD Digital supply voltage –0.3 3.8 V
IDD Digital supply current 300 mA
VDIO Digital1 input voltage,including RESET_b –0.3 VDD + 0.3 V
VAIO Analog1 input voltage, including EXTAL32 and XTAL32 –0.3 VDD + 0.3 V
IDMaximum current single pin limit (digital output pins) –25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VUSB0_DP USB0_DP input voltage –0.3 3.63 V
VUSB1_DP USB1_DP input voltage –0.3 3.63 V
VUSB0_DM USB0_DM input voltage –0.3 3.63 V
VUSB1_DM USB1_DM input voltage –0.3 3.63 V
VUSB1_VBUS USB1_VBUS detect voltage –0.3 6.0 V
VREG_IN0,
VREG_IN1
USB regulator input –0.3 6.0 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. Digital pins have a general purpose I/O port assigned (e.g. PTA0). Analog pins do not have an associated general
purpose I/O port.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
General
6Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
80%
20%
50%
VIL
Input Signal
VIH
Fall Time
High
Low
Rise Time
Midpoint1
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
2.2 Nonswitching electrical specifications
2.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage
2.7 V ≤ VDD ≤ 3.6 V
1.71 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage
2.7 V ≤ VDD ≤ 3.6 V
1.71 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis 0.06 × VDD V
IICDIO Digital1 input pin negative DC injection current
(except RTC_WAKEUP pins) — single pin
VIN < VSS-0.3V
-5 mA
2
IICAIO Analog1 input pin DC injection current — single pin
VIN < VSS-0.3V (Negative current injection)
-5
mA
2
IICcont Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents of 16
contiguous pin -25 mA
Table continues on the next page...
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 7
NXP Semiconductors
Table 1. Voltage and current operating requirements (continued)
Symbol Description Min. Max. Unit Notes
Negative current injection
VODPU Pseudo Open drain pullup voltage level VDD VDD V3
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT V
1. Digital pins have a general purpose I/O port assigned (e.g. PTA0). Analog pins do not have an associated general
purpose I/O port.
2. All digital and analog I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode
connection to VDD. If VIN is less than VSS-0.3V, a current limiting resistor is required. The minimum negative DC
injection current limiting resistor value is calculated as R=(-0.3-VIN)/|IICDIO| or R=(-0.3-VIN)/|IICAIO|. The actual resistor
should be an order of magnitude higher to tolerate transient voltages.
3. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
VLVW2H
VLVW3H
VLVW4H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
V
V
V
V
1
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
80 mV
VLVDL Falling low-voltage detect threshold — low
range (LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period — factory
trimmed
900 1000 1100 μs
General
8Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
2.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
VOH Output high voltage — normal drive pad
2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA
1.71 V ≤VDD ≤ 2.7 V, IOH = -5mA
VDD – 0.5
VDD – 0.5
V
V
Output high voltage — High drive pad
2.7 V ≤ VDD ≤ 3.6 V, IOH = -20mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -10mA
VDD – 0.5
VDD – 0.5
V
V
IOHT Output high current total for all ports 100 mA
VOH_RTC_WAKEUP Output high voltage— normal drive pad
2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5 mA
1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5
mA
VBAT – 0.5
VBAT – 0.5
V
V
IOH_RTC_WAKEUP Output high current total for
RTC_WAKEUP pins
100 mA
VOL Output low voltage — normal drive pad
2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA
0.5
0.5
V
V
Output low voltage — high drive pad
2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
0.5
0.5
V
V
IOLT Output low current total for all ports 100 mA
VOL_RTC_WAKEUP Output low voltage— normal drive pad
2.7 V ≤ VBAT ≤ 3.6 V, IOL = 5 mA
1.71 V ≤ VBAT ≤ 2.7 V, IOL = 2.5mA
0.5
0.5
V
V
IOL_RTC_WAKEUP Output low current total for
RTC_WAKEUPpins
100 mA
IIN Input leakage current, analog and digital
pins
0.002 0.5 µA 1
Table continues on the next page...
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 9
NXP Semiconductors
Table 4. Voltage and current operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
VSS ≤ VIN ≤ VDD
IOZ_RTC_WAKEUP Hi-Z (off-state) leakage current (per
RTC_WAKEUP pin)
0.25 µA
RPU Internal pullup resistors 20 50 kΩ 2
RPD Internal pulldown resistors 20 50 kΩ 3
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx –> RUN recovery times in the following
table assume this clock configuration:
CPU and system clocks = 100MHz
Bus clock = 50MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
MCG mode=FEI
Table 5. Power mode transition operating behaviors
Symbol Description Min. Max. Unit Notes
tPOR After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
300 µs
VLLS0 –> RUN 172 µs
VLLS1 –> RUN 172 µs
VLLS2 –> RUN 94 µs
VLLS3 –> RUN 94 µs
LLS2 –> RUN 5.8 µs
LLS3 –> RUN 5.8 µs
VLPS –> RUN 5.4 µs
STOP –> RUN 5.4 µs
General
10 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 6. Low power mode peripheral adders — typical value
Symbol Description Temperature (°C) Unit
-40 25 50 70 85 1051
IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder.
Measured by entering STOP or VLPS mode
with 4 MHz IRC enabled.
56 56 56 56 56 56 µA
IIREFSTEN32KH
z
32 kHz internal reference clock (IRC) adder.
Measured by entering STOP mode with the
32 kHz IRC enabled.
52 52 52 52 52 52 µA
IEREFSTEN4MH
z
External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS mode
with the crystal enabled.
206 228 237 245 251 258 uA
IEREFSTEN32K
Hz
External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN and
EREFSTEN] bits. Measured by entering all
modes with the crystal enabled.
VLLS1
VLLS3
LLS2
LLS3
VLPS
STOP
440
440
490
490
510
510
490
490
490
490
560
560
540
540
540
540
560
560
560
560
560
560
560
560
570
570
570
570
610
610
580
580
680
680
680
680
nA
I48MIRC 48MHz IRC 511 520 545 556 563 576 µA
ICMP CMP peripheral adder measured by placing
the device in VLLS1 mode with CMP
enabled using the 6-bit DAC and a single
external input for compare. Includes 6-bit
DAC power consumption.
22 22 22 22 22 22 µA
IRTC RTC peripheral adder measured by placing
the device in VLLS1 mode with external 32
kHz crystal enabled by means of the
RTC_CR[OSCE] bit and the RTC ALARM
set for 1 minute. Includes ERCLK32K (32
kHz external crystal) power consumption.
432 357 388 475 532 810 nA
IUART UART peripheral adder measured by placing
the device in STOP or VLPS mode with
selected clock source waiting for RX data at
115200 baud rate. Includes selected clock
source power consumption.
MCGIRCLK (4 MHz internal reference clock)
OSCERCLK (4 MHz external crystal)
66
214
66
234
66
246
66
254
66
260
66
268
µA
IBG Bandgap adder when BGEN bit is set and
device is placed in VLPx, LLS, or VLLSx
mode.
45 45 45 45 45 45 µA
IADC ADC peripheral adder combining the
measured values at VDD and VDDA by placing
366 366 366 366 366 366 µA
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 11
NXP Semiconductors
Table 6. Low power mode peripheral adders — typical value
Symbol Description Temperature (°C) Unit
-40 25 50 70 85 1051
the device in STOP or VLPS mode. ADC is
configured for low power mode using the
internal clock and continuous conversions.
1. Applicable to LQFP and BGA packages only
2.2.5 Power consumption operating behaviors
NOTE
The maximum values represent characterized results
equivalent to the mean plus three times the standard deviation
(mean + 3 sigma)
Table 7. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8V
@ 3.0V
32.3
32.4
71.03
71.81
mA
mA
2
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V
@ 3.0V
@ 25°C
@ 85°C
@ 105°C
50.5
50.6
60.5
69.7
89.58
55.95
79.20
99.85
mA
mA
mA
mA
3, 4
IDD_RUNC
O
Run mode current in compute operation - 120
MHz core / 24 MHz flash / bus clock disabled,
code of while(1) loop executing from flash
at 3.0 V
28.5 67.74 mA
5
IDD_HSRUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8V
@ 3.0V
47.2
47.3
91.25
91.62
mA
mA
6
IDD_HSRUN Run mode current — all peripheral clocks
enabled, code executing from flash
71.4 103.58 mA
7, 4
Table continues on the next page...
General
12 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 7. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 1.8V
@ 3.0V
@ 25°C
@ 85°C
@ 105°C
71.5
84.5
93.3
79.13
106.75
115.08
mA
mA
mA
IDD_HSRUN
CO
HSRun mode current in compute operation – 168
MHz core/ 28 MHz flash / bus clock disabled,
code of while(1) loop executing from flash at 3.0V
42.9 91.97 mA 5
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
16.9 45.2 mA 8
IDD_WAIT Wait mode reduced frequency current at 3.0 V —
all peripheral clocks enabled
35 62.81 mA 8
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
1.1 9.56 mA 9
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
2 9.88 mA 10
IDD_VLPRC
O
Very-low-power run mode current in compute
operation - 4 MHz core / 1 MHz flash / bus clock
disabled, LPTMR running with 4 MHz internal
reference clock
at 3.0 V
986 9.47 μA
11
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
0.690 9.25 mA 12
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks enabled
1.5 10.00 mA
IDD_STOP Stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
0.791
3.8
6.8
13.2
2.39
6.91
11.44
18.91
mA
mA
mA
mA
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
202
1400
2700
5100
353.77
2464.54
4642.45
8949.06
μA
μA
μA
μA
IDD_LLS3 Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
9.0
76.3
169.1
402
16.5
88.63
181.46
656.08
μA
μA
μA
μA
Table continues on the next page...
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 13
NXP Semiconductors
Table 7. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_LLS2 Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
5.7
41.3
92.4
229
9.7
55.80
120.01
276.81
μA
μA
μA
μA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
5.5
46.3
104
249
7.31
58.33
196.02
380.77
μA
μA
μA
μA
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
2.7
13.1
29.6
76.6
3.24
18.72
37.49
84.77
μA
μA
μA
μA
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
0.847
6.5
16.2
46.7
1.48
11.31
28.31
81.78
μA
μA
μA
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
0.551
6.3
17.1
49.6
.65
7.12
20.02
53.68
μA
μA
μA
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
0.254
6.3
15.8
48.7
0.445
10.99
27.58
85.27
μA
μA
μA
μA
IDD_VBAT Average current with RTC and 32kHz disabled at
3.0 V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
0.19
0.49
1.11
2.2
0.22
0.64
1.4
3.2
μA
μA
μA
μA
Table continues on the next page...
General
14 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 7. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_VBAT Average current when CPU is not accessing RTC
registers
@ 1.8V
@ –40 to 25°C
@ 70°C
@ 105°C
@ 3.0V
@ –40 to 25°C
@ 70°C
@ 85°C
@ 105°C
0.68
1.2
3.6
0.81
1.45
2.5
4.3
0.8
1.56
5.3
0.96
1.89
3.46
6.33
μA
μA
μA
μA
μA
μA
μA
13
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.
See each module's specification for its supply current.
2. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks disabled.
3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. MCG configured for PEE mode.
6. 168 MHz core and system clock, 56 MHz bus and FlexBus clock, and 28 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks disabled.
7. 168 MHz core and system clock, 56 MHz bus and FlexBus clock, and 28 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks enabled.
8. 120 MHz core and system clock, 60MHz bus clock, and FlexBus. MCG configured for PEE mode.
9. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled. Code executing from flash.
10. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks enabled but peripherals are not in active operation. Code executing from flash.
11. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high,
optimized for balanced.
12. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled.
13. Includes 32kHz oscillator current and RTC operation.
2.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFE
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 15
NXP Semiconductors
Figure 3. Run mode supply current vs. core frequency
General
16 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Figure 4. VLPR mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 8. EMC radiated emissions operating behaviors
Symbol Description Frequency
band
(MHz)
Typ. Unit Notes
VRE1 Radiated emissions voltage, band 1 0.15–50 23 dBμV 1, 2
VRE2 Radiated emissions voltage, band 2 50–150 27 dBμV
VRE3 Radiated emissions voltage, band 3 150–500 28 dBμV
VRE4 Radiated emissions voltage, band 4 500–1000 14 dBμV
VRE_IEC IEC level 0.15–1000 K 2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -
Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 17
NXP Semiconductors
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next
whole number, from among the measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = MHz, fBUS = MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions.
1. Go to nxp.com
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 9. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
2.3 Switching specifications
2.3.1 Device clock specifications
Table 10. Device clock specifications
Symbol Description Min. Max. Unit Notes
High Speed run mode
fSYS System and core clock 180 MHz
Normal run mode (and High Speed run mode unless otherwise specified above)
fSYS System and core clock 120 MHz
System and core clock when Full Speed USB in
operation
20 MHz
fSYS_USBHS System and core clock when High Speed USB in
operation
100 MHz
fBUS Bus clock 60 MHz
FB_CLK FlexBus clock 60 MHz
fFLASH Flash clock 28 MHz
Table continues on the next page...
