TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A – FEBRUAR Y 1997 - REVISED FEBRUAR Y 2003
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Direct Upgrades to TL07x and TL08x BiFET
Operational Amplifiers
D
Faster Slew Rate (20 V/µs Typ) Without
Increased Power Consumption
D
On-Chip Offset-Voltage Trimming for
Improved DC Performance and Precision
Grades Are Available (1.5 mV, TL051A)
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN–
1IN+
VCC+
2IN+
2IN–
2OUT
4OUT
4IN–
4IN+
VCC–
3IN+
3IN–
3OUT
1
2
3
4
8
7
6
5
OFFSET N1
IN–
IN+
VCC–
NC
VCC+
OUT
OFFSET N2
1
2
3
4
8
7
6
5
1OUT
1IN–
1IN+
VCC–
VCC+
2OUT
2IN–
2IN+
TL054
D, DB, N, OR NS PACKAGE
(TOP VIEW)
TL051
D OR P PACKAGE
(TOP VIEW)
TL052
D, P, OR PS PACKAGE
(TOP VIEW)
description/ordering information
The TL05x series of JFET-input operational amplifiers offers improved dc and ac characteristics over the TL07x
and TL08x families of BiFET operational amplifiers. On-chip Zener trimming of offset voltage yields precision
grades as low as 1.5 mV (TL051A) for greater accuracy in dc-coupled applications. T exas Instruments improved
BiFET process and optimized designs also yield improved bandwidth and slew rate without increased power
consumption. The TL05x devices are pin-compatible with the TL07x and TL08x and can be used to upgrade
existing circuits or for optimal performance in new designs.
BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without
sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with
high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than
bipolar or CMOS devices having comparable power consumption.
The TL05x family was designed to offer higher precision and better ac response than the TL08x, with the low
noise floor of the TL07x. Designers requiring significantly faster ac response or ensured lower noise should
consider the Excalibur TLE208x and TLE207x families of BiFET operational amplifiers.
Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to
observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing
of the input signal is required, and loads should be terminated to a virtual-ground node at mid-supply. Texas
Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single
supplies.
The TL05x are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems,
Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When moving
from BiFET to CMOS amplifiers, particular attention should be paid to the slew rate and bandwidth
requirements, and also the output loading.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION
TAVIOmax
AT 25°CPACKAGEORDERABLE
PART NUMBER TOP-SIDE
MARKING
PDIP (P)
Tube of 50
TL051ACP TL051ACP
PDIP
(P)
Tube
of
50
TL052ACP TL052ACP
800 µVTube of 75 TL051ACD 051AC
SOIC (D) T ube of 75 TL052ACD
052AC
Reel of 2500 TL052ACDR
052AC
PDIP (P)
Tube of 50
TL051CP TL051CP
PDIP
(P)
Tube
of
50
TL052CP TL052CP
PDIP (N) T ube of 25 TL054ACN TL054ACN
T ube of 75 TL051CD
TL051C
0°Cto70°C
Reel of 2500 TL051CDR
TL051C
0°C
to
70°C
1.5 mV
SOIC (D)
T ube of 75 TL052CD
TL052C
SOIC
(D)
Reel of 2500 TL052CDR
TL052C
T ube of 50 TL054ACD
TL054C
Reel of 2500 TL054ACDR
TL054C
SOP (PS) Reel of 2000 TL052CPSR TL052
SSOP (DB) Reel of 2000 TL054CDBR TL054
PDIP (N) T ube of 25 TL054CN TL054CN
4mV
SOIC (D)
T ube of 50 TL054CD
TL054C
4
mV
SOIC
(D)
Reel of 2500 TL054CDR
TL054C
SOP (NS) Reel of 2000 TL054CNSR TL054
PDIP (P) T ube of 50 TL052AIP TL052AI
800 µV
SOIC (D)
T ube of 75 TL052AID
052AI
SOIC
(D)
Reel of 2500 TL052AIDR
052AI
PDIP (N) T ube of 25 TL054AIN TL054AIN
PDIP (P)
Tube of 50
TL051IP TL051IP
PDIP
(P)
Tube
of
50
TL052IP TL052IP
40°Cto85°C
15mV
T ube of 75 TL051ID TL051I
40°C
to
85°C
1
.
5
mV
T ube of 75 TL052ID
TL052I
SOIC (D) Reel of 2500 TL052IDR
TL052I
T ube of 50 TL054AID
TL054AI
Reel of 2500 TL054AIDR
TL054AI
PDIP (N) T ube of 25 TL054IN TL054IN
4 mV
SOIC (D)
T ube of 50 TL054ID
TL054I
SOIC
(D)
Reel of 2500 TL054IDR
TL054I
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
symbol (each amplifier)
+
IN
IN+ OUT
equivalent schematic (each amplifier)
R9
OFFSET N2
OFFSET N1
IN
IN+
Q2
Q3 Q7
VCC+
Q14
Q6
R4
Q8
Q10
R7
Q11
R6
C1
Q9
Q5
Q4
R5
R1
Q1
JF1 JF2
Q13
Q16
R8
JF3
Q15
Q17
OU
T
VCC
R2 R3
Q12
R10 D2
D1
See Note A
NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL051x.
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TL051 TL052 TL054
Transistors 20 34 62
Resistors 10 19 37
Diodes 2 3 5
Capacitors 1 2 4
These figures include all four amplifiers and all ESD, bias, and trim circuitry.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage (see Note 2) ±30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Notes 1 and 3) ±15 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO (each output) ±80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VCC+ 160 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VCC 160 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Notes 4 and 5): D package (8 pin) 97°C/W. . . . . . . . . . . . . . . . . . . . . .
D package (14 pin) 86°C/W. . . . . . . . . . . . . . . . . . . . .
DB package (14 pin) 96°C/W. . . . . . . . . . . . . . . . . . .
N package (14 pin) 80°C/W. . . . . . . . . . . . . . . . . . . . .
NS package (14 pin) 76°C/W. . . . . . . . . . . . . . . . . . .
P package (8 pin) 85°C/W. . . . . . . . . . . . . . . . . . . . . .
PS package (8 pin) 95°C/W. . . . . . . . . . . . . . . . . . . .
Operating virtual junction temperature, TJ 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC.
2. Differential voltages are at IN+ with respect to IN.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) TA)/θJA. Operating at the absolute maximum TJ of 150°C can impact reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
C SUFFIX I SUFFIX
UNIT
MIN MAX MIN MAX
UNIT
VCC±Supply voltage ±5±15 ±5±15 V
VIC
Common mode in
p
ut voltage
VCC± = ±5 V 1 4 1 4
V
V
IC
Common
-
mode
input
voltage
VCC± = ±15 V 11 11 11 11
V
TAOperating free-air temperature 0 70 40 85 °C
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL051C and TL051AC electrical characteristics at specified free-air temperature
TL051C, TL051AC
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
MIN TYP MAX MIN TYP MAX
25°C 0.75 3.5 0.59 1.5
VIO
In
p
ut offset voltage
Full range 4.5 2.5
mV
V
IO
Input
offset
voltage
25°C 0.55 2.8 0.35 0.8
mV
VO=0
Full range 3.8 1.8
a
Temperature coefficient
V
O =
0
,
VIC = 0,
R
S
=
50
TL051C 25°C to
70°C8 8
µV/
°
C
a
VIO of input offset voltage
RS
=
50
TL051AC 25°C to
70°C8 8 25 µ
V/°C
Input offset-voltage
long-term drift§25°C 0.04 0.04 µV/mo
IIO
In
p
ut offset current
VO = 0, VIC = 0, 25°C 4 100 5 100 pA
I
IO
Input
offset
current
OIC
See Figure 5 70°C 0.02 1 0.025 1 nA
IIB
In
p
ut bias current
VO = 0, VIC = 0, 25°C 20 200 30 200 pA
I
IB
Input
bias
current
OIC
See Figure 5 70°C 0.15 4 0.2 4 nA
VICR
Common-mode input 25°C1
to
4
2.3
to
5.6
11
to
11
12.3
to
15.6
V
V
ICR voltage range Full range 1
to
4
11
to
11
V
RL=10k
25°C 3 4.2 13 13.9
VOM
Maximum positive peak
R
L =
10
k
Full range 3 13
V
V
OM+ output voltage swing
RL=2k
25°C 2.5 3.8 11.5 12.7
V
R
L =
2
k
Full range 2.5 11.5
RL=10k
25°C2.5 3.5 12 13.2
VOM
Maximum negative peak
R
L =
10
k
Full range 2.5 12
V
V
OM
g
output voltage swing
RL=2k
25°C2.3 3.2 11 12
V
R
L =
2
k
Full range 2.3 11
L i l diff ti l
25°C 25 59 50 105
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
RL = 2 k0°C 30 65 60 129 V/mV
voltage
am lification
70°C 20 46 30 85
riInput resistance 25°C 1012 1012
ciInput capacitance 25°C 10 12 pF
Common mode
V V min
25°C 65 85 75 93
CMRR
C
ommon-mo
d
e
rejection ratio
V
IC =
V
ICRm
i
n,
VO=0 R
S=50
0°C 65 84 75 92 dB
rejection
ratio
VO
=
0
,
RS
=
50
70°C 65 84 75 91
Supply voltage rejection
25°C 75 99 75 99
kSVR
S
upp
l
y-vo
lt
age re
j
ec
ti
on
ratio (VCC±/VIO)
VO = 0, RS = 50 0°C 75 98 75 98 dB
ratio
(VCC±/VIO)
70°C 75 97 75 97
25°C 2.6 3.2 2.7 3.2
ICC Supply current VO = 0, No load 0°C 2.7 3.2 2.8 3.2 mA
CC
y
O
70°C 2.6 3.2 2.7 3.2
Full range is 0°C to 70°C.
This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
§Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at TA = 150°C, extrapolated to
TA = 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.
