PD - 95120A IRGP30B60KD-EP INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features * * * * * * * * Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. 10s Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse Recovery Characteristics. Positive VCE (on) Temperature Coefficient. TO-247AD Package Lead-Free C VCES = 600V IC = 30A, TC=100C G tsc > 10s, TJ=150C E n-channel VCE(on) typ. = 1.95V Benefits * Benchmark Efficiency for Motor Control. * Rugged Transient Performance. * Low EMI. * Excellent Current Sharing in Parallel Operation. TO-247AD Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ T C = 25C IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ T C = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Max. Units 600 60 30 120 120 60 30 120 20 304 122 -55 to +150 V A V W C 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m) Thermal Resistance Parameter RJC RJC RCS RJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. --- --- --- --- --- --- --- 0.24 --- 6.0 0.41 1.32 --- 40 --- Units C/W g 1 02/27/06 IRGP30B60KD-EP Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VCE(on) V(BR)CES VGE(th) VGE(th)/TJ gfe ICES VFM IGES Min. 600 --- --- --- Gate Threshold Voltage 3.5 Temperature Coeff. of Threshold Voltage --- Forward Transconductance --- Zero Gate Voltage Collector Current --- --- Diode Forward Voltage Drop --- --- Gate-to-Emitter Leakage Current --- Typ. --- 0.4 1.95 2.40 4.5 -10 18 5.0 1000 1.30 1.25 --- Ref.Fig. Max. Units Conditions --- V VGE = 0V, IC = 500A --- V/C VGE = 0V, IC = 1.0mA, (25C-150C) 5, 6,7 2.35 V IC = 30A, VGE = 15V 2.75 IC = 30A,VGE = 15V, TJ = 150C 9,10,11 9,10,11 5.5 V VCE = VGE, IC = 250A --- mV/C VCE = VGE, IC = 1.0mA, (25C-150C) 12 --- S VCE = 50V, I C = 50A, PW=80s 250 A VGE = 0V, VCE = 600V 2000 VGE = 0V, VCE = 600V, TJ = 150C 1.55 V IF = 30A 8 1.50 IF = 30A TJ = 150C 100 nA VGE = 20V Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Ref.Fig. Max. Units Conditions 23 153 IC = 30A 21 nC VCC = 400V CT.1 66 VGE = 15V 620 J IC = 30A, VCC = 400V CT.4 955 VGE =15V, RG = 10, L=200H, 1575 LS = 150nH TJ = 25C 60 IC = 30A, VCC = 400V 39 VGE = 15V, RG = 10 L =200H CT.4 200 ns LS = 150nH, TJ = 25C 40 CT.4 1085 IC = 30A, VCC = 400V 13,15 1350 J VGE = 15V,RG = 10, L =200H 2435 LS = 150nH TJ = 150C WF1,WF2 CT.4 60 IC = 30A, VCC = 400V 39 VGE = 15V, RG = 10 L =200H 14, 16 235 ns LS = 150nH, TJ = 150C WF1,WF2 42 --- VGE = 0V 22 --- pF VCC = 30V --- f = 1.0MHz 4 TJ = 150C, IC = 120A, Vp =600V Reverse Bias Safe Operting Area FULL SQUARE VCC = 500V, VGE = +15V to 0V, R G=10 CT.2 CT.3 TJ = 150C, Vp =600V, RG = 10 s Short Circuit Safe Operting Area 10 --- --- WF.4 VCC = 360V, VGE = +15V to 0V 17,18,19 Reverse Recovery energy of the diode --- 925 1165 J TJ = 150C 20,21 Diode Reverse Recovery time --- 125 --- ns VCC = 400V, IF = 30A, L = 200H CT.4,WF.3 Diode Peak Reverse Recovery Current --- 43 48 A VGE = 15V,RG = 10, LS = 150nH Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. 102 14 44 350 825 1175 46 28 185 31 635 1150 1785 46 28 205 32 1750 160 60 Notes: VCC = 80% (VCES), VGE = 15V, L = 28H, RG = 22. 2 Energy losses include "tail" and diode reverse recovery. www.irf.com IRGP30B60KD-EP 80 350 300 250 Ptot (W) IC (A) 60 40 200 150 100 20 50 0 0 0 20 40 60 80 100 120 140 160 0 T C (C) 20 40 60 80 100 120 140 160 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 100 IC A) IC (A) 10 s 10 100 s 10 1ms 1 DC 0.1 1 1 10 100 VCE (V) Fig. 3 - Forward SOA TC = 25C; TJ 150C www.irf.com 1000 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150C; VGE =15V 3 IRGP30B60KD-EP 60 50 VGE = 18V VGE = 15V 40 VGE = 12V VGE = 10V VGE = 8.0V ICE (A) ICE (A) 60 30 50 VGE = 18V VGE = 15V 40 VGE = 12V VGE = 10V VGE = 8.0V 30 20 20 10 10 0 0 0 1 2 3 4 5 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s 5 60 50 VGE = 18V VGE = 15V 50 40 VGE = 12V VGE = 10V 40 VGE = 8.0V IF (A) ICE (A) 4 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 60 30 20 10 10 0 -40C 25C 150C 30 20 0 0 1 2 3 4 5 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s 4 3 VCE (V) 0.0 0.5 1.0 1.5 2.