General
18 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 10. Device clock specifications (continued)
Symbol Description Min. Max. Unit Notes
fLPTMR LPTMR clock 25 MHz
VLPR mode1
fSYS System and core clock 4 MHz
fBUS Bus clock 4 MHz
FB_CLK FlexBus clock 4 MHz
fFLASH Flash clock 1 MHz
fERCLK External reference clock 16 MHz
fLPTMR_pin LPTMR clock 25 MHz
fFlexCAN_ERCLK FlexCAN external reference clock 8 MHz
fI2S_MCLK I2S master clock 12.5 MHz
fI2S_BCLK I2S bit clock 4 MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for
any other module.
2.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CAN, CMT, timers, and I2C signals.
Table 11. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous
path
100 ns 3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous
path
50 ns 3
External reset pulse width (digital glitch filter
disabled)
100 ns 3
Mode select (EZP_CS) hold time after reset
deassertion
2 Bus clock
cycles
Port rise and fall time (high drive strength)
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew disabled
25
15
ns
ns
4
Table continues on the next page...
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 19
NXP Semiconductors
Table 11. General switching specifications (continued)
Symbol Description Min. Max. Unit Notes
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
7
7
ns
ns
Port rise and fall time (low drive strength)
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
25
15
7
7
ns
ns
ns
ns
5
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may
or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can
be recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75 pF load
5. 15 pF load
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 12. Thermal operating requirements
Symbol Description Min. Max. Unit Notes
TJDie junction temperature
For BGA and LQFP package –40 125 °C
TJDie junction temperature
For CSP package –40 95 °C
TAAmbient temperature
For BGA and LQFP package –40 105 °C 1
TAAmbient temperature
For CSP package –40 85 °C 1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to
determine TJ is: TJ = TA + RθJA x chip power dissipation.
General
20 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
2.4.2 Thermal attributes
Board
type Symbol Descripti
on 144 LQFP 144
MAPBGA 169
MAPBGA 169
WLCSP Unit Notes
Single-
layer (1s)
RθJA Thermal
resistance,
junction to
ambient
(natural
convection)
45 48 38 48.3 °C/W 1
Four-layer
(2s2p)
RθJA Thermal
resistance,
junction to
ambient
(natural
convection)
36 29 21.9 24 °C/W 1
Single-
layer (1s)
RθJMA Thermal
resistance,
junction to
ambient
(200 ft./
min. air
speed)
36 38 30 39.8 °C/W 1
Four-layer
(2s2p)
RθJMA Thermal
resistance,
junction to
ambient
(200 ft./
min. air
speed)
30 25 18.6 19.5 °C/W 1
RθJB Thermal
resistance,
junction to
board
24 16 14.4 21.4 °C/W 2
RθJC Thermal
resistance,
junction to
case
9 9 8.2 0.1 °C/W 3
ΨJT Thermal
characteriz
ation
parameter,
junction to
package
top outside
center
(natural
convection)
2 2 0.2 0.2 °C/W 4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test
Method Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
General
Kinetis K26 Sub-Family, Rev. 4, 04/2017 21
NXP Semiconductors
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
3.1.1 Debug trace timing specifications
Table 13. Debug trace operating behaviors
Symbol Description Min. Max. Unit
Tcyc Clock period Frequency dependent MHz
Twl Low pulse width 2 ns
Twh High pulse width 2 ns
TrClock and data rise time 3 ns
TfClock and data fall time 3 ns
TsData setup 1.5 ns
ThData hold 1.0 ns
TRACECLK
Tr
Twh
Tf
Tcyc
Twl
Figure 5. TRACE_CLKOUT specifications
Th
Ts Ts Th
TRACE_CLKOUT
TRACE_D[3:0]
Figure 6. Trace data specifications
Peripheral operating requirements and behaviors
22 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
3.1.2 JTAG electricals
Table 14. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
25
50
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
20
10
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 2.0 ns
J7 TCLK low to boundary scan output data valid 28 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1 ns
J11 TCLK low to TDO data valid 19 ns
J12 TCLK low to TDO high-Z 17 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Table 15. JTAG full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
20
40
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
50
ns
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 23
NXP Semiconductors
Table 15. JTAG full voltage range electricals (continued)
Symbol Description Min. Max. Unit
JTAG and CJTAG
Serial Wire Debug
25
12.5
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 2.0 ns
J7 TCLK low to boundary scan output data valid 30.6 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.0 ns
J11 TCLK low to TDO data valid 19.0 ns
J12 TCLK low to TDO high-Z 17.0 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
J2
J3 J3
J4 J4
TCLK (input)
Figure 7. Test clock input timing
Peripheral operating requirements and behaviors
24 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 8. Boundary scan (JTAG) timing
J11
J12
J11
J9 J10
Input data valid
Output data valid
Output data valid
TCLK
TDI/TMS
TDO
TDO
TDO
Figure 9. Test Access Port timing
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 25
NXP Semiconductors
J14
J13
TCLK
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
3.3.1 MCG specifications
Table 16. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
fints_ft Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
32.768 kHz
fints_t Internal reference frequency (slow clock) —
user trimmed
31.25 39.0625 kHz
Iints Internal reference (slow clock) current 20 µA
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
± 0.3 ± 0.6 %fdco 1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
± 0.2 ± 0.5 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over voltage and temperature
± 0.5 ± 2 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
± 0.3 1.5 %fdco 1
fintf_ft Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
4 MHz
fintf_t Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3 5 MHz
Iintf Internal reference (fast clock) current 25 µA
Table continues on the next page...
Peripheral operating requirements and behaviors
26 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 16. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
floc_low Loss of external clock minimum frequency —
RANGE = 00
ext clk freq: above (3/5)fint never reset
ext clk freq: between (2/5)fint and (3/5)fint maybe
reset (phase dependency)
ext clk freq: below (2/5)fint always reset
(3/5) x
fints_t
kHz
floc_high Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
ext clk freq: above (16/5)fint never reset
ext clk freq: between (15/5)fint and (16/5)fint
maybe reset (phase dependency)
ext clk freq: below (15/5)fint always reset
(16/5) x
fints_t
kHz
FLL
ffll_ref FLL reference frequency range 31.25 39.0625 kHz
fdco_ut DCO output
frequency range
— untrimmed
Low range
(DRS=00, DMX32=0)
640 × fints_ut
16.0 23.04 26.66 MHz 2
Mid range
(DRS=01, DMX32=0)
1280 × fints_ut
32.0 46.08 53.32
Mid-high range
(DRS=10, DMX32=0)
1920 × fints_ut
48.0 69.12 79.99
High range
(DRS=11, DMX32=0)
2560 × fints_ut
64.0 92.16 106.65
Low range
(DRS=00, DMX32=1)
732 × fints_ut
18.3 26.35 30.50
Mid range
(DRS=01, DMX32=1)
1464 × fints_ut
36.6 52.70 60.99
Mid-high range
(DRS=10, DMX32=1)
2197 × fints_ut
54.93 79.09 91.53
High range
(DRS=11, DMX32=1)
2929 × fints_ut
73.23 105.44 122.02
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 27
NXP Semiconductors
Table 16. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
fdco DCO output
frequency range
Low range (DRS=00)
640 × ffll_ref
20 20.97 25 MHz 3, 4
Mid range (DRS=01)
1280 × ffll_ref
40 41.94 50 MHz
Mid-high range (DRS=10)
1920 × ffll_ref
60 62.91 75 MHz
High range (DRS=11)
2560 × ffll_ref
80 83.89 100 MHz
fdco_t_DMX3
2
DCO output
frequency
Low range (DRS=00)
732 × ffll_ref
23.99 MHz 5, 6
Mid range (DRS=01)
1464 × ffll_ref
47.97 MHz
Mid-high range (DRS=10)
2197 × ffll_ref
71.99 MHz
High range (DRS=11)
2929 × ffll_ref
95.98 MHz
Jcyc_fll FLL period jitter
fDCO = 48 MHz
fDCO = 98 MHz
180
150
ps
tfll_acquire FLL target frequency acquisition time 1 ms 7
PLL
fpll_ref PLL reference frequency range 8 16 MHz
fvcoclk_2x VCO output frequency 180 360 MHz
fvcoclk PLL output frequency 90 180 MHz
fvcoclk_90 PLL quadrature output frequency 90 180 MHz
Ipll PLL operating current
VCO @ 184 MHz (fosc_hi_1 = 32 MHz,
fpll_ref = 8 MHz, VDIV multiplier = 23)
2.8 mA 8
Ipll PLL operating current
VCO @ 360 MHz (fosc_hi_1 = 32 MHz,
fpll_ref = 8 MHz, VDIV multiplier = 45)
3.6 mA 8
Jcyc_pll PLL period jitter (RMS)
fvco = 180 MHz
fvco = 360 MHz
100
75
ps
ps
9
Jacc_pll PLL accumulated jitter over 1µs (RMS)
fvco = 180 MHz
fvco = 360 MHz
600
300
ps
ps
9
Table continues on the next page...
Peripheral operating requirements and behaviors
28 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 16. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Dunl Lock exit frequency tolerance ± 4.47 ± 5.97 %
tpll_lock Lock detector detection time 150 × 10-6
+ 1075(1/
fpll_ref)
s10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0).
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
3.3.2 IRC48M specifications
Table 17. IRC48M specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDD48M Supply current 520 μA
firc48m Internal reference frequency 48 MHz
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at
low voltage (VDD=1.71V-1.89V) over full
temperature
Regulator disable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
0)
Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
1)
± 0.4
± 0.5
± 1.0
± 1.5
%firc48m
1
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over 0—70°C
Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
1)
± 0.2
± 0.5
%firc48m
1
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over full
temperature
± 0.4
± 1.0
%firc48m
1
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 29
NXP Semiconductors
Table 17. IRC48M specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
1)
Δfirc48m_cl Closed loop total deviation of IRC48M frequency
over voltage and temperature
± 0.1 %fhost 2
Jcyc_irc48m Period Jitter (RMS) 35 150 ps
tirc48mst Startup time 2 3 μs 3
1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard
deviation (mean ± 3 sigma)
2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It
is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).
3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the
clock by one of the following settings:
USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or
MCG_C7[OSCSEL]=10, or
SIM_SOPT2[PLLFLLSEL]=11
3.3.3 Oscillator electrical specifications
3.3.3.1 Oscillator DC electrical specifications
Table 18. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDDOSC Supply current — low-power mode (HGO=0)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
600
200
300
950
1.2
1.5
nA
μA
μA
μA
mA
mA
1
IDDOSC Supply current — high gain mode (HGO=1)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
7.5
500
650
2.5
3.25
μA
μA
μA
mA
mA
1
Table continues on the next page...
Peripheral operating requirements and behaviors
30 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 18. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
24 MHz
32 MHz
4 mA
CxEXTAL load capacitance 2, 3
CyXTAL load capacitance 2, 3
RFFeedback resistor — low-frequency, low-power
mode (HGO=0)
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
10
Feedback resistor — high-frequency, low-power
mode (HGO=0)
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
1
RSSeries resistor — low-frequency, low-power
mode (HGO=0)
Series resistor — low-frequency, high-gain
mode (HGO=1)
200
Series resistor — high-frequency, low-power
mode (HGO=0)
Series resistor — high-frequency, high-gain
mode (HGO=1)
0
Vpp5Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
VDD V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
VDD V
1. VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 31
NXP Semiconductors
3.3.3.2 Oscillator frequency specifications
Table 19. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal or resonator frequency — low-
frequency mode (MCG_C2[RANGE]=00)
32 40 kHz
fosc_hi_1 Oscillator crystal or resonator frequency — high-
frequency mode (low range)
(MCG_C2[RANGE]=01)
3 8 MHz
fosc_hi_2 Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8 32 MHz
fec_extal Input clock frequency (external clock mode) 50 MHz 1, 2
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
750 ms 3, 4
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
250 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
0.6 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
1 ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
NOTE
The 32 kHz oscillator works in low power mode by default
and cannot be moved into high power/gain mode.
3.3.4 32 kHz oscillator electrical characteristics
3.3.4.1 32 kHz oscillator DC electrical specifications
Table 20. 32kHz oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit
VBAT Supply voltage 1.71 3.6 V
RFInternal feedback resistor 100
Table continues on the next page...
Peripheral operating requirements and behaviors
32 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 20. 32kHz oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
Cpara Parasitical capacitance of EXTAL32 and
XTAL32
5 7 pF
Vpp1Peak-to-peak amplitude of oscillation 0.6 V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
3.3.4.2 32 kHz oscillator frequency specifications
Table 21. 32 kHz oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal 32.768 kHz
tstart Crystal start-up time 1000 ms 1
fec_extal32 Externally provided input clock frequency 32.768 kHz 2
vec_extal32 Externally provided input clock amplitude 700 VBAT mV 2, 3
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.
The oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the
applied clock must be within the range of VSS to VBAT.
3.4 Memories and memory interfaces
3.4.1 Flash (FTFE) electrical specifications
This section describes the electrical characteristics of the FTFE module.
3.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Table 22. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
thvpgm8 Program Phrase high-voltage time 7.5 18 μs
thversscr Erase Flash Sector high-voltage time 13 113 ms 1
thversblk256k Erase Flash Block high-voltage time for 256 KB 208 1808 ms 1
thversblk512k Erase Flash Block high-voltage time for 512 KB 416 3616 ms 1
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 33
NXP Semiconductors
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2 Flash timing specifications — commands
Table 23. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
trd1blk256k
trd1blk512k
Read 1s Block execution time
256 KB data flash
512 KB program flash
1.0
1.8
ms
ms
trd1sec4k Read 1s Section execution time (4 KB flash) 100 μs 1
tpgmchk Program Check execution time 95 μs 1
trdrsrc Read Resource execution time 40 μs 1
tpgm8 Program Phrase execution time 90 150 μs
tersblk256k
tersblk512k
Erase Flash Block execution time
256 KB data flash
512 KB program flash
220
435
1850
3700
ms
ms
2
tersscr Erase Flash Sector execution time 15 115 ms 2
tpgmsec1k Program Section execution time (1 KB flash) 5 ms
trd1allx
trd1alln
Read 1s All Blocks execution time
FlexNVM devices
Program flash only devices
5.9
6.7
ms
ms
trdonce Read Once execution time 30 μs 1
tpgmonce Program Once execution time 90 μs
tersall Erase All Blocks execution time 1750 14,800 ms 2
tvfykey Verify Backdoor Access Key execution time 30 μs 1
tswapx01
tswapx02
tswapx04
tswapx08
tswapx10
Swap Control execution time
control code 0x01
control code 0x02
control code 0x04
control code 0x08
control code 0x10
200
90
90
90
150
150
30
150
μs
μs
μs
μs
μs
tpgmpart32k
tpgmpart256k
Program Partition for EEPROM execution time
32 KB EEPROM backup
256 KB EEPROM backup
70
78
ms
ms
tsetramff
tsetram32k
tsetram64k
Set FlexRAM Function execution time:
Control Code 0xFF
32 KB EEPROM backup
64 KB EEPROM backup
70
0.8
1.3
1.2
1.9
μs
ms
ms
Table continues on the next page...
Peripheral operating requirements and behaviors
34 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 23. Flash command timing specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
tsetram128k
tsetram256k
128 KB EEPROM backup
256 KB EEPROM backup
2.4
4.5
3.1
5.5
ms
ms
teewr8b32k
teewr8b64k
teewr8b128k
teewr8b256k
Byte-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
385
475
650
1000
1700
2000
2350
3250
μs
μs
μs
μs
teewr16b32k
teewr16b64k
teewr16b128k
teewr16b256k
16-bit write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
385
475
650
1000
1700
2000
2350
3250
μs
μs
μs
μs
teewr32bers 32-bit write to erased FlexRAM location
execution time
360 1500 μs
teewr32b32k
teewr32b64k
teewr32b128k
teewr32b256k
32-bit write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
630
810
1200
1900
2000
2250
2650
3500
μs
μs
μs
μs
1. Assumes 25MHz or greater flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3 Flash high voltage current behaviors
Table 24. Flash high voltage current behaviors
Symbol Description Min. Typ. Max. Unit
IDD_PGM Average current adder during high voltage flash
programming operation
3.5 7.5 mA
IDD_ERS Average current adder during high voltage flash
erase operation
1.5 4.0 mA
3.4.1.4 Reliability specifications
Table 25. NVM reliability specifications
Symbol Description Min. Typ.1Max. Unit Notes
Program Flash
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 35
NXP Semiconductors
Table 25. NVM reliability specifications (continued)
Symbol Description Min. Typ.1Max. Unit Notes
tnvmretp10k Data retention after up to 10 K cycles 5 50 years
tnvmretp1k Data retention after up to 1 K cycles 20 100 years
nnvmcycp Cycling endurance 10 K 50 K cycles 2
Data Flash
tnvmretd10k Data retention after up to 10 K cycles 5 50 years
tnvmretd1k Data retention after up to 1 K cycles 20 100 years
nnvmcycd Cycling endurance 10 K 50 K cycles 2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance 5 50 years
tnvmretee10 Data retention up to 10% of write endurance 20 100 years
nnvmcycee Cycling endurance for EEPROM backup 20 K 50 K cycles 2
nnvmwree16
nnvmwree128
nnvmwree512
nnvmwree2k
nnvmwree8k
Write endurance
EEPROM backup to FlexRAM ratio = 16
EEPROM backup to FlexRAM ratio = 128
EEPROM backup to FlexRAM ratio = 512
EEPROM backup to FlexRAM ratio = 2,048
EEPROM backup to FlexRAM ratio = 8,192
140 K
1.26 M
5 M
20 M
80 M
400 K
3.2 M
12.8 M
50 M
200 M
writes
writes
writes
writes
writes
3
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the
cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values
assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.
3.4.1.5 Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set
size can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that
can be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout
the entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Peripheral operating requirements and behaviors
36 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Writes_subsystem = × Write_efficiency × n
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE nvmcycee
where
Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
EEPROM — allocated FlexNVM for each EEPROM subsystem based on
DEPART; entered with the Program Partition command
EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
Write_efficiency —
0.25 for 8-bit writes to FlexRAM
0.50 for 16-bit or 32-bit writes to FlexRAM
nnvmcycee — EEPROM-backup cycling endurance
Figure 11. EEPROM backup writes to FlexRAM
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 37
NXP Semiconductors
3.4.2 EzPort switching specifications
Table 26. EzPort full voltage range switching specifications
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
EP1 EZP_CK frequency of operation (all commands except
READ)
fSYS/2 MHz
EP1a EZP_CK frequency of operation (READ command) fSYS/8 MHz
EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK ns
EP3 EZP_CS input valid to EZP_CK high (setup) 5 ns
EP4 EZP_CK high to EZP_CS input invalid (hold) 5 ns
EP5 EZP_D input valid to EZP_CK high (setup) 2 ns
EP6 EZP_CK high to EZP_D input invalid (hold) 5 ns
EP7 EZP_CK low to EZP_Q output valid 14 ns
EP8 EZP_CK low to EZP_Q output invalid (hold) 0 ns
EP9 EZP_CS negation to EZP_Q tri-state 12 ns
EP2
EP3 EP4
EP5 EP6
EP7 EP8
EP9
EZP_CK
EZP_CS
EZP_Q (output)
EZP_D (input)
Figure 12. EzPort Timing Diagram
Peripheral operating requirements and behaviors
38 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
3.4.3 Flexbus switching specifications
All processor bus timings are synchronous; input setup/hold and output delay are
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK
frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the
external bus, relative to the Flexbus output clock (FB_CLK). All other timing
relationships can be derived from these values.
Table 27. Flexbus limited voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 1/FB_CLK ns
FB2 Address, data, and control output valid 11.8 ns
FB3 Address, data, and control output hold 1.0 ns 1
FB4 Data and FB_TA input setup 11.9 ns
FB5 Data and FB_TA input hold 0.0 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 28. Flexbus full voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 1/FB_CLK ns
FB2 Address, data, and control output valid 12.6 ns
FB3 Address, data, and control output hold 1.0 ns 1
FB4 Data and FB_TA input setup 12.5 ns
FB5 Data and FB_TA input hold 0 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 39
NXP Semiconductors
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB3
FB5
FB4
FB4
FB5
FB1
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
FB2
Read Timing Parameters
electricals_read.svg
S0 S1 S2 S3 S0
S0 S1 S2 S3 S0
Figure 13. FlexBus read timing diagram
Peripheral operating requirements and behaviors
40 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB1
FB3
FB4
FB5
FB2
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
Write Timing Parameters
electricals_write.svg
Figure 14. FlexBus write timing diagram
3.4.4 SDRAM controller specifications
Following figure shows SDRAM read cycle.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 41
NXP Semiconductors
A[23:0]
SRAS
D[31:0]2
ACTV NOP
SDRAM_CS[1:0]
READ
Column
CLKOUT
0
DRAMW
BS[3:0]
1 2 3 4 5 6 7 8 9 10 11 12 13
D1
D2
D4
D6
D5
D4
NOP
D4
Row
D3
PRE
D0
SCAS1
1DACR[CASL] = 2
2D[31:16] for 144-pin packages
Figure 15. SDRAM read timing diagram
Table 29. SDRAM Timing (Full voltage range)
NUM Characteristic 1Symbol MIn Max Unit
Operating voltage 1.71 3.6 V
Frequency of operation CLKOUT MHz
D0 Clock period 1/CLKOUT ns 2
D1 CLKOUT high to SDRAM address valid tCHDAV - 11.2 ns
D2 CLKOUT high to SDRAM control valid tCHDCV 11.1 ns
D3 CLKOUT high to SDRAM address invalid tCHDAI 1.0 - ns
D4 CLKOUT high to SDRAM control invalid tCHDCI 1.0 - ns
D5 SDRAM data valid to CLKOUT high tDDVCH 12.0 - ns
D6 CLKOUT high to SDRAM data invalid tCHDDI 1.0 - ns
D73CLKOUT high to SDRAM data valid tCHDDVW - 12.0 ns
D83CLKOUT high to SDRAM data invalid tCHDDIW 1.0 - ns
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.
Peripheral operating requirements and behaviors
42 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
2. CLKOUT is same as FB_CLK, maximum frequency can be 60 MHz
3. D7 and D8 are for write cycles only.
Table 30. SDRAM Timing (Limited voltage range)
NUM Characteristic 1Symbol MIn Max Unit
Operating voltage 2.7 3.6 V
Frequency of operation CLKOUT MHz
D0 Clock period 1/CLKOUT ns 2
D1 CLKOUT high to SDRAM address valid tCHDAV - 11.1 ns
D2 CLKOUT high to SDRAM control valid tCHDCV 11.1 ns
D3 CLKOUT high to SDRAM address invalid tCHDAI 1.0 - ns
D4 CLKOUT high to SDRAM control invalid tCHDCI 1.0 - ns
D5 SDRAM data valid to CLKOUT high tDDVCH 11.3 - ns
D6 CLKOUT high to SDRAM data invalid tCHDDI 1.0 - ns
D73CLKOUT high to SDRAM data valid tCHDDVW - 11.1 ns
D83CLKOUT high to SDRAM data invalid tCHDDIW 1.0 - ns
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.
2. CLKOUT is same as FB_CLK, maximum frequency can be 60 MHz
3. D7 and D8 are for write cycles only.
Following figure shows an SDRAM write cycle.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 43
NXP Semiconductors
1DACR[CASL]=2
A[23:0]
SRAS
SCAS1
D[31:0]2
ACTV PALLNOP
SDRAM_CS[1:0]
WRITE
Row Column
CLKOUT
DRAMW
BS[3:0]
D1
D2
D4
D8
D4
0 1 2 3 4 5 6 7 8 9 10 11 12
D7
NOP
D4
D3
D2
D4
D0
2D[31:16] for 144-pin packages
Figure 16. SDRAM write timing diagram
3.5 Analog
3.5.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 31 and Table 32 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
Peripheral operating requirements and behaviors
44 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
3.5.1.1 16-bit ADC operating conditions
Table 31. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2
ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2
VREFH ADC reference
voltage high
1.13 VDDA VDDA V
VREFL ADC reference
voltage low
VSSA VSSA VSSA V
VADIN Input voltage 16-bit differential mode
All other modes
VREFL
VREFL
31/32 *
VREFH
VREFH
V
CADIN Input
capacitance
16-bit mode
8-bit / 10-bit / 12-bit
modes
8
4
10
5
pF
RADIN Input series
resistance
2 5
RAS Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
5 3
fADCK ADC conversion
clock frequency
≤ 13-bit mode 1.0 24 MHz 4
fADCK ADC conversion
clock frequency
16-bit mode 2.0 12.0 MHz 4
Crate ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
20.000 1200 kS/s 5
Crate ADC conversion
rate
16-bit mode
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
37.037 461.467 kS/s 5
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 45
NXP Semiconductors
RAS
VAS CAS
ZAS
VADIN
ZADIN
RADIN
RADIN
RADIN
RADIN
CADIN
Pad
leakage
INPUT PIN
INPUT PIN
INPUT PIN
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
Figure 17. ADC input impedance equivalency diagram
3.5.1.2 16-bit ADC electrical characteristics
Table 32. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
IDDA_ADC Supply current 0.215 1.7 mA 3
fADACK
ADC asynchronous
clock source
ADLPC = 1, ADHSC = 0
ADLPC = 1, ADHSC = 1
ADLPC = 0, ADHSC = 0
ADLPC = 0, ADHSC = 1
1.2
2.4
3.0
4.4
2.4
4.0
5.2
6.2
3.9
6.1
7.3
9.5
MHz
MHz
MHz
MHz
tADACK = 1/
fADACK
Sample Time See Reference Manual chapter for sample times
TUE Total unadjusted
error
12-bit modes
<12-bit modes
±4
±1.4
±6.8
±2.1
LSB45
DNL Differential non-
linearity
12-bit modes
<12-bit modes
±0.7
±0.2
–1.1 to
+1.9
–0.3 to
0.5
LSB45
INL Integral non-linearity 12-bit modes ±1.0 –2.7 to
+1.9
LSB45
Table continues on the next page...