For VCC± = ±5 V, VO = ±2.3 V, or for VCC± = ±15 V, VO = ±10 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL051C and TL051AC operating characteristics at specified free-air temperature
TL051C, TL051AC
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
MIN TYP MAX MIN TYP MAX
P iti l t
25°C 16 13 20
SR+
P
os
iti
ve s
l
ew ra
t
e
at unity gainR
L
= 2 k,C
L
= 100 pF, Full
range 16.4 11 22.6
V/µs
Ntil t
L,L,
See Figure 1 25°C 15 13 18
V/
µ
s
SR
N
ega
ti
ve s
l
ew ra
t
e
at unity gainFull
range 16 11 19.3
25°C 55 56
trRise time 0°C 54 55
70°C 63 63
ns
VI(PP) = ±10 mV,
R2k
25°C 55 57
ns
tfFall time RL = 2 k,
CL= 100
p
F
0°C 54 56
CL
=
100
F
,
See Figures 1 and 2 70°C 62 64
g
25°C 24 19
Overshoot factor 0°C 24 19 %
70°C 24 19
V
Equivalent input noise f = 10 Hz 25°C 75 75
nV/Hz
V
n
q
voltage§RS = 20 Ω, f = 1 kHz 25°C 18 18 30 n
V/H
z
VN(PP) Peak-to-peak equivalent
input noise voltage See Figure 3 f = 10 Hz to
10 kHz 25°C 4 4 µV
InEquivalent input
noise current f = 1 kHz 25°C 0.01 0.01 pA/Hz
THD Total harmonic distortionRS = 1 k,
f = 1 kHz RL = 2 k,25°C 0.003 0.003 %
V10V R 2k
25°C 3 3.1
B1Unity-gain bandwidth VI = 10 mV, RL = 2 k,
CL=25
p
F See Figure 4
0°C 3.2 3.3 MHz
CL
=
25
F
,
See
Figure
4
70°C 2.7 2.8
Phase margin at unity
V10mV R 2k
25°C 59 62
φm
Ph
ase marg
i
n a
t
un
it
y
gain
V
I =
10
m
V
,
R
L =
2
k
,
CL
=
25
p
F, See Figure 4
0°C 58 62 deg
gain
CL
=
25
F
,
See
Figure
4
70°C 59 62
Full range is 0°C to 70°C.
For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
§This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
For VCC± = ±5 V, VO(RMS) = 1 V; for VCC± = ±15 V, VO(RMS) = 6 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL051I and TL051AI electrical characteristics at specified free-air temperature
TL051I, TL051AI
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
TL051I
25°C 0.75 3.5 0.59 1.5
VIO
In
p
ut offset voltage
TL051I
Full range 5.3 3.3
mV
V
IO
Input
offset
voltage
TL051AI
25°C 0.55 2.8 0.35 0.8
mV
VO=0
TL051AI
Full range 4.6 2.6
a
Temperature coefficient of
V
O =
0
,
VIC = 0,
R
S
=
50
TL051I 25°C to
85°C7 8
µV/
°
C
a
VIO input offset voltage
RS
=
50
TL051AI 25°C to
85°C8 8 25 µ
V/°C
Input offset-voltage
long-term drift§25°C 0.04 0.04 µV/mo
IIO
In
p
ut offset current
VO = 0, VIC = 0, 25°C 4 100 5 100 pA
I
IO
Input
offset
current
OIC
See Figure 5 85°C 0.06 10 0.07 10 nA
IIB
In
p
ut bias current
VO = 0, VIC = 0, 25°C 20 200 30 200 pA
I
IB
Input
bias
current
OIC
See Figure 5 85°C 0.6 20 0.7 20 nA
VICR
Common-mode input 25°C1
to
4
2.3
to
5.6
11
to
11
12.3
to
15.6
V
V
ICR voltage range Full range 1
to
4
11
to
11
V
RL=10k
25°C 3 4.2 13 13.9
VOM
Maximum positive peak
R
L =
10
k
Full range 3 13
V
V
OM + output voltage swing
RL=2k
25°C 2.5 3.8 11.5 12.7
V
R
L =
2
k
Full range 2.5 11.5
RL=10k
25°C2.5 3.5 12 13.2
VOM
Maximum negative peak
R
L =
10
k
Full range 2.5 12
V
V
OM
g
output voltage swing
RL=2k
25°C2.3 3.2 11 12
V
R
L =
2
k
Full range 2.3 11
L i l diff ti l
25°C 25 59 50 105
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
RL = 2 k40°C 30 74 60 145 V/mV
voltage
am lification
85°C 20 43 30 76
riInput resistance 25°C1012 1012
ciInput capacitance 25°C 10 12 pF
Common mode
V
IC
= V
ICR
min
,
25°C 65 85 75 93
CMRR
C
ommon-mo
d
e
rejection ratio
VIC
VICRmin,
VO = 0, 40°C 65 83 75 90 dB
rejection
ratio
RS = 50 85°C 65 84 75 93
Supply voltage rejection
V0
25°C 75 99 75 99
kSVR
S
upp
l
y-vo
lt
age re
j
ec
ti
on
ratio (VCC±/VIO)
V
O =
0
,
RS=50
40°C 75 98 75 98 dB
ratio
(VCC±/VIO)
RS
=
50
85°C 75 99 75 99
25°C 2.6 3.2 2.7 3.2
ICC Supply current VO = 0, No load 40°C 2.4 3.2 2.6 3.2 mA
85°C 2.5 3.2 2.6 3.2
Full range is 40°C to 85°C
This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
§Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at TA = 150°C, extrapolated to
TA = 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.
For VCC± = ±5 V, VO = ±2.3 V, or for VCC± = ±15 V, VO = ±10 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL051I and TL051AI operating characteristics at specified free-air temperature
TL051I, TL051AI
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
MIN TYP MAX MIN TYP MAX
P iti l t
25°C 16 13 20
SR+
P
os
iti
ve s
l
ew ra
t
e
at unity gainR
L
= 2 k,C
L
= 100 pF, Full
range 11
V/µs
Ntil t
L,L,
See Figure 1 25°C 15 13 18
V/
µ
s
SR
N
ega
ti
ve s
l
ew ra
t
e
at unity gainFull
range 11
25°C 55 56
trRise time 40°C 52 53
85°C 64 65
ns
VI(PP) = ±10 mV,
R2k
25°C 55 57
ns
tfFall time
()
RL = 2 k,
CL= 100
p
F
40°C 51 53
CL
=
100
F
,
See Fi
g
ures 1 and 2 85°C 64 65
g
25°C 24 19
Overshoot factor 40°C 24 19 %
85°C 24 19
V
E
q
uivalent input noise f = 10 Hz 25°C 75 75
nV/Hz
V
n
q
voltage§RS = 20 Ω, f = 1 kHz 25°C 18 18 30 n
V/H
z
VN(PP) Peak-to-peak equivalent
input noise voltage See Figure 3 f = 10 Hz to
10 kHz 25°C 4 4 µV
InEquivalent input
noise current f = 1 kHz 25°C 0.01 0.01 pA/Hz
THD Total harmonic distortionRS = 1 k,
f = 1 kHz RL = 2 k,25°C 0.003 0.003 %
V10V R 2k
25°C 3 3.1
B1Unity-gain bandwidth VI = 10 mV, RL = 2 k,
CL=25
p
F See Figure 4
40°C 3.5 3.6 MHz
CL
=
25
F
,
See
Figure
4
85°C 2.6 2.7
Phase margin at unity
V10mV R 2k
25°C 59 62
φm
Ph
ase marg
i
n a
t
un
it
y
gain
V
I =
10
m
V
,
R
L =
2
k
,
CL
=
25
p
F, See Figure 4
40°C 58 61 deg
gain
CL
=
25
F
,
See
Figure
4
85°C 59 62
Full range is 40°C to 85°C.
For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
§This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
For VCC± = ±5 V, VO(RMS) = 1 V; for VCC± = ±15 V, VO(RMS) = 6 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL052C and TL052AC electrical characteristics at specified free-air temperature
TL052C, TL052AC
PARAMETER TEST CONDITIONS TAVCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
TL052C
25°C 0.73 3.5 0.65 1.5
VIO
In
p
ut offset voltage
TL052C
Full range 4.5 2.5
mV
V
IO
Input
offset
voltage
V0
TL052AC
25°C 0.51 2.8 0.4 0.8
mV
VO = 0,
VIC =0
TL052AC
Full range 3.8 1.8
VIC
=
0
,
R
S
= 50
TL052C
25°C to
8
8
a
Temperature coefficient
RS
50
TL052C
70°C
8
8
µV/°C
a
VIO of input offset voltage
TL052AC
25°C to
8
6
25
µ
V/°C
TL052AC
70°C
8
6
25
Input offset-voltage
long-term drift§VO = 0,
RS = 50 VIC = 0, 25°C 0.04 0.04 µV/mo
IIO
In
p
ut offset current
V
O
= 0,
VIC =0
25°C 4 100 5 100 pA
I
IO
Input
offset
current
O,
See Figure 5
V
IC =
0
,70°C 0.02 1 0.025 1 nA
IIB
In
p
ut bias current
V
O
= 0,
VIC =0
25°C 20 200 30 200 pA
I
IB
Input
bias
current
O,
See Figure 5
V
IC =
0
,70°C0.15 4 0.2 4 nA
VICR
Common-mode input 25°C1
to
4
2.3
to
5.6
11
to
11
12.3
to
15.6
V
V
ICR voltage range Full range 1
to
4
11
to
11
V
RL=10k
25°C 3 4.2 13 13.9
VOM
Maximum positive peak
R
L =
10
k
Full range 3 13
V
V
OM+ output voltage swing
RL=2k
25°C 2.5 3.8 11.5 12.7
V
R
L =
2
k
Full range 2.5 11.5
RL=10k
25°C2.5 3.5 12 13.2
VOM
Maximum ne
g
ative peak
R
L =
10
k
Full range 2.5 12
V
V
OM
g
output voltage swing
RL=2k
25°C2.3 3.2 11 12
V
R
L =
2
k
Full range 2.3 11
L i l diff ti l
25°C 25 59 50 105
AVD Large-signal dif ferential
voltage am
p
lification
RL = 2 k0°C 30 65 60 129 V/mV
voltage
am lification
70°C 20 46 30 85
riInput resistance 25°C1012 1012
ciInput capacitance 25°C 10 12 pF
Common mode
V V min
25°C 65 85 75 93
CMRR
C
ommon-mo
d
e
rejection ratio
V
IC =
V
ICRm
i
n,
VO
=
0,
RS = 50 0°C65 84 75 92 dB
rejection
ratio
VO
=
0
,70°C 65 84 75 91
Full range is 0°C to 70°C.
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
§Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at TA = 150°C, extrapolated to
TA = 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.
For VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL052C and TL052AC electrical characteristics at specified free-air temperature (continued)
TL052C, TL052AC
PARAMETER TEST CONDITIONS TAVCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
S l lt j ti
25°C 75 99 75 99
kSVR Supply-voltage rejection
ratio (VCC±/VIO)
VO = 0, RS = 50 0°C75 98 75 98 dB
ratio
(VCC±/VIO)
70°C 75 97 75 97
Sl t
25°C 4.6 5.6 4.8 5.6
ICC Supply current
(two am
p
lifiers)
VO = 0, No load 0°C4.7 6.4 4.8 6.4 mA
(two
am lifiers)
70°C 4.4 6.4 4.6 6.4
VO1/VO2 Crosstalk attenuation AVD = 100 25°C 120 120 dB
TL052C and TL052AC operating characteristics at specified free-air temperature
TL052C, TL052AC
PARAMETER TEST CONDITIONS TAVCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
SR+
Slew rate at unity gain
25°C 17.8 9 20.7
SR
+
Slew
rate
at
unity
gain
RL = 2 kΩ, CL = 100 pF, Full range 8
V/µs
SR
Ne
g
ative slew rate See Figure 1 25°C 15.4 9 17.8
V/
µ
s
SR
g
at unity gainFull range 8
25°C 55 56
trRise time 0°C 54 55
70°C 63 63
ns
VI(PP) = ±10 mV,
R2k
25°C 55 57
ns
tfFall time
()
RL = 2 kΩ,
CL= 100
p
F
0°C 54 56
CL
=
100
F
,
See Fi
g
ures 1 and 2 70°C 62 64
g
25°C 24 19
Overshoot factor 0°C 24 19 %
70°C 24 19
V
E
q
uivalent input noise f = 10 Hz 25°C 71 71
nV/Hz
V
n
q
voltage§RS = 20 ,f = 1 kHz 25°C 19 19 30 n
V/H
z
VN(PP) Peak-to-peak equivalent
input noise current See Figure 3 f = 10 Hz to
10 kHz 25°C 4 4 µV
InEquivalent input
noise current f = 1 kHz 25°C 0.01 0.01 pA/Hz
THD Total harmonic distortionRS = 1 k,
f = 1 kHz RL = 2 k,25°C 0.003 0.003 %
V10V
R2k
25°C 3 3
B1Unity-gain bandwidth VI = 10 mV,
CL=25
p
F
RL = 2 k,
See Figure 4
0°C 3.2 3.2 MHz
CL
=
25
F
,
See
Figure
4
70°C 2.6 2.7
Phase margin at unity
V10mV
R2k
25°C 60 63
φm
Ph
ase marg
i
n a
t
un
it
y
gain
V
I =
10
m
V
,
CL
=
25
p
F,
R
L =
2
k
,
See Figure 4
0°C 59 63 deg
gain
CL
=
25
F
,
See
Figure
4
70°C 60 63
Full range is 0°C to 70°C.
For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
§This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
For VCC± = ±5 V, VO(RMS) = 1 V; for VCC± = ±15 V, VO(RMS) = 6 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL052I and TL052AI electrical characteristics at specified free-air temperature
TL052I, TL052AI
PARAMETER TEST CONDITIONS TAVCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
TL052I
25°C 0.73 3.5 0.65 1.5
VIO
In
p
ut offset voltage
TL052I
Full range 5.3 3.3
mV
V
IO
Input
offset
voltage
V0
TL052AI
25°C 0.51 2.8 0.4 0.8
mV
V
O =
0
,
VIC
=
0,
TL052AI
Full range 4.6 2.6
a
Ttffiit
VIC
=
0
,
RS = 50 TL052I 25°C to
85°C7 6
µV/°C
a
VIO
T
empera
t
ure coe
ffi
c
i
en
t
TL052AI 25°C to
85°C6 6 25 µ
V/°C
Input offset-voltage
long-term drift§VO = 0,
RS = 50 VIC = 0, 25°C 0.04 0.04 µV/mo
IIO
In
p
ut offset current
V
O
= 0, V
IC
= 0, 25°C 4 100 5 100 pA
I
IO
Input
offset
current
O,
See Figure 5
IC ,
85°C 0.06 10 0.07 10 nA
IIB
In
p
ut bias current
V
O
= 0, V
IC
= 0, 25°C 20 200 30 200 pA
I
IB
Input
bias
current
O,
See Figure 5
IC ,
85°C 0.6 20 0.7 20 nA
VICR
Common-mode input 25°C1
to
4
2.3
to
5.6
11
to
11
12.3
to
15.6
V
V
ICR voltage range Full range 1
to
4
11
to
11
V
RL=10k
25°C 3 4.2 13 13.9
VOM
Maximum positive peak
R
L =
10
k
Full range 3 13
V
V
OM+ output voltage swing
RL=2k
25°C 2.5 3.8 11.5 12.7
V
R
L =
2
k
Full range 2.5 11.5
RL=10k
25°C2.5 3.5 12 13.2
VOM
Maximum ne
g
ative peak
R
L =
10
k
Full range 2.5 12
V
V
OM
g
output voltage swing
RL=2k
25°C2.3 3.2 11 12
V
R
L =
2
k
Full range 2.3 11
L i l diff ti l
25°C 25 59 50 105
AVD Large-signal dif ferential
voltage am
p
lification
RL = 2 k40°C 30 74 60 145 V/mV
voltage
am lification
85°C 20 43 30 76
riInput resistance 25°C 1012 1012
ciInput capacitance 25°C 10 12 pF
Common mode
V V min
25°C 65 85 75 93
CMRR
C
ommon-mo
d
e
rejection ratio
V
IC =
V
ICRm
i
n,
VO
=
0,
RS = 50 40°C 65 83 75 90 dB
rejection
ratio
VO
=
0
,85°C 65 84 75 93
Full range is 40°C to 85°C.
This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters
§Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at TA = 150°C, extrapolated to
TA = 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.
At VCC± = ±5 V, VO = ±2.3 V; at VCC± = ±15 V, VO = ±10 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL052I and TL052AI electrical characteristics at specified free-air temperature (continued)
TL052I, TL052AI
PARAMETER TEST CONDITIONS TAVCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
S l lt j ti
25°C 75 99 75 99
kSVR Supply-voltage rejection
ratio (VCC±/VIO)
VO = 0, RS = 50 40°C75 98 75 98 dB
ratio
(VCC±/VIO)
85°C 75 99 75 99
Sl t
25°C 4.6 5.6 4.8 5.6
ICC Supply current
(two am
p
lifiers)
VO = 0, No load 40°C4.5 6.4 4.7 6.4 mA
(two
am lifiers)
85°C 4.4 6.4 4.6 6.4
VO1/VO2 Crosstalk attenuation AVD = 100 25°C 120 120 dB
TL052I and TL052AI operating characteristics at specified free-air temperature
TL052I, TL052AI
PARAMETER TEST CONDITIONS TAVCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
SR+
Sl ttit i
25°C 17.8 9 20.7
SR
+
Sl
ew ra
t
e a
t
un
it
y ga
i
n
R
L
= 2 kΩ, C
L
= 100 pF, Full range 8
V/µs
SR
Ne
g
ative slew rate at
L,L,
See Figure 1 25°C 15.4 9 17.8
V/
µ
s
SR
g
unity gainFull range 8
25°C 55 56
trRise time 40°C 52 53
85°C 64 65
ns
VI(PP)
=
±10 mV,
25°C 55 57
ns
tfFall time
VI(PP)
=
±10
mV
,
RL = 2 kΩ, CL = 100 pF, 40°C 51 53
See Figures 1 and 2 85°C 64 65
25°C 24% 19%
Overshoot factor 40°C 24% 19% %
85°C 24% 19
V
Equivalent input noise f = 10 Hz 25°C 71 71
nV/Hz
V
n
q
voltage§RS = 20 ,f = 1 kHz 25°C 19 19 30 n
V/H
z
VN(PP) Peak-to-peak equivalent
input noise current See Figure 3 f = 10 Hz to
10 kHz 25°C 4 4 µV
InEquivalent input noise
current f = 1 kHz 25°C 0.01 0.01 pA/Hz
THD Total harmonic distortionRS = 1 k,
f = 1 kHz RL = 2 k,25°C 0.003 0.003 %
V10V
R2k
25°C 3 3
B1Unity-gain bandwidth VI = 10 mV,
CL=25
p
F
RL = 2 k,
See Figure 4
40°C 3.5 3.6 MHz
CL
=
25
F
,
See
Figure
4
85°C 2.5 2.6
Phase margin at unity
V10mV
R2k
25°C 60 63
φm
Ph
ase marg
i
n a
t
un
it
y
gain
V
I =
10
m
V
,
CL
=
25
p
F,
R
L =
2
k
,
See Figure 4
40°C 58 61 deg
gain
CL
=
25
F
,
See
Figure
4
85°C 60 63
Full range is 40°C to 85°C.
For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
§This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
For VCC± = ±5 V, VO(RMS) = 1 V; for VCC± = ±15 V, VO(RMS) = 6 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL054C and TL054AC electrical characteristics at specified free-air temperature
TL054C, TL054AC
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
MIN TYP MAX MIN TYP MAX
TL054C
25°C 0.64 5.5 0.56 4
VIO
In
p
ut offset voltage
TL054C
Full range 7.7 6.2
mV
V
IO
Input
offset
voltage
TL054AC
25°C 0.57 3.5 0.5 1.5
mV
VO=0
TL054AC
Full range 5.7 3.7
a
Temperature coefficient
VO
=
0
,
VIC = 0,
R
S
= 50 TL054C 25°C to
70°C25 23
µV/
°
C
a
VIO of input offset voltage
RS
50
TL054AC 25°C to
70°C24 23 µ
V/°C
Input offset-voltage
long-term drift25°C 0.04 0.04 µV/mo
IIO
In
p
ut offset current
VO = 0, VIC = 0, 25°C 4 100 5 100 pA
I
IO
Input
offset
current
OIC
See Figure 5 70°C 0.02 1 0.025 1 nA
IIB
In
p
ut bias current
VO = 0, VIC = 0, 25°C 20 200 30 200 pA
I
IB
Input
bias
current
OIC
See Figure 5 70°C 0.15 4 0.2 4 nA
VICR
Common-mode input 25°C1
to
4
2.3
to
5.6
11
to
11
12.3
to
15.6
V
V
ICR voltage range Full range 1
to
4
11
to
11
V
RL=10k
25°C 3 4.2 13 13.9
VOM
Maximum positive peak
R
L =
10
k
Full range 3 13
V
V
OM+ output voltage swing
RL=2k
25°C 2.5 3.8 11.5 12.7
V
R
L =
2
k
Full range 2.5 11.5
RL=10k
25°C2.5 3.5 12 13.2
VOM
Maximum negative peak
R
L =
10
k
Full range 2.5 12
V
V
OM
g
output voltage swing
RL=2k
25°C2.3 3.2 11 12
V
R
L =
2
k
Full range 2.3 11
L i l diff ti l
25°C 25 72 50 133
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification§
RL = 2 k0°C 30 88 60 173 V/mV
voltage
am lification§
70°C 20 57 30 85
riInput resistance 25°C1012 1012
ciInput capacitance 25°C 10 12 pF
Common mode
V V min
25°C 65 84 75 92
CMRR
C
ommon-mo
d
e
rejection ratio
V
IC =
V
ICRm
i
n,
VO=0 R
S=50
0°C 65 84 75 92 dB
rejection
ratio
VO
=
0
,
RS
=
50
70°C 65 84 75 93
Supply voltage rejection
V±5Vto±15 V
25°C 75 99 75 99
kSVR
S
upp
l
y-vo
lt
age re
j
ec
ti
on
ratio (VCC±/VIO)
V
CC± =
±5
V
t
o
±15
V
,
VO=0 R
S=50
0°C 75 99 75 99 dB
ratio
(VCC±/VIO)
VO
=
0
,
RS
=
50
70°C 75 99 75 99
Supply current
25°C 8.1 11.2 8.4 11.2
ICC
S
upp
l
y curren
t
(four am
p
lifiers)
VO = 0, No load 0°C 8.2 12.8 8.5 12.8 mA
(four
am lifiers)
70°C 7.9 11.2 8.2 11.2
VO1/VO2 Crosstalk attenuation AVD = 100 25°C 120 120 dB
Full range is 0°C to 70°C.
Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at TA = 150°C, extrapolated to
TA = 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.
§For VCC± = ±5 V, VO = ±2.3 V, at VCC± = ±15 V, VO = ±10 V.B
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL054C and TL054AC operating characteristics at specified free-air temperature
TL054C, TL054C
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
MIN TYP MAX MIN TYP MAX
SR+
Positive slew rate 25°C 15.4 10 17.8
SR
+at unity gain 0°C 15.7 8 17.9
RL = 2 k,C
L = 100 pF, 70°C 14.4 8 17.5
V/µs
SR
Ne
g
ative slew rate at
L L
See Figure 1 and Note 7 25°C 13.9 10 15.9
V/
µ
s
SR
g
unity gain0°C 14.3 8 16.1
70°C 13.3 8 15.5
25°C 55 56
trRise time 0°C 54 55
70°C 63 63
ns
VI(PP) = ±10 mV,
R2k
25°C 55 57
ns
tfFall time
R
L =
2
k
,
CL= 100
p
F
0°C 54 56
CL
=
100
F
,
See Fi
g
ures 1 and 2 70°C 62 64
See
Figures
1
and
2
25°C 24% 19%
Overshoot factor 0°C 24% 19% %
70°C 24% 19
V
E
q
uivalent input noise f = 10 Hz 25°C 75 75
nV/Hz
V
n
q
voltage§RS = 20 Ω, f = 1 kHz 25°C 21 21 45
nV/Hz
VN(PP) Peak-to-peak equivalent
input noise voltage See Figure 3 f = 10 Hz to
10 kHz 25°C 4 4 µV
InEquivalent input
noise current f = 1 kHz 25°C 0.01 0.01 pA/Hz
THD Total harmonic
distortionRS = 1 k,
f = 1 kHz RL = 2 k,25°C 0.003 0.003 %
V10mV R 2k
25°C 2.7 2.7
B1Unity-gain bandwidth
V
I =
10
m
V
,
R
L =
2
k
,
CL=25
p
F See Figure 4
0°C 3 3 MHz
CL
=
25
F
,
See
Figure
4
70°C 2.4 2.4
Phase margin at
VI=10mV R
L=2k
25°C 61 64
φm
Phase
margin
at
unity gain
V
I =
10
mV
,
R
L =
2
k
,
CL
=
25
p
F See Figure 4
0°C 60 64 deg
unity
gain
CL
=
25
F
,
See
Figure
4
70°C 61 63
Full range is 0°C to 70°C.
For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
§This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
For VCC± = ±5 V, VO(RMS) = 1 V; for VCC± = ±15 V, VO(RMS) = 6 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL054I and TL054AI electrical characteristics at specified free-air temperature
TL054I, TL054AI
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
TL054I
25°C0.64 5.5 0.56 4
VIO
In
p
ut offset voltage
TL054I
Full range 8.8 7.3
mV
VIO
In ut
offset
voltage
TL054AI
25°C 0.57 3.5 0.5 1.5
mV
VO=0
TL054AI
Full range 6.8 4.8
a
Temperature coefficient of
VO
=
0
,
VIC = 0,
R
S
= 50 TL054I 25°C to
85°C25 24
µV/
°
C
a
VIO input offset voltage
RS
50
TL054AI 25°C to
85°C25 23 µ
V/°C
Input offset voltage
long-term drift25°C 0.04 0.04 µV/mo
IIO
In
p
ut offset current
VO = 0, VIC = 0, 25°C 4 100 5 100 pA
I
IO
Input
offset
current
OIC
See Figure 5 85°C 0.06 10 0.07 10 nA
IIB
In
p
ut bias current
VO = 0, VIC = 0, 25°C 20 200 30 200 pA
I
IB
Input
bias
current
OIC
See Figure 5 85°C 0.6 20 0.7 20 nA
VICR
Common-mode input 25°C1
to
4
2.3
to
5.6
11
to
11
12.3
to
15.6
V
V
ICR voltage range Full range 1
to
4
11
to
11
V
RL=10k
25°C 3 4.2 13 13.9
VOM
Maximum positive peak
R
L =
10
k
Full range 3 13
V
V
OM+ output voltage swing
RL=2k
25°C 2.5 3.8 11.5 12.7
V
R
L =
2
k
Full range 2.5 11.5
RL=10k
25°C2.5 3.5 12 13.2
VOM
Maximum negative peak
R
L =
10
k
Full range 2.5 12
V
V
OM
g
output voltage swing
RL=2k
25°C2.3 3.2 11 12
V
R
L =
2
k
Full range 2.3 11
L i l diff ti l
25°C 25 72 50 133
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification§
RL = 2 k40°C 30 101 60 212 V/mV
voltage
am lification§
85°C 20 50 30 70
riInput resistance 25°C1012 1012
ciInput capacitance 25°C 10 12 pF
Common mode
V V min
25°C 65 84 75 92
CMRR
C
ommon-mo
d
e
rejection ratio
V
IC =
V
ICRm
i
n,
VO=0 R
S=50
40°C 65 83 75 92 dB
rejection
ratio
VO
=
0
,
RS
=
50
85°C 65 84 75 93
Supply voltage rejection
V±5Vto±15 V
25°C 75 99 75 99
kSVR
S
upp
l
y-vo
lt
age re
j
ec
ti
on
ratio (VCC±/VIO)
V
CC± =
±5
V
t
o
±15
V
,
VO=0 R
S=50
40°C 75 98 75 99 dB
ratio
(VCC±/VIO)
VO
=
0
,
RS
=
50
85°C 75 99 75 99
Supply current
25°C 8.1 11.2 8.4 11.2
ICC
S
upp
l
y curren
t
(four am
p
lifiers)
VO = 0, No load 40°C 7.9 12.8 8.2 12.8 mA
(four
am lifiers)
85°C 7.6 11.2 7.9 11.2
VO1/VO2 Crosstalk attenuation AVD = 100 25°C 120 120 dB
Full range is 40°C to 85°C.
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C, extrapolated to
TA = 25°C using the Arrhenius equation, and assuming an activation energy of 0.96 eV.
§For VCC± = ±5 V, VO = ±2.3 V, at VCC± = ±15 V, VO = ±10 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TL054I and TL054AI operating characteristics at specified free-air temperature
TL054I, TL054AI
PARAMETER TEST CONDITIONS TA
VCC± = ±5 V VCC± = ±15 V UNIT
A
MIN TYP MAX MIN TYP MAX
SR+
Positive slew rate 25°C 15.4 10 17.8
SR
+at unity gain 40°C 16.4 8 18
RL = 2 k,C
L = 100 pF, 85°C 14 8 17.3
V/µs
SR
Ne
g
ative slew rate at
L L
See Figure 1 25°C 13.9 10 15.9
V/
µ
s
SR
g
unity gain40°C 14.7 8 16.1
85°C 13 8 15.3
25°C 55 56
trRise time 40°C 52 53
85°C 64 65
ns
V
I(PP)
= ±10 mV
,
R
L
= 2 k
,
25°C 55 57
ns
tfFall time
VI(PP)
±10
mV,
RL
2
k,
CL = 100 pF, 40°C 51 53
See Figures 1 and 2 85°C 64 65
25°C 24 19
Overshoot factor 40°C 24 19 %
85°C 24 19
V
E
q
uivalent input noise f = 10 Hz 25°C 75 75
nV/Hz
V
n
q
voltage§RS = 20 Ω, f = 1 kHz 25°C 21 21 45
nV/Hz
VN(PP) Peak-to-peak equivalent
input noise voltage See Figure 3 f = 10 Hz to
10 kHz 25°C 4 4 µV
InEquivalent input
noise current f = 1 kHz 25°C 0.01 0.01 pA/Hz
THD Total harmonic distortionRS = 1 k,
f = 1 kHz RL = 2 k,25°C 0.003% 0.003% %
V10mV R 2k
25°C 2.7 2.7
B1Unity-gain bandwidth
V
I =
10
m
V
,
R
L =
2
k
,
CL=25
p
F See Figure 4
40°C 3.3 3.3 MHz
CL
=
25
F
,
See
Figure
4
85°C 2.3 2.4
Phase margin at
VI=10mV R
L=2k
25°C 61 64
φm
Phase
margin
at
unity gain
V
I =
10
mV
,
R
L =
2
k
,
CL
=
25
p
F See Figure 4
40°C 59 62 deg
unity
gain
CL
=
25
F
,
See
Figure
4
85°C 61 64
Full range is 40°C to 85°C.
For VCC± = ±5 V, VI(PP) = ±1 V; for VCC± = ±15 V, VI(PP) = ±5 V.
§This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
For VCC± = ±5 V, VO(RMS) = 1 V; for VCC± = ±15 V, VO(RMS) = 6 V.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
+
VCC+
VCC
VIVO
RL
NOTE A: CL includes fixture capacitance.