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80s www.irf.com 20 20 18 18 16 16 14 14 12 10 ICE = 15A ICE = 30A 8 ICE = 60A VCE (V) VCE (V) IRGP30B60KD-EP 12 ICE = 15A 10 ICE = 30A 8 ICE = 60A 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25C Fig. 9 - Typical VCE vs. VGE TJ = -40C 250 20 18 T J = 25C T J = 150C 200 16 12 10 ICE = 15A ICE = 30A 8 ICE = 60A ICE (A) VCE (V) 14 150 100 6 T J = 150C 50 4 T J = 25C 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s 5 IRGP30B60KD-EP 3000 1000 Swiching Time (ns) 2500 Energy (J) 2000 EOFF 1500 EON 1000 tdOFF 100 td ON tF 500 tR 0 0 20 40 60 10 80 0 20 40 IC (A) 60 80 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L = 200H; VCE = 400V RG = 10; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L = 200H; VCE = 400V RG = 10; VGE = 15V 10000 3000 Swiching Time (ns) 2500 Energy (J) 2000 EOFF EON 1500 1000 1000 tdOFF 100 tdON tF 500 tR 10 0 0 25 50 75 100 RG () Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L = 200H; VCE = 400V ICE = 30A; VGE = 15V 6 125 0 25 50 75 100 125 RG () Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L = 200H; VCE = 400V ICE = 30A; VGE = 15V www.irf.com IRGP30B60KD-EP 50 50 RG = 4.7 45 45 40 35 RG = 10 35 30 RG = 22 30 25 RG = 47 IRR (A) IRR (A) 40 20 25 20 RG = 100 15 15 10 10 5 5 0 0 0 20 40 60 80 0 25 50 IF (A) 100 125 Fig. 18 - Typical Diode IRR vs. RG TJ = 150C; IF = 30A Fig. 17 - Typical Diode IRR vs. IF TJ = 150C 50 5000 45 22 4000 40 10 4.760A 47 Q RR (nC) 35 IRR (A) 75 RG () 30 25 20 30A 100 3000 15A 2000 15 1000 10 5 0 0 0 500 1000 diF /dt (A/s) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF= 30A; TJ = 150C www.irf.com 1500 0 500 1000 1500 diF /dt (A/s) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150C 7 IRGP30B60KD-EP 1400 Energy (J) 1200 4.7 1000 10 800 22 47 600 100 400 200 0 0 20 40 60 80 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150C 16 10000 14 200V 12 400V 1000 10 VGE (V) Capacitance (pF) Cies 8 6 Coes 100 4 2 Cres 0 10 0 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 25 50 75 100 125 Q G, Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 30A; L = 600H www.irf.com IRGP30B60KD-EP Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 J 0.05 0.02 0.01 0.01 R1 R1 J 1 R2 R2 C 2 1 Ri (C/W) i (sec) 0.200 0.000428 0.209 2 0.013031 Ci= i/Ri Ci= i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.1 0.10 0.05 J 0.02 0.01 R1 R1 J 1 1 R2 R2 2 3 2 Ci= i/Ri Ci= i/Ri 0.01 R3 R3 C 3 Ri (C/W) i (sec) 0.205 0.000136 0.505 0.567 0.001645 0.037985 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGP30B60KD-EP L L VCC DUT 80 V DUT 0 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT L 4x - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGP30B60KD-EP 700 35 700 70 600 30 600 60 25 500 90% ICE tf 300 15 5% V CE 5% ICE 0 40 300 30 90% test current 10 200 5 100 0 0 tr 0.00 0.20 0.40 0 0.60 -5 0.80 -100 15.90 16.00 Time(s) 100 QRR 300 500 250 0 -400 10% Peak IRR Peak IRR -600 200 VCE VCE (V) -300 ICE 400 IF (A) V F (V) 10 300 150 200 100 100 50 -10 -20 -30 -0.05 0.15 -40 0.35 time (S) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4 www.irf.com 600 20 tRR -700 -0.25 -10 16.30 30 -200 -500 16.20 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 40 -100 16.10 Time (s) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 0 10 Eon Loss Eof f Loss -100 -0.20 20 10% test current 5% V CE ICE (A) 100 400 ICE (A) 20 VCE (V) 400 200 50 TEST CURRENT ICE (A) V CE (V) 500 0 -5.00 0.00 5.00 10.00 0 15.00 time (S) Fig. WF4- Typ. S.C Waveform @ TC = 150C using Fig. CT.3 11 IRGP30B60KD-EP TO-247AD Package Outline Dimensions are shown in milimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/