Peripheral operating requirements and behaviors
46 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 32. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
<12-bit modes ±0.5 –0.7 to
+0.5
EFS Full-scale error 12-bit modes
<12-bit modes
–4
–1.4
–5.4
–1.8
LSB4VADIN = VDDA5
EQQuantization error 16-bit modes
≤13-bit modes
–1 to 0
±0.5
LSB4
ENOB Effective number of
bits
16-bit differential mode
Avg = 32
Avg = 4
16-bit single-ended mode
Avg = 32
Avg = 4
12.8
11.9
12.2
11.4
14.5
13.8
13.9
13.1
bits
bits
bits
bits
6
SINAD Signal-to-noise plus
distortion
See ENOB 6.02 × ENOB + 1.76 dB
THD Total harmonic
distortion
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
-94
-85
dB
dB
7
SFDR Spurious free
dynamic range
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
82
78
95
90
dB
dB
7
EIL Input leakage error IIn × RAS mV IIn = leakage
current
(refer to the
MCU's voltage
and current
operating
ratings)
Temp sensor slope Across the full temperature
range of the device
1.55 1.62 1.69 mV/°C 8
VTEMP25 Temp sensor voltage 25 °C 706 716 726 mV 8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with
1 MHz ADC conversion clock speed.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 47
NXP Semiconductors
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
15.00
14.70
14.40
14.10
13.80
13.50
13.20
12.90
12.60
12.30
12.00
1 2 3 4 5 6 7 8 9 10 1211
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
Figure 18. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
14.00
13.75
13.25
13.00
12.75
12.50
12.00
11.75
11.50
11.25
11.00
1 2 3 4 5 6 7 8 9 10 1211
Averaging of 4 samples
Averaging of 32 samples
13.50
12.25
Figure 19. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
Peripheral operating requirements and behaviors
48 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
3.5.2 CMP and 6-bit DAC electrical specifications
Table 33. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 1.71 3.6 V
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 200 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 20 μA
VAIN Analog input voltage VSS – 0.3 VDD V
VAIO Analog input offset voltage 20 mV
VHAnalog comparator hysteresis1
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
5
10
20
30
mV
mV
mV
mV
VCMPOh Output high VDD – 0.5 V
VCMPOl Output low 0.5 V
tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns
tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns
Analog comparator initialization delay2 40 μs
IDAC6b 6-bit DAC current adder (enabled) 7 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB3
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 49
NXP Semiconductors
00
01
10
HYSTCTR
Setting
0.1
10
11
Vin level (V)
CMP Hystereris (V)
3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.05
0
0.01
0.02
0.03
0.08
0.07
0.06
0.04
Figure 20. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Peripheral operating requirements and behaviors
50 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
00
01
10
HYSTCTR
Setting
10
11
0.1 3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.1
0
0.02
0.04
0.06
0.18
0.14
0.12
0.08
0.16
Vin level (V)
CMP Hysteresis (V)
Figure 21. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.5.3 12-bit DAC electrical characteristics
3.5.3.1 12-bit DAC operating requirements
Table 34. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
VDDA Supply voltage 3.6 V
VDACR Reference voltage 1.13 3.6 V 1
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 51
NXP Semiconductors
3.5.3.2 12-bit DAC operating behaviors
Table 35. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 150 μA
IDDA_DACH
P
Supply current — high-speed mode 700 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
100 200 μs 1
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
15 30 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
0.7 1 μs 1
Vdacoutl DAC output voltage range low — high-
speed mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR > 2
V
±1 LSB 3
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 4
VOFFSET Offset error ±0.4 ±0.8 %FSR 5
EGGain error ±0.1 ±0.6 %FSR 5
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V 60 90 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 6
TGE Temperature coefficient gain error 0.000421 %FSR/C
ACOffset aging coefficient 100 μV/yr
Rop Output resistance (load = 3 kΩ) 250 Ω
SR Slew rate -80hF7Fh80h
High power (SPHP)
Low power (SPLP)
1.2
0.05
1.7
0.12
V/μs
CT Channel to channel cross talk -80 dB
BW 3dB bandwidth
High power (SPHP)
Low power (SPLP)
550
40
kHz
1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to VDACR −100 mV
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
Peripheral operating requirements and behaviors
52 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC
set to 0x800, temperature range is across the full range of the device
Digital Code
DAC12 INL (LSB)
0
500 1000 1500 2000 2500 3000 3500 4000
2
4
6
8
-2
-4
-6
-8
0
Figure 22. Typical INL error vs. digital code
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 53
NXP Semiconductors
Temperature °C
DAC12 Mid Level Code Voltage
25 55 85 105 125
1.499
-40
1.4985
1.498
1.4975
1.497
1.4965
1.496
Figure 23. Offset at half scale vs. temperature
3.5.4 Voltage reference electrical specifications
Table 36. VREF full-range operating requirements
Symbol Description Min. Max. Unit Notes
VDDA Supply voltage 3.6 V
TATemperature Operating temperature
range of the device
°C
CLOutput load capacitance 100 nF 1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range
of the device.
Peripheral operating requirements and behaviors
54 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 37. VREF full-range operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
Vout Voltage reference output with factory trim at
nominal VDDA and temperature=25C
1.190 1.195 1.200 V 1
Vout Voltage reference output — factory trim 1.1584 1.2376 V 1
Vout Voltage reference output — user trim 1.193 1.197 V 1
Vstep Voltage reference trim step 0.5 mV 1
Vtdrift Temperature drift (Vmax -Vmin across the full
temperature range)
80 mV 1
Ac Aging coefficient 400 uV/yr
Ibg Bandgap only current 80 µA 1
ΔVLOAD Load regulation
current = ± 1.0 mA
200
µV 1, 2
Tstup Buffer startup time 100 µs
Tchop_osc_st
up
Internal bandgap start-up delay with chop
oscillator enabled
35 ms
Vvdrift Voltage drift (Vmax -Vmin across the full
voltage range)
2 mV 1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 38. VREF limited-range operating requirements
Symbol Description Min. Max. Unit Notes
TATemperature 0 50 °C
Table 39. VREF limited-range operating behaviors
Symbol Description Min. Max. Unit Notes
Vout Voltage reference output with factory trim 1.173 1.225 V
3.6 Timers
See General switching specifications.
3.7 Communication interfaces
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 55
NXP Semiconductors
3.7.1 USB Voltage Regulator Electrical Specifications
Table 40. USB VREG electrical specifications
Symbol Description Min. Typ.1Max. Unit Notes
VREG_IN0
VREG_IN1
Regulator selectable input supply voltages 2.7 5.5 V 2
IDDon
VREG_IN0
VREG_IN1
Quiescent current — Run mode, load current
equal zero, input supply (VREG_IN*) > 3.6 V
157
157
μA
IDDstby
VREG_IN0
VREG_IN1
Quiescent current — Standby mode, load
current equal zero
2
2
μA
IDDoff
VREG_IN0
VREG_IN1
Quiescent current — Shutdown mode
VREG_IN*= 5.0 V and temperature=25 °C
680
920
nA
ILOADrun Maximum load current — Run mode 150 mA 3
ILOADstby Maximum load current — Standby mode 1 mA
VDROPOUT Regulator drop-out voltage — Run mode at
maximum load current with inrush current limit
disabled
300 mV
VREG_OUT Regulator programmable output target voltage
— Selected input supply > programmed output
target voltage + VDROPOUT
Run mode
Standby mode
3
2.1
3.3
2.8
3.6
3.6
V
V
4
COUT External output capacitor 1.76 2.2 8.16 μF
ESR External output capacitor equivalent series
resistance
1 100
ILIM Short circuit current 350 mA 5
IINRUSH Inrush current limit 40 100 mA 6, 7, 8,
9, 10
1. Typical values assume the selected input supply is 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operation range is 2.7 V to 5.5 V; tolerance voltage is up to 6 V.
3. 150mA is inclusive of the run mode current of the on-chip USB modules. Available load outside of the chip depends on
USB operation and device power dissipation limits.
4. The target voltage for the regulator is programmable, accounting for the range of the max and min values
5. Current limit disabled.
6. Current limit should be disabled after the powers have stabilized to allow full functionality of the regulator.
7. Limited Characterization
8. IINRUSH with VREGINx=4.0 V to 5.5 V
9. The minimum value of IINRUSH is stated for operation when only one of VREG_IN0 / VREG_IN1 is powered, or when
VREG_IN0 and VREG_IN1 both have the same voltage level. When VREG_IN0 and VREG_IN1 are operated at
Peripheral operating requirements and behaviors
56 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
different voltage levels with the selected VREG_IN lower than the non-selected VREG_IN, the minumum value of
IINRUSH may decrease to a lower value.
10. Total current load on startup should be less than IINRUSH min over full input voltage range of the regulator.
3.7.2 USB Full Speed Transceiver and High Speed PHY
specifications
This section describes the USB0 port Full Speed/Low Speed transceiver and USB1
port USB-PHY High Speed Phy parameters. The high speed phy is capable of full and
low speed signalling as well.
The USB0 (FS/LS Transceiver) and USB1 ((USB HS/FS/LS) meet the electrical
compliance requirements defined in the Universal Serial Bus Revision 2.0
Specification with the amendments below.
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0
Specification
Revision 2.0 version 1.1a July 27, 2012
Battery Charging Specification (available from USB-IF)
Revision 1.2 (including errata and ECNs through March 15, 2012), March 15,
2012
USB1_VBUS pin is a detector function which is 5v tolerant and complies with the
above specifications without needing any external voltage division components.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 57
NXP Semiconductors
3.7.3 USB DCD electrical specifications
Table 41. USB DCD electrical specifications
Symbol Description Min. Typ. Max. Unit
VDP_SRC,
VDM_SRC
USB_DP and USB_DM source voltages (up to 250
μA)
0.5 0.7 V
VLGC Threshold voltage for logic high 0.8 2.0 V
IDP_SRC USB_DP source current 7 10 13 μA
IDM_SINK,
IDP_SINK
USB_DM and USB_DP sink currents 50 100 150 μA
RDM_DWN D- pulldown resistance for data pin contact detect 14.25 24.8
VDAT_REF Data detect voltage 0.25 0.33 0.4 V
3.7.4 CAN switching specifications
See General switching specifications.
3.7.5 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to
the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 42. Master mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation 30 MHz
DS1 DSPI_SCK output cycle time 2 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
2
ns 1
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
2
ns 2
DS5 DSPI_SCK to DSPI_SOUT valid 15.0 ns
DS6 DSPI_SCK to DSPI_SOUT invalid 1.0 ns
DS7 DSPI_SIN to DSPI_SCK input setup 15.8 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
Peripheral operating requirements and behaviors
58 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 24. DSPI classic SPI timing — master mode
Table 43. Slave mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Frequency of operation 15 1MHz
DS9 DSPI_SCK input cycle time 4 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS11 DSPI_SCK to DSPI_SOUT valid 23.0 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2.7 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7.0 ns
DS15 DSPI_SS active to DSPI_SOUT driven 13 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 13 ns
1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with
continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example,
when bus clock is 60MHz, SPI clock should not be greater than 10MHz.