CL
(see Note A)
Figure 1. Slew Rate, Rise/Fall Time,
and Overshoot Test Circuit
Overshoot
10%
90%
tr
Figure 2. Rise-Time and Overshoot
Waveform
VCC
VCC+
+
VO
RSRS
2 k
Figure 3. Noise-Voltage Test Circuit Figure 4. Unity-Gain Bandwidth and
Phase-Margin Test Circuit
VO
VCC
VCC+
+
RL
CL
(see Note A)
VI
10 k
100
NOTE A: CL includes fixture capacitance.
typical values
Typical values, as presented in this data sheet
represent the median (50% point) of device
parametric performance.
input bias and offset current
At the picoamp-bias-current level typical of the
TL05x and TL05xA, accurate measurement of the
bias current becomes difficult. Not only does this
measurement require a picoammeter, but
test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small
currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters
with bias voltages applied, but with no device in the socket. The device then is inserted in the socket, and a
second test that measures both the socket leakage and the device input bias current is performed. The two
measurements then are subtracted algebraically to determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of todays applications, the input noise voltage
density is sample tested at f = 1 kHz. Texas Instruments also has additional noise-testing capability to meet
specific application requirements. Please contact the factory for details.
Figure 5. Input-Bias and Offset-Current Test Circuit
+
VCC+
VCC
Ground Shield
pA pA
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input of fset voltage Distribution 611
a
VIO Temperature coefficient of input of fset voltage Distribution 12, 13, 14
IIB Input bias current vs Common-mode input voltage
vs Free-air temperature 15
16
IIO Input offset current vs Free-air temperature 16
VIC Common-mode input voltage range limits vs Supply voltage
vs Free-air temperature 17
18
VOOutput voltage vs Differential input voltage 19, 20
VOM Maximum peak output voltage vs Supply voltage
vs Output current
vs Free-air temperature
21
25, 26
27, 28
VO(PP) Maximum peak-to-peak output voltage vs Frequency 22, 23, 24
AVD Large-signal dif ferential voltage amplification vs Load resistance
vs Frequency
vs Free-air temperature
29
30
31, 32, 33
CMRR Common-mode rejection ratio vs Frequency
vs Free-air temperature 34, 35
36
zoOutput impedance vs Frequency 37
kSVR Supply-voltage rejection ratio vs Free-air temperature 38
IOS Short-circuit output current vs Supply voltage
vs Time
vs Free-air temperature
39
40
41
ICC Supply current vs Supply voltage
vs Free-air temperature 42, 43, 44
45, 46, 47
SR Slew rate vs Load resistance
vs Free-air temperature 4853
5459
Overshoot factor vs Load capacitance 60
VnEquivalent input noise voltage vs Frequency 61, 62
THD Total harmonic distortion vs Frequency 63
B1Unity-gain bandwidth vs Supply voltage
vs Free-air temperature 64, 65, 66
67, 68, 69
φmPhase margin vs Supply voltage
vs Load capacitance
vs Free-air temperature
70, 71, 72
73, 74, 75
76, 77, 78
Phase shift vs Frequency 30
Voltage-follower small-signal pulse response vs Time 79
Voltage-follower large-signal pulse response vs Time 80
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
DISTRIBUTION OF TL051
INPUT OFFSET VOLTAGE
8
1.5
0
Percentage of Units %
VIO Input Offset Voltage mV
4
12
16
0.9 0.3 0 0.3 0.9 1.5
433 Units Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
P Package
1.1 0.6 0.6 1.1
Figure 7
DISTRIBUTION OF TL051A
INPUT OFFSET VOLTAGE
20
16
12
8
4
9006003000300600
VIO Input Offset Voltage µV
Percentage of Units %
0
900
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
393 Units Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
P Package
Figure 8
1.5
0
P
ercen
t
age o
f
A
mp
lifi
ers
%
VIO Input Offset Voltage mV
0.9 0.3 0 0.3 0.9 1.5
3
6
9
12
15
DISTRIBUTION OF TL052
INPUT OFFSET VOLTAGE
476 Amplifiers Tested From 1 Wafer Lot
VCC± = ±15 V
TA = 25°C
P Package
1.2 0.6 0.6 1.2
Figure 9
0
900 600 300 0 300 600 900
5
10
15
20
VIO Input Offset Voltage µV
Percentage of Amplifiers %
TA = 25°C
DISTRIBUTION OF TL052A
INPUT OFFSET VOLTAGE
403 Amplifiers Tested From 1 Wafer Lot
VCC± = ±15 V
P Package
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
DISTRIBUTION OF TL054
INPUT OFFSET VOLTAGE
15
4
0
Percentage of Amplifiers %
VIO Input Offset Voltage mV
5
25
30
20133124
VCC± = ±15 V
TA = 25°C
N Package
20
10
1140 Amplifiers Tested From 3 Wafer Lots
Figure 11
DISTRIBUTION OF TL054A
INPUT OFFSET VOLTAGE
15
12
9
6
3
1.81.20.600.61.2
VIO Input Offset Voltage mV
Percentage of Amplifiers %
0
1.8
1048 Amplifiers Tested From 3 Wafer Lots
VCC± = ±15 V
TA = 25°C
N Package
Figure 12
DISTRIBUTION OF TL051
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
25
0
Percentage of Units %
Temperature Coefficient µV/°C
4
8
12
16
20
20 15 10 50 5 10152025
ÎÎÎÎÎÎÎÎÎÎ
120 Units Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C to 125°C
P Package
a
VIO
0
Percentage of Amplifiers %
Temperature Coefficient µV/°C
20
30
5
10
15
20100102030
DISTRIBUTION OF TL052
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
172 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C to 125°C
P Package
ÎÎÎÎÎÎÎÎÎÎ
Outlier: One Unit at 34.6 µV/°C
Figure 13
a
VIO
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
DISTRIBUTION OF TL054
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
60
0
Temperature Coefficient µV/°C
30
40
50
40 20 0 20 40 60
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
324 Amplifiers Tested From 3 Wafer Lots
VCC± = ±15 V
TA = 25°C to 125°C
N Package
20
10
Percentage of Amplifiers %
a
VIO Figure 15
15
10
Input Bias Current nA
VIC Common-Mode Input Voltage V
5
0
5
10
10 5051015
TA = 25°C
VCC± = ±15 V
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
I
IB
Figure 16
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
IIO
IIB
TA Free-Air Temperature °C
Input Bias and Offset Currents nA
0.00125
0.01
0.1
1
10
100
45 65 85 105 125
VCC± = ±15 V
VO = 0
VIC = 0
I
IB and
I
IO
Figure 17
0
16
Common-Mode Input Voltage V
|VCC±| Supply Voltage V
12
8
4
0
4
8
12
16
2 4 6 8 10 12 14 16
TA = 25°C
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
SUPPLY VOLTAGE
VIC
ÎÎÎÎÎ
Negative Limit
ÎÎÎÎÎ
Positive Limit
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
75
20
TA Free-Air Temperature °C
15
10
5
0
5
10
15
20
50 25 0 25 50 75 100 125
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
Common-Mode Input Voltage V
VIC
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
Positive Limit
ÎÎÎÎÎ
ÎÎÎÎÎ
Negative Limit
Figure 19
200
5
Output Voltage V
4
3
2
1
0
1
2
3
4
5
100 0 100 200
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
VID Differential Input Voltage µV
VO
ÎÎÎÎ
ÎÎÎÎ
RL = 600
ÎÎÎÎ
ÎÎÎÎ
RL = 1 k
ÎÎÎÎÎ
RL = 10 k
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎ
VCC± = ±5 V
Figure 20
400
15
VID Differential Input Voltage µV
10
5
0
5
10
15
200 0 200 400
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
Output Voltage V
VO
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
RL = 600
ÎÎÎÎ
ÎÎÎÎ
RL = 1 k
ÎÎÎÎ
RL = 2 k
ÎÎÎÎ
RL = 10 k
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
ÎÎÎÎ
TA = 25°C
Figure 21
0
8
Maximum Peak Output Voltage V
|VCC±| Supply Voltage V
4
0
4
8
12
16
2 4 6 8 10 12 14 16
TA = 25°CVOM+
RL = 10 k
RL = 2 k
VOM
RL = 2 k
RL = 10 k
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
12
16
VOM
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 22
010 k f Frequency Hz
5
10
15
20
25
30
100 k 1 M 10 M
Maximum Peak-to-Peak Output Voltage V
RL = 2 k
TA = 125°C
VCC± = ±5 V
TA = 55°C
VCC± = ±15 V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VO(PP)
Figure 23
Maximum Peak-to-Peak Output Voltage V
010 k
f Frequency Hz
5
10
15
20
25
30
100 k 1 M 10 M
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VO(PP)
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
RL = 2 k
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±5 V
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
Figure 24
20
25
30
15
10
5
010 k 100 k
f Frequency Hz
1 M 10 M
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
Maximum Peak-to-Peak Output Voltage V
VO(PP)
ÁÁÁÁ
ÁÁÁÁ
RL = 10 k
TA = 25°C
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC±= ±5 V
Figure 25
0
0
Maximum Peak Output Voltage V
|IO| Output Current mA
1
2
3
4
5
41216208
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
|VOM|
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
VOM
ÁÁÁ
ÁÁÁ
VOM+
VCC± = ±5 V
RL = 10 k
TA = 25°C
2 6 10 14 18
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 26
0
0
2
4
6
8
10
12
14
16
10 20 30 40 50
|IO| Output Current mA
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Maximum Peak Output Voltage V
|VOM|
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
RL = 10 k
TA = 25°C
ÁÁÁ
ÁÁÁ
VOM
ÁÁÁÁ
ÁÁÁÁ
VOM+
515253545
Figure 27
75
5
TA Free-Air Temperature °C
4
3
2
1
0
1
2
3
4
5
50 25 0 25 50 75 100 125
RL = 2 k
RL = 10 k
RL = 10 k
RL = 2 k
VOM+
VCC±= ±5 V
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
Maximum Peak Output Voltage V
VOM
ÁÁÁ
ÁÁÁ
VOM
Figure 28
75
16 50 25 0 25 50 75 100 125
12
8
4
0
4
8
12
16
TA Free-Air Temperature °C
RL = 10 k
RL = 10 k
RL = 2 k
RL = 2 k
VCC± = ±15 V
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
Maximum Peak Output Voltage V
VOM
ÁÁÁ
ÁÁÁ
VOM+
ÁÁÁ
ÁÁÁ
VOM
Figure 29
Differential Voltage Amplification V/mV
0.4
0
RL Load Resistance k
50
100
150
200
250
1 4 10 40 100
VO = ±1 V
TA = 25°C
VCC± = ±15 V
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
LOAD RESISTANCE
VCC± = ±5 V
AVD
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
10 f Frequency Hz 10 M100 1 k 10 k 100 k 1 M
0.1
1
101
104
102
103
VCC± = ±15 V
RL = 2 k
CL = 25 pF
TA = 25°C
AVD
Phase Shift
0°
30°
60°
90°
120°
150°
180°
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
106
105
Differential Voltage Amplification V/mVAVD
mφ Phase Shift
Figure 30
75
10
TA Free-Air Temperature °C
125
1000
50 25 0 25 50 75 100
40
100
400
RL = 2 k
RL = 10 k
VCC± = ±5 V
VO = ±2.3 V
Differential Voltage Amplification V/mVAVD
Figure 31
TL051 AND TL052
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 32
75
10
TA Free-Air Temperature °C
125
1000
50 25 0 25 50 75 100
40
100
400
RL = 2 k
RL = 10 k
VCC± = ±5 V
VO = ±2.3 V
Differential Voltage Amplification V/mVAVD
TL054
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 33
75
10 125
1000
50 25 0 25 50 75 100
40
100
400 RL = 10 k
RL = 2 k
TA Free-Air Temperature °C
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
VO = 10 V
Differential Voltage Amplification V/mVAVD
Figure 34
10
0
CMRR Common-Mode Rejection Ratio dB
f Frequency Hz 10 M
100
100 1 k 10 k 100 k 1 M
10
20
30
40
50
60
70
80
90 VCC± = ±5 V
TA = 25°C
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 35
90
80
70
60
50
40
30
20
10
100
01 M100 k10 k1 k100 10 M
f Frequency Hz
10
VCC± = ±15 V
TA = 25°C
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR Common-Mode Rejection Ratio dB
Figure 36
75
70
TA Free-Air Temperature °C
100
75
80
85
90
95
50 25 0 25 50 75 100
VIC = VICRMin
VCC± = ±5 V
VCC± = ±15 V
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
CMRR Common-Mode Rejection Ratio dB
125
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 37
1 k
0.1
Output Impedance
1 M
100
10 k 100 k
1
10
f Frequency Hz
AVD = 100
AVD = 10
AVD = 1
VCC±= ±15 V
TA = 25°C
ro (open loop) 250
OUTPUT IMPEDANCE
vs
FREQUENCY
zo
0.4
4
40
Figure 38
75
90
kSVR Supply-Voltage Rejection Ratio dB
TA Free-Air Temperature °C12550 25 02550 75 100
94
98
VCC± = ±5 V to ±15 V
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
110
106
102
ÁÁ
ÁÁ
ÁÁ
kSVR
Figure 39
0
IOS Short-Circuit Output Current mA
|VCC±| Supply Voltage V 16
60
246 8 10 12 14
0
20
40
VO = 0
TA = 25°C
VID = 100 mV
VID = 100 mV
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
20
40
60
ÁÁ
ÁÁ
IOS
Figure 40
0
t Time s
40
20
20
40
60
60
5040302010 600
TA = 25°C
VCC± = ±15 V
VID = 100 mV
VID = 100 mV
SHORT-CIRCUIT OUTPUT CURRENT
vs
TIME
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
ÁÁ
IOS
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 41
VO = 0
0
TA Free-Air Temperature °C
40
20
20
40
60
60 10075502502550 12575
VCC± = ±15 V
VCC± = ±5 V
VCC± = ±5 V
VCC± = ±15 V
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
IOS
ÎÎÎÎÎ
ÎÎÎÎÎ
VID = 100 m V
ÎÎÎÎÎÎ
VID = 100 m V
Figure 42
0
0
|VCC±| Supply Voltage V 16
3
2 4 6 8 10 12 14
0.5
1
1.5
2
2.5
TA = 25°C
TA = 55°C
TA = 125°C
VO = 0
No Load
ICC Supply Current mA
ÁÁ
ÁÁ
ÁÁ
ICC
TL051
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
0
0
5
2 4 6 8 10 12 14
1
2
3
4TA = 25°C
TA = 55°C
TA = 125°C
VO = 0
No Load
16
ICC Supply Current mA
ÁÁ
ÁÁ
ÁÁ
ICC
|VCC±| Supply Voltage V
Figure 43
TL052
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 44
0
0
|VCC±| Supply Voltage V 16
10
246 8 10 12 14
2
4
6
8
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
TA = 55°C
TA = 125°C
VO = 0
No Load
ICC Supply Current mA
ÁÁ
ÁÁ
ICC
TL054
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 45
75
0125
3
50 25 0 25 50 75 100
0.5
1
1.5
2
2.5
TA Free-Air Temperature °C
VCC± = ±5 V
VCC± = ±15 V
VO = 0
No Load
ICC Supply Current mA
ÁÁ
ÁÁ
ICC
TL051
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 46
75
0125
5
50 25 0 25 50 75 100
1
2
3
4VCC± = ±15 V
VCC± = ±5 V
ICC Supply Current mA
ÁÁ
ÁÁ
ÁÁ
ICC
TA Free-Air Temperature °C
VO = 0
No Load
TL052
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 47
75
0125
10
50 25 0 25 50 75 100
2
4
6
8
TA Free-Air Temperature °C
ICC Supply Current mA
ÁÁ
ÁÁ
ÁÁ
ICC
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC± = ±5 V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC± = ±15 V
VO = 0
No Load
TL054
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 48
25
20
15
10
SR Slew Rate V/
5
0100401041
RL Load Resistance k
0.4
SR+
SR
CL = 100 pF
TA = 25°C
See Figure 1
VCC± = ±5 V
µs
TL051
SLEW RATE
vs
LOAD RESISTANCE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
10410.4
0
RL Load Resistance k
25
5
10
15
20
SR
SR+
40
CL = 100 pF
TA = 25°C
See Figure 1
VCC± = ±5 V
SR Slew Rate V/µs
Figure 49
TL052
SLEW RATE
vs
LOAD RESISTANCE
100
Figure 50
25
20
15
10
SR Slew Rate V/
5
0100401041
RL Load Resistance k
0.4
ÎÎ
SR+
SR
CL = 100 pF
TA = 25°C
See Figure 1
VCC± = ±5 V
µs
TL054
SLEW RATE
vs
LOAD RESISTANCE
Figure 51
25
00.4
RL Load Resistance k
5
10
15
20
30
1 4 10 40 100
SR+
SR
SR Slew Rate V/µs
CL = 100 pF
TA = 25°C
See Figure 1
VCC± = ±15 V
TL051
SLEW RATE
vs
LOAD RESISTANCE
1 4 10 40 1000.4 RL Load Resistance k
SR+
SR
CL = 100 pF
TA = 25°C
See Figure 1
VCC± = ±15 V
SR Slew Rate V/µs
0
25
5
10
15
20
Figure 52
TL052
SLEW RATE
vs
LOAD RESISTANCE
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 53
20
00.4
RL Load Resistance k
5
10
15
25
1 4 10 40 100
SR+
SR
SR Slew Rate V/µs
CL = 100 pF
TA = 25°C
See Figure 1
VCC± = ±5 V
TL054
SLEW RATE
vs
LOAD RESISTANCE
Figure 54
75
0
TA Free-Air Temperature °C125
30
50 25 0 25 50 75 100
5
10
15
20
25
VCC± = ±5 V
RL = 2 k
SR+
SR
SR Slew Rate V/µs
TL051
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 55
SR+
SR
75
0
TA Free-Air Temperature °C12550 25 0 25 50 75 100
5
10
15
20
25
VCC± = ±5 V
RL = 2 k
CL = 100 pF
See Figure 1
SR Slew Rate V/µs
TL052
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 56
SR+
SR
75
0
TA Free-Air Temperature °C12550 25 0 25 50 75 100
5
10
15
20
VCC± = ±5 V
RL = 2 k
CL = 100 pF
See Figure 1
SR Slew Rate V/ µs
TL054
SLEW RATE
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 57
75
0
TA Free-Air Temperature °C125
30
50 25 0 25 50 75 100
5
10
15
20
25
VCC± = ±15 V
RL = 2 k
CL = 100 pF
See Figure 1
SR
SR+
SR Slew Rate V/µs
TL051
SLEW RATE
vs
FREE-AIR TEMPERATURE
SR
SR+
75
0
TA Free-Air Temperature °C12550 25 0 25 50 75 100
5
10
15
20
25
VCC± = ±15 V
RL = 2 k
CL = 100 pF
See Figure 1
SR Slew Rate V/µs
Figure 58
TL052
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 59
SR
SR+
75
0
TA Free-Air Temperature °C12550 25 0 25 50 75 100
5
10
15
20
VCC± = ±15 V
RL = 2 k
CL = 100 pF
See Figure 1
SR Slew Rate V/µs
TL054
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 60
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 1
ÎÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎ
ÎÎÎÎÎ
VI(PP) = ±10 mV
0
0
Overshoot Factor %
CL Load Capacitance pF 300
50
50 100 150 200 250
10
20
30
40
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
ÎÎÎÎÎ
VCC± = ±15 V
ÎÎÎÎ
ÎÎÎÎ
VCC± = ±5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 61
f Frequency Hz
10
Vn Equivalent Input Noise Voltage
10
20
30
40
50
70
100
100 1 k 10 k 100 k
VCC± = ±15 V
RS = 20
TA = 25°C
See Figure 3
nV/ Hz
TL051
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
f Frequency Hz
10
Vn Equivalent Input Noise Voltage
10
20
30
40
50
70
100
100 1 k 10 k 100 k
nV/ Hz
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
RS = 20
TA = 25°C
See Figure 3
Figure 62
TL052 AND TL054
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VO(RMS) = 6 V
0.001100
f Frequency Hz
THD Total Harmonic Distortion %
0.01
0.1
1
1 k 10 k 100 k
VCC± = ±15 V
AVD = 1
TA = 25°C
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
0.004
0.04
0.4
Figure 63 Figure 64
0
2.7
Unity-Gain Bandwidth MHz
|VCC±| Supply Voltage V
16
3.2
2 4 6 8 10 12 14
2.8
2.9
3
3.1
VI = 10 mV
RL = 2 k
CL = 25 pF
TA = 25°C
See Figure 4
B1
TL051
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 65
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VI = 10 mV
RL = 2 k
CL = 25 pF
See Figure 4
TA = 25°C
2.7
Unity-Gain Bandwidth MHz
|VCC±| Supply Voltage V
16
3.2
4 6 8 10 12 14
2.8
2.9
3
3.1
B1
TL052
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 66
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
2.4
Unity-Gain Bandwidth MHz
|VCC±| Supply Voltage V
16
2.9
0 2 6 8 10 14
2.5
2.6
2.7
2.8
B1
ÎÎÎÎ
ÎÎÎÎ
VI = 10 mV
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎÎ
CL = 25 pF
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
See Figure 4
ÎÎÎÎÎ
ÎÎÎÎÎ
TA = 25°C
412
TL054
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 67
75
0
TA Free-Air Temperature °C125
4
50 25 0 25 50 75 100
1
2
3
See Figure 4
VI = 10 mV
RL = 2 k
CL = 25 pF
VCC± = ±15 V
VCC± = ±5 V
Unity-Gain Bandwidth MHzB1
TL051
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 68
See Figure 4
VCC± = ±5 V to ±15 V
RL = 2 k
CL = 25 pF
TA = 25°C
VI = 10 mV
75
0
TA Free-Air Temperature °C125
4
50 25 0 25 50 75 100
1
2
3
Unity-Gain Bandwidth MHzB1
TL052
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 69
See Figure 4
VCC± = ±5 V to ±15 V
RL = 2 k
CL = 25 pF
TA = 25°C
VI = 10 mV
75
0
TA Free-Air Temperature °C125
4
50 25 0 25 50 75 100
1
2
3
Unity-Gain Bandwidth MHzB1
TL054
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 70
0
55°
m
16
65°
2 4 6 8 10 12 14
57°
59°
61°
63°
|VCC±| Supply Voltage V
See Figure 4
TA = 25°C
CL = 25 pF
RL = 2 k
VI = 10 mV
φ Phase Margin
TL051
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 71
55°
m
16
65°
46 8101214
57°
59°
61°
63°
|VCC±| Supply Voltage V
φ Phase Margin
See Figure 4
TA = 25°C
CL = 25 pF
RL = 2 k
VI = 10 mV
TL052
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 72
55°
m
16
65°
048101214
57°
59°
61°
63°
|VCC±| Supply Voltage V