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 59
NXP Semiconductors
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 25. DSPI classic SPI timing — slave mode
3.7.6 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 44. Master mode DSPI timing (full voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V 1
Frequency of operation 15 MHz
DS1 DSPI_SCK output cycle time 4 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
4
ns 2
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
4
ns 3
DS5 DSPI_SCK to DSPI_SOUT valid 15 ns
DS6 DSPI_SCK to DSPI_SOUT invalid 1.0 ns
DS7 DSPI_SIN to DSPI_SCK input setup 15.8 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
Peripheral operating requirements and behaviors
60 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 26. DSPI classic SPI timing — master mode
Table 45. Slave mode DSPI timing (full voltage range)
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Frequency of operation 7.5 MHz
DS9 DSPI_SCK input cycle time 8 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS11 DSPI_SCK to DSPI_SOUT valid 23.1 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2.6 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7.0 ns
DS15 DSPI_SS active to DSPI_SOUT driven 13.0 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 13.0 ns
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 27. DSPI classic SPI timing — slave mode
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 61
NXP Semiconductors
3.7.7 Inter-Integrated Circuit Interface (I2C) timing
Table 46. I 2C timing
Characteristic Symbol Standard Mode Fast Mode Unit
Minimum Maximum Minimum Maximum
SCL Clock Frequency fSCL 0 100 0 400 kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA 4 0.6 µs
LOW period of the SCL clock tLOW 4.7 1.25 µs
HIGH period of the SCL clock tHIGH 4 0.6 µs
Set-up time for a repeated START
condition
tSU; STA 4.7 0.6 µs
Data hold time for I2C bus devices tHD; DAT 013.452030.91µs
Data set-up time tSU; DAT 2504 1002, 5 ns
Rise time of SDA and SCL signals tr 1000 20 +0.1Cb6300 ns
Fall time of SDA and SCL signals tf 300 20 +0.1Cb5300 ns
Set-up time for STOP condition tSU; STO 4 0.6 µs
Bus free time between STOP and
START condition
tBUF 4.7 1.3 µs
Pulse width of spikes that must be
suppressed by the input filter
tSP N/A N/A 0 50 ns
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
3. Input signal Slew = 10 ns and Output Load = 50 pF
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.
6. Cb = total capacitance of the one bus line in pF.
Table 47. I 2C 1 Mbps timing
Characteristic Symbol Minimum Maximum Unit
SCL Clock Frequency fSCL 0 11MHz
Hold time (repeated) START condition. After this
period, the first clock pulse is generated.
tHD; STA 0.26 µs
LOW period of the SCL clock tLOW 0.5 µs
HIGH period of the SCL clock tHIGH 0.26 µs
Set-up time for a repeated START condition tSU; STA 0.26 µs
Data hold time for I2C bus devices tHD; DAT 0 µs
Data set-up time tSU; DAT 50 ns
Rise time of SDA and SCL signals tr20 +0.1Cb, 2120 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
62 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 47. I 2C 1 Mbps timing (continued)
Characteristic Symbol Minimum Maximum Unit
Fall time of SDA and SCL signals tf20 +0.1Cb2120 ns
Set-up time for STOP condition tSU; STO 0.26 µs
Bus free time between STOP and START condition tBUF 0.5 µs
Pulse width of spikes that must be suppressed by
the input filter
tSP 0 50 ns
1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins
across the full voltage range.
2. Cb = total capacitance of the one bus line in pF.
SDA
HD; STA tHD; DAT
tLOW
tSU; DAT
tHIGH
tSU; STA SR PS
S
tHD; STA tSP
tSU; STO
tBUF
tftr
tftr
SCL
Figure 28. Timing definition for devices on the I2C bus
3.7.8 UART switching specifications
See General switching specifications.
3.7.9 Low Power UART switching specifications
See General switching specifications.
3.7.10 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 48. SDHC full voltage range switching specifications
Num Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 63
NXP Semiconductors
Table 48. SDHC full voltage range switching specifications
(continued)
Num Symbol Description Min. Max. Unit
Card input clock
SD1 fpp Clock frequency (low speed) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz
fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz
fOD Clock frequency (identification mode) 0 400 kHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6 tOD SDHC output delay (output valid) -5 8.6 8.3 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 0 ns
Table 49. SDHC limited voltage range switching specifications
Num Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Card input clock
SD1 fpp Clock frequency (low speed) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz
fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz
fOD Clock frequency (identification mode) 0 400 kHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6 tOD SDHC output delay (output valid) -5 7.6 8.3 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 0 ns
Peripheral operating requirements and behaviors
64 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
SD2SD3 SD1
SD6
SD8
SD7
SDHC_CLK
Output SDHC_CMD
Output SDHC_DAT[3:0]
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 29. SDHC timing
3.7.11 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] =
0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or
the frame sync (I2S_FS) shown in the figures below.
Table 50. I2S master mode timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_BCLK cycle time 80 ns
S4 I2S_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_BCLK to I2S_FS output valid 15 ns
S6 I2S_BCLK to I2S_FS output invalid 0 ns
S7 I2S_BCLK to I2S_TXD valid 15 ns
S8 I2S_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 15 ns
S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 ns
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 65
NXP Semiconductors
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_BCLK (output)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
Figure 30. I2S timing — master mode
Table 51. I2S slave mode timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
S11 I2S_BCLK cycle time (input) 80 ns
S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period
S13 I2S_FS input setup before I2S_BCLK 4.5 ns
S14 I2S_FS input hold after I2S_BCLK 2 ns
S15 I2S_BCLK to I2S_TXD/I2S_FS output valid 20 ns
S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_BCLK 4.5 ns
S18 I2S_RXD hold after I2S_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid125 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
66 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_BCLK (input)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
S19
Figure 31. I2S timing — slave modes
3.7.11.1 Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 52. I2S/SAI master mode timing
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
15 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 15 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
15 ns
S10 I2S_RXD/I2S_RX_FS input hold after
I2S_RX_BCLK
0 ns
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 67
NXP Semiconductors
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 32. I2S/SAI timing — master modes
Table 53. I2S/SAI slave mode timing
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
4.5 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 23.1 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 4.5 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 25 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
68 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 33. I2S/SAI timing — slave modes
3.7.11.2 VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 54. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 62.5 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
45 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 45 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
45 ns
S10 I2S_RXD/I2S_RX_FS input hold after
I2S_RX_BCLK
0 ns
Peripheral operating requirements and behaviors
Kinetis K26 Sub-Family, Rev. 4, 04/2017 69
NXP Semiconductors
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 34. I2S/SAI timing — master modes
Table 55. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
5 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 56.5 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 30 ns
S18 I2S_RXD hold after I2S_RX_BCLK 5 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 72 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
70 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 35. I2S/SAI timing — slave modes
3.8 Human-machine interfaces (HMI)
3.8.1 TSI electrical specifications
Table 56. TSI electrical specifications
Symbol Description Min. Typ. Max. Unit
TSI_RUNF Fixed power consumption in run mode 100 µA
TSI_RUNV Variable power consumption in run mode
(depends on oscillator's current selection)
1.0 128 µA
TSI_EN Power consumption in enable mode 100 µA
TSI_DIS Power consumption in disable mode 1.2 µA
TSI_TEN TSI analog enable time 66 µs
TSI_CREF TSI reference capacitor 1.0 pF
TSI_DVOLT Voltage variation of VP & VM around nominal
values
0.19 1.03 V
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
Dimensions
Kinetis K26 Sub-Family, Rev. 4, 04/2017 71
NXP Semiconductors
To find a package drawing, go to nxp.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package Then use this document number
144-pin LQFP 98ASS23177W
144-pin MAPBGA 98ASA00222D
169-pin MAPBGA 98ASA00628D
169-pin WLCSP 98ASA00640D
5 Pinout
5.1 MK26 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
NOTE
The pin functions SDRAM_D12, SDRAM_D13,
SDRAM_D14, and SDRAM_D15 don't exist on 144 LQFP
and 144 MAPBGA packages.
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
C11 A1 1 D3 PTE0 ADC1_
SE4a
ADC1_
SE4a
PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 TRACE_
CLKOUT
I2C1_SDA RTC_
CLKOUT
A13 B1 2 D2 PTE1/
LLWU_P0
ADC1_
SE5a
ADC1_
SE5a
PTE1/
LLWU_P0
SPI1_
SOUT
UART1_RX SDHC0_D0 TRACE_D3 I2C1_SCL SPI1_SIN
B12 PTE2/
LLWU_P1
ADC1_
SE6a
ADC1_
SE6a
PTE2/
LLWU_P1
SPI1_SCK UART1_
CTS_b
SDHC0_
DCLK
TRACE_D2
B13 PTE3 ADC1_
SE7a
ADC1_
SE7a
PTE3 SPI1_SIN UART1_
RTS_b
SDHC0_
CMD
TRACE_D1 SPI1_
SOUT
C1 3 D1 PTE2/
LLWU_P1
ADC1_
SE6a
ADC1_
SE6a
PTE2/
LLWU_P1
SPI1_SCK UART1_
CTS_b
SDHC0_
DCLK
TRACE_D2
D1 4 E4 PTE3 ADC1_
SE7a
ADC1_
SE7a
PTE3 SPI1_SIN UART1_
RTS_b
SDHC0_
CMD
TRACE_D1 SPI1_
SOUT
F9 G5 5 E5 VDD VDD VDD
C3 6 H3 VSS VSS VSS
C12 E1 7 E3 PTE4/
LLWU_P2
DISABLED PTE4/
LLWU_P2
SPI1_PCS0 UART3_TX SDHC0_D3 TRACE_D0
D11 D2 8 E2 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 FTM3_CH0
Pinout
72 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
C13 E2 9 E1 PTE6/
LLWU_P16
DISABLED PTE6/
LLWU_P16
SPI1_PCS3 UART3_
CTS_b
I2S0_MCLK FTM3_CH1 USB0_
SOF_OUT
E10 E3 10 F4 PTE7 DISABLED PTE7 UART3_
RTS_b
I2S0_RXD0 FTM3_CH2
D12 E4 11 F3 PTE8 DISABLED PTE8 I2S0_RXD1 I2S0_RX_
FS
LPUART0_
TX
FTM3_CH3
D13 F3 12 F2 PTE9/
LLWU_P17
DISABLED PTE9/
LLWU_P17
I2S0_TXD1 I2S0_RX_
BCLK
LPUART0_
RX
FTM3_CH4
F10 F4 13 F1 PTE10/
LLWU_P18
DISABLED PTE10/
LLWU_P18
I2C3_SDA I2S0_TXD0 LPUART0_
CTS_b
FTM3_CH5 USB1_ID
E11 G4 14 G4 PTE11 DISABLED PTE11 I2C3_SCL I2S0_TX_
FS
LPUART0_
RTS_b
FTM3_CH6
E12 H4 15 G3 PTE12 DISABLED PTE12 I2S0_TX_
BCLK
FTM3_CH7
E13 G6 16 E6 VDD VDD VDD
G8 G8 17 F7 VSS VSS VSS
G9 H3 PTE16 ADC0_
SE4a
ADC0_
SE4a
PTE16 SPI0_PCS0 UART2_TX FTM_
CLKIN0
FTM0_
FLT3
TPM_
CLKIN0
F11 F5 PTE17/
LLWU_P19
ADC0_
SE5a
ADC0_
SE5a
PTE17/
LLWU_P19
SPI0_SCK UART2_RX FTM_
CLKIN1
LPTMR0_
ALT3
TPM_
CLKIN1
G10 F6 PTE18/
LLWU_P20
ADC0_
SE6a
ADC0_
SE6a
PTE18/
LLWU_P20
SPI0_
SOUT
UART2_
CTS_b
I2C0_SDA
F12 F7 PTE19 ADC0_
SE7a
ADC0_
SE7a
PTE19 SPI0_SIN UART2_
RTS_b
I2C0_SCL CMP3_OUT
F13 G3 18 F6 VSS VSS VSS
G13 G1 19 H1 USB0_DP USB0_DP USB0_DP
H13 F1 20 H2 USB0_DM USB0_DM USB0_DM
G11 G2 21 G1 VREG_
OUT
VREG_
OUT
VREG_
OUT
G12 F2 22 G2 VREG_IN0 VREG_IN0 VREG_IN0
H12 H2 23 J2 VREG_IN1 DISABLED VREG_IN1
J12 K1 24 K2 USB1_VSS DISABLED USB1_VSS
J13 J1 25 J1 USB1_DP DISABLED USB1_DP
K13 H1 26 K1 USB1_DM DISABLED USB1_DM
K12 J2 27 L1 USB1_
VBUS
DISABLED USB1_
VBUS
J11 L1 ADC1_DP1 ADC1_DP1 ADC1_DP1
K11 M1 ADC1_DM1 ADC1_DM1 ADC1_DM1
L13 M2 ADC0_DP0/
ADC1_DP3
ADC0_DP0/
ADC1_DP3
ADC0_DP0/
ADC1_DP3
M13 L2 28 L2 ADC0_
DM0/
ADC1_DM3
ADC0_
DM0/
ADC1_DM3
ADC0_
DM0/
ADC1_DM3
L12 N1 29 M1 ADC1_DP0/
ADC0_DP3
ADC1_DP0/
ADC0_DP3
ADC1_DP0/
ADC0_DP3
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 73
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
M12 N2 30 M2 ADC1_
DM0/
ADC0_DM3
ADC1_
DM0/
ADC0_DM3
ADC1_
DM0/
ADC0_DM3
L11 J3 31 H5 VDDA VDDA VDDA
M11 K3 32 G5 VREFH VREFH VREFH
N12 K4 33 G6 VREFL VREFL VREFL
N13 J4 34 H6 VSSA VSSA VSSA
H11 M3 35 K3 ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
K10 L3 36 J3 ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
L10 N3 37 M3 VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
M10 M4 38 L3 DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
N11 N4 39 L4 DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
J10 M5 L5 RTC_
WAKEUP_
B
RTC_
WAKEUP_
B
RTC_
WAKEUP_
B
H10 L4 NC NC NC
H9 L5 NC NC NC
J9 K5 NC NC NC
N10 L6 NC NC NC
K9 K6 NC NC NC
M9 N5 40 M7 XTAL32 XTAL32 XTAL32
N9 N6 41 M6 EXTAL32 EXTAL32 EXTAL32
L9 M6 42 L6 VBAT VBAT VBAT
H8 J6 NC NC NC
J8 J5 NC NC NC
Pinout
74 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
K8 G7 43 VDD VDD VDD
H7 N7 44 VSS VSS VSS
N8 L7 45 M4 PTE24 ADC0_
SE17
ADC0_
SE17
PTE24 CAN1_TX UART4_TX I2C0_SCL EWM_
OUT_b
M8 K7 46 K5 PTE25/
LLWU_P21
ADC0_
SE18
ADC0_
SE18
PTE25/
LLWU_P21
CAN1_RX UART4_RX I2C0_SDA EWM_IN
L8 K8 47 K4 PTE26/
CLKOUT32
K
DISABLED PTE26/
CLKOUT32
K
UART4_
CTS_b
RTC_
CLKOUT
USB0_
CLKIN
J7 L8 48 J4 PTE27 DISABLED PTE27 UART4_
RTS_b
K7 M7 49 H4 PTE28 DISABLED PTE28
N7 N8 50 J5 PTA0 JTAG_
TCLK/
SWD_CLK/
EZP_CLK
TSI0_CH1 PTA0 UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5 LPUART0_
CTS_b
JTAG_
TCLK/
SWD_CLK
EZP_CLK
M7 N9 51 J6 PTA1 JTAG_TDI/
EZP_DI
TSI0_CH2 PTA1 UART0_RX FTM0_CH6 I2C3_SDA LPUART0_
RX
JTAG_TDI EZP_DI
L7 M9 52 K6 PTA2 JTAG_
TDO/
TRACE_
SWO/
EZP_DO
TSI0_CH3 PTA2 UART0_TX FTM0_CH7 I2C3_SCL LPUART0_
TX
JTAG_
TDO/
TRACE_
SWO
EZP_DO
J6 M8 53 K7 PTA3 JTAG_
TMS/
SWD_DIO
TSI0_CH4 PTA3 UART0_
RTS_b
FTM0_CH0 LPUART0_
RTS_b
JTAG_
TMS/
SWD_DIO
K6 L9 54 L7 PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
TSI0_CH5 PTA4/
LLWU_P3
FTM0_CH1 NMI_b EZP_CS_b
N6 N10 55 M8 PTA5 DISABLED PTA5 USB0_
CLKIN
FTM0_CH2 CMP2_OUT I2S0_TX_
BCLK
JTAG_
TRST_b
M6 H5 56 E7 VDD VDD VDD
H6 H8 57 G7 VSS VSS VSS
N5 M10 58 J7 PTA6 DISABLED PTA6 FTM0_CH3 CLKOUT TRACE_
CLKOUT
L6 L10 59 J8 PTA7 ADC0_
SE10
ADC0_
SE10
PTA7 FTM0_CH4 TRACE_D3
M5 K9 60 K8 PTA8 ADC0_
SE11
ADC0_
SE11
PTA8 FTM1_CH0 FTM1_QD_
PHA/
TPM1_CH0
TRACE_D2
J5 K10 61 L8 PTA9 DISABLED PTA9 FTM1_CH1 FTM1_QD_
PHB/
TPM1_CH1
TRACE_D1
K5 N11 62 M9 PTA10/
LLWU_P22
DISABLED PTA10/
LLWU_P22
FTM2_CH0 FTM2_QD_
PHA/
TPM2_CH0
TRACE_D0
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 75
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
N4 M11 63 L9 PTA11/
LLWU_P23
DISABLED PTA11/
LLWU_P23
FTM2_CH1 I2C2_SDA FTM2_QD_
PHB/
TPM2_CH1
M4 L12 64 K9 PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 I2C2_SCL I2S0_TXD0 FTM1_QD_
PHA/
TPM1_CH0
L5 L11 65 J9 PTA13/
LLWU_P4
CMP2_IN1 CMP2_IN1 PTA13/
LLWU_P4
CAN0_RX FTM1_CH1 I2C2_SDA I2S0_TX_
FS
FTM1_QD_
PHB/
TPM1_CH1
N3 K13 66 L10 PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX I2C2_SCL I2S0_RX_
BCLK
I2S0_TXD1
L4 K12 67 L11 PTA15 CMP3_IN1 CMP3_IN1 PTA15 SPI0_SCK UART0_RX I2S0_RXD0
K4 J13 68 K10 PTA16 CMP3_IN2 CMP3_IN2 PTA16 SPI0_
SOUT
UART0_
CTS_b/
UART0_
COL_b
I2S0_RX_
FS
I2S0_RXD1
L3 J12 69 K11 PTA17 ADC1_
SE17
ADC1_
SE17
PTA17 SPI0_SIN UART0_
RTS_b
I2S0_MCLK
M3 N12 70 E8 VDD VDD VDD
M2 M12 71 G8 VSS VSS VSS
N1 N13 72 M12 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_
FLT2
FTM_
CLKIN0
TPM_
CLKIN0
N2 M13 73 M11 PTA19 XTAL0 XTAL0 PTA19 FTM1_
FLT0
FTM_
CLKIN1
LPTMR0_
ALT1
TPM_
CLKIN1
M1 L13 74 L12 RESET_b RESET_b RESET_b
K3 K11 75 K12 PTA24 CMP3_IN4 CMP3_IN4 PTA24 FB_A15/
SDRAM_
D15
FB_A29
J4 J11 76 J12 PTA25 CMP3_IN5 CMP3_IN5 PTA25 FB_A14/
SDRAM_
D14
FB_A28
J3 J10 77 J11 PTA26 DISABLED PTA26 FB_A13/
SDRAM_
D13
FB_A27
L2 H13 78 J10 PTA27 DISABLED PTA27 FB_A12/
SDRAM_
D12
FB_A26
L1 H12 79 H12 PTA28 DISABLED PTA28 FB_A25
K2 H11 80 H11 PTA29 DISABLED PTA29 FB_A24
K1 H10 PTA30 DISABLED PTA30 CAN0_TX FB_A11/
SDRAM_
D11
H5 J9 PTA31 DISABLED PTA31 CAN0_RX FB_A10/
SDRAM_
D10
Pinout
76 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
H4 G13 81 H10 PTB0/
LLWU_P5
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL FTM1_CH0 SDRAM_
CAS_b
FTM1_QD_
PHA/
TPM1_CH0
J2 G12 82 H9 PTB1 ADC0_SE9/
ADC1_SE9/
TSI0_CH6
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
PTB1 I2C0_SDA FTM1_CH1 SDRAM_
RAS_b
FTM1_QD_
PHB/
TPM1_CH1
J1 G11 83 G12 PTB2 ADC0_
SE12/
TSI0_CH7
ADC0_
SE12/
TSI0_CH7
PTB2 I2C0_SCL UART0_
RTS_b
SDRAM_
WE
FTM0_
FLT3
H3 G10 84 G11 PTB3 ADC0_
SE13/
TSI0_CH8
ADC0_
SE13/
TSI0_CH8
PTB3 I2C0_SDA UART0_
CTS_b/
UART0_
COL_b
SDRAM_
CS0_b
FTM0_
FLT0
G7 VSS VSS VSS
G6 VDD VDD VDD
H2 H9 85 G10 PTB4 ADC1_
SE10
ADC1_
SE10
PTB4 SDRAM_
CS1_b
FTM1_
FLT0
H1 F13 86 G9 PTB5 ADC1_
SE11
ADC1_
SE11
PTB5 FTM2_
FLT0
G5 F12 87 F12 PTB6 ADC1_
SE12
ADC1_
SE12
PTB6 FB_AD23/
SDRAM_
D23
G4 F11 88 F11 PTB7 ADC1_
SE13
ADC1_
SE13
PTB7 FB_AD22/
SDRAM_
D22
G3 F10 89 F10 PTB8 DISABLED PTB8 UART3_
RTS_b
FB_AD21/
SDRAM_
D21
G2 F9 90 F9 PTB9 DISABLED PTB9 SPI1_PCS1 UART3_
CTS_b
FB_AD20/
SDRAM_
D20
G1 G9 91 E12 PTB10 ADC1_
SE14
ADC1_
SE14
PTB10 SPI1_PCS0 UART3_RX FB_AD19/
SDRAM_
D19
FTM0_
FLT1
F5 E13 92 E11 PTB11 ADC1_
SE15
ADC1_
SE15
PTB11 SPI1_SCK UART3_TX FB_AD18/
SDRAM_
D18
FTM0_
FLT2
F4 E12 PTB12 DISABLED PTB12 UART3_
RTS_b
FTM1_CH0 FTM0_CH4 FB_A9/
SDRAM_D9
FTM1_QD_
PHA/
TPM1_CH0
F3 E11 PTB13 DISABLED PTB13 UART3_
CTS_b
FTM1_CH1 FTM0_CH5 FB_A8/
SDRAM_D8
FTM1_QD_
PHB/
TPM1_CH1
F2 E10 PTB14 DISABLED PTB14 CAN1_TX FB_A7/
SDRAM_D7
F1 E9 PTB15 DISABLED PTB15 CAN1_RX FB_A6/
SDRAM_D6
93 H7 VSS VSS VSS
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 77
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
94 F5 VDD VDD VDD
E1 F8 95 E10 PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_
SOUT
UART0_RX FTM_
CLKIN0
FB_AD17/
SDRAM_
D17
EWM_IN TPM_
CLKIN0
E2 D13 96 E9 PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_SIN UART0_TX FTM_
CLKIN1
FB_AD16/
SDRAM_
D16
EWM_
OUT_b
TPM_
CLKIN1
E3 D12 97 D12 PTB18 TSI0_CH11 TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_
BCLK
FB_AD15/
SDRAM_
A23
FTM2_QD_
PHA/
TPM2_CH0
E4 D11 98 D11 PTB19 TSI0_CH12 TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_
FS
FB_OE_b FTM2_QD_
PHB/
TPM2_CH1
E5 D10 99 D10 PTB20 DISABLED PTB20 SPI2_PCS0 FB_AD31/
SDRAM_
D31
CMP0_OUT
D1 D9 100 D9 PTB21 DISABLED PTB21 SPI2_SCK FB_AD30/
SDRAM_
D30
CMP1_OUT
D2 C13 101 C12 PTB22 DISABLED PTB22 SPI2_
SOUT
FB_AD29/
SDRAM_
D29
CMP2_OUT
D3 C12 102 C11 PTB23 DISABLED PTB23 SPI2_SIN SPI0_PCS5 FB_AD28/
SDRAM_
D28
CMP3_OUT
C1 B13 103 B12 PTC0 ADC0_
SE14/
TSI0_CH13
ADC0_
SE14/
TSI0_CH13
PTC0 SPI0_PCS4 PDB0_
EXTRG
USB0_
SOF_OUT
FB_AD14/
SDRAM_
A22
I2S0_TXD1
C2 B12 104 B11 PTC1/
LLWU_P6
ADC0_
SE15/
TSI0_CH14
ADC0_
SE15/
TSI0_CH14
PTC1/
LLWU_P6
SPI0_PCS3 UART1_
RTS_b
FTM0_CH0 FB_AD13/
SDRAM_
A21
I2S0_TXD0
D4 A13 105 A12 PTC2 ADC0_
SE4b/
CMP1_IN0/
TSI0_CH15
ADC0_
SE4b/
CMP1_IN0/
TSI0_CH15
PTC2 SPI0_PCS2 UART1_
CTS_b
FTM0_CH1 FB_AD12/
SDRAM_
A20
I2S0_TX_
FS
B1 A12 106 A11 PTC3/
LLWU_P7
CMP1_IN1 CMP1_IN1 PTC3/
LLWU_P7
SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_
BCLK
F6 C11 107 H8 VSS VSS VSS
E6 H6 108 VDD VDD VDD
A1 B11 109 A9 PTC4/
LLWU_P8
DISABLED PTC4/
LLWU_P8
SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11/
SDRAM_
A19
CMP1_OUT
B2 A11 110 D8 PTC5/
LLWU_P9
DISABLED PTC5/
LLWU_P9
SPI0_SCK LPTMR0_
ALT2
I2S0_RXD0 FB_AD10/
SDRAM_
A18
CMP0_OUT FTM0_CH2
C3 A10 111 C8 PTC6/
LLWU_P10
CMP0_IN0 CMP0_IN0 PTC6/
LLWU_P10
SPI0_
SOUT
PDB0_
EXTRG
I2S0_RX_
BCLK
FB_AD9/
SDRAM_
A17
I2S0_MCLK
Pinout
78 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
D5 B10 112 B8 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB0_
SOF_OUT
I2S0_RX_
FS
FB_AD8/
SDRAM_
A16
C4 C10 113 A8 PTC8 ADC1_
SE4b/
CMP0_IN2
ADC1_
SE4b/
CMP0_IN2
PTC8 FTM3_CH4 I2S0_MCLK FB_AD7/
SDRAM_
A15
A2 C9 114 D7 PTC9 ADC1_
SE5b/
CMP0_IN3
ADC1_
SE5b/
CMP0_IN3
PTC9 FTM3_CH5 I2S0_RX_
BCLK
FB_AD6/
SDRAM_
A14
FTM2_
FLT0
B3 A8 115 C7 PTC10 ADC1_
SE6b
ADC1_
SE6b
PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_
FS
FB_AD5/
SDRAM_
A13
D6 A9 116 B7 PTC11/
LLWU_P11
ADC1_
SE7b
ADC1_
SE7b
PTC11/
LLWU_P11
I2C1_SDA FTM3_CH7 I2S0_RXD1 FB_RW_b
C5 B9 117 A7 PTC12 DISABLED PTC12 UART4_
RTS_b
FTM_
CLKIN0
FB_AD27/
SDRAM_
D27
FTM3_
FLT0
TPM_
CLKIN0
A3 B8 118 D6 PTC13 DISABLED PTC13 UART4_
CTS_b
FTM_
CLKIN1
FB_AD26/
SDRAM_
D26
TPM_
CLKIN1
B4 C8 119 C6 PTC14 DISABLED PTC14 UART4_RX FB_AD25/
SDRAM_
D25
A4 D8 120 B6 PTC15 DISABLED PTC15 UART4_TX FB_AD24/
SDRAM_
D24
F7 121 VSS VSS VSS
E7 122 VDD VDD VDD
A5 E8 123 A6 PTC16 DISABLED PTC16 CAN1_RX UART3_RX FB_CS5_b/
FB_TSIZ1/
FB_BE23_
16_BLS15_
8_b/
SDRAM_
DQM2
B5 E7 124 D5 PTC17 DISABLED PTC17 CAN1_TX UART3_TX FB_CS4_b/
FB_TSIZ0/
FB_BE31_
24_BLS7_
0_b/
SDRAM_
DQM3
C6 D7 125 C5 PTC18 DISABLED PTC18 UART3_
RTS_b
FB_TBST_
b/
FB_CS2_b/
FB_BE15_
8_BLS23_
16_b/
SDRAM_
DQM1
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 79
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
B6 C7 126 B5 PTC19 DISABLED PTC19 UART3_
CTS_b
FB_CS3_b/
FB_BE7_0_
BLS31_24_
b/
SDRAM_
DQM0
FB_TA_b
A6 B7 PTC24 DISABLED PTC24 LPUART0_
TX
FB_A5/
SDRAM_D5
D7 A7 PTC25 DISABLED PTC25 LPUART0_
RX
FB_A4/
SDRAM_D4
E8 E6 PTC26 DISABLED PTC26 LPUART0_
CTS_b
FB_A3/
SDRAM_D3
A7 D6 PTC27 DISABLED PTC27 LPUART0_
RTS_b
FB_A2/
SDRAM_D2
B7 C6 PTC28 DISABLED PTC28 I2C3_SDA FB_A1/
SDRAM_D1
C7 B6 PTC29 DISABLED PTC29 I2C3_SCL FB_A0/
SDRAM_D0
D8 A6 127 A5 PTD0/
LLWU_P12
DISABLED PTD0/
LLWU_P12
SPI0_PCS0 UART2_
RTS_b
FTM3_CH0 FB_ALE/
FB_CS1_b/
FB_TS_b
A8 A5 128 D4 PTD1 ADC0_
SE5b
ADC0_
SE5b
PTD1 SPI0_SCK UART2_
CTS_b
FTM3_CH1 FB_CS0_b
B8 A4 129 C4 PTD2/
LLWU_P13
DISABLED PTD2/
LLWU_P13
SPI0_
SOUT
UART2_RX FTM3_CH2 FB_AD4/
SDRAM_
A12
I2C0_SCL
C8 B4 130 B4 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3/
SDRAM_
A11
I2C0_SDA
F8 B5 131 A4 PTD4/
LLWU_P14
DISABLED PTD4/
LLWU_P14
SPI0_PCS1 UART0_
RTS_b
FTM0_CH4 FB_AD2/
SDRAM_
A10
EWM_IN SPI1_PCS0
A9 C4 132 A3 PTD5 ADC0_
SE6b
ADC0_
SE6b
PTD5 SPI0_PCS2 UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5 FB_AD1/
SDRAM_A9
EWM_
OUT_b
SPI1_SCK
B9 C5 133 A2 PTD6/
LLWU_P15
ADC0_
SE7b
ADC0_
SE7b
PTD6/
LLWU_P15
SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_
FLT0
SPI1_
SOUT
J8 134 M10 VSS VSS VSS
E9 H7 135 F8 VDD VDD VDD
A10 E5 136 A1 PTD7 DISABLED PTD7 CMT_IRO UART0_TX FTM0_CH7 SDRAM_
CKE
FTM0_
FLT1
SPI1_SIN
C9 D5 137 C9 PTD8/
LLWU_P24
DISABLED PTD8/
LLWU_P24
I2C0_SCL LPUART0_
RX
FB_A16
B10 D4 138 B9 PTD9 DISABLED PTD9 I2C0_SDA LPUART0_
TX
FB_A17
A11 D3 139 B3 PTD10 DISABLED PTD10 LPUART0_
RTS_b
FB_A18
Pinout
80 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
169
CSP
169
BGA
144
LQFP
144
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EZPORT
D9 C2 140 B2 PTD11/
LLWU_P25
DISABLED PTD11/
LLWU_P25
SPI2_PCS0 SDHC0_
CLKIN
LPUART0_
CTS_b
FB_A19
C10 B2 141 B1 PTD12 DISABLED PTD12 SPI2_SCK FTM3_
FLT0
SDHC0_D4 FB_A20
A12 B3 142 C3 PTD13 DISABLED PTD13 SPI2_
SOUT
SDHC0_D5 FB_A21
B11 A2 143 C2 PTD14 DISABLED PTD14 SPI2_SIN SDHC0_D6 FB_A22
D10 A3 144 C1 PTD15 DISABLED PTD15 SPI2_PCS1 SDHC0_D7 FB_A23
K2 NC NC NC
J7 M5 NC NC NC
A10 NC NC NC
B10 NC NC NC
C10 NC NC NC
5.2 Recommended connection for unused analog and digital
pins
Table 57 shows the recommended connections for analog interface pins if those
analog interfaces are not used in the customer's application
Table 57. Recommended connection for unused analog interfaces
Pin Type K26 Short recommendation Detailed recommendation
Analog/non GPIO ADCx/CMPx Float Analog input - Float
Analog/non GPIO VREF_OUT Float Analog output - Float
Analog/non GPIO DAC0_OUT, DAC1_OUT Float Analog output - Float
Analog/non GPIO RTC_WAKEUP_B Float Analog output - Float
Analog/non GPIO XTAL32 Float Analog output - Float
Analog/non GPIO EXTAL32 Float Analog input - Float
GPIO/Analog PTA18/EXTAL0 Float Analog input - Float
GPIO/Analog PTA19/XTAL0 Float Analog output - Float
GPIO/Analog PTx/ADCx Float Float (default is analog input)
GPIO/Analog PTx/CMPx Float Float (default is analog input)
GPIO/Analog PTx/TSIOx Float Float (default is analog input)
GPIO/Digital PTA0/JTAG_TCLK Float Float (default is JTAG with
pulldown)
GPIO/Digital PTA1/JTAG_TDI Float Float (default is JTAG with
pullup)
GPIO/Digital PTA2/JTAG_TDO Float Float (default is JTAG with
pullup)
Table continues on the next page...
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 81
NXP Semiconductors
Table 57. Recommended connection for unused analog interfaces (continued)
Pin Type K26 Short recommendation Detailed recommendation
GPIO/Digital PTA3/JTAG_TMS Float Float (default is JTAG with
pullup)
GPIO/Digital PTA4/NMI_b 10kΩ pullup or disable and
float
Pull high or disable in PCR &
FOPT and float
GPIO/Digital PTx Float Float (default is disabled)
USB USB0_DP Float Float
USB USB0_DM Float Float
USB VREG_OUT Tie to input and ground
through 10kΩ
Tie to input and ground
through 10kΩ
USB VREG_IN0 Tie to output and ground
through 10kΩ
Tie to output and ground
through 10kΩ
USB VREG_IN1 Tie to output and ground
through 10kΩ
Tie to output and ground
through 10kΩ
USB USB1_VSS Always connect to VSS Always connect to VSS
USB USB1_DP Float Float
USB USB1_DM Float Float
USB USB1_VBUS Float Float
VBAT VBAT Float Float
VDDA VDDA Always connect to VDD
potential
Always connect to VDD
potential
VREFH VREFH Always connect to VDD
potential
Always connect to VDD
potential
VREFL VREFL Always connect to VSS
potential
Always connect to VSS
potential
VSSA VSSA Always connect to VSS
potential
Always connect to VSS
potential
5.3 MK26 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
Pinout
82 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
75
74
73
60
59
58
57
56
55
54
53
52
51
72
71
70
69
68
67
66
65
64
63
62
61
25
24
23
22
21
40
39
38
37
50
49
48
47
46
45
44
43
42
41
36
35
34
33
32
31
30
29
28
27
26
99
79
78
77
76
98
97
96
95
94
93
92
91
90
89
88
80
81
82
83
84
85
86
87
100
108 VDD
107
106
105
104
103
102
101
VSS
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6
PTC0
PTB23
PTB22
116 PTC11/LLWU_P11
115
114
113
112
111
110
109
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
124 PTC17
123
122
121
120
119
118
117
PTC16
VDD
VSS
PTC15
PTC14
PTC13
PTC12
132 PTD5
131
130
129
128
127
126
125
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC19
PTC18
140 PTD11/LLWU_P25
139
138
137
136
135
134
133
PTD10
PTD9
PTD8/LLWU_P24
PTD7
VDD
VSS
PTD6/LLWU_P15
144
143
142
141
PTD15
PTD14
PTD13
PTD12
PTB20
PTA28
PTA27
PTA26
PTA25
PTB19
PTB18
PTB17
PTB16
VDD
VSS
PTB11
PTB10
PTB9
PTB8
PTB7
PTA29
PTB0/LLWU_P5
PTB1
PTB2
PTB3
PTB4
PTB5
PTB6
PTB21
PTA24
RESET_b
PTA19
PTA18
VSS
VDD
PTA17
PTA16
PTA15
PTA14
PTA13/LLWU_P4
PTA12
PTA11/LLWU_P23
PTA10/LLWU_P22
PTA9
PTA8
PTA7
PTA6
VSS
VDD
PTA5
PTA4/LLWU_P3
PTA3
PTA2
PTA1
PTA0
PTE28
PTE27
PTE26/CLKOUT32K
PTE25/LLWU_P21
PTE24
VSS
VDD
VBAT
EXTAL32
XTAL32
DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23
DAC0_OUT/CMP1_IN3/ADC0_SE23
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
USB0_DM
USB0_DP
VSS
VSS
VDD
PTE12
PTE11
PTE10/LLWU_P18
PTE9/LLWU_P17
PTE8
PTE7
PTE6/LLWU_P16
PTE5
PTE4/LLWU_P2
VSS
VDD
PTE3
PTE2/LLWU_P1
PTE1/LLWU_P0
PTE0
USB1_DP
USB1_VSS
VREG_IN1
VREG_IN0
VREG_OUT
ADC0_SE16/CMP1_IN2/ADC0_SE21
ADC1_SE16/CMP2_IN2/ADC0_SE22
VSSA
VREFL
VREFH
VDDA
ADC1_DM0/ADC0_DM3
ADC1_DP0/ADC0_DP3
ADC0_DM0/ADC1_DM3
USB1_VBUS
USB1_DM
Figure 36. MK26 144 LQFP Pinout Diagram
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 83
NXP Semiconductors
1 2 3456789
123456789
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
10
K
K
10
11
11
LL
12
12
M
MPTA18
PTC8 PTC4/
LLWU_P8 NC PTC3/
LLWU_P7 PTC2
PTA1 PTA6PTA0PTE27
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PTE26/
CLKOUT32K PTE25/
LLWU_P21
PTA2 PTA3 PTA8
PTA7
VSSVSSVSSAVDDAPTE28VSSUSB0_DM
VREG_IN1
USB1_VSS
ADC0_DM0/
ADC1_DM3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
RTC_
WAKEUP_B VBAT PTA4/
LLWU_P3
PTA9 PTA11/
LLWU_P23
PTA12
PTA13/
LLWU_P4
PTB1
PTA27
PTB0/
LLWU_P5
PTB4PTB5VSSVSSVREFLVREFHPTE11PTE12VREG_IN0VREG_OUT
USB0_DP
USB1_DP
USB1_DM
USB1_VBUS
ADC1_DP0/
ADC0_DP3
ADC1_DM0/
ADC0_DM3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
PTE24 NC EXTAL32 XTAL32 PTA5
PTA10/
LLWU_P22 VSS
PTA16
PTA14
PTB3
PTA29
PTA26
PTA17
PTA15
PTA19
RESET_b
PTA24
PTA25
PTA28
PTB2
PTB6PTB7PTB8PTB9VDD
VDD PTB17 PTB16 PTB10PTB11
PTB19 PTB18
PTB22PTB23NC
PTB20PTB21PTC5/
LLWU_P9
PTD8/
LLWU_P24
PTC6/
LLWU_P10
PTC7 PTD9 NC PTC1/
LLWU_P6 PTC0
VSS VSS
VDDVDD
PTC13 PTC9
PTC11/
LLWU_P11
PTC10
PTC19 PTC15
PTC14PTC18PTD2/
LLWU_P13
PTD3PTD10
PTD13
PTE0 PTD1 PTC17
VDD
VDDPTE7
PTE3PTE4/
LLWU_P2
PTE8PTE9/
LLWU_P17
PTE10/
LLWU_P18
PTE6/
LLWU_P16 PTE5
PTE1/
LLWU_P0
PTE2/
LLWU_P1
PTD15 PTD14
PTD11/
LLWU_P25
PTD12
PTC12PTC16PTD0/
LLWU_P12
PTD4/
LLWU_P14
PTD5PTD6/
LLWU_P15
PTD7
Figure 37. MK26 144 BGA Pinout Diagram
Pinout
84 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
1
A PTE0
B PTE1/
LLWU_P0
C PTE2/
LLWU_P1
D PTE3
E PTE4/
LLWU_P2
F USB0_DM
G USB0_DP
H USB1_DM
J USB1_DP
K USB1_VSS
L ADC1_DP1
M ADC1_DM1
1
N
ADC1_DP0/
ADC0_DP3
2
PTD14
PTD12
PTD11/
LLWU_P25
PTE5
PTE6/
LLWU_P16
VREG_IN0
VREG_OUT
VREG_IN1
USB1_VBUS
NC
ADC0_DM0/
ADC1_DM3
ADC0_DP0/
ADC1_DP3
2
ADC1_DM0/
ADC0_DM3
3
PTD15
PTD13
VSS
PTD10
PTE7
PTE9/
LLWU_P17
VSS
PTE16
VDDA
VREFH
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
4
PTD2/
LLWU_P13
PTD3
PTD5
PTD9
PTE8
PTE10/
LLWU_P18
PTE11
PTE12
VSSA
VREFL
NC
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
4
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
5
PTD1
PTD4/
LLWU_P14
PTD6/
LLWU_P15
PTD8/
LLWU_P24
PTD7
PTE17/
LLWU_P19
VDD
VDD
NC
NC
NC
RTC_
WAKEUP_B
5
XTAL32
6
PTD0/
LLWU_P12
PTC29
PTC28
PTC27
PTC26
PTE18/
LLWU_P20
VDD
VDD
NC
NC
NC
VBAT
6
EXTAL32
7
PTC25
PTC24
PTC19
PTC18
PTC17
PTE19
VDD
VDD
NC
PTE25/
LLWU_P21
PTE24
PTE28
7
VSS
8
PTC10
PTC13
PTC14
PTC15
PTC16
PTB16
VSS
VSS
VSS
PTE26/
CLKOUT32K
PTE27
PTA3
8
PTA0
9
PTC11/
LLWU_P11
PTC12
PTC9
PTB21
PTB15
PTB9
PTB10
PTB4
PTA31
PTA8
PTA4/
LLWU_P3
PTA2
9
PTA1
10
PTC6/
LLWU_P10
PTC7
PTC8
PTB20
PTB14
PTB8
PTB3
PTA30
PTA26
PTA9
PTA7
PTA6
10
PTA5
11
PTC5/
LLWU_P9
PTC4/
LLWU_P8
VSS
PTB19
PTB13
PTB7
PTB2
PTA29
PTA25
PTA24
PTA13/
LLWU_P4
PTA11/
LLWU_P23
11
PTA10/
LLWU_P22
12
PTC3/
LLWU_P7
PTC1/
LLWU_P6
PTB23
PTB18
PTB12
PTB6
PTB1
PTA28
PTA17
PTA15
PTA12
VSS
12
VDD
13
APTC2
BPTC0
CPTB22
DPTB17
EPTB11
FPTB5
GPTB0/
LLWU_P5
HPTA27
JPTA16
KPTA14
LRESET_b
MPTA19
13
NPTA18
Figure 38. MK26 169 BGA Pinout Diagram
Pinout
Kinetis K26 Sub-Family, Rev. 4, 04/2017 85
NXP Semiconductors
1
A PTC4/
LLWU_P8
B PTC3/
LLWU_P7
C PTC0
D PTB21
E PTB16
F PTB15
G PTB10
H PTB5
J PTB2
K PTA30
L PTA28
M RESET_b
1
N PTA18
2
PTC9
PTC5/
LLWU_P9
PTC1/
LLWU_P6
PTB22
PTB17
PTB14
PTB9
PTB4
PTB1
PTA29
PTA27
VSS
2
PTA19
3
PTC13
PTC10
PTC6
/LLWU_P10
PTB23
PTB18
PTB13
PTB8
PTB3
PTA26
PTA24
PTA17
VDD
3
PTA14
4
PTC15
PTC14
PTC8
PTC2
PTB19
PTB12
PTB7
PTB0/
LLWU_P5
PTA25
PTA16
PTA15
PTA12
4
PTA11/
LLWU_P23
5
PTC16
PTC17
PTC12
PTC7
PTB20
PTB11
PTB6
PTA31
PTA9
PTA10/
LLWU_P22
PTA13/
LLWU_P4
PTA8
5
PTA6
6
PTC24
PTC19
PTC18
PTC11/
LLWU_P11
VDD
VSS
VDD
VSS
PTA3
PTA4/
LLWU_P3
PTA7
VDD
6
PTA5
7
PTC27
PTC28
PTC29
PTC25
VDD
VSS
VSS
VSS
PTE27
PTE28
PTA2
PTA1
7
PTA0
8
PTD1
PTD2/
LLWU_P13
PTD3
PTD0/
LLWU_P12
PTC26
PTD4/
LLWU_P14
VSS
NC
NC
VDD
PTE26/
CLKOUT32K
PTE25/
LLWU_P21
8
PTE24
9
PTD5
PTD6/
LLWU_P15
PTD8/
LLWU_P24
PTD11/
LLWU_P25
VDD
VDD
PTE16
NC
NC
NC
VBAT
XTAL32
9
EXTAL32
10
PTD7
PTD9
PTD12
PTD15
PTE7
PTE10/
LLWU_P18
PTE18/
LLWU_P20
NC
RTC_
WAKEUP_B
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
10
NC
11
PTD10
PTD14
PTE0
PTE5
PTE11
PTE17/
LLWU_P19
VREG_OUT
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
ADC1_DP1
ADC1_DM1
VDDA
VREFH
11
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
12
PTD13
PTE2/
LLWU_P1
PTE4/
LLWU_P2
PTE8
PTE12
PTE19
VREG_IN0
VREG_IN1
USB1_VSS
USB1_VBUS
ADC1_DP0/
ADC0_DP3
ADC1_DM0/
ADC0_DM3
12
VREFL
13
APTE1/
LLWU_P0
BPTE3
CPTE6/
LLWU_P16
DPTE9/
LLWU_P17
EVDD
FVSS
GUSB0_DP
HUSB0_DM
JUSB1_DP
KUSB1_DM
LADC0_DP0/
ADC1_DP3
M
ADC0_DM0/
ADC1_DM3
13
NVSSA
Figure 39. MK26 169 CSP Pinout Diagram
6Ordering parts
Ordering parts
86 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
6.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable
part numbers for this device, go to nxp.com and perform a part number search for the
following device numbers: MK26
7 Part identification
7.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
7.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
7.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
K## Kinetis family K26
A Key attribute D = Cortex-M4 w/ DSP
F = Cortex-M4 w/ DSP and FPU
M Flash memory type N = Program flash only
X = Program flash and FlexMemory
FFF Program flash memory size 32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
2M0 = 2 MB
Table continues on the next page...
Part identification
Kinetis K26 Sub-Family, Rev. 4, 04/2017 87
NXP Semiconductors
Field Description Values
R Silicon revision Z = Initial
(Blank) = Main
A = Revision after main
T Temperature range (°C) V = –40 to 105
C = –40 to 85
PP Package identifier FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC Maximum CPU frequency (MHz) 5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
16 = 168 MHz
18 = 180 MHz
N Packaging type R = Tape and reel
(Blank) = Trays
7.4 Example
This is an example part number:
MK26FN2M0CAC18R
8Terminology and guidelines
8.1 Definitions
Key terms are defined in the following table:
Term Definition
Rating A minimum or maximum value of a technical characteristic that, if exceeded, may cause
permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
Table continues on the next page...
Terminology and guidelines
88 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Term Definition
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic
begins to exceed one of its operating ratings.
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during
operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during
operation if you meet the operating requirements and any other specified conditions
Typical value A specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Is representative of that characteristic during operation when you meet the typical-value
conditions or other specified conditions
NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.
8.2 Examples
Operating rating:
Operating requirement:
Operating behavior that includes a typical value:
EXAMPLE
EXAMPLEEXAMPLE
EXAMPLE
8.3 Typical-value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Terminology and guidelines
Kinetis K26 Sub-Family, Rev. 4, 04/2017 89
NXP Semiconductors
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD Supply voltage 3.3 V
8.4 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
8.5 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
9Revision History
The following table provides a revision history for this document.
Revision History
90 Kinetis K26 Sub-Family, Rev. 4, 04/2017
NXP Semiconductors
Table 58. Revision History
Rev. No. Date Substantial Changes
0 02/2015 Initial Release
1 04/2015 Editorial change
Updated OTG/EH and BC rev. 1.2 specification references in USB Full Speed
Transceiver and High Speed PHY specifications section
Updated USBDCD electrical specifications table
Updated the typical values and maximum values of specs in Power consumption
operating behaviors table
Removed PSTOP2 current from Power consumption operating behaviors table
Updated the values of DS5 and DS7 in Master mode DSPI timing (full voltage
range) table
Updated the footnote and description of VDIO, VAIO and ID in Voltage and current
operating ratings table
Updated the values and description of specs in Voltage and current operating
requirements table
Updated the leakage current specs in Voltage and current operating behaviors table
Added Notes column in Thermal operating requirements
Updated the values of 48 MHz IRC in Low power mode peripheral adders table
205/2015 Added new footnotes for IINRUSH in USB VREG electrical specifications table to
better document operation.
Added a footnote to the figures, "SDRAM write timing diagram" and "SDRAM read
timing diagram," for 144-pin packages, in the section "SDRAM controller
specifications."
Added a note to the section "Pinouts" for pin functions not available in 144-pin
packages.
3 01/2016 Updated the symbol in footnote of Thermal operating spec
Updated description of PLL operating current in MCG specification table.
Added the USB FS and USB HS logo in front matter
Updated IRC48M specifications
Updated Terminology and guidelines section
Updated the maximum values of IDD_LLS2 and IDD_LLS3 in Power consumption
operating behaviors table
4 03/2017 Removed the verbiage of "except RTC_WAKEUP pins" from the description for RPU
and RPD in Voltage and current operating behaviors table
Updated the unit of ADC conversion rate from "Kbps" to "kS/s" in 16-bit ADC
operating conditions table
Updated I2C switching specifications section
Updated the minimum and maximum value of Voltage reference output with factory
trim in VREF full-range operating requirements table in Voltage reference electrical
specifications section
Revision History
Kinetis K26 Sub-Family, Rev. 4, 04/2017 91
NXP Semiconductors
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.
All other product or service names are the property of their respective owners.
ARM, the ARM powered logo, and Cortex are registered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a
registered trademark of USB Implementers Forum, Inc. All rights reserved.
© 2013–2017 NXP B.V.
Document Number K26P169M180SF5
Revision 4, 04/2017