φ Phase Margin
62
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
See Figure 4
TA = 25°C
CL = 25 pF
RL = 2 k
VI = 10 mV
TL054
PHASE MARGIN
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 73
0
40°
CL Load Capacitance pF 100
70°
10 20 30 40 50 60 70 80 90
45°
50°
55°
60°
65°
VI = 10 mV
RL = 2 k
TA = 25°C
See Figure 4
VCC± = ±15 V
See Note A
VCC± = ±5 V
m
φ Phase Margin
TL051
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 74
0CL Load Capacitance pF
70°
10 20 30 40 50 60 70 80 90
45°
50°
55°
60°
65°
VI = 10 mV
RL = 2 k
TA = 25°C
See Figure 4
ÎÎÎÎÎ
VCC± = ±15 V
See Note A
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±5 V
m
φ Phase Margin
TL052
PHASE MARGIN
vs
LOAD CAPACITANCE
100
0CL Load Capacitance pF 100
70°
10 20 30 40 50 60 70 80 90
45°
50°
55°
60°
65°
VI = 10 mV
RL = 2 k
TA = 25°C
See Figure 4
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
See Note A
ÎÎÎÎÎ
VCC± = ±5 V
m
φ Phase Margin
TL054
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 75
Values of phase margin below a load capacitance of 25 pF were estimated.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 76
75
55°
TA Free-Air Temperature °C125
65°
50 25 0 25 50 75 100
57°
59°
61°
63°VCC± = ±15 V
VCC± = ±5 V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CL = 25 pF
VI = 10 mV
RL = 2 k
See Figure 4
m
φ Phase Margin
TL051
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 77
75
55°
TA Free-Air Temperature °C125
65°
50 25 0 25 50 75 100
57°
59°
61°
63°VCC± = ±15 V
VCC± = ±5 V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CL = 25 pF
VI = 10 mV
RL = 2 k
See Figure 4
m
φ Phase Margin
TL052
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
75
55°
TA Free-Air Temperature °C125
65°
50 25 0 25 50 75 100
57°
59°
61°
63°VCC± = ±15 V
VCC± = ±5 V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CL = 25 pF
VI = 10 mV
RL = 2 k
See Figure 4
m
φ Phase Margin
TL054
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 78
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
16
Output Voltage mV
t Time µs
1.2
16
0 0.2 0.4 0.6 0.8 1.0
12
8
4
0
4
8
12
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
RL = 2 k
CL = 100 pF
TA = 25°C
See Figure 1
Figure 79
8
t Time µs
6
8
0 1 2 3 4 5
6
4
2
0
2
4
6
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
Output Voltage VVO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ±15 V
RL = 2 k
CL = 100 pF
TA = 25°C
See Figure 1
Figure 80
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance.
The TL05x and TL05xA drive higher capacitive loads; however, as the load capacitance increases, the resulting
response pole occurs at lower frequencies, causing ringing, peaking, or even oscillation. The value of the load
capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to
oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the
problem. Capacitive loads of 1000 pF, and larger, may be driven if enough resistance is added in series with
the output (see Figure 81 and Figure 82).
(a) CL = 100 pF, R = 0 (b) CL = 300 pF, R = 0 (c) CL = 350 pF, R = 0
(d) CL = 1000 pF, R = 0 (e) CL = 1000 pF, R = 50 (f) CL = 1000 pF, R = 2 k
Figure 81. Effect of Capacitive Loads
+
5 V
5 V
15 V
15 V CL
(see Note A) 2 k
VO
R
NOTE A: CL includes fixture capacitance.
Figure 82. Test Circuit for Output Characteristics
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input characteristics
The TL05x and TL05xA are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low-bias current requirements, the TL05x and
TL05xA are well suited for low-level signal processing; however , leakage currents on printed-circuit boards and
sockets easily can exceed bias current requirements and cause degradation in system performance. It is good
practice to include guard rings around inputs (see Figure 83). These guards should be driven from a
low-impedance source at the same voltage level as the common-mode input.
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.
+
+
+
VO
VOVO
VI
VI
(a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER (c) UNITY-GAIN AMPLIFIER
VI
Figure 83. Use of Guard Rings
noise performance
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage
differential amplifier. The low input-bias current requirements of the TL05x and TL05xA result in a very low
current noise. This feature makes the devices especially favorable over bipolar devices when using values of
circuit impedance greater than 50 k.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
phase meter
The phase meter in Figure 84 produces an output voltage of 10 mV per degree of phase delay between the two
input signals VA and VB. The reference signal VA must be the same frequency as VB. The TLC3702 comparators
(U1) convert these two input sine waves into ±5-V square waves. Then, R1 and R4 provide level shifting prior
to the SN74HC109 dual J-K flip flops.
Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at one-half the frequency of VB.
Flip-flop U2A also produces a square wave at one-half the input frequency. The pulse duration of U2A varies
from zero to one-half the period, where zero corresponds to zero phase delay between V A and VB and one-half
the period corresponds to VB lagging VA by 360 degrees.
The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL05x (U4) integrator capacitors C1
and C2. As the phase delay approaches 360 degrees, the output of U4A approximates a square wave, and U2A
has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to scale the
0- to 2.5-V integrator output to a 0- to 3.6-V output range.
R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz
frequency range.
+
+
+5 V
R2
100 k
R1
100 k
U1A
VAS
1J
C1U2A
1K
RNC
U2B
2K
R3
VBU1B
R6
10 k
R7
10 k
+5 V
S
2J
C1
R
NC
100 k
R4
100 k
U3
R5 C1
10 k0.016 µF
C2
0.016 µF
U4A U4B VO
R9
20 k
R8
Gain 50 k
+5 V
R10
10 k
Zero
5 V
NOTE A: U1 = TLC3702; VCC± = ±5 V
U2 = SN74HC109
U3 = TLC4066
U4, U5 = TL05x; VCC± = ±5 V
Figure 84. Phase Meter
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
precision constant-current source over temperature
A precision current source (see Figure 85) benefits from the high input impedance and stability of Texas
Instruments enhanced-JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input
and the output of the TL05x. The negative feedback then forces 2.5 V across the current-setting resistor R;
therefore, the current to the load simply is 2.5 V divided by R.
Possible choices for the shunt regulator include the LT1004, LT1009, and LM385. If the regulator s cathode
connects to the operational amplifier output, this circuit sources load current. Similarly , if the cathode connects
to the inverting input, the circuit sinks current from the load. T o minimize output current change with temperature,
R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with
split-voltage supplies.
+
+
150 pF
U2
+15 V
U1
15 V
R
100 k
IO
Load
V = 0 to 10 V
(a) SOURCE CURRENT LOAD (b) SINK CURRENT LOAD
V = 0 to 10 V
Load
II
R
15 V
U1
+15 V
150 pF
U2
100 k
NOTE A: U1 = 1/2 TL05x
U2 = LM385, L T1004, or LT1009 voltage reference
I = 2.5 V
R, R = Low-temperature-coefficient metal-film resistor
Figure 85. Precision Constant-Current Source
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
instrumentation amplifier with adjustable gain/null
The instrumentation amplifier in Figure 86 benefits greatly from the high input impedance and stable input offset
voltage of the TL05xA. Amplifiers U1A, U1B, and U2A form the actual instrumentation amplifier, while U2B
provides offset null. Potentiometer R1 provides gain adjustment. With R1 = 2 k, the circuit gain equals 100,
while with R1 = 200 k, the circuit gain equals two. The following equation shows the instrumentation amplifier
gain as a function of R1:
AV
+
1
)ǒ
R2
)
R3
R1
Ǔ
Readjusting the offset null is necessary when the circuit gain is changed. If U2B is needed for another
application, R7 can be terminated at ground. The low input offset voltage of the TL05xA minimizes the dc error
of the circuit. For best matching, all resistors should be one-percent tolerance. The matching between R4, R5,
R6, and R7 controls the CMRR of this application.
The following equation shows the output voltages when the input voltage equals zero. This dc error can be
nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature
also creates an error . To calculate the error from changes in offset, consider the three of fset components in the
equation as delta offsets, rather than initial offsets. The improved stability of T exas Instruments enhanced JFET s
minimizes the error resulting from change in input offset voltage with time. Assuming VI equals zero, VO can
be shown as a function of the offset voltage:
VIO1
ƪ
R3
R1
ǒ
R7
R5
)
R7
Ǔǒ
1
)
R6
R4
Ǔ)
R6
R4
ǒ
1
)
R2
R1
Ǔƫ)
VIO3
ǒ
1
)
R6
R4
Ǔ
VO
+
VIO2
ƪǒ
1
)
R3
R1
Ǔǒ
R7
R5
)
R7
Ǔǒ
1
)
R6
R4
Ǔ)
R2
R1
ǒ
R6
R4
Ǔƫ
NOTE A: U1 and U2 = TL05xA; VCC± = ±15 V.
100 k
U2A
+
+
+
+
VIU1A R4
10 k
R6
10 k
200 k
R2
10 M
100 k
10 turn
AV = 2 to 100 2 kR1
U1B
VI+
R5 R7 U2B
0.1 µF
Offset Null
VCC
82 k
82 k
VCC+
R3
VO
10 k10 k
10 M
1 k
Figure 86. Instrumentation Amplifier
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
high input impedance log amplifier
The low input offset voltage and high input impedance of the TL05xA creates a precision log amplifier (see
Figure 87). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors Q1 and Q2 must be a closely
matched npn pair. For best performance over temperature, R4 should be a metal-film resistor with a low
temperature coefficient.
In this circuit, U1A serves as a high-impedance unity-gain buffer. Amplifier U1B converts the input voltage to
a current through R1 and Q1. Amplifier U1C, IC1, and R4 form a 1-µA temperature-stable current source that
sets the base-emitter voltage of Q2. U1D amplifies the difference between the base-emitter voltage of Q1 and
Q2 (see Figure 88). The output voltage is given by the following equation:
VO
+
ƪ
1
)
R6
R5
ƫ
kT
q
ȧ
ȱ
Ȳ
In VI
ǒ
R1
1
106
Ǔȧ
ȳ
ȴ
where k
+
1.38
1023,q
+
1.602
1019,
and T is Kelvin temperature
_
+_
+
U1A _
+
U1B
_
+
U1C U1D
VI
R1
10 k
Q1 Q2
2N2484
R2
15 V 10 k
2.5 M
R4
150 pF
C1
IC1
270 k
R3
15V
R5
10 k
R6
10 k
VO
(see equation above)
NOTE A: U1A through U1D = TL05xA. IC1 = LM385, LT1004, or LT1009 voltage reference
Figure 87. Log Amplifier
0123456
Differential Voltage Amplification dB
f Frequency Hz78910
0.4
0.35
0.3
0.25
0.2
0.15
0.1
ÁÁ
ÁÁ
ÁÁ
AVD
Figure 88. Output Voltage vs Input Voltage for Log Amplifier
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
analog thermometer
By combining a current source that does not vary over temperature with an instrumentation amplifier , a precise
analog thermometer can be built (see Figure 89). Amplifier U1A and IC1 establish a constant current through
the temperature-sensing diode D1. For this section of the circuit to operate correctly, the TL05x must use split
supplies, and R3 must be a metal-film resistor with a low temperature coefficient.
The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set
by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature.
Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains
constant.
Amplifiers U1B, U2A, and U2B form the instrumentation amplifier that converts the difference between the diode
and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain
equals 5 and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier
gain is 9 and the output is proportional to temperature in degrees Fahrenheit. Every time S1 is changed, R4 must
be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F).
+
+
+
IC1
C1
150 pF
R1
100 kU1A
R3 10 k
(see Note B)
D1
(see Note A) +15 V
R2 100 k
IC2 R4
50 k
U1B
R6
10 k
R5
5 kR7
5 k
S1
(see Note C)
R8
10 k
U2A R10
10 kR11
R9 R12
10 k10 k
+15 V
+
15 V
10 k
VO
(see Note D)
U2B
NOTES: A. Temperature-sensing diode (2 mV/°C)
B. Metal-film resistor (low temperature coefficient)
C. Switch open for °F and closed for °C
D. VO α temperature; 10 mV/°C or 10 mV/°F
E. U1, U2 = TL05x. IC1, IC2 = LM385, LT1004, or LT1009 voltage reference
Figure 89. Analog Thermometer
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
voltage-ratio-to-dB converter
The application in Figure 90 measures the amplitude ratio of two signals, then converts the ratio to decibels (see
Figure 91). The output voltage provides a resolution of 100 mV/dB. The two inputs can be either dc or sinusoidal
ac signals. When using ac signals, both signals should be the same frequency or output glitches will occur . For
measuring two input signals of different frequencies, extra filtering should be added after the rectifiers.
The circuit contains three low-offset TL05xA devices. Two of these devices provide the rectification and
logarithmic conversion of the inputs. The third TL05xA forms an instrumentation amplifier. The stage performing
the logarithmic conversion also requires two well-matched npn transistors.
The input signal first passes through a high-impedance unity-gain buffer U1A (U2A). Then U1B (U2B) rectifies
the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2, so that the system gain is
still one. U1D (U2D), R6 (R13), and Q1 (Q2) perform the logarithmic conversion of the rectified input signal. The
instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages by a
gain of 33.6. As a result, the output voltage equals 100 mV/dB. The 1-k potentiometer on the input of U3C
calibrates the zero-dB reference level. The following equations are used to derive the relationship between the
input voltage ratio, expressed in decibels, and the output voltage.
XdB
+
20 log
ƪ
VA
VB
ƫ+
20
ȧ
ȱ
Ȳ
In
ǒ
VA
Ǔ
ǒ
VB
Ǔ
In (10)
ȧ
ȳ
ȴ
XdB
+
8.686
ƪ
In
ǒ
VA
Ǔ
In
ǒ
VB
Ǔƫ
VBE(Q1)
+
kT
qIn
ƪ
VA
R
IS
ƫ
VBE(Q2)
+
kT
qIn
ƪ
VB
R
IS
ƫ
D
VBE
+
VBE(Q1) VBE(Q2)
+
kT
q
ƪ
In
ǒ
VA
Ǔ
In
ǒ
VB
Ǔƫ
XdB
+
8.686
kT
ń
q
ƪ
VBE(Q1) VBE(Q2)
ƫ+
336
ƪ
VBE(Q1) VBE(Q2)
ƫ
at 25°C
where
k
+
1.38
1023,q
+
1.602
1019, and T is Kelvin temperature
This gives a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to obtain
100 mV/dB.
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
_
+
_
+
_
+
_
+
_
+
_
+
_
+
_
+
_
+
_
+
_
+
_
+
U1A
U3A
U3B
U3C
U3D
U1B U1C U1D
U2A U2B U2C U2D
VA
VB
VO
R1
20 k
R8
20 k
R2
10 k
R9
10 k
D1
D2
R3
30 k
R10
30 k
R4
10 k
R5
10 k
R6
10 kR7
10 k
2N2484 Q1
Q2
R16
16.3 k
R18
10 k
R20
10 k
R11
10 k
R12
10 k
R13
10 k
2N2484
R14
10 k
R76
16.3 kR19
10 kR21
10 k
C1
15 V
15 V
82 k
1 k
82 k
NOTE A: U1A through U3D = TL05xA, VCC± = ±15 V. D1 and D2 = 1N914.
Figure 90. Voltage Ratio-to-dB Converter
0123456
Output Voltage V
78910
2
1
0
1
2
Ratio VA/VB
VO
Figure 91. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter
TL05x, TL05xA
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178A FEBRUARY 1997 - REVISED FEBRUARY 2003
48 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model-generation software used
with Microsim PSpice. The Boyle macromodel (see Note 6 and subcircuit Figure 92) are generated using the
TL05x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations
of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TL05x 1 2 3 4 5
C1 11 12 3.988E12
C2 6 7 15.00E12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP43DX
EGND99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 2.875E6 3E6 3E6 3E6 3E6
GA 6 0 11 12 292.2E6
GCM 0 6 10 99 6.542E9
ISS 3 10 DC 300.0E6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 4 11 3.422E3
RD2 4 12 3.422E3
R01 8 5 125
R02 7 99 125
RP 3 4 11.11E3
RSS 10 99 666.7E6
VB 9 0 DC 0
VC 3 53 DC 3
VE 54 4 DC 3.7
VLIM 7 8 DC 0
VLP 91 0 DC 28
VLN 0 92 DC 28
.MODEL DX D (IS=800.0E18)
.MODEL JX PJF (IS=15.00E12 BETA=185.2E6
+ VTO=.1)
.ENDS
VCC+
RP
IN2
IN+ 3
VCCVAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54 DE
DP
VC
DC
4
C1
53
R2 6
9
EGND
VB
FB
C2
GCM GA VLIM
8
5RO1
RO2
HLIM
90 DLP
91
DLN
92
VLNVLP
99
7
Figure 92. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
Macromodels, simulation models, or other models provided by TI,
directly or indirectly, are not warranted by TI as fully representing all
of the specification and operating characteristics of the
semiconductor product to which the model relates.
PACKAGE OPTION ADDENDUM
www.ti.com 20-Aug-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TL051ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051ACDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051ACDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL051ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL051AID OBSOLETE SOIC D 8 TBD Call TI Call TI
TL051AIP OBSOLETE PDIP P 8 TBD Call TI Call TI
TL051CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051CDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL051CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL051CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL051ID OBSOLETE SOIC D 8 TBD Call TI Call TI
TL051IDR OBSOLETE SOIC D 8 TBD Call TI Call TI
TL051IP OBSOLETE PDIP P 8 TBD Call TI Call TI
TL052ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052ACDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052ACDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 20-Aug-2011
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TL052ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052ACDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052AIDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052AIDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052AMFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TL052AMJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
TL052CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 20-Aug-2011
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TL052CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052CPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CPSRE4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052IDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL052IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL052MFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TL052MJG OBSOLETE CDIP JG 8 TBD Call TI Call TI
TL052MJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
TL054ACD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054ACDE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054ACDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054ACDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 20-Aug-2011
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TL054ACDRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054ACDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054ACN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL054ACNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL054AID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054AIDE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054AIDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054AIDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054AIDRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054AMFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TL054AMJB OBSOLETE CDIP J 14 TBD Call TI Call TI
TL054CD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CDE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CDRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL054CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com 20-Aug-2011
Addendum-Page 5
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TL054CNSR ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CNSRE4 ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054CNSRG4 ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054IDE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054IDRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL054IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL054INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TL054MFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TL054MJ OBSOLETE CDIP J 14 TBD Call TI Call TI
TL054MJB OBSOLETE CDIP J 14 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
PACKAGE OPTION ADDENDUM
www.ti.com 20-Aug-2011
Addendum-Page 6
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TL051CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL052ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL052AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL052CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL052CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TL052IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL054ACDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TL054AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TL054CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TL054CNSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1
TL054IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TL051CDR SOIC D 8 2500 340.5 338.1 20.6
TL052ACDR SOIC D 8 2500 340.5 338.1 20.6
TL052AIDR SOIC D 8 2500 340.5 338.1 20.6
TL052CDR SOIC D 8 2500 340.5 338.1 20.6
TL052CPSR SO PS 8 2000 367.0 367.0 38.0
TL052IDR SOIC D 8 2500 340.5 338.1 20.6
TL054ACDR SOIC D 14 2500 333.2 345.9 28.6
TL054AIDR SOIC D 14 2500 333.2 345.9 28.6
TL054CDR SOIC D 14 2500 333.2 345.9 28.6
TL054CNSR SO NS 14 2000 367.0 367.0 38.0
TL054IDR SOIC D 14 2500 333.2 345.9 28.6
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated