Optocouplers
Data Book
1996
TELEFUNKEN Semiconductors
06.96
Contents
General Information 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selector Guide – Alphanumeric Index 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product Information Card 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optocouplers – Isolators 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optocouplers – Optical Sensors 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Classification Chart for Opto Isolators 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conventions Used in Presenting Technical Data 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nomenclature for Semiconductor Devices According to Pro Electron 12. . . . . . . . . . . . . . . . . . .
Type Designation Code for Optocouplers 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Type Designation Code for Optical Sensors 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Symbols and Terminology – Alphabetically 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example for Using Symbols According to DIN 41 785 and IEC 148 17. . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet Structure 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Data – Thermal Resistances 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optical and Electrical Characteristics 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagrams 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimensions (Mechanical Data) 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Additional Information 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Description 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Function 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Design 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Description – Assembly 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conversion Tables – Optoelectronic General 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Techniques 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurements on Emitter Chip 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurements on Detector Chip 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Static Measurements 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Characteristics 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Taping of SMD Couplers 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Information 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Missing Devices 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Top Tape Removal Force 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ordering Designation 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Assembly Instructions 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soldering Instructions 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Heat Removal 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TELEFUNKEN Semiconductors
06.96
Contents (continued)
Handling Instructions 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection against ElectrostaticDamage 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mounting Precautions 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cleaning 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality Information 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Quality Flow Chart Diagram 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Process Flow Charts 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Assembly Flow Chart for Standard Opto-Coupler 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Qualification and Release 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Statistical Methods for Prevention 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reliability 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Average Outgoing Quality (AOQ) 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Early Failure Rate (EFR) 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mean Time to Failure (MTTF) 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Activation Energy 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Long-Term Failure Rate (LFR) 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optocouplers in Switching Power Supplies 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDE 0884 - Facts and Information 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Layout Design Rules 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TEMIC Optocoupler Program 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Construction 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–PIN STD Isolators 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application of Optoelectronic Reflex Sensors TCRT1000, TCRT5000, TCRT9000, CNY70 51. . . . . . . .
Drawings of the Sensors 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optoelectronic Sensors 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Principles 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameters and Practical Use of the Reflex Sensors 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Coupling Factor, k 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Working Diagram 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resolution, T rip Point 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensitivity, Dark Current and Crosstalk 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ambient Light 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Examples, Circuits 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Example with Dimensioning 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuits with Reflex Sensors 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cross Reference List Opto 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheets 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Opto Isolators 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Opto Sensors 313. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Addresses 419. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TELEFUNKEN Semiconductors
06.96
2
Optoisolators
Characteristics
VIO CTR V(BRCEO) VCEsat @ IF and ICton / toff @ IC
IF=10 mA IC=1 mA RL=100
W
Package Type VRMS % V V mA mA
m
s mA
6 Pin Optoisolators – with Transistor Output
4N252) 3750 100(>20) >32 <0.5 50 2 4 10
4N262) 3750 100(>20) >32 <0.5 50 2 4 10
4N272) 3750 100(>10) >32 <0.5 50 2 4 10
4N282) 3750 100(>10) >32 <0.5 50 2 4 10
4N352) 3750 150(>100) >32 <0.3 10 0.5 <10 2
4N362) 3750 150(>100) >32 <0.3 10 0.5 <10 2
4N372) 3750 150(>100) >32 <0.3 10 0.5 <10 2
2) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)
6 Pin Optoisolators – with Darlington Output
4N322) 3750 >500 >55 <1 8 2 50 50
4N332) 3750 >500 >55 <1 8 2 50 50
2) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)
Multichannel Optoisolators – with Transistor Output
MCT6 2800 >60
CNY74–2 2800 50–600 1) >70 <0.3 10 1 6 2
MCT62 2800 >100 1)
K827P 2800 50–600 1) >70 <0.3 10 1 6 2
CNY74-4 2800 50–600 1) >70 <0.3 10 1 6 2
K847P 2800 50–600 1) >70 <0.3 10 1 6 2
1) IF = 5 mA
Surface Mount Optoisolators – with Transistor Output
MOC205 40–80
MOC206 2500 63–125 >90 <0.3 10 1 6 5
MOC207 100–200
TCMT1020
<40
TCMT1020
<
40
TCMT1021
40
80
TCMT1021
40
80
TCMT1022
2500
63 125
>90
t
03
10
1
6
5
TCMT1022
2500
63–125 >
90
t
0
.
3
10
1
6
5
TCMT1023 100–200
TCMT1024 160–320
TELEFUNKEN Semiconductors
06.96 3
Characteristics
VIO CTR V(BRCEO) VCEsat @ IF and ICton / toff @ IC
IF=10 mA IC=1 mA RL=100
W
Package Type VRMS % V V mA mA
m
s mA
Surface Mount Optoisolators – with Transistor Output
MOC211 >20
MOC212 >50
MOC213
2500
>100
>90
<0 3
10
1
6
5
MOC215 2500 >20 1) >90 <0.3 10 1 6 5
MOC216 >50 1)
MOC217 >100 1)
TCMT1030 >10 1)
TCMT1031 >20 1)
TCMT1032 2500 >50 1) >90 <0.3 10 1 6 5
TCMT1033 >100 1)
TCMT1034 >200 1)
1) IF = 1 mA
Metal Can Optoisolators
CNY18III 500 25–50 >32 <0.2 10 1 5 5
CNY18IV 500 40–80 >32 <0.2 10 1 5 5
CNY18V 500 60–120 >32 <0.2 10 1 5 5
K120P 800 50 (>25) >35 <0.3 20 2.5 5 3
3C91C 1000 100 (>40) >50 <0.3 20 2.5 10 2
3C92C 800 100 (>40) >50 <0.3 20 2.5 6 2
Characteristics
VIO CTR V(BRCEO) VCEsat @ IF and ICton / toff @ IF
IF=10 mA IC=1 mA RL=100
W
Package Type VDC % V V mA mA
m
s mA
Optoisolators – for Intrinsic Safety Requirements, with Transistor Output
CNY21Exi
Ex-90.C.2106U 10000 80(>50) >32 <0.3 10 1 5 5
CNY65Exi
Ex-81/2158U 11600 63–125 >32 <0.3 10 1 5 5
TELEFUNKEN Semiconductors
06.96
4
Characteristics
VIO CTR V(BRCEO) VCEsat @ IF and ICton / toff @ IF
IF=10 mA IC=1 mA RL=100
W
Package Type VDC % V V mA mA
m
s mA
VDE 0884 Approved Optoisolators
Standard Optoisolators – with Transistor Output
4N25(G)V1) 6000 100(>20) >32 <0.5 50 2 4 10
4N35(G)V1) 6000 150(>100) >70 <0.3 10 0.5 10 2
1) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)
No Base Connection
TCDT1110(G) 6000 150(>100) >70 <0.3 10 0.5 10 2
Order “G” devices e.g., TCDT1110(G) with wide spaced 0.4 lead form, for 8 mm PC board spacing safety requirements!
– With CTR Ranking
CQY80N(G)1) 6000 90(>50) >32 <0.3 10 1 9 5
CNY17(G)-11) 6000 40–80 >32 <0.3 10 1 9 5
CNY17(G)-21) 6000 63–125 >32 <0.3 10 1 9 5
CNY17(G)-31) 6000 100–200 >32 <0.3 10 1 9 5
1) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no., e.g., 4N25(G)VS
No Base Connection
TCDT1100(G) 6000 90(>50) >32 <0.3 10 1 9 5
TCDT1101(G) 6000 40–80 >32 <0.3 10 1 9 5
TCDT1102(G) 6000 63–125 >32 <0.3 10 1 9 5
TCDT1103(G) 6000 100–200 >32 <0.3 10 1 9 5
– With CTR Ranking and High Output Voltage
CNY75(G)A1) 6000 63–125 >90 <0.3 10 1 4 10
CNY75(G)B1) 6000 100–200 >90 <0.3 10 1 6 10
CNY75(G)C1) 6000 160–320 >90 <0.3 10 1 7 10
1) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)
TELEFUNKEN Semiconductors
06.96 5
Characteristics
VIO CTR V(BRCEO) VCEsat @ IF and ICton / toff @ IF
IF=10 mA IC=1 mA RL=100
W
Package Type VDC % V V mA mA
m
s mA
No Base Connection
TCDT1120(G) 6000 63 >90 <0.3 10 1 4 10
TCDT1122(G) 6000 63–125 >90 <0.3 10 1 5 10
TCDT1123(G) 6000 100–200 >90 <0.3 10 1 6 10
TCDT1124(G) 6000 160–320 >90 <0.3 10 1 7 10
Order “G” devices, e.g., CNY75GA with wide spaced 0.4” lead form, for 8 mm PC board spacing safety requirements!
Optoisolators – for High Isolation Voltages
CNY21N 8000 60(>25) >32 <0.3 10 1 5 5
CNY64 50–300
CNY64A 8000 63–125 >32 <0.3 10 1 5 5
CNY64B 100–200
CNY65 50–300
CNY65A 8000 63–125 >32 <0.3 10 1 5 5
CNY65B 100–200
CNY66 8000 50–300 >32 <0.3 10 1 5 5
Characteristics
VIO VDRM ITRMS IFT VTM dv/dt
Package Type
VIO
VIOTM
VDRM
V
ITRMS
mA
IFT
mA
VTM
V
dv/dt
V/
m
s
Optoisolators – with Triac Driver Output
K3010P(G) <15
K3011P(G) 250 100 <10 <3 10
K3012P(G) <5
K3020P(G) 6000 <30
K3021P(G)
500
100
<15
<3
10
K3022P(G) 500 100 <10 <3 10
K3023P(G) <5
Order “G” devices e.g., K3011PG with wide spaced 0.4 ” lead form, for 8 mm PC board spacing safety requirements!
1) VDE 0884 certificate is applied
TELEFUNKEN Semiconductors
06.96
6
Optical Sensors
Characteristics
ICCTR @ IFV(BR)CEO
@ 1 mA VCEsat @ IF and IC
Package Type mA % mA V V mA mA
Reflective Optical Sensors
CNY70
TCRT1000 >0.3 >1.5 20 >32 <0.3 20 0.1
TCRT1010
TCRT5000 >0.35 >3.5 10 >32 <0.4 10 0.1
Transmissive Optical Sensors
– with Aperture – with Transistor Output
TCST1103 4(>2) 20(>10) 20 70 3.2 0.6 1
TCST2103 4(>2) 20(>10) 20 70 3.2 0.6 1
TCST1202 2(>1) 10(>5) 20 70 3.2 0.4 0.5
TCST2202 2(>1) 10(>5) 20 70 3.2 0.4 0.5
TCST1300 0.5(>0.25) 2.5(>1.25) 20 70 3.2 0.2 0.25
TCST2300 0.5(>0.25) 2.5(>1.25) 20 70 3.2 0.2 0.25
*)TCST2103 /TCST2202 /TCST2300
– without Aperture – with Transistor Output
TCST1000 0.5(>0.25) 2.5(>1.25) 20 70 3.1 0.8
TCST2000 0.5(>0.25) 2.5(>1.25) 20 70 3.1 0.8
Miniature Transmissive Optical Sensors – with Transistor Output
TCST1230 1(>0.5) 5(>2.5) 20 70 3 0.8
TCST1030 2.5(>1.2) 25(>12) 10 70 3 0.8
TCST5123 5(>2.4) 25(>12) 20 70 2.8 0.8
Miniature Optical Encoder – with Transistor Output (Dual Channel)
TCVT1300 0.6(>0.4) 2(>1.3) 30 70 1.5 0.2 0.2
TELEFUNKEN Semiconductors
06.96 7
Characteristics
ICCTR @ IFV(BR)CEO
@ 1 mA Gap Resolution Aperture
Package Type mA % mA V mm mm mm
Matched Pairs (Emitter and Detector)
TCZT8012 2(>1) 10(>5) 20 70 <0.4 20 0.1
TCZT8020 0.5(>0.25) 2.5(>1.25) 20 70 <0.4 20 0.025
Characteristics
IFT ton / toff tr / tfVCC Gap Resolution Aperture
Package Type mA
m
s
m
s V mm mm mm
Transmissive Optical Sensors – with Schmitt Trigger Logic1)
TCSS1100 <10 2 0.03 5 3.2 0.6 1
TCSS2100 <10 2 0.03 5 3.2 0.6 1
Matched Pairs (Emitter and Detector) – with Schmitt Trigger Logic1)
TCZS8000 <20 2 0.03 5
TCZS8100 <10 2 0.03 4.5–16
1) Inverted, open collector output
Optical Sensors with Wires and Connectors
Characteristics
IFT VOL ISVCC Gap Resolution Aperture
Package Type mA V mA V mm mm mm
Transmissive Optical Sensors – with Schmitt Trigger Logic Output
TCYS5201 0.35 30 5 5 0.4 0.5
TCYS6201 0.35 30 5 5 0.4 0.5
TELEFUNKEN Semiconductors
06.96
8
Product Information Card
Optocouplers – Isolators
Market Segment,
Recommended TEMIC
Devices Description Applications
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Switchmode power supply
CQY80N/ TCDT1 101-03
CNY75A-C/ TCDT1 121-23
CNY64 or CNY65 for larger
creepage distances
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
On-off external control circuit, feedback circuit,
overvoltage detection circuit.
Main features: Insulation input-to-output and small
transformers are replaced.
Key features: Isolation test voltage
(std is 3.750 KV RMS) and CTR (ratio output
current/ input current). Different models request
different CTR rank. Coupler with no base
connection is very popular because it prevents
interferences.
Most usable parts: CQY80N/ TCDT1100 and
CNY75/ TCDT1120 all couplers also available in
“G” version. “G” stands for extended creepage
distance of 0.4
I
lead to lead.
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Power supply in monitors,
computers, copy
machines, printers,
faxmachines, TV, VCR,
medical equipment,
washing machines etc.
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Control equipment
please recommend:
4N35-4N37
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Isolation of dc input circuit, isolation of dc output
circuit, signal serve motor control circuit.
Isolation for signal transfer system for automatic
door control, circuit lamp and relay drive circuit.
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Programmable controller,
numerical control, PPC
tele-facsimile, automatic
door control, others
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Office automation equipment
please recommend:
CNY64, CNY65
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Motor driving power-supply circuit (primary-
secondary circuit isolation), high-voltage control
circuit of static electric printer, printer driver
circuit interface between input and output circuit.
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
PPC tele-facsmile
equipment, printer
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Vending machine
please recommend:
4N35-4N37
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Interface between input and output circuit type
selection circuit.
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Household appliance
please recommend:
CNY64, CNY65
K3010P-K3023P
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Audio signal isolation, video signal interface,
power -supply circuit, motor control circuit.
Triac driver interface between input and output
Base amplification circuit of inverter control
over-current detection circuit.
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
TV, electrical sewing
machine, microwave
oven, warm air heating
equipment, air conditioner
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Audio equipment
see switch-mode power supply
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Power supply circuit (primary-secondary circuit
isolation)
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Compact disc player
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Telecommunication
please recommend:
K3010P-K3023P,
4N35-4N37, 4N32
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Isolation for signal transfer system, pulse-dial
circuit, ring-detector circuit, loop monitor circuit
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Push-button telephone
system
TELEFUNKEN Semiconductors
06.96 9
Optocouplers – Optical Sensors
Market Segment,
Application Description Usability
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
TV, audio
please recommend:
TCRT1000, 5000,
TCST5123, 1030, 1230
TCVT1300
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Detection of rotation speed, position pick-up head,
home position tape counter, tape-end detection
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
VCR, VDP, CD player,
tape deck
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Home electric
please recommend:
TCRT5000, TCST1103,
TCST1300, IR single parts
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Scattering reflection light, detection of washing
water contaminiation, detection of salt level, me-
chanical position detection, movement of needle,
cloth feeder
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Smoke detector. washing
machines, dish-washer ,
health equipment, sewing
machines
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Automotive
please recommend:
optical pairs: TCZT8020,
TCZT8012, TCZS8100,
TCRT1000
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Engine speed detection, point-position detection,
steering angle detection, detection of door lock
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Tachometer,
speedometer, steering
wheel, door
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Control and measure
please recommend:
TCVT1300, TCRT1000
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Speed rotation, motor position, distance detection,
mechanical position detection, object sensor
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Rotary encoder
measuring, devices,
robots, electricity meters
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Office automation
please recommend:
TCST1030, 1230,
TCST1300, TCRT1000
TCRT5000
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Detection of paper, paper position, home position,
print timing, detection of paper feeding, detection
of paper exhaustion index, write-protect detection,
zero tracking detection, detection of scan timing
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Copier, printer, typewriter,
facsimile, FDD, tape
drives, handy, scanner
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Others
TCST1103,
TCRT5000, TCST1300
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Detection of coins, detection of paper money,
detection of prints, detection of weight, object
sensor/ on/ off position, liquid-level detection
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
Slot machine ticket/
vending machines,
validator, film cutter,
electronic scales,
watertab, liquid, container
TELEFUNKEN Semiconductors
06.96
10
Classification Chart for Opto Isolators
General purpose
4N27/28
Standard
CTR>10%
Multichannel
4N-Series
Transistor output 4N25/26
CTR>20%
4N35–37
CTR>100%
TCDT1110
CTR>50
Base n.c.
Transistor output
4N32/33
CTR>500%
High CTR
Darlington output
2 Channels
Transistor output
K827P
CNY74–2
CTR>50–600%
MCT6/62
American pin connection
Japanese pin connection
K847P
CNY74–4
American pin connection
Japanese pin connection
4 Channels
Transistor output
1500 V
2800 V
3550 V
3750 V
96 11941
6000 V
American pin connection
CTR>100%
CTR>50–600%
CTR>50–600%
CTR>50–600%
TELEFUNKEN Semiconductors
06.96 11
Classification Chart for Opto Isolators
VDE-tested devices for e.g., switching power supply
4N35(G)V
CNY65Exi
CNY64/65/66
CNY21N
CNY21Exi
CQY80N(G)
CNY17(G)
K3010P(G)
CNY75(G)
K3020P(G)
Creepage distance
8mm
Thickness of
isolation > 2mm
Thickness of
isolation>0.75mm
Transistor output
Triac driver
Transistor output
Thickness of
isolation > 3.3mm Transistor output
Creepage distance
> 8mm
CTR>50%
CTR>25%
CTR>100%
CTR>50%
CTR 63–125%
CTR>50%
base n.c.
use for:
IEC 335 / VDE 700;
safety standard
use for:
IEC 435 / VDE 0805
IEC 380 / VDE 0806
PTB-tested device use for:
intrinsic safety
VDRM=250V, IFT
15mA
VDRM=500V, IFT
30mA
500 V
1000 V
6000 V
8000 V
10000 V
11000 V
15000 V
96 11940
CTR>40%
TCDT112.(G)
4N25(G)V
CTR>63%
CTR>20%
TCDT110.(G)
TCDT1110(G)
CTR>50%
CTR>100%
base n.c.
base n.c.
CTR>63%
CNY18
K120P
3C91C
3C92C
Hermetically-sealed
package JEDEC TO72 Different pin
connections Transistor output
CTR>40%
CTR>40%
CTR>25%
CTR>25%
TELEFUNKEN Semiconductors
06.96
12
Conventions Used in Presenting Technical Data
Nomenclature for Semiconductor Devices According to Pro Electron
The type number of semiconductor devices consists of two letters followed by a serial number
Material Function Serial number
C N Y75
The first letter gives information about the material used
for the active part of the devices.
A GERMANIUM
(Materials with a band gap of 0.6 – 1.0 eV) 1)
B SILICON
(Materials with a band gap of 1.0 – 1.3 eV) 1)
C GALLIUM-ARSENIDE
(Materials with a band gap > 1.3 eV) 1)
R COMPOUND MATERIALS
(For instance Cadmium-Sulphide)
The second letter indicates the circuit function:
A DIODE: Detection, switching, mixer
B DIODE: Variable capacitance
C TRANSISTOR: Low power , audio frequency
D TRANSISTOR: Power, audio frequency
E DIODE: Tunnel
F TRANSISTOR: Low power, high frequency
G DIODE: Oscillator, miscellaneous
H DIODE: Magnetic sensitive
K HALL EFFECT DEVICE:
In an open magnetic circuit.
L TRANSISTOR: Power, high frequency
M HALL EFFECT DEVICE:
In a closed magnetic circuit
N PHOTO COUPLER
P DIODE: Radiation sensitive
Q DIODE: Radiation generating
R THYRlSTOR: Low power
S TRANSISTOR: Low power, switching
T THYRISTOR: Power
U TRANSISTOR: Power, switching
X DIODE: Multiplier, e.g., varactor, step recovery
Y DIODE: Rectifying, booster
Z DIODE: Voltage reference or voltage regulator,
transient suppressor diode
The serial number consists of:
D
Three figures, running from 100 to 999, for devices
primarily intended for consumer equipment.
D
One letter (Z, Y, X, etc.) and two figures running from
10 to 99, for devices primarily intended for profes-
sional equipment.
A version letter can be used to indicate a deviation of a
single characteristic, either electrically or mechanically.
The letter never has a fixed meaning, the only exception
being the letter R, which indicates reversed voltage, i.e.,
collector-to-case.
1) The material mentioned are examples
TELEFUNKEN Semiconductors
06.96 13
Type Designation Code for Optocouplers
TEMIC
TELEFUNKEN
Semiconductors
Coupler
Case varieties
C = Metal can
D = Dual inline
G = Casting products
H = Metal can parts
mounted in plastic
case
M= SMD package
TC
FFF FFFFF
Output
D = Darlington
E = Split-Darlington
H = High speed
L = Linear IC
S = Schmitt Trigger
T = Transistor
V = Triac
Number of
coupler systems
1 = 1 system
2 = 2 systems
3 = 3 systems
4 = 4 systems
Main type
Selection
type
IF “T” on 4. position
Pin connection – please
refer to data sheet
Type Designation Code for Optical Sensors
TEMIC
TELEFUNKEN
Semiconductors
Coupler
Function/ Case varieties
N = SMD reflective sensor
O = Reflective sensor with
wire terminals
R = Reflective sensor
S = Transmission sensor
(polycarbonat)
U = SMD transmissive
sensor
V = 2 channel transmissive
sensor
X = Transmission sensor
with wire terminals
Y = Transmission sensor
with connector
Z = Emitter and detector
matched pairs without
package
TC
FFF FFFFF
Output
D = Darlington
L = Linear IC
S = Schmitt Trigger
T = Transistor
Package varieties
1 = without mounting
flange
2 = with mounting
flange
3 = with mounting
flange on emitter
side
4 = with mounting
flange on detector
side
5 = special package
without flange
6 = special package
with flange
7 = TO92 Mini
8 = single part
9 = special part
Main type
Selection
type
Aperture
0 = without
1 = 1 mm
2 = 0.5 mm
3 = 0.25 mm
F
Appendix
U = Unmounted
TELEFUNKEN Semiconductors
06.96
14
Symbols and Terminology – Alphabetically
A
Anode, anode terminal
A
Radiant sensitive area
That area which is radiant-sensitive for a specified range
a
Distance between the emitter (source) and the detector
AQL
Acceptable Quality Level,
see “Qualification and Monitoring”
B
Base, base terminal
C
Capacitance
C
Cathode, cathode terminal
C
Collector, collector terminal
°C
Celsius
Unit of the centigrade scale; can also be used (besides K)
to express temperature changes
Symbols: T,
D
T
T(°C) = T(K)–273
CCEO
Collector emitter capacitance
Capacitance between the collector and the emitter with
open base
Measurement is made by applying reverse voltage
between collector and emitter terminals.
Cj
Junction capacitance
Capacitance due to a PN-junction of a diode
It decreases with increasing reverse voltage.
Ck
Coupling capacitance
Capacitance between the emitter and the detector of an
opto isolator
CTR
Current Transfer Ratio
Ratio between output and input current
CTR
+
100 IC
IF%
d
Distance
D
v/
D
t cr
Critical rate of rise of off-state voltage (IF = 0)
Highest value of “rate of rise of off-state voltage” which
will cause no switching from the off-state to the on-state.
D
v/
D
t crq
Critical rate of rise of commutating voltage (IF IFT)
Highest value of “rate of rise of commutating voltage”. It
will not switch-on the device again until after the voltage
has decreased to zero and the trigger current is switched
to zero (If IFT).
E
Emitter, emitter terminal
f
Frequency
Unit: Hz (Hertz)
fg
Cut-off frequency
The frequency at which the modules of the small signal
current transfer ratio has decreased to 1
2
Ǹ
of its lowest
frequency value.
GB
Gain bandwidth product
Gain bandwidth product is defined as the product of M
times the frequency of measurement, when the diode is
biased for maximum of obtainable gain.
hFE
DC current gain
IB
Base current
IC
Collector current
ICB
Collector base current
ICEO
Collector dark current, with open base
At radiant sensitive devices with open base and without
illumination/radiation (E = 0)
ICM
Repetitive peak collector current
ICX
Cross talk current
For reflex-coupled isolators, collector emitter cut-off
current with the IR emitter activated, but without
reflecting medium
IDRM
Repetitive peak off-state current
The maximum leakage current that may occur under the
conditions of VDRM
IF
Forward current continuous
The current flowing through the diode in direction of
lower resistance
IFAV
Average (mean) forward current
TELEFUNKEN Semiconductors
06.96 15
IFM
Peak forward current
IFSM
Surge forward current
IFT
Threshold forward current
The minimum current required to switch from the off-
state to the on-state
IH
The minimum current required to maintain the thyristor
in the on-state
Io
DC output current
IOH
High level output current
IR
Reverse current, leakage current
Current which flows when reverse bias is applied to a
semiconductor junction
Iro
Reverse dark current
Reverse dark current which flows through a photoelectric
device without radiation/ illumination
ISrel
Relative supply current
IT
On-state current
The permissible output current under stated conditions
K
Kelvin
The unit of absolute temperature T (also called the Kelvin
temperature); also used for temperature changes
(formerly °K)
Ptot
Total power dissipation
Pv
Power dissipation, general
RIO
Input/ output isolation resistor
RL
Load resistance
RthJA
Thermal resistance, junction ambient
RthJC
Thermal resistance, junction case
S
Displacement
T
Period (duration)
T
Temperature
0 K = –273.16°C
Unit: K (Kelvin), °C (Celsius)
t
Time
Tamb
Ambient temperature
It self-heating is significant:
Temperature of the surrounding air below the device,
under conditions of thermal equilibrium.
If self-heating is insignificant:
Air temperature in the immediate surroundings of the de-
vice
Tamb
Ambient temperature range
As an absolute maximum rating:
The maximum permissible ambient temperature range.
Tcase
Case temperature
The temperature measured at a specified point on the case
of a semiconductor device
Unless otherwise stated, this temperature is given as the
temperature of the mounting base for devices with metal
can
td
Delay time
tf
Fall time, see figure 17
Tj
Junction temperature
It is the spatial mean value of temperature which the junc-
tion has acquired during operation. In the case of
phototransistors, it is mainly the temperature of collector
junction because its inherent temperature is maximum.
TC
Temperature coefficient
The ratio of the relative change of an electrical quantity
to the change in temperature (T) which causes it, under
otherwise constant operating conditions.
toff
Turn-off time, see figure 17
ton
Turn-on time, see figure 17
tp
Pulse duration, see figure 17
tr
Rise time, see figure 17
ts
Storage time
TELEFUNKEN Semiconductors
06.96
16
Tsd
Soldering temperature
Maximum allowable temperature for soldering with
specified distance from case and its duration (see table 2)
Tstg
Storage temperature range
The temperature range at which the device may be stored
or transported without any applied voltage
VBEO
Base-emitter voltage, open collector
V(BR)
Breakdown voltage
Reverse voltage at which a small increase in voltage
results in a sharp rise of reverse current
It is given in technical data sheets for a specified current.
V(BR)CEO
Collector emitter breakdown voltage, open base
V(BR)EBO
Emitter base breakdown voltage, open collector
V(BR)ECO
Emitter collector breakdown voltage, open base
VCBO
Collector -base voltage, open emitter
Generally, reverse biasing is the voltage applied to any-
one of two terminals of a transistor in such a way that one
of the junction operates in reverse direction, whereas the
third terminal (second junction) is specified separately.
VCE
Collector -emitter voltage
VCEO
Collector-emitter voltage, open base (IB = 0)
VCEsat
Collector emitter saturation voltage
Saturation voltage is the dc voltage between collector and
emitter for specified (saturation) conditions i.e., IC and IF,
whereas the operating point is within the saturation re-
gion.
Saturation region
IF given
given IC
IC
VCE
VCESat
96 11694
Figure 1.
VDRM
Repetitive peak off-state voltage
The maximum allowable instantaneous value of repeti-
tive off-state voltage that may be applied across the triac
output
VEBO
Emitter base voltage, open collector
VECO
Emitter collector voltage, open base
VF
The voltage across the diode terminals which results from
the flow of current in the forward direction
VIO
The voltage between the input terminals and the output
terminals
VIORM
The maximum recurring peak (repetitive) voltage value
of the optocoupler, characterizing the long-term
withstand capability against transient overvoltages
VIOTM
The impulse voltage value of the optocoupler, character-
izing the long-term withstand capability against transient
overvoltage
VIOWM
The maximum rms. voltage value of the optocoupler,
characterizing the long-term withstand capability of its
insulation
VR
Reverse voltage
Voltage drop which results from the flow of reverse
current
Vs
Supply voltage
VTM
On-state voltage
The maximum voltage when a thyristor is in the on-state
VTMrel
Relative on-state voltage
±
ö
Angle of half sensitivity
The plane angles through which a detector , illuminated by
a point source, can be rotated in both directions away
from the optical axis, before the electrical output of the
device falls to half the maximum value
±
ö
Angle of half sensitivity
The plane angles through which an emitter can be rotated
in both directions away from the optical axis, before the
electrical output of a linear detector facing the emitter
falls to half the maximum value
TELEFUNKEN Semiconductors
06.96 17
Example for Using Symbols According to DIN 41 785 and IEC 148
a) Transistor
Icav
Collector
current
AC value
ICAV
ICM
iC
ic
Ic
Icm
t
without signal with signal
93 7795
IC
Figure 2.
ICdc value, no signal
ICAV Average total value
ICM;ICMaximum total value
ICRMS varying component
ICM;ICMaximum varying
component value
iCInstantaneous total value
iCInstantaneous varying
component value
The following relationships are valid:
ICM = ICAV + Icm
iC = ICAV + ic
b) Diode
VFWM
VFSM
t
VF
VRSM
VRRM
VRWM
VR
0
93 7796
VFRM
Figure 3.
VFForward voltage
VRReverse voltage
VFSM Surge forward voltage
(non-repetitive)
VRSM Surge reverse voltage
(non-repetitive)
VFRM Repetitive peak
forward voltage
VRRM Repetitive peak
reverse voltage
VFWM Crest working
forward voltage
VRWM Crest working
reverse voltage
TELEFUNKEN Semiconductors
06.96
18
c) Triac
+I
–I
–V
+V
Quadrant I
Quadrant III
Forward Breakover
Voltage / Current
Reverse Breakover
Voltage / Current
–VDRM
+IDRM
+VDRM
–IDRM
+IT
–IT
+VT
–VT
+IH
–IH
96 11881
Figure 4.
IDRM Repetitive peak
off-state current
IFT Threshold forward current
IHHolding current
ITOn-state current
VDRM Repetitive peak
off-state voltage
VTM On-state voltage
d) Designation and symbols of optoelectronic devices are given so far as possible
according to DIN 44020 sheet 1 and IEC publication 50 (45).
TELEFUNKEN Semiconductors
06.96 19
Data Sheet Structure
Data sheet information is generally presented in the
following sequence:
D
Description
D
Absolute maximum ratings
D
Thermal data – thermal resistances
D
Optical and electrical characteristics
D
Diagrams
D
Dimensions (mechanical data)
Description
The following information is provided: Type number,
semiconductor materials used, sequence of zones,
technology used, device type and, if necessary,
construction.
Also, short-form information on special features and the
typical applications is given.
Absolute Maximum Ratings
These define maximum permissible operational and envi-
ronmental conditions. If any one of these conditions is
exceeded, it could result in the destruction of the device.
Unless otherwise specified, an ambient temperature of
25 ± 3 °C is assumed for all absolute maximum ratings.
Most absolute ratings are static characteristics; if
measured by a pulse method, the associated measurement
conditions are stated. Maximum ratings are absolute (i.e.,
not interdependent).
Any equipment incorporating semiconductor devices
must be designed so that even under the most unfavorable
operating conditions the specified maximum ratings of
the devices used are never exceeded. These ratings could
be exceeded because of changes in
D
Supply voltage, the properties of other components
used in the equipment
D
Control settings
D
Load conditions
D
Drive level
D
Environmental conditions and the properties of the
devices themselves (i.e., ageing).
Thermal Data – Thermal Resistances
Some thermal data (e.g., junction temperature, storage
temperature range, total power dissipation) are given
under the heading “Absolute maximum ratings”; (This is
because they impose a limit on the application range of
the device).
The thermal resistance junction ambient (RthJA) quoted is
that which would be measured without artificial cooling,
i.e., under worst case conditions.
Temperature coefficients, on the other hand, are listed to-
gether with the associated parameters under “Optical and
electrical characteristics”.
Optical and Electrical Characteristics
Here, the most important operational, optical and electri-
cal characteristics (minimum, typical and maximum
values) are listed. The associated test conditions,
supplemented with curves and an AQL-value quoted for
particularly important parameters (see “Qualification and
Monitoring”) are also given.
Diagrams
Besides the static (dc) and dynamic (ac) characteristics,
a family of curves is given for specified operating
conditions. These curves show the typical interpendence
of individual characteristics.
Dimensions (Mechanical Data)
This list contains important dimensions and the sequence
of connection, supplemented by a circuit diagram. Case
outline drawings carry DIN-, JEDEC or commercial des-
ignations. Information on the angle of sensitivity or
intensity and weight completes the list of mechanical
data.
Please Note:
If the dimensional information does not include any
tolerances, the following applies:
Lead length and mounting hole dimensions are minimum
values. Radiant sensitive (or emitting area respectively)
are typical values, all other dimensions are maximum.
Any device accessories must be ordered separately,
quoting the order number.
Additional Information
Preliminary specifications
This heading indicates that some information on
preleminary specifications may be subject to slight
changes.
Not for new developments
This heading indicates that the device concerned should
not be used in equipment under development. It is,
however, available for present production.
TELEFUNKEN Semiconductors
06.96
20
TTL
270
W
0.1
m
F
M
+5 V
X
VAC
Galvanical separation 96 11706
Figure 5. Basic application of an optocoupler
General Description
Basic Function
In an electrical circuit, an optocoupler ensures total elec-
tric isolation, including potential isolation, as in the case
of a transformer, for instance.
In practice, this means that the control circuit is located
on one side of the optocoupler , i.e., the emitter side, while
the load circuit is located on the other side, i.e., the
receiver side. Both circuits are electrically isolated by the
optocoupler (figure 5). Signals from the control circuit
are transmitted optically to the load circuit, and are there-
fore free of retroactive effects. In most cases, this optical
transmission is realized with light beams whose wave-
lengths span the red to infrared range, depending on the
requirements applicable to the optocoupler. The band-
width of the signal to be transmitted ranges from a dc
voltage signal to frequencies in the MHz band. An opto-
coupler is comparable to a transformer or relay. Besides
having smaller dimensions in most cases, the advantages
of optocouplers compared to relays are the following: it
ensures considerably shorter switching times, no contact
bounce, no interference caused by arcs, no mechanical
wear and the possibility of adapting a signal, already in
the coupler , to the following stage in the circuitry. Thanks
to all these advantages, optocouplers are outstandingly
suitable for circuits used in microelectronics and also in
data processing and telecommunication systems. Opto-
couplers are used to an increasing extent as safety tested
components, e. g., in switchmode power supplies.
Design
An optocoupler has to fulfill 5 essential requirements:
D
Good insulation behavior
D
High current transfer ratio (CTR)
D
Low degradation
D
Low coupling capacitance
D
No uncontrolled function by field strength influences
These factors are essentially dependent on the design, the
materials used and the corresponding chips used for the
emitter/receiver.
TEMIC has succeeded in achieving a design with opti-
mized insulation behavior and good transfer
characteristics.
TEMIC offers various mechanical designs. The 6-lead
DIP package optocoupler is used most widely throughout
the world.
Since this design deviates fundamentally from
manufacturers’ designs, it is necessary to explain its
characteristics.
In TEMIC’s 6-lead DIP couplers, the emitter and receiver
chips are placed side by side. A semi-ellipsoid with best
reflection capabilities is fitted over both chips. The entire
system is then cast in a plastic material impermeable to
the infrared range and of high dielectric strength. The
whole system is enveloped in a light-proof plastic
compound to ensure that no external influences such as
light or dust, etc. will disturb the coupler, see figure 6.
The design offers several advantages in comparison to
conventional coupler designs.
The mechanical clearance between the emitter and
receiver is 0.75 mm and is thus mechanically stable even
under thermal overloads, i.e., the possibility of a short
circuit caused by material deformation is excluded. This
is important for optocouplers which have to fulfill strict
safety requirements (VDE/UL specifications), see
VDE0884 Facts and Information.
TELEFUNKEN Semiconductors
06.96 21
Thanks to their large clearance these couplers have a very
low coupling capacity of 0.2 pF. Couplers with conven-
tional designs, i.e., where the emitter and receiver are
fitted ”face-to-face” (figure 7), have higher coupling
capacitance values by a factor of 1.3 - 2. Attention must
be paid to the coupling capacitance in digital circuits in
which steep pulse edges are produced which superimpose
themselves on the control signal. With a low coupling
capacitance, the transmission capabilities of these
interference spikes are effectively suppressed between
the input and output because a coupler should only
transmit the effective signal. This capability of
suppressing dynamic interferences is commonly known
as “common-mode rejection”.
Figure 6. Inline emitter and transmitter chip design
(e.g., CQY80N)
Figure 7. Face-to-face design
Due to the special design of these couplers, the receiver
surface is outside the area of the direct field strength.
Field strength is produced when there is a voltage
potential between the couplers input and output. It
causes the migration of positive ions to the transistors
surface. Positive ions perform on the base in the same way
as a gate voltage applied to an n-channel FET transistor
(see figure 8).
If inversions occur on the surface, the phototransistor
becomes forward-biased, causing an inadmissible
residual collector-emitter current. As a result, controlled
functioning of the coupler is no longer guaranteed
(figure 8). This effect occurs mainly whenever the
receiver is within the field strength potential. The
manufacturer should create suitable protective measures
in this case. Using TEMIC’s optocouplers, such protec-
tive measures are not necessary thanks to their perfect
design.
The degradation of an optocoupler, i.e., impairment of its
CTR over a finite period, depends on two factors. On the
one hand, it depends on the emitter element due to its
decreasing radiation power while, on the other hand, it
depends on ageing or opaqueness of the synthetic resin
which must transmit the radiation from the emitter to the
receiver. A decrease in the radiation power can be
primarily ascribed to thermal stress caused by an external,
high ambient temperature and/or high a forward current.
In practice, optocouplers are operated with forward
current of 1 to 30 mA through the emitting diode. In this
range, degradation at an average temperature of 40°C is
less than 5% after 1000 h. If we compare this value with
the service life requirements applicable to transistors for
high grade systems (such as those used in telecom-
munication system standards), the optocoupler takes a
good position with such degradation values. The
Deutsche Bundespost, for example, permits a B-drift of
no more than 20% for transistors with a maximum testing
time of 2000 h. In general, an optocouplers life time is
a period of 150.000 h, i.e, the CTR should not have
dropped below 50% of its value at 0 hours during this time
(see figure 9).
Figure 8. Functions of parasitic field effect transistor as a result
of failure (latch-up) in the phototransistor of couplers
TELEFUNKEN Semiconductors
06.96
22
0.5
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
0 1500 3000 4500 6000 7500 9000
I / I ( 0 h ) – Rel. Collector Current
t – Time ( h )96 12107
C
Operating
conditions:
VCE=5V
IF=30mA
Tamb=25°C
C
Test conditions:
VCE=5V
IF=10mA
Figure 9. Degradation under typical operating conditions with
reference to the CQY80N
Technical Description – Assembly
Emitter
Emitters are manufactured using the most modern Liquid
Phase Epitaxy (LPE) process. By using this technology,
the number of undesirable flaws in the crystal is reduced.
This results in a higher quantum efficiency and thus
higher radiation power. Distortions in the crystal are
prevented by using mesa technology which leads to lower
degradation. A further advantage of the mesa technology
is that each individual chip can be tested optically and
electrically even on the wafer.
Detector
TEMIC detectors have been developed so that they match
perfectly to the emitter. They have low capacitance
values, high photosensitivity and are designed for an ex-
tremely low saturation voltage.
Silicon nitride passivation protects the surface against
possible impurities.
Assembly
The components are fitted onto lead frames by fully auto-
matic equipment using conductive epoxy adhesive.
Contacts are established automatically with digital
pattern recognition using the well-proven thermosonic
technique. In addition to optical and mechanical checks,
all couplers are measured at a temperature of 100°C.
Conversion Tables – Optoelectronic General
Table 1. Corresponding radiometric and photometric definitions, symbols and units (DIN 5031, Part 1, 3)
Radiometric Units Photometric Units
Note
Unit Symbol Unit Unit Symbol Unit
N
o
t
e
Radiant flux,
Radiant power
F
eWatt, W Luminous flux
F
vlumen, lm Power
Radiant exitance,
Exitance MeW/m2Luminous emittance Mvlm/m2Output power per
unit area
(Radiant) intensity IcW/sr (Luminous) intensity IvCandela,
cd, lm/sr Output power per
unit solid angle
Radiant sterance,
Radiance LeW
sr*m2
Luminance
(Brightness sterance) Lvcd/m2Output power per
unit solid angle
and emitting areas
Radiant incidance,
Irradiance EeW/m2Illuminance Evlm/m2
Lux, lx Input power per
unit area
Radiant energy QeWs Luminous energy Qvlm s Power
time
Irradiation HeWs/m2Illumination Hvlm s/m2Radiant ener gy or
luminous energy
per unit area
TELEFUNKEN Semiconductors
06.96 23
Measurement Techniques
Introduction
The characteristics given in the optocoupler‘s data sheets
are verified either by 100% production tests followed by
statistic evaluation or by sample tests on typical
specimens. Possible tests are the following:
D
Measurements on emitter chip
D
Measurements on detector chip
D
Static measurements on optocoupler
D
Measurement of switching characteristics, cut-off
frequency and capacitance
D
Thermal measurements
The basic circuits used for the most important measure-
ments are shown in the following sections, although these
circuits may be modified slightly to cater for special
measurement requirements.
Measurements on Emitter Chip
Forward- and Reverse Voltage
Measurements
The forward voltage, VF, is measured either on a curve
tracer or statically using the circuit shown in figure 10.
A specified forward current (from a constant current
source) is passed through the device and the voltage
developed across it is measured.
To measure the reverse voltage, VR, a 100
m
A reverse
current from a constant current source is applied to the
diode (figure 11) and the voltage developed across it is
measured on a voltmeter of extremely high input
impedance (10 M
W
).
Measurements on Detector Chip
VCEO and ICEO Measurements
The collector-emitter voltage, VCEO, is measured either
on a transistor curve tracer or statically using the circuit
shown in figure 12.
The collector dark current, ICEO, must be measured in
complete darkness (figure 13). Even ordinary daylight
illumination might cause wrong measurement results.
VS = 5V
Rj > 10k
W
V
VF
I = 50mA
100mA
constant
94 8205
Figure 10.
VS = 80V
( > VR max )
Rj > 10M
W
V
VR
I = 10
m
A
constant
94 8206
Figure 11.
Ri
w
1M
W
V
VCEO
IC =1mA
constant
VS = 100V
( > VCEO )
E < 100lx
96 12367
Figure 12.
TELEFUNKEN Semiconductors
06.96
24
Ri = 1M
W
ICEO
VS = 20V
E = 0
10k
W
mV
96 11695
Figure 13.
Static Measurements
To measure the collector current, IC (figure 14), a
specified forward current, IF, is applied to the lR diode.
Voltage drop is then measured across a low-emitter
resistance.
In the case of collector-emitter saturation voltage, VCEsat
(figure 15), a forward current, IF, is applied to the IR
diode and a low collector current, IC, in the phototransis-
tor. VCEsat is then measured across collector and emitter
terminals as shown in figure 15.
Switching Characteristics
Definition
Each electronic device generates a certain delay between
input and output signals as well as a certain amount of
amplitude distortion. A simplified circuit (figure 16)
shows how the input and output signals of optocouplers
can be displayed on a dual-trace oscilloscope.
The following switching characteristics can be deter-
mined by comparing the timing of the output current
waveform to that of the input current waveform
(figure 17).
VS = 5V
IF =5mA
10mA
constant
VS = 5V
Rj = 10k
W
mV
1
W
IC
96 11696
Figure 14.
Rj
w
1M
W
V
VCEsat
IC =1mA
constant
VS = 5V
IF =10mA
constant
VS = 5V
94 8218
Figure 15.
VS
Channel I Channel II
GaAs-Diode
IF
96 11697
Figure 16.
TELEFUNKEN Semiconductors
06.96 25
tpt
t
0
0
10%
90%
100%
tr
td
ton
tstf
toff
IF
IC
96 11698
tppulse duration
tddelay time
trrise time
ton (= td + tr) turn-on time
tsstorage time
tffall time
toff (= ts + tf) turn-off time
Figure 17.
Improvements of Switching Characteristics
of Phototransistors and Darlington Photo-
transistors
With normal transistors, switching tunes can be reduced
if the drive signal level and hence the collector current is
increased. Another time reduction (especially in fall
time tf) can be achieved by using a suitable base resistor.
However, this can only be done at the expense of a
decreasing CTR.
TELEFUNKEN Semiconductors
06.96
26
Taping of SMD Couplers
TEMIC couplers in SMD packages are available in an anti-
static 12 mm blister tape (in accordance with DIN IEC
286-3) for automatic component insertion.
The blister tape is a plastic strip with impressed component
cavities, covered by a top tape. For orders add “GS12” to the
part number, e.g., TCMT1020GS12.
96 12363
Figure 18. Blister tape
5.4
5.2
1.6
1.4
4.1
3.9 2.1
1.9
3.9
3.7
0.3 max.
1.85
1.65
5.55
5.45 12.3
11.7
6.6
6.4
8.1
7.9
1.6
1.4
96 11942
technical drawings
according to DIN
specifications
Figure 19. Tape dimensions in mm
Number of Components Quantity per reel: 2000 pcs (minimum quantities for order)
TELEFUNKEN Semiconductors
06.96 27
Technical Information
Peel test requirement: 50
"
20 gm
Temperature/ Pressure settings: Seal pressure Real temperature
Wheel pressure front/ rear front/ rear
25 – 30 psi 35 psi 145 – 150°C
Production run quantity:
T railer Production units Leader
38 pcs – 300 mm min. 2000 pcs 63 pcs – 500 mm min.
De-reeling direction
Tape leader
min. 75 empty
compartments
w
160 mm 40 empty
compartments
Carrier leader Carrier trailer
94 8158
Figure 20. Beginning and end of reel
2.5
1.5
21.5
20.5
N34.0
32.0
12.90
12.75
95 10518
W1
W2
Figure 21. Reel dimensions
TELEFUNKEN Semiconductors
06.96
28
Missing Devices
A maximum of 0.5% of the total number of components
per reel may be missing, exclusively missing components
at the beginning and at the end of the reel. Maximum of
three consecutive components may be missing, provided
this gap is followed by six consecutive compartments.
The tape leader is at least 160 mm and is followed by a
carrier leader with at least 10 and not more than 20 empty
compartments. The tape leader may include the carrier
trailer, providing the two are not connected together. The
last component is followed by a carrier tape trailer with
at least 10 empty compartments and is sealed with cover
tape.
Top Tape Removal Force
The removal force lies between 0.1 N and 1.0 N at a
removal speed of 5 mm/s.
In order to prevent the components from popping out of
the blisters, the top tape must be pulled off at an angle of
180°C with respect to the feed direction.
Ordering Designation
The type designation of the device in SO8 package is
given by the appendix number: GS12.
Example: TCMT1020-GS12
Assembly Instructions
General
Optoelectronic semiconductor devices can be mounted in
any position.
Connecting wires of less than 0.5 mm diameter may be
bent, provided the bend is not less than 1.5 mm from the
bottom of the case and no mechanical stress has an affect
on it. Connection wires of larger diameters, should not be
bent.
If the device is to be mounted near heat-generating
components, consideration must be given to the resultant
increase in ambient temperature.
Soldering Instructions
Protection against overheating is essential when a device
is being soldered. Therefore, the connection wires should
be left as long as possible. The time during which the
specified maximum permissible device junction temper-
ature is exceeded at the soldering process should be as
short as possible (one minute maximum). In the case of
plastic encapsulated devices, the maximum permissible
soldering temperature is governed by the maximum
permissible heat that may be applied to the encapsulant
rather than by the maximum permissible junction
temperature.
The maximum soldering iron (or solder bath)
temperatures are given in table 2. During soldering, no
forces must be transmitted from the pins to the case (e.g.,
by spreading the pins).
Table 2. Maximum soldering temperatures
Iron Soldering Wave or Reflow Soldering
Iron
Temperature Distance of the
Soldering Posi-
tion from the
Lower Edge of
the Case
Maximum
Allowable
Soldering
Time
Soldering Tem-
perature
see temperature/time
profiles
Distance of the
Soldering Posi-
tion from the
Lower Edge of
the Case
Maximum
Allowable
Soldering
Time
Devices in
metal case
x
245
_
C
x
245
_
C
x
350
_
C
y
1.5 mm
y
5.0 mm
y
5.0 mm
5 s
10 s
5 s
245
_
C
300
_
C
y
1.5 mm
y
5.0 mm
5 s
3 s
Devices in
plastic case
w
3 mm
x
260
_
C
x
300
_
C
y
2.0 mm
y
5.0 mm 5 s
3 s 235
_
C
260
_
C
y
2.0 mm
y
2.0 mm 8 s
5 s
Devices in
plastic case
<3 mm
x
300
_
C
y
5.0 mm 3 s 260
_
C
y
2.0 mm 3 s
TELEFUNKEN Semiconductors
06.96 29
Soldering Methods
There are several methods for soldering devices onto the
substrate. The following list is not complete.
(a) Soldering in the vapor phase
Soldering in saturated vapor is also known as condensa-
tion soldering. This soldering process is used as a batch
system (dual vapor system) or as a continuous single va-
por system. Both systems may also include a pre-heating
of the assemblies to prevent high temperature shock and
other undesired effects.
(b) Infrared soldering
By using infrared (IR) reflow soldering, the heating is
contact-free and the energy for heating the assembly is
derived from direct infrared radiation and from convec-
tion.
The heating rate in an IR furnace depends on the absorp-
tion coefficients of the material surfaces and on the ratio
of component’s mass to an As-irradiated surface.
The temperature of parts in an IR furnace, with a mixture
of radiation and convection, cannot be determined in ad-
vance. Temperature measurement may be performed by
measuring the temperature of a certain component while
it is being transported through the furnace.
The temperatures of small components, soldered together
with larger ones, may rise up to 280
_
C.
Influencing parameters on the internal temperature of the
component are as follows:
D
Time and power
D
Mass of the component
D
Size of the component
D
Size of the printed circuit board
D
Absorption coefficient of the surfaces
D
Packing density
D
Wavelength spectrum of the radiation source
D
Ratio of radiated and convected energy
T emperature/time profiles of the entire process and the in-
fluencing parameters are given in figure 26.
(c) Wave soldering
In wave soldering one or more continuously replenished
waves of molten solder are generated, while the substrates
to be soldered are moved in one direction across the crest
of the wave.
Temperature/time profiles of the entire process are given
in figure 26.
(d) Iron soldering
This process cannot be carried out in a controlled situa-
tion. It should therefore not be used in applications where
reliability is important. There is no SMD classification
for this process.
(e) Laser soldering
This is an excess heating soldering method. The energy
absorbed may heat the device to a much higher tempera-
ture than desired. There is no SMD classification for this
process at the moment.
(f) Resistance soldering
This is a soldering method which uses temperature-con-
trolled tools (thermodes) for making solder joints. There
is no SMD classification for this process at the moment.
TELEFUNKEN Semiconductors
06.96
30
Temperature-Time Profiles
94 8625
max. 160°C
full line : typical
dotted line : process limits
max. 240°C
2–4 K/s
ca. 230°C
215°C
10 s
50
100
150
200
250
300
0 50 100 150 200 250
Time ( s )
Temperature ( C )°
max. 40 s
Lead Temperature
90 – 120 s
Figure 22. Infrared reflow soldering optodevices (SMD package)
forced cooling
0
50
100
150
200
250
300
0 50 100 150 200 250
Time ( s )
Temperature ( C )°
94 8626
100°...130°C
full line : typical
dotted line : process limits
235°...260°C
2 K/s
ca. 200 K/s ca. 2 K/s
second wave
first wave
ca. 5 K/s
5 s Lead Temperature
Figure 23. Wave soldering double wave optodevices
TELEFUNKEN Semiconductors
06.96 31
Heat Removal
The heat generated in the semiconductor junction(s) must
be moved to the ambient. In the case of low-power
devices, the natural heat conductive path between case
and surrounding air is usually adequate for this purpose.
In the case of medium-power devices, however, heat
conduction may have to be improved by the use of star-
or flag-shaped heat dissipators which increase the heat
radiating surface.
The heat generated in the junction is conveyed to the case
or header by conduction rather than convection; a
measure of the effectiveness of heat conduction is the
inner thermal resistance or thermal resistance junction
case, RthJC, whose value is given by the construction of
the device.
Any heat transfer from the case to the surrounding air
involves radiation convection and conduction, the effec-
tiveness of transfer being expressed in terms of an RthCA
value, i.e., the case ambient thermal resistance. The total
thermal resistance, junction ambient is therefore:
RthJA = RthJC + RthCA
The total maximum power dissipation, Ptotmax, of a
semiconductor device can be expressed as follows:
Ptotmax
+
Tjmax –T
amb
RthJA
+
Tjmax –T
amb
RthJC
)
RthCA
where:
Tjmax the maximum allowable junction temperature
Tamb the highest ambient temperature likely to be
reached under the most unfavourable conditions
RthJC the thermal resistance, junction case
RthJA the thermal resistance, junction ambient
RthCA the thermal resistance, case ambient, depends on
cooling conditions. If a heat dissipator or sink is used,
then RthCA depends on the thermal contact between case
and heat sink, heat propagation conditions in the sink and
the rate at which heat is transferred to the surrounding air.
Therefore, the maximum allowable total power
dissipation for a given semiconductor device can be
influenced only by changing Tamb and RthCA. The value
of RthCA could be obtained either from the data of heat
sink suppliers or through direct measurements.
In the case of cooling plates as heat sinks, the approach
outlines in figures 25 and 26 can be used as guidelines.
The curves shown in both figures 25 and 26 give the
thermal resistance RthCA of square plates of aluminium
with edge length, a, and with different thicknesses. The
case of the device should be mounted directly onto the
cooling plate.
The edge length,
a
, derived from figures 25 and 26 in
order to obtain a given RthCA value, must be multiplied
with
a
and
b
:
a
Ȁ+
a
b
a
where
a
= 1.00 for vertical arrangement
a
= 1.15 for horizontal arrangement
b
= 1.00 for bright surface
b
= 0.85 for dull black surface
Example
For an IR emitter with Tjmax = 100°C and
RthJC
= 100 K/W, calculate the edge length for a 2 mm
thick aluminium square sheet having a dull black surface
(
b
= 0.85) and vertical arrangement (
a
= 1), Tamb = 70°C
and Ptot max = 200 mW.
Ptot max
+
Tjmax –T
amb
RthJC
)
RthCA
RthCA
+
Tjmax –T
amb
Ptot max –RthJC
RthCA
+
100°C–70°C
0.2 W 100 K
ń
W
RthCA
+
30
0.2 100 K
ń
W
RthCA
+
50 K
ń
W
D
T
+
Tcase –T
amb
can be calculated from the relationship :
Ptot max
+
Tjmax –T
amb
RthJC
)
RthCA
+
Tcase –T
amb
RthCA
D
T
+
50 K
ń
W
(100°C–70°C)
100 K
ń
W
)
50 K
ń
W
D
T
+
Tcase –T
amb
+
RthCA
(Tjmax –T
amb)
RthJC
)
RthCA
D
T
+
50 K
ń
W
30°C
150 K
ń
W
D
T
+
10°C
+
10 K
TELEFUNKEN Semiconductors
06.96
32
10 100
1
10
100
R ( K/W )
thCA
a (mm )
1000
D
T = 10°C
30°C
60°C
120°C
Plate thickness : 0.5 mm
94 7834
Figure 24.
With RthCA = 50 k/W and
DT
= 10°C, a plate of 2 mm
thickness has an edge length
a
= 28 mm.
10 100
1
10
100
R ( K/W )
thCA
a ( mm )
1000
Plate thickness : 2 mm
D
T = 10°C
30°C
60°C
120°C
94 7835
Figure 25.
However, equipment life and reliability have to be taken
into consideration and therefore a larger sink would nor-
mally be used to avoid operating the devices continuously
at their maximum permissible junction temperature.
TELEFUNKEN Semiconductors
06.96 33
Handling Instructions
Protection against Electrostatic
Damage
Although electrostatic breakdown is most often
associated with IC semiconductor devices, optoelectro-
nic devices are also prone to such a breakdown.
Miniaturized and highly integrated components are par-
ticularly sensitive.
Sensitivity
Breakdown Voltages
Typical electrostatic voltages in the working environment
can easily reach several thousand volts, well above the
level required to cause a breakdown. As market require-
ments are moving towards greater miniaturization, lower
power consumption, and higher speeds, optoelectronic
devices are becoming more integrated and delicate. This
means that they are becoming increasingly sensitive to
electrostatic effects.
Device Breakdown
Electrostatic discharge events are often imperceptible.
This might cause the following problems.
Delay Failure
Electrostatic discharge may damage the device or change
its characteristics without causing immediate failure. The
device may pass inspection, move into the market, then
fail during its initial period of use.
Difficulty in Identifying Discharge Site
Human beings generally cannot perceive electrostatic
discharges of less than 3000 V, while semiconductor de-
vices can sustain damage from electrostatic voltages as
low as 100 V. It is often very difficult to locate the process
at which electrostatic problems occur.
Basic Countermeasures
Optoelectronic devices must be protected from static
electricity at all stages of processing. Each device must
be protected from the time it is received until the time it
has been incorporated into a finished assembly. Each pro-
cessing stage should incorporate the following measures.
Suppression of Electrostatic Generation
Keep relative humidity at 50 to 70% (if humidity is above
70%, morning dew may cause condensation).
Remove materials which might cause electrostatic
generation (such as synthetic resins) from your work-
place. Check the appropriateness of floor mats, clothing
(uniforms, sweaters, shoes), parts trays, etc.
Use electrostatically safe equipment and machinery.
Removal of Electrostatic Charges
Connect conductors (metals, etc.) to ground, using dedi-
cated grounding lines. To prevent dangerous shocks and
damaging discharge surges, insert a resistance of 800 k
W
between conductor and grounding line.
Connect conveyors, solder baths, measuring machines,
and other equipment to ground, using dedicated, ground-
ing lines.
Use ionic blowers to neutralize electrostatic charges on
insulators. Blowers pass char ged air over the tar geted ob-
ject, neutralizing the existing charge. They are useful for
discharging insulators or other objects that cannot be
effectively grounded.
Human Electrostatic
The human body readily picks up electrostatic charges,
and there is always some risk that human operators may
cause electrostatic damages to the semiconductor devices
they handle. The following counter measures are essen-
tial.
Anti-Static Wrist Straps
All people who come into direct contact with semicon-
ductors should wear anti-static wrist straps, i.e., those in
charges of parts supply and people involved in mounting,
board assembly and repair.
Be sure to insert a resistance of 800 k
W
to 1 M
W
into the
straps. The resistance protects against electrical shocks
and prevents instantaneous and potentially damaging dis-
charges from charged semiconductor devices.
Be sure that the straps are placed directly next to the skin,
placing them over gloves, uniforms or other clothing re-
duces their effectiveness.
Antistatic Mats, Uniforms and Shoes
The use of anti-static mats and shoes is effective in places
where use of a wrist strap is inconvenient (for example,
when placing boards into returnable boxes). To prevent
static caused by friction with clothing, personnel should
wear anti-static uniforms, gloves, sleeves aprons, finger
covers, or cotton apparel.
Protection during Inspection, Mounting and
Assembly
The personnel has to ensure that hands do not come into
direct contact with leads. Avoid non-conductive finger
covers. Cover the work desk with grounded anti-static
mats.
Storage and Transport
Always use conductive foams, tubes, bags, reels or trays
when storing or transporting semiconductor devices.
TELEFUNKEN Semiconductors
06.96
34
Mounting Precautions
Installation
Installation on PWB
When mounting a device on PWB whose pin-hole pitch
does not match the lead pin pitch of the device, reform the
device pins appropriately so that the internal chip is not
subjected to physical stress.
Installation Using a Device Holder
Emitters and detectors are often mounted using a holder.
When using this method, make sure that there is no gap
between the holder and device.
Installation Using Screws
When lead soldering is not adequate to securely retain a
photointerrupter, it may be retained with screws.
The tightening torque should not exceed 6 kg/cm3. An
excessive tightening torque may deform the holder,
which results in poor alignment of the optical axes and
degrades performance.
Lead Forming
Lead pins should be formed before soldering. Do not
apply forming stress to lead pins during or after soldering.
For light emitters or detectors with lead frames, lead pins
should be formed just beneath the stand-off cut section.
For optocouplers or optosensors using dual-in-line
packages, lead pins should be formed below the bent
section so that forming stress does not affect the inside of
the device. Stress to the resin may result in disconnection.
When forming lead pins, do not bend the same portion re-
peatedly, otherwise the pins may break.
Cleaning
General
Optoelectronic devices are particularly sensitive with
regard to cleaning solvents. The Montreal Protocol for
environmental protection calls for a complete ban on the
use of chlorofluorocarbons. Therefore, the most harmless
chemicals for optoelectronic devices should be used for
environmental reasons. The best solution is to use a
modem reflow paste or solder composition which does
not require a cleaning procedure. No cleaning is required
when the fluxes are guaranteed to be non-corrosive and
of high, stable resistivity.
Cleaning Procedures
Certain kinds of cleaning solvents can dissolve or pene-
trate the transparent resins which are used in some types
of sensors. Even black molding components used in stan-
dard isolators are frequently penetrated between the mold
compound and lead frame. Inappropriate solvents may
also remove the marking printed on a device. It is there-
fore essential to take care when choosing solvents to
remove flux.
Cleaning is not required if the flux in the solder material
is non-aggressive and any residues are guaranteed to be
non corrosive an longterm stable of high resistivity.
In cleaning procedures using wet solvents only high
purity Ethyl and Isopropyl alcohol are recommended.
The S-series of DIL isolators is also suited for cleaning in
high purity water.
In each case, the devices are immersed in the liquid for
typically 3 min. and afterwards immediately dried for at
least 15 minutes at 50°C in dry air.
In table 3, appropriate cleaning procedures for various
product lines are summarized.
TELEFUNKEN Semiconductors
06.96 35
Table 3. Appropriate cleaning procedures for several product lines
Cleaning Procedure Product Lines
Solvent Procedure DIL-Coupler Sensors High Voltage
System “A” System “S”
gg
Couplers
–– No cleaning of
solder materials
f f f f
Ethylalcohol Immersion +
drying
f f f f
Isopropylalcohol Immersion +
drying
f f f f
Water Immersion +
drying ––1
f f
––
f
acceptable
–– not acceptable
1acceptable only if transistor base is not connected to the outside
Precautions
Intensified cleaning methods such as ultrasonic cleaning,
steam cleaning, and brushing can cause damage to opto-
electronic devices. They are generally not recommended.
Ultrasonic cleaning (unless well controlled) can damage
the devices due to its mechanical vibrations.
Using high-intensity ultrasonic cleaning, the process
might:
a. Promote dissolution or crack the package surface
and thus affect the performance of e.g., the sen-
sors
b. Promote separation of the lead frame and resin
and thus reduce humidity resistance.
c. Promote the breakage of band wires
This method should only be used after extensive trials
have been run to ensure that problems do not occur.
Brushing can scratch package surfaces. Moreover, it can
remove printed markings.
Special care should be taken to use only high purity or
chemically well-controlled solvents. Especially chloride
ions from flux or solvents that remain in the package are
a high risk for the long-time stability of any electronic
device. These as well as other promote corrosion on the
chip which can interrupt all bond connections to the out-
side leads.
TELEFUNKEN Semiconductors
06.96
36
Quality Information
TEMIC’s Continuous Improvement Activities
D
Quality training for ALL personnel including
production, development, marketing and sales
departments
D
Zero defect mindset
D
Permanent quality improvement process
D
Total Quality Management (TQM)
D
TEMIC’s Quality Policy established by the
Management Board
D
Quality system certified per ISO 9001 on July 12,
1993 (Commercial Quality System)
D
Quality system formerly approved per AQAP-1
(Military Quality System)
TEMIC Tools for Continuous Improvement
D
TEMIC qualifies materials, processes and process
changes.
D
TEMIC uses Process FMEA (Failure Mode and
Effects Analysis) for all processes. Process and
machine capability as well as Gage R&R (Repeatabil-
ity & Reproducibility) are proven.
D
TEMIC’s internal qualifications correspond to
IEC 68–2 and MIL STD 883.
D
TEMIC periodically requalifies device types (Short
Term Monitoring, Long Term Monitoring).
D
TEMIC uses SPC for significant production parame-
ters. SPC is performed by trained operators.
D
TEMIC’s Burn-In of selected device types.
D
TEMIC’s 100% testing of final products.
D
TEMIC’s lot release is carried out via sampling. Sam-
pling acceptance criterion is always c = 0.
TEMIC’s Quality Policy
Our goal is to achieve total customer satisfaction
through everything we do.
Therefore, the quality of our products and services
is our number one priority.
Quality comes first!
All of us at TEMIC are part of the process of
continuous improvement.
TELEFUNKEN Semiconductors
06.96 37
General Quality Flow Chart Diagram
Development
Qualification
Production
Wafer processing
Incoming
inspection
Assembly
Quality control
SPC
100% Final test
Monitoring
Quality control
SPC
Material
Quality control
AOQ
Lot release via sampling
Acceptance criterion c=0
95 11464
SPC : Statistical Process Control
AOQ : Average Outgoing Quality Stock/ customer
TELEFUNKEN Semiconductors
06.96
38
Process Flow Charts
Frame coding
1.Chip Aatach and curing
Wire bonding
100% visual control
Molding
Deflashing
2.Chip attach and curing
Reflector attach and curing
Frame sorting
Post curing
Tin plating
Backside coding
Cutting
Bending
Load into tubes
100% Test in tubes
100% Function test at Tamb=100°C
100% Isolation voltage test
Final test
Marking
Packing
Stock
Lead frame
IR Emitter
Silver epoxy glue
IR Detector
Bond wire
Reflector
Epoxy
Tin
Tubes
Total rejects
Color
Packing
QC Gate
Output test
QC Monitor
Q Gate
Q Gate
Q Gate
Q Gate
Q Gate
Frame sorting
QC Monitor
QC Monitor
QC Monitor
QC Monitor
QC Monitor
Q Gate
Q Gate
Molding compound Q Gate
Rejects
Q Gate
Q Gate
Q Gate
Rejects
QC Gate
QC Gate
QC Gate
QC Gate
QC Gate
Q Gate
ProductionQuality Assurance Materials Incoming
Inspection
96 11937
TELEFUNKEN Semiconductors
06.96 39
Assembly Flow Chart for Standard Opto-Coupler
Frame Preparation 1st Optical
Die Attach
Visual
Wire Bond
SPC
Pull Test
Shear Test
Rip/Peel Test
Reflector Load
Heatstake /Casting
Molding
Tin Plating
2nd Optical
Visual
Visual
Cutting
3rd Optical
Marking
Burn–In
Prepacking (Box)
Electrical Test
100%
Visual
Final Packing
Barcoding
AQL R
AQL R
AQL R
AQL R
AQL R
AQL R
AQL R
SPC
SPC
Monitor
SPC
Monitor
Sample Test
AQL 0.065
FG
CBW
Diced WaferFrame
96 11938
TELEFUNKEN Semiconductors
06.96
40
Qualification and Release
New wafer processes, packages and device types are
qualified according to the internal TEMIC
Semiconductors specification QSA 3000.
QSA 3000 consists of five parts (see figure 27).
Wafer process release: The wafer process release is the
fundamental release/qualification for the various
technologies used by TEMIC Semiconductors. Leading
device types are defined fo various technologies. Three
wafer lots of these types are subjected to an extensive
qualification procedure and are used to represent this
technology. A positive result will release the technology.
Package release: The package release is the fundamental
release/ qualification for the different packages used.
Package groups are defined (see figure 27).
Critical packages are selected: two assembly lots are sub-
jected to the qualification procedure representing that
package group. A positive result will release all similar
packages.
Device type release: The device type released is the
release of individual designs.
Monitoring: Monitoring serves both as the continuous
monitoring of the production and as a source of data for
calculation of early failures (early failure rate: EFR).
Product or pr ocess changes are released via ECN ( Engi-
neering Change Note). This includes proving process
capability and meeting the quality requirements.
Test procedures utilized are IEC 68–2–... and MIL–
STD–883 D respectively.
QSA 3000
Wafer process
qualification Package
qualification Device type
qualification Monitoring Qualification of
process changes
Figure 26. Structure of QSA 3000
TELEFUNKEN Semiconductors
06.96 41
Statistical Methods for Prevention
To manufacture high-quality products, it is not sufficient
controlling the product at the end of the production pro-
cess.
Quality has to be ‘designed-in’ during process- and prod-
uct development. In addition to that, the ‘designing-in’
must also be ensured during production flow . Both will be
achieved by means of appropriate measurements and
tools.
D
Statistical Process Control (SPC)
D
R&R– (Repeatability and Reproducibility) tests
D
Up– Time Control (UTC)
D
Failure Mode and Effect Analysis (FMEA)
D
Design Of Experiments (DOE)
D
Quality Function Deployment (QFD)
TEMIC Semiconductors has been using SPC as a tool in
production since 1990/91.
By using SPC, deviations from the process control goals
are quickly established. This allows control of the pro-
cesses before the process parameters run out of specified
limits. To assure control of the processes, each process
step is observed and supervised by trained personnel. Re-
sults are documented.
Process capabilities are measured and expressed by the
process capability index (Cpk).
Validation of the process capability is required for new
processes before they are released for production.
Before using new equipment and new gauges in produc-
tion, machine capability (Cmk = machine capability
index) or R&R (Repeatability & Reproducibility) is used
to validate the equipment’s fitness for use.
Up–T ime is recorded by an Up–T ime Control (UTC) sys-
tem. This data determines the intervals for preventive
maintenance, which is the basis for the maintenance plan.
A process–FMEA is performed for all processes (FMEA
= Failure Mode and Effect Analysis). In addition, a de-
sign– or product– FMEA is used for critical products or
to meet agreed customer requirements.
Design of Experiments (DOE) is a tool for the statistical
design of experiments and is used for optimization of pro-
cesses. Systems (processes, products and procedures) are
analyzed and optimized by using designed experiments.
A significant advantage compared to conventional meth-
ods is the efficient perfomance of experiments with
minimum effort by determining the most important inputs
for optimizing the system.
As a part of the continuous improvement process, all
TEMIC Semiconductors’ employees are trained in using
new statistical methods and procedures.
Reliability
The requirements concerning quality and reliability of
products are always increasing. It is not sufficient to only
deliver fault–free parts. In addition, it must be ensured
that the delivered goods serve their purpose safely and
failure free, i.e., reliably. From the delivery of the device
and up to its use in a final product, there are some occa-
sions where the device or the final product may fail
despite testing and outgoing inspection.
In principle, this sequence is valid for all components of
a product.
For these reasons, the negative consequences of a failure,
which become more serious and expensive the later they
occur, are obvious. The manufacturer is therefore inter-
ested in supplying products with the lowest possible
D
AOQ (Average Outgoing Quality) value
D
EFR (Early Failure Rate) value
D
LFR (Long-term Failure Rate) value
Average Outgoing Quality (AOQ)
All outgoing products are sampled after 100% testing.
This is known as “Average Outgoing Quality” (AOQ).
The results of this inspection are recorded in ppm (parts
per million) using the method defined in JEDEC 16.
Early Failure Rate (EFR)
EFR is an estimate (in ppm) of the number of early fail-
ures related to the number of devices used. Early failures
are normally those which occur within the first 300 to
1000 hours. Essentially, this period of time covers the
guarantee period of the finished unit. Low EFR values are
therefore very important to the device user. The early life
failure rate is heavily influenced by complexity. Conse-
quently, ‘designing-in’ of better quality during the
development and design phase, as well as optimized pro-
cess control during manufacturing, significantly reduces
the EFR value. Normally, the early failure rate should not
be significantly higher than the random failure rate. EFR
is given in ppm (parts per million).
TELEFUNKEN Semiconductors
06.96
42
Long-Term Failure Rate (LFR)
LFR shows the failure rate during the operational period
of the devices. This period is of particular interest to the
manufacturer of the final product. Based on the LFR
value, estimations concerning long-term failure rate, reli-
ability and a device’s or module’s usage life may be
derived. The usage life time is normally the period of
constant failure rate. All failures occuring during this
period are random.
Within this period the failure rate is:
l
+
Sum of failures
S
(Quantity
Time to failure)
1
hours
The measure of
l
is FIT (Failures In Time = number of
failures in 109 device hours).
Example
A sample of 500 semiconductor devices is tested in a op-
erating life test (dynamic electric operation). The devices
operate for a period of 10,000 hours.
Failures: 1 failure after 1000 h
1 failure after 2000 h
The failure rate may be calculated from this sample by
l
+
2
1
1000
)
1
2000
)
498
10000 1
h
l
+
2
4983000 1
h
+
4.01
1071
h
This is a
l
-value of 400 FIT, or this sample has a failure
rate of 0.04% / 1000 h on average.
l
t
Early Failures
EFR Operating Period
LFR Wear Out
Failures
95 11401
Figure 27. Bath tub curve
Confidence Level
The failure rate
l
calculated from the sample is an esti-
mate of the unknown failure rate of the lot.
The interval of the failure rate (confidence interval) may
be calculated, depending on the confidence level and
sample size.
The following is valid:
D
The larger the sample size, the narrower the confi-
dence interval.
D
The lower the confidence level of the statement, the
narrower the confidence interval.
The confidence level applicable to the failure rate of the
whole lot when using the estimated value of
l
is derived
from the
k
2-distribution. In practice, only the upper limit
of the confidence interval (the maximum average failure
rate) is used.
Therefore:
l
max
+
k
2
ń
2(r;P
A
)
n
tin 1
h
LFR
+
k
2
ń
2 (r;PA)
n
t
1
109in [FIT]
r: Number of failures
PA: Confidence level
n: Sample size
t: Time in hours
n
t: Device hours
The
k
2/2 for
l
are taken from table 4.
For the above example from table 4:
k
2/2 (r=2; PA=60%) = 3.08
n
t = 4983000 h
l
max
+
3.08
4983000
+
6.18
1071
h
This means that the failure rate of the lot does not exceed
0.0618% / 1000 h (618 FIT) with a probability of 60%.
If a confidence level of 90% is chosen from the table 5:
k
2/2 (r=2; PA=90%) = 5.3
l
max
+
5.3
4983000
+
1.06
1061
h
This means that the failure rate of the lot does not exceed
0.106% / 1000 h (1060 FIT) with a probability of 90%.
Operating Life Tests
Number of devices tested: n = 50
Number of failures
(positive qualification): c = 0
Test time: t = 2000 hours
Confidence level: PA= 60%
TELEFUNKEN Semiconductors
06.96 43
k
2/2 (0; 60%) 0.93
l
max
+
0.93
50
2000
+
9.3
1061
h
This means, that the failure rate of the lot does not exceed
0.93% / 1000 h (9300 FIT) with a probability of 60%.
This example demonstrates that it is only possible to
verify LFR values of 9300 FIT with a confidence level of
60% in a normal qualification tests (50 devices, 2000 h).
To obtain LFR values which meet today’s requirements
(
t
50 FIT), the following conditions have to be fulfilled:
D
Very long test periods
D
Large quantities of devices
D
Accelerated testing (e.g., higher temperature)
Table 4.
Number of
Failures Confidence Level
50% 60% 90% 95%
0 0.60 0.93 2.31 2.96
1 1.68 2.00 3.89 4.67
2 2.67 3.08 5.30 6.21
3 3.67 4.17 6.70 7.69
4 4.67 5.24 8.00 9.09
5 5.67 6.25 9.25 10.42
6 6.67 7.27 10.55 11.76
7 7.67 8.33 11.75 13.16
8 8.67 9.35 13.00 14.30
9 9.67 10.42 14.20 15.63
10 10.67 11.42 15.40 16.95
Mean Time to Failure (MTTF)
For systems which can not be repaired and whose devices
must be changed, e.g., semiconductors, the following is
valid:
MTTF
+
1
l
MTTF is the average fault-free operating period per a
monitored (time) unit.
Accelerating Stress Tests
Innovation cycles in the field of semiconductors are
becoming shorter and shorter. This means that products
must be brought to the market quicker. At the same time,
expectations concerning the quality and reliability of the
products have become higher.
Manufacturers of semiconductors must therefore assure
long operating periods with high reliability but in a short
time. Sample stress testing is the most commonly used
way of assuring this.
The rule of Arrhenius describes this temperature-depen-
dent change of the failure rate.
l
(T2)
+
l
(T1)
e
ƪ
EA
k
ǒ
1
T11
T2
Ǔƫ
Boltzmann’s constant
k = 8.63
10–5 eV/K
Activation ener gy
EA in eV
Junction temperature real operation
T1 in Kelvin
Junction temperature stress test
T2 in Kelvin
Failure rate real operation
l
(T1)
Failure rate stress test
l
(T2)
The acceleration factor is described by the exponential
function as being:
AF
+
l
(T2)
l
(T1)
+
e
ƪ
EA
k
ǒ
1
T11
T2
Ǔƫ
Example
The following conditions apply to an operating life stress
test:
Environmental temperature during stress test
TA = 125°C
Power dissipation of the device
PV = 250 mW
Thermal resistance junction/environment
RthJA = 100 K/W
The system temperature/junction temperature results
from:
TJ
= TA + RthJA
PV
TJ = 125°C + 100 K/W
250 mW
TJ = 150°C
Operation in the field at an ambient temperature of 100 °C
and at an average power dissipation of 100 mW is uti-
lized. This results in a junction temperature in operation
of TJ = 110°C. The activation energy used for bipolar
technologies is EA = 0.7 eV.
TELEFUNKEN Semiconductors
06.96
44
The resulting acceleration factor is:
AF
+
l
(423K)
l
(383K)
+
e
ƪ
EA
k
ǒ
1
383K1
423K
Ǔƫ
AF
[
7.4
This signifies that, regarding this example, the failure rate
is lower by a factor of 7.4 compared to the stress test.
Other accelerating stress tests may be:
D
Humidity (except displays type TDS.)
TA = 85°C
RH = 85%
D
Temperature cycling
Temperature interval as specified
The tests are carried out according to the requirements of
appropriate IEC–standards (see also chapter ‘Qualifica-
tion and Release’).
Activation Energy
There are some conditions which need to be fulfilled in
order to use Arrhenius’ method:
D
The validity of Arrhenius’ rule has to be verified.
D
‘Failure-specific’ activation energies must be deter-
mined.
These conditions may be verified by a series of tests.
Today, this procedure is generally accepted and used as a
basis for estimating operating life. The values of activa-
tion energies can be determined by experiments for
different failure mechanisms.
Values often used for different device groups are:
Opto components 0.7 eV
Bipolar ICs 0.7 eV
MOS ICs 0.6 eV
Transistors 0.7 eV
Diodes 0.7 eV
By using this method, it is possible to provide long–term
predictions for the actual operation of semiconductors
even with relatively short test periods.
1
10
100
1000
55 75 95 115 135 155
Junction Temperature (°C)
0.8 eV
0.7 eV
0.6 eV
0.5 eV
Acceleration factor
95 11369
100 125 150
Figure 28. Acceleration factor for different activation energies
normalized to Tj = 55°C
Safety
Reliability and Safety
All semiconductor devices have the potential of failing or
degrading in ways that could impair the proper operation
of safety systems. Well-known circuit techniques are
available to protect against and minimize the effects of
such occurrences. Examples of these techniques include
redundant design, self-checking systems and other fail-
safe techniques. Fault analysis of systems relating to
safety is recommended. Environmental factors should be
analyzed in all circuit designs, particularly in safety-re-
lated applications.
If the system analysis indicates the need for the highest
degree of reliability in the component used, it is recom-
mended that TEMIC be contacted for a customized
reliability program.
Toxicity
Although gallium arsenide and gallium aluminium arse-
nide are both arsenic compounds, under normal use
conditions they should be considered relatively benign.
Both materials are listed by the 1980 NIOH ‘Toxicology
of Materials’ with LD50 values (Lethal Dosis, probability
50%) comparable to common table salt.
Accidental electrical or mechanical damage to the de-
vices should not affect the toxic hazard, so the units can
be applied, handled, etc. as any other semiconductor de-
vice. Although the chips are small, chemically stable and
protected by the device package, conditions that could
break these crystalline compounds down into elements or
other compounds should be avoided.
TELEFUNKEN Semiconductors
06.96 45
Optocouplers in Switching
Power Supplies
The following chapters should give a full understanding
on how to use optocouplers which provide protection
against electric shock for designs.
Safety standards for optocouplers are intended to prevent
injury or damage due to electric shock
Two levels of electrical interface are normally used:
Reinforced, or safe insulation is required in an opto-
coupler interface between a hazardous voltage circuit
(like an ac line) and a touchable Safety Extra Low
Voltage (SELV) circuit.
Basic insulation is required in an optocoupler interface
between a hazardous voltage circuit and a non-touchable
Extra Low Voltage (ELV) circuit.
The most widely used insulation for optocouplers in
switch-mode power supply is reinforced insulation
(class II). The following information enables the designer
to understand the safety aspects, the basic concept of the
VDE 0884 and the design requirements for applications.
VDE 0884 - Facts and Information
Optocouplers for line-voltage separation must have
several national standards. The most accepted standards
are:
D
UL/ CSA for America
D
BSI for Great Britain
D
SETI, SEMKO, NEMKO, DEMKO for Nordic
countries (Europe)
D
VDE for Germany
Today, most manufacturers operate on a global scale. It is
therefore mandatory to perform all approvals.
The VDE 0884 is now becoming a major safety standard
in the world, partly due to German experts having a long
record of experience in this field. It is therefore worth-
while understanding some requirements and methods of
the VDE 0884.
At the moment there are two drafts which are being circu-
lated to set the VDE 0884 to an international IEC
standard.
The IEC 47 (CO) 1042 describes the terms and defini-
tions
*
IEC 47 (CO) 1175 the test procedure, while the
test method itself is already incorporated in IEC 747-5.
If design engineers work with TEMIC optocouplers, they
will find some terms and definitions in the data sheets
which relate to VDE 0884. These will now be explained:
Rated isolation voltages:
VIO is the voltage between the input terminals and the
output terminals.
Note: All voltages are peak voltages!
D
VIOWM is a maximum rms. voltage value of the opto-
couplers assigned by TEMIC. This characterizes the
long term withstand capability of its insulation.
D
VIORM is a maximum recurring peak (repetitive)
voltage value of the optocoupler assigned by TEMIC.
This characterizes the long-term withstand capability
against recurring peak voltages.
D
VIOTM is an impulse voltage value of the optocoupler
assigned by TEMIC. This characterizes the long-term
withstand capability against transient over voltages.
Isolation test voltage for routine tests is at factor 1.875
higher than the specified VIOWM/ VIORM (peak).
A partial discharge test is a different test method to the
normal isolation voltage test. This method is more sensi-
tive and will not damage the isolation behavior of the
optocoupler like other test methods probably do.
The VDE 0884 therefore does not require a minimum
thickness through insulation. The philosophy is that a
mechanical distance only does not give you an indication
of the safety reliability of the coupler. It is more recom-
mendable to check the total construction together with the
assembling performance. The partial discharge test
method can monitor this more reliably.
The following tests must be done to guarantee this safety
requirement.
100% test (piece by piece) for one second at a voltage
level of specified VIOWM/VIORM (peak) multiplied by
1.875
*
test criteria is partial discharge less than 5 pico
coulomb.
A lotwise test at VIOTM for 10 seconds and at a voltage
level of specified VIOWM/ VIORM (peak) multiplied by
1.5 for 1 minute
*
test criteria is partial discharge less
than 5 pico coulomb.
Design example:
The line ac voltage is 380 V rms. Your application class
is III (DIN/VDE 0110 Part 1/1.89). According to table 5,
you must calculate with a maximum line voltage of 600 V
and a transient over voltage of 6000 V.
TELEFUNKEN Semiconductors
06.96
46
Table 5. Recommended transient overvoltages related to ac/ dc line voltage (peak values)
VIOWM/VIORM
up to Appl. Class I Appl. Class II Appl. Class III Appl. Class IV
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
50 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
350 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
800 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
100 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
500.V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
800.V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1500.V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
2500.V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
150 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
800 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
2500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
300 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
2500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
400 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
600 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
600.V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
2500 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
6000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
800 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
6000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
8000 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1200 V
Now select the CNY75 from our TEMIC coupler
program. The next voltage step of 380 V is 600 V
(VIOWM).The test voltages are 1600 V for the CNY75 for
the routine test and 6000 V/ 1300 V for the sample test.
The VDE 0884 together with the isolation test voltages
also require very high isolation resistance, tested at an
ambient temperature of 100°C.
Apart from these tests for the running production, the
VDE T esting and Approvals Institute also investigates the
total construction of the optocoupler. The VDE 0884
requires life tests in a very special sequence; 5 lots for
5 different subgroups are tested.
The sequence for the main group is as follows:
D
Cycle test
D
Vibration
D
Shock
D
Dry heat
D
Accelerated damp heat
D
Low temperature storage (normally –55°C)
D
Damp heat steady state
D
Final measurements.
Finally there is another chapter concerning the safety
ratings. This is described in VDE 0884.
The maximum safety ratings are the electrical, thermal
and mechanical conditions that exceed the absolute
maximum ratings for normal operations. The philosophy
is that optocouplers must withstand a certain exceeding
of the input current, output power dissipation, and
temperature for at least a weekend. The test time is
actually 72 hours. This is a simulated space of time where
failures may occur.
It is the designer s task to create his design inside of the
maximum safety ratings.
Optocouplers
*
approved to the VDE 0884
*
must
consequently pass all tests undertaken. This then enables
you to go ahead and start your design.
Layout Design Rules
The previous chapter described the important safety
requirements for the optocoupler itself; but the know-
ledge of the creepage distance and clearance path is also
important for the design engineer if the coupler is to be
mounted onto the circuit board. Although several
different creepage distances referring to different safety
standards, like the IEC 65 for TV or the IEC 950 for office
equipment, computer, data equipment etc. are requested,
there is one distance which meanwhile dominates
switching power supplies: This is the 8 mm spacing
requirement between the two circuits: The hazardous
input voltage (ac 240 power-line voltage) and the safety
low voltage.
This 8 mm spacing is related to the 250 V power line and
defines the shortest distance between the conductive parts
(either from the input to the output leads) along the case
of the optocoupler , or across the surface of the print board
between the solder eyes of the optocoupler input/ output
leads, as shown in figure 29. The normal distance input
to output leads of an optocoupler is 0.3”. This is too tight
for the 8 mm requirement. The designer now has two
options: He can provide a slit in the board, but then the
airgap is still lower; or he can use the “G” optocoupler
from TEMIC. “G” stands for a wide-spaced lead form of
0.4” and obtains the 8 mm creepage, clearance distance.
The type designation for this type of “G” coupler is, for
example: CNY75G.
The spacing requirements of the 8 mm must also be taken
into consideration for the layout of the board.
Figures 30 and 31 provide examples for your layout.
The creepage distance is also related to the resistance of
the tracking creepage current stability. The plastic
material of the optocoupler itself and the material of the
board must provide a specified creeping-current
resistance.
TELEFUNKEN Semiconductors
06.96 47
The behavior of this resistance is tested with special test
methods described in the IEC 112. The term is “CTI”
(Comparative Tracking Index).
The VDE 0884 requires a minimum of a CTI of 175. All
TEMIC optocouplers have a CTI of 275.
Creepage
path
Clearance path
Figure 29. Isolation creepage/ clearance path
(The creepage path is the shortest distance between conductive parts along the surface of the isolation material.
The clearance path is the shortest distance between conductive parts.)
0.4 ”/ 10.16 mm
0.332 ”/ 8.2 mm
Figure 30. Optocoupler mounting on a board (side view)
TELEFUNKEN Semiconductors
06.96
48
G
G
GG
SELV control circuit area
SELV control circuit area
G = 0.322 ” / 8.2 mm
Power interface area
Power interface area
Layer
Figure 31. “Top view of optocoupler mounting on a board”
(clearance on PC board: 0.322 / 8.2 mm, creepage path on PC board is 0.322 / 8.2 mm)
Not only the solder eyes of the coupler itself on the board must have the 8 mm distance,
but also all layers located between the SELV areas and the power interface areas.
TEMIC Optocoupler Program
Construction
An optocoupler is comparable with a transformer or a
mechanical relay; but its advantages are smaller
dimensions, shorter switching time, no contact bounces,
no interference caused by arcs and the possibility of
adapting a signal already in the coupler for the following
stage of the circuit.
This combination together with the safety aspects
provides outstanding advantages for use in power
supplies. Safety factors in particular depend on the
design, construction and selected materials. TEMIC
optocouplers are designed with a coplanar lead frame,
where the die are mounted side by side. A semi-ellipsoid
with even better reflection capabilities is fitted over each
dice. The entire system is then casted in a plastic material
impermeable to the infrared range and of high di-electric
strength. The whole system is now molded with a special
mold compound to ensure that no external influences
such as light or dust etc. interfere with the functioning of
the coupler (see figure 32). This design has several
advantages: The “thickness through insulation”, the
clearance (internally) between the input and the output
side is fixed at 0.75 mm and is thus mechanically stable
even under thermal overloads, i.e., the possibility of a
short circuit caused by material deformation is excluded.
Deviations of this distance during the production process
are also excluded. These two features are the specific
reasons why TEMIC optocouplers are well-accepted by
manufacturers of power supplies.
0.75 mm
Figure 32. Cut through of a TEMIC optocoupler
(thickness through insulation)
Overview
The information given in this brochure enables the
designer to select the right optocoupler for his applica-
tion. The previous chapters focused only on safety
aspects. Apart from this there are other characteristics for
the optocoupler. Table 6 enables the designer to select the
optocoupler to suit his own needs. This selection should
be done using the most important characteristics like CTR
(Current Transfer Ratio) and devices with or without base
connection. The designer may ask for our data sheets for
detailed information.
TELEFUNKEN Semiconductors
06.96 49
654
23
1
n.c. CE
A (+) C (–) n.c.
94 9222
Figure 33. Without base connection
654
23
1
CE
A (+) C (–) n.c.
95 10805
B
Figure 34. With base connection
6–PIN STD Isolators
Table 6. Devices offering (VDE 0884-tested)
CTR
IC/ IF VCE > 32 V
Ungrouped CTR VCE > 32 V
Grouped CTR VCE > 90 V
Grouped CTR
Base
Connection With Without With Without With Without
ÁÁÁÁÁ
ÁÁÁÁÁ
> 20%
ÁÁÁÁÁ
ÁÁÁÁÁ
4N25(G)V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
> 50%
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CQY80N(G)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1100(G)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TCDT1120(G)
ÁÁÁÁÁ
ÁÁÁÁÁ
> 100%
ÁÁÁÁÁ
ÁÁÁÁÁ
4N35(G)V
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1110(G)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
40 – 80%
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CNY17(G)–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1101(G)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
63 – 125%
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CNY17(G)–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1102(G)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75(G)A
ÁÁÁÁÁ
ÁÁÁÁÁ
TCDT1122(G)
ÁÁÁÁÁ
ÁÁÁÁÁ
100 – 200%
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CNY17(G)–3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1103(G)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75(G)B
ÁÁÁÁÁ
ÁÁÁÁÁ
TCDT1123(G)
ÁÁÁÁÁ
ÁÁÁÁÁ
160 – 320%
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75(G)C
ÁÁÁÁÁ
ÁÁÁÁÁ
TCDT1124(G)
G = wide space 0.4” lead form, for 8 mm PC board spacing requirements
TELEFUNKEN Semiconductors
06.96
50
Appendix
Approvals List
As mentioned before, as long there is no equivalent IEC–
standard to the VDE 0884, optocouplers must still fulfill
all other national safety standards. The copies of docu-
ments present all certificates the designer needs for
worldwide acceptance of his power supply (see
ANT018). All the approvals below are most important. If
the designer needs any others, he must be aware that there
are many agreements between national institutes, e.g.,
UL for USA is also accepted by CSA/Canada.
TEMIC divides optocouplers into ”coupling systems”.
Each coupling system represents the same technology,
materials etc. The coupling systems are indicated with
capital letters and each coupler is marked with this cou-
pling system indicator letter. The certificates at least also
refer to the systems and list all subtypes to the related cou-
pling system. The user is able to find his selected coupler
on the certificate.
Certified Optocouplers for Switching Power Supplies
Coupling System
G, H, I, K Coupling System
A, C, S
German standard
VDE 0884
File no.
System S: 70753
System A: 68301
System G: 70902
System H: 70977
System J: 70977
System K: 70977
CNY64
CNY65
CNY66
CNY12N
CQY80N CQY80NG
CNY17(G)1–3
CNY75(G)A–C
TCDT1101(G)A–C
TCDT1101(G)–1103(G)
TCDT1110(G)
TCDT1120–1124(G)
American (USA)
Test institute
UL
1577
File no. E76222
CNY64
CNY65
CNY66
CNY21N 4N25(G)V
4N35(G)V
Nordic approvals
(SETI)
CNY64
CNY65
CNY21N K3010P(G)–K3012P(G)
K3020P(G)–K3023P(G)
British Std
BS415
BS7002 CNY65
() ()
Internal stucture
Case (examples)
95 10537 95 10531
95 10532
TELEFUNKEN Semiconductors
06.96 51
Application of Optoelectr onic Reflex Sensors
TCRT1000, TCRT5000, TCRT9000, CNY70
TEMIC optoelectronic sensors contain infrared-emitting diodes as a radiation source and phototransistors as detectors.
Typical applications include:
D
Copying machines
D
Video recorders
D
Proximity switch
D
Vending machines
D
Printers
D
Object counters
D
Industrial control
Special features:
D
Compact design
D
Operation range 0 to 20 mm
D
High sensitivity
D
Low dark current
D
Minimized crosstalk
D
Ambient light protected
D
Cut-off frequency up to 40 kHz
D
High quality level, ISO 9000
D
Automated high-volume production
These sensors present the quality of perfected products. The components are based on TEMIC’s many years
experience as one of Europe’s largest producers of optoelectronic components.
TELEFUNKEN Semiconductors
06.96
52
Drawings of the Sensors
94 9318
TCRT1000
94 9442
TCRT5000
94 9320
TCRT9000
94 9320
CNY70
TELEFUNKEN Semiconductors
06.96 53
Optoelectronic Sensors
In many applications, optoelectronic transmitters and
receivers are used in pairs and linked together optically.
Manufacturers fabricate them in suitable forms. They are
available for a wide range of applications as ready-to-use
components known as couplers, transmissive sensors
(or interrupters), reflex couplers and reflex sensors.
Increased automation in industry in particular has height-
ened the demand for these components and stimulated the
development of new types.
General Principles
The operating principles of reflex sensors are similar to
those of transmissive sensors. Basically, the light emitted
by the transmitter is influenced by an object or a medium
on its way to the detector. The change in the light signal
caused by the interaction with the object then produces a
change in the electrical signal in the optoelectronic
receiver.
The main difference between reflex couplers and trans-
missive sensors is in the relative position of the
transmitter and detector with respect to each other. In the
case of the transmissive sensor, the receiver is opposite
the transmitter in the same optical axis, giving a direct
light coupling between the two. In the case of the reflex
sensor, the detector is positioned next to the transmitter,
avoiding a direct light coupling.
The transmissive sensor is used in most applications for
small distances and narrow objects. The reflex sensor,
however, is used for a wide range of distances as well as
for materials and objects of different shapes. It sizes by
virtue of its open design.
In the following chapters, we will deal with reflex sensors
*
placing particular emphasis on their practical use. The
components TCRT1000, TCRT5000, TCRT9000 and
CNY70 are used as examples. However, references made
to these components and their use apply to all sensors of
a similar design.
The reflex sensors TCRT1000, TCRT5000, TCRT9000
and CNY70 contain IR-emitting diodes as transmitters
and phototransistors as receivers. The transmitters emit
radiation of a wavelength of 950 nm. The spectral sensi-
tivity of the phototransistors are optimized for this
wavelength.
There are no focusing elements in the sensors described,
though lenses are incorporated inside the TCRT5000 in
both active parts (emitter and detector). The angular
characteristics of both are divergent. This is necessary to
realize a position-independent function for easy practical
use with different reflecting objects.
In the case of TCRT5000, the concentration of the beam
pattern to an angle of 16° for the emitter and 30° for the
detector , respectively, results in operation on an increased
range with optimized resolution. The emitting and accep-
tance angles in the other reflex sensors are about 45 °. This
is an advantage in short distance operation. The best local
resolution is with the reflex sensor TCRT9000.
The main difference between the sensor types is the
mechanical outline (as shown in the figures, see page
before), resulting in various electrical parameters and op-
tical properties. A specialization for certain appli-cations
is necessary. Measurements and statements on the data of
the reflex sensors are made relative to a reference surface
with defined properties and precisely known reflecting
properties. This reference medium is the diffusely reflect-
ing Kodak neutral card, also known as grey card
(KODAK neutral test card; KODAK publi-cation No.
Q-13, CAT 1527654). It is also used here as the reference
medium for all details. The reflection factor of the white
side of the card is 90% and that of the grey side is 18%.
Table 7 shows the measured reflection of a number of
materials which are important for the practical use of
sensors. The values of the collector current given are
relative and correspond to the reflection of the various
surfaces with regard to the sensors receiver. They were
measured at a transmitter current of IF = 20 mA and at a
distance of the maximum light coupling. These values
apply exactly to the TCRT9000, but are also valid for the
other reflex sensors. The ‘black-on-white paper ’ section
stands out in table 7. Although all surfaces appear black
to the ‘naked eye’, the black surfaces emit quite different
reflections at a wavelength of 950 nm. It is particularly
important to account for this fact when using reflex
sensors. The reflection of the various body surfaces in the
infrared range can deviate significantly from that in the
visible range.
TELEFUNKEN Semiconductors
06.96
54
Table 7. Relative collector current (or coupling factor) of the reflex sensor TCRT9000 for reflection on various materials.
Reference is the white side of the Kodak neutral card. The sensor is positioned perpendicular with respect to the surface.
The wavelength is 950 nm.
Kodak neutral card
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
White side (reference medium)
ÁÁÁÁ
ÁÁÁÁ
100%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Gray side
ÁÁÁÁ
ÁÁÁÁ
20%
Paper
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Typewriting paper
ÁÁÁÁ
ÁÁÁÁ
94%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Drawing card, white (Schoeller Durex)
ÁÁÁÁ
ÁÁÁÁ
100%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Card, light gray
ÁÁÁÁ
ÁÁÁÁ
67%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Envelope (beige)
ÁÁÁÁ
ÁÁÁÁ
100%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Packing card (light brown)
ÁÁÁÁ
ÁÁÁÁ
84%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Newspaper paper
ÁÁÁÁ
ÁÁÁÁ
97%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pergament paper
ÁÁÁÁ
ÁÁÁÁ
30-42%
Black on white typewriting paper
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁ
Á
Drawing ink (Higgins, Pelikan, Rotring)
ÁÁÁÁ
Á
ÁÁ
Á
4-6%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁ
Á
Foil ink (Rotring)
ÁÁÁÁ
Á
ÁÁ
Á
50%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Fiber-tip pen (Edding 400)
ÁÁÁÁ
ÁÁÁÁ
10%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Fiber-tip pen, black (Stabilo)
ÁÁÁÁ
ÁÁÁÁ
76%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Photocopy
ÁÁÁÁ
ÁÁÁÁ
7%
Plotter pen
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
HP fiber–tip pen (0.3 mm)
ÁÁÁÁ
ÁÁÁÁ
84%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Black 24 needle printer (EPSON LQ-500)
ÁÁÁÁ
ÁÁÁÁ
28%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Ink (Pelikan)
ÁÁÁÁ
ÁÁÁÁ
100%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pencil, HB
ÁÁÁÁ
ÁÁÁÁ
26%
Plastics, glass
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
White PVC
ÁÁÁ
ÁÁÁ
90%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Gray PVC
ÁÁÁ
ÁÁÁ
11%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Blue, green, yellow, red PVC
ÁÁÁ
ÁÁÁ
40-80%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
White polyethylene
ÁÁÁ
ÁÁÁ
90%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
White polystyrene
ÁÁÁ
ÁÁÁ
120%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Gray partinax
ÁÁÁ
ÁÁÁ
9%
Fiber glass board material
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Without copper coating
ÁÁÁ
ÁÁÁ
12-19%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
With copper coating on the reverse side
ÁÁÁ
ÁÁÁ
30%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Glass, 1 mm thick
ÁÁÁ
ÁÁÁ
9%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Plexiglass, 1 mm thick
ÁÁÁ
ÁÁÁ
10%
Metals
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁ
Á
Aluminum, bright
ÁÁÁ
ÁÁ
Á
110%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Aluminum, black anodized
ÁÁÁ
ÁÁÁ
60%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Cast aluminum, matt
ÁÁÁ
ÁÁÁ
45%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Copper, matt (not oxidized)
ÁÁÁ
ÁÁÁ
110%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Brass, bright
ÁÁÁ
ÁÁÁ
160%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Gold plating, matt
ÁÁÁ
ÁÁÁ
150%
Textiles
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
White cotton
ÁÁÁ
ÁÁÁ
110%
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Black velvet
ÁÁÁ
ÁÁÁ
1.5%
Parameters and Practical Use of the Reflex Sensors
A reflex sensor is used in order to receive a reflected
signal from an object. This signal gives information on
the position, movement, size or condition (e.g., coding)
of the object in question. The parameter that describes the
function of the optical coupling precisely is the so-called
optical transfer function (OT) of the sensor. It is the ratio
of the received to the emitted radiant power.
OT
+
F
r
F
e
Additional parameters of the sensor, such as operating
range, the resolution of optical distance of the object, the
sensitivity and the switching point in the case of local
changes in the reflection, are directly related to this
optical transfer function.
In the case of reflex sensors with phototransistors as
receivers, the ratio Ic/IF (the ratio of collector current Ic
to the forward current IF) of the diode emitter is preferred
to the optical transfer function. As with optocouplers,
Ic/IF is generally known as the coupling factor, k. The
following approximate relationship exists between k and
OT:
k = Ic/ IF = [(S
B)/h]
F
r/
F
e
where B is the current amplification, S = Ib/Φr (photo-
transistors spectral sensitivity), and h = IF/Φe (pro-
portionality factor between IF and Φe of the transmitter).
In figures 35 and 36, the curves of the radiant intensity, Ie,
of the transmitter to the forward current, IF, and the sensi-
tivity of the detector to the irradiance, Ee, are shown
respectively. The gradients of both are equal to unity
slope.
This represents a measure of the deviation of the curves
from the ideal linearity of the parameters. There is a good
proportionality between Ie and IF and between Ic and Ee
where the curves are parallel to the unity gradient.
TELEFUNKEN Semiconductors
06.96 55
Greater proportionality improves the relationship
between the coupling factor, k, and the optical transfer
function.
Figure 35. Radiant intensity, Ie = f (IF), of the IR transmitter
Figure 36. Sensitivity of the reflex sensors’ detector
Coupling Factor, k
In the case of reflex couplers, the specification of the
coupling factor is only useful by a defined reflection and
distance. Its value is given as a percentage and refers here
to the diffuse reflection (90%) of the white side of Kodak
neutral card at the distance of the maximum light
coupling. Apart from the transmitter current, IF, and the
temperature, the coupling factor also depends on the
distance from the reflecting surface and the frequency
*
that is, the speed of reflection change.
For all reflex sensors, the curve of the coupling factor as
a function of the transmitter current, IF, has a flat maxi-
mum at approximately 30 mA (figure 37). As shown in
the figure, the curve of the coupling factor follows that of
the current amplification, B, of the phototransistor. The
influence of temperature on the coupling factor is rela-
tively small and changes approximately –10% in the
range of –10 to +70°C (figure 38). This fairly favorable
temperature compensation is attributable to the opposing
temperature coefficient of the IR diode and the photo-
transistor.
The maximum speed of a reflection change that is detect-
able by the sensor as a signal is dependent either on the
switching times or the threshold frequency , fc, of the com-
ponent. The threshold frequency and the switching times
of the reflex sensors TCRT1000, TCRT5000, TCRT9000
and CNY70 are determined by the slowest component in
the system
*
in this case the phototransistor. As usual,
the threshold frequency, fc, is defined as the frequency at
which the value of the coupling factor has fallen by 3 dB
(approximately 30%) of its initial value. As the frequency
increases, f > fc, the coupling factor decreases.
Figure 37. Coupling factor k = f (IF) of the reflex sensors
TELEFUNKEN Semiconductors
06.96
56
Figure 38. Change of the coupling factor, k,
with temperature, T
As a consequence, the reflection change is no longer
easily identified.
Figure 39 illustrates the change of the cut-off frequency
at collector emitter voltages of 5, 10 and 20 V and various
load resistances. Higher voltages and low load resistances
significantly increase the cut-of f frequency.
The cut-off frequencies of all TEMIC reflex sensors are
high enough (with 30 to 50 kHz) to recognize extremely
fast mechanical events.
In practice, it is not recommended to use a large load
resistance to obtain a lar ge signal, dependent on the speed
of the reflection change. Instead, the opposite effect takes
place, since the signal amplitude is markedly reduced by
the decrease in the cut-off frequency. In practice, the bet-
ter approach is to use the given data of the application
(such as the type of mechanical movement or the number
of markings on the reflective medium). With these given
data, the maximum speed at which the reflection changes
can be determined, thus allowing the maximum
frequency occurring to be calculated. The maximum
permissible load resistance can then be selected for this
frequency from the diagram fc as a function of the load
resistance, RL.
Working Diagram
The dependence of the phototransistor collector current
on the distance, A, of the reflecting medium is shown in
figures 40 and 41 for the reflex sensors TCRT1000 and
TCRT9000 respectively.
The data were recorded for the Kodak neutral card with
90% diffuse reflection serving as the reflecting surface,
arranged perpendicular to the sensor. The distance, A,
was measured from the surface of the reflex sensor.
The emitter current, IF, was held constant during the
measurement. Therefore, this curve also shows the course
of the coupling factor and the optical transfer function
over distance. It is called the working diagram of the
reflex sensor.
The working diagrams of all sensors (figure 40) shows a
maximum at a certain distance, Ao. Here the optical
coupling is the strongest. For larger distances, the
collector current falls in accordance with the square law.
When the amplitude, I, has fallen not more than 50% of
its maximum value, the operation range is at its optimum.
Figure 39. Cut-off frequency, fc
TELEFUNKEN Semiconductors
06.96 57
a) TCRT5000
c) CNY 70
b) TCRT9000
d) TCRT1000
Figure 40. Working diagram of reflex sensors TCRT5000, CNY70, TCRT9000 and TCRT1000
Resolution, Trip Point
The behavior of the sensors with respect to abrupt
changes in the reflection over a displacement path is
determined by two parameters: the resolution and the trip
point.
If a reflex sensor is guided over a reflecting surface with
a reflection surge, the radiation reflected back to the
detector changes gradually, not abruptly. This is depicted
in figure 41a. The surface, g, seen jointly by the trans-
mitter and detector, determines the radiation received by
the sensor . During the movement, this surface is gradually
covered by the dark reflection range. In accordance with
the curve of the radiation detected, the change in collector
current is not abrupt, but undergoes a wide, gradual transi-
tion from the higher to the lower value
As illustrated in figure 41b, the collector current falls to
the value Ic2, which corresponds to the reflection of the
dark range, not at the point Xo, but at the points Xo + Xd/2,
displaced by Xd/2.
The displacement of the signal corresponds to an uncer-
tainty when recording the position of the reflection
change, and it determines the resolution and the trip point
of the sensor.
The trip point is the position at which the sensor has com-
pletely recorded the light/ dark transition, that is, the
range between the points Xo + Xd/2 and Xo – Xd/2 around
Xo. The displacement, Xd, therefore, corresponds to the
width or the tolerance of the trip point. In practice, the
section lying between 10 and 90% of the difference
Ic
= Ic1 – Ic2 is taken as Xd. This corresponds to the rise
time of the generated signal since there is both movement
and speed. Analogous to switching time, displacement,
Xd, is described as a switching distance.
TELEFUNKEN Semiconductors
06.96
58
The resolution is the sensors capability to recognize
small structures. Figure 42 illustrates the example of the
curve of the reflection and current signal for a black line
measuring d in width on a light background (e.g., on a
sheet of paper). The line has two light/ dark transitions
*
the switching distance Xd/2 is, therefore, effective twice.
g
a)
b)
Figure 41. Abrupt reflection change with associated Ic curve
X < line width
d
X > line width
d
Collector current
IC1
IC1
IC2
IC2
Collector current
Xd
Xd
dX
X
X
R1
R2
Reflection Line
d = line width
Figure 42. Reflection of a line of width d and corresponding
curve of the collector current Ic
The line is clearly recognized as long as the line width is
d
w
Xd. If the width is less than
w
Xd, the collector
current change, Ic1 – Ic2, that is the processable signal,
becomes increasingly small and recognition increasingly
uncertain. The switching distance
*
or better its inverse
*
can therefore be taken as a resolution of the sensor.
The switching distance, Xd, is predominantly dependent
on the mechanical/ optical design of the sensor and the
distance to the reflecting surface. It is also influenced
by the relative position of the transmitter/ detector axis.
Figure 43 shows the dependence of the switching
distance, Xd, on the distance A with the sensors placed in
two different positions with respect to the separation line
of the light/ dark transition.
The curves marked position 1 in the diagrams correspond
to the first position. The transmitter/ detector axis of the
sensor was perpendicular to the separation line of the
transition. In the second position (curve 2), the trans-
mitter/ detector axis was parallel to the transition.
In the first position (1) all reflex sensors have a better res-
olution (smaller switching distances) than in position 2.
The device showing the best resolution is TCRT9000. It
can recognize lines smaller than half a millimeter at a dis-
tance below 0.5 mm.
It should be remarked that the diagram of TCRT5000 is
scaled up to 10 cm. It shows best resolution between
2 and 10 cm.
All sensors show the peculiarity that the maximum reso-
lution is not at the point of maximum light coupling, Ao,
but at shorter distances.
In many cases, a reflex sensor is used to detect an object
that moves at a distance in front of a background, such as
a sheet of paper, a band or a plate. In contrast to the
examples examined above, the distances of the object
surface and background from the sensor vary.
Since the radiation received by the sensors detector
depends greatly on the distance, the case may arise when
the difference between the radiation reflected by the
object on the background is completely equalized by the
distance despite varying reflectance factors. Even if the
sensor has sufficient resolution, it will no longer supply
a processable signal due to the low reflection difference.
In such applications it is necessary to examine whether
there is a sufficient contrast. This is performed with the
help of the working diagram of the sensor and the reflec-
tance factors of the materials.
TELEFUNKEN Semiconductors
06.96 59
a) TCRT5000
b) CNY70
c) TCRT1000
d) TCRT9000
Figure 43. The switching distance as a function of the distance A for the reflex sensors TCRT5000, CNY70, TCRT1000
and TCRT9000
Sensitivity, Dark Current and
Crosstalk
The lowest photoelectric current that can be processed as
a useful signal in the sensors detector determines the
weakest usable reflection and defines the sensitivity of
the reflex sensor. This is determined by two parameters
*
the dark current of the phototransistor and the cross-
talk.
The phototransistor as receiver exhibits a small dark
current, ICEO, of a few nA at 25°C. However, it is depen-
dent on the applied collector -emitter voltage, VCE, and to
a much greater extent on the temperature, T (see
figure 44). The crosstalk between the transmitter and
detector of the reflex sensor is given with the current, I cx.
Icx is the collector current of the photoelectric transistor
measured at normal IR transmitter operating conditions
without a reflecting medium. Figure 44. Temperature-dependence of the collector dark
current
TELEFUNKEN Semiconductors
06.96
60
It is ensured that no (ambient) light falls onto the photo-
electric transistor. This determines how far it is possible
to guarantee avoiding a direct optical connection between
the transmitter and detector of the sensor.
At IF = 20 mA, the current Icx is approximately 50 nA for
the TCR T9000 and 15 nA for the CNY70, TCRT1000 and
TCRT5000.
Icx can also be manifested dynamically. In this case, the
origin of the crosstalk is electrical rather than optical.
For design and optical reasons, the transmitter and
detector are mounted very close to each other.
Electrical interference signals can be generated in the
detector when the transmitter is operated with a pulsed or
modulated signal. The transfer capability of the inter-
ference increases strongly with the frequency . Steep pulse
edges in the transmitters current are particularly
effective here since they possess a large portion of high
frequencies. For all TEMIC sensors, the ac crosstalk,
Icxac, does not become effective until frequencies of
4 MHz upwards with a transmission of approximately
3 dB between the transmitter and detector.
The dark current and the dc- and ac crosstalk form the
overall collector fault current, Icf. It must be observed that
the dc-crosstalk current, Icxdc, also contains the dark
current, ICEO, of the phototransistor.
Icf = Icxdc + Icxac
This current determines the sensitivity of the reflex
sensor. The collector current caused by a reflection
change should always be at least twice as high as the fault
current so that a processable signal can be reliably identi-
fied by the sensor.
Ambient Light
Ambient light is another feature that can impair the sensi-
tivity and, in some circumstances, the entire function of
the reflex sensor. However, this is not an artifact of the
component, but an application specific characteristic.
The effect of ambient light falling directly on the detector
is always very troublesome. Weak steady light reduces
the sensor s sensitivity. Strong steady light can, depend-
ing on the dimensioning (RL, VC), saturate the
photoelectric transistor. The sensor is ‘blind’ in this
condition. It can no longer recognize any reflection
change. Chopped ambient light gives rise to incorrect
signals and feigns non-existent reflection changes.
Indirect ambient light, that is ambient light falling onto
the reflecting objects, mainly reduces the contrast
between the object and background or the feature and
surroundings. The interference caused by ambient light is
predominantly determined by the various reflection
properties of the material which in turn are dependent on
the wavelength.
If the ambient light has wavelengths for which the ratio
of the reflection factors of the object and background is
the same or similar, its influence on the sensors function
is small. Its effect can be ignored for intensities that are
not excessively lar ge. On the other hand, the object/ back-
ground reflection factors can differ from each other in
such a way that, for example, the background reflects the
ambient light much more than the object. In this case, the
contrast disappears and the object cannot be detected. It
is also possible that an uninteresting object or feature is
detected by the sensor because it reflects the ambient light
much more than its surroundings.
In practice, ambient light stems most frequently from
filament, fluorescent or energysaving lamps. Table 8
gives a few approximate values of the irradiance of these
sources. The values apply to a distance of approximately
50 cm, the spectral range to a distance of 850 to 1050 nm.
The values of table 8 are only intended as guidelines for
estimating the expected ambient radiation.
In practical applications, it is generally rather difficult to
determine the ambient light and its effects precisely.
Therefore, an attempt to keep its influence to a minimum
is made from the outset by using a suitable mechanical
design and optical filters. The detectors of the sensors are
equipped with optical filters to block such visible light.
Furthermore, the mechanical design of these components
is such that it is not possible for ambient light to fall
directly or sideways onto the detector for object distances
of up to 2 mm.
If the ambient light source is known and is relatively
weak, in most cases it is enough to estimate the expected
power of this light on the irradiated area and to consider
the result when dimensioning the circuit.
AC operation of the reflex sensors offers the most
effective protection against ambient light. Pulsed opera-
tion is also helpful in some cases.
Compared with dc operation, the advantages are greater
transmitter power and at the same time significantly
greater protection against faults. The only disadvantage
is the greater circuit complexity , which is necessary in this
case. The circuit in figure 48 is an example of operation
with chopped light.
TELEFUNKEN Semiconductors
06.96 61
Table 8. Examples for the irradiance of ambient light sources
Light source (at 50 cm distance) Irradiance Ee (µW/cm2)
850 to 1050 nm Frequency (Hz)
Steady light AC light (peak value)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Filament lamp (60 W)
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
500
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Fluorescent lamp OSRAM (65 W)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
25
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
30
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
100
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Economy lamp OSRAM DULUX (11 W)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
14
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
16
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
100
Application Examples, Circuits
The most important characteristics of the TEMIC reflex
sensors are summarized in table 9. The task of this table
is to give a quick comparison of data for choosing the
right sensor for a given application.
Application Example with
Dimensioning
With a simple application example, the dimensioning of
the reflex sensor can be shown in the basic circuit with the
aid of the component data and considering the boundary
conditions of the application.
The reflex sensor TCR T9000 is used for speed control. An
aluminum disk with radial strips as markings fitted to the
motor shaft forms the re–flecting object and is located
approximately 3 mm in front of the sensor. The sensor
signal is sent to a logic gate for further processing.
Dimensioning is based on dc operation, due to the simpli-
fied circuitry.
The optimum transmitter current. IF, for dc operation is
between 20 and 40 mA. IF = 20 mA is selected in this
case.
As shown in figure 37, the coupling factor is at its maxi-
mum. In addition, the degradation (i.e., the reduction of
the transmitted IR output with aging) is minimum for
currents under 40 mA (< 10% for 10000 h) and the self
heating is low due to the power loss (approximately
50 mW at 40 mA).
+5 V
TCRT 9000
180 15 K
74HCTXX
Q
GND
RE
RS
Figure 45. Reflex sensor - basic circuit
Table 9.
Parameter Symbol Reflex Sensor Type
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY70
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT1000
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT5000
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT9000
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Distance of optimum coupling
ÁÁÁ
ÁÁÁ
A0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.3 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
2 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1 mm
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Distance of best resolution
ÁÁÁ
ÁÁÁ
Ar
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.2 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.8 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1.5 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.5 mm
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Coupling factor
ÁÁÁ
ÁÁÁ
k
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
5%
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
5%
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
6%
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
3%
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Switching distance (min.)
ÁÁÁ
ÁÁÁ
xd
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1.5 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.7 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
1.9 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.5 mm
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Optimum working distance
ÁÁÁ
ÁÁÁ
Xor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.2 to 3 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.4 to 2.2 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.2 to 6.5 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
0.4 to 3 mm
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Operating range
ÁÁÁ
ÁÁÁ
Aor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
9 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
8 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
> 20 mm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
12 mm
TELEFUNKEN Semiconductors
06.96
62
Table 10.
Application Data
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Aluminum disk
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Diameter 50 mm, distance from the sensor 3 mm, markings printed on the aluminum
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Markings
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
8 radial black stripes and 8 spacings, the width of the stripes and spacings in front of
the sensor is approximately = 4 mm (in a diameter of 20 mm)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Motor speed
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
1000 to 3000 rpm
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Temperature range
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
10 to 60°C
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Ambient light
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
60 W fluorescent lamp, approximate distance 2 m
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Power supply
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
5 V ± 5%
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Position of the sensor
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Position 1, sensor/ detector connecting line perpendicular to the strips
Special attention must also be made to the downstream
logic gate. Only components with a low input offset
current may be used. In the case of the TTL gate and the
LS-TTL gate, the ILH current can be applied to the sensor
output in the low condition. At –1.6 mA or –400 µA, this
is above the signal current of the sensor . A transistor or an
operational amplifier should be connected at the output of
the sensor when TTL or LS-TTL components are used. A
gate from the 74HCTxx family is used.
According to the data sheet, its fault current ILH is
approximately 1 µA.
The expected collector current for the minimum and
maximum reflection is now estimated.
According to the working diagram in figure 40c, it
follows that when A = 3 mm
Ic = 0.5
Icmax
Icmax is determined from the coupling factor, k, for
IF = 20 mA.
Icmax = k
IF
At IF = 20 mA, the typical value
k = 2.8%
is obtained for k from figure 37.
However, this value applies to the Kodak neutral card or
the reference surface. The coupling factor has a different
value for the surfaces used (typewriting paper and black-
fiber tip pen). The valid value for these material surfaces
can be found in table 7:
k1 = 94%
k = 2.63% for typing paper and
k2 = 10%
k = 0.28% for black-tip pen
(Edding)
Therefore: Ic1 = 0.5
k1
IF = 263 µA
Ic2 = 0.5
k2
IF = 28 µA
Temperature and aging reduce the collector current. They
are therefore important to Ic1 and are subtracted from it.
Figure 38 shows a change in the collector current of
approximately 10% for 70°C. Another 10% is deducted
from Ic1 for aging
Ic1 = 263 µA – (20%
263 µA) = 210 µA
The fault current Icf (from crosstalk and collector dark
current) increases the signal current and is added to Ic2.
Crosstalk with only a few nA for the TCRT9000 is
ignored. However, the dark current can increase up to
1 µA at a temperature of 70°C and should be taken into
account.
In addition, 1 µA, the fault current of the 74HCTxx gate,
is also added
Ic2 = 30 µA
The effect of the indirect incident ambient light can most
easily be seen by comparing the radiant powers produced
by the ambient light and the sensors transmitter on
1 mm2 of the reflecting surface. The ambient light is then
taken into account as a percentage in accordance with the
ratio of the powers.
From table 8:
Ee (0.5 m) = 40 µW/ cm2 (dc + ac/ 2)
Ee (2 m) = Ee(0.5 m)
(0.5/ 2)2
(Square of the distance law)
Ee (2 m) = 2.5 µW/ cm2
f
sf = 0.025
m
W
The radiant power (Φsf = 0.025 µW) therefore falls on
1 mm2.
When IF = 20 mA, the sensors transmitter has the radiant
intensity:
Ie
+
F
e
W
+
0.5 W
ń
sr
(see figure 35)
The solid angle for 1 mm2 surface at a distance of 3 mm
is
W
+
1mm
2
(3 mm)2
+
1
9sr
TELEFUNKEN Semiconductors
06.96 63
It therefore follows for the radiant power that:
F
e = Ie
= 55.5 mW
The power of 0.025 µW produced by the ambient light is
therefore negligibly low compared with the correspond-
ing power (approximately 55 µW) of the transmitter.
The currents Ic1, Ic2 would result in full reflecting
surfaces, that is, if the sensors visual field only measures
white or black typing paper. However , this is not the case.
The reflecting surfaces exist in the form of stripes.
The signal can be markedly reduced by the limited resolu-
tion of the sensor if the stripes are narrow. The suitable
stripe width for a given distance should therefore be
selected from figure 43. In this case, the minimum
permissible stripe width is approximately 3.8 mm for a
distance of 3 mm (position 1, figure 43d). The markings
measuring 4 mm in width were expediently selected in
this case. For this width, a signal reduction of about 20%
can be permitted with relatively great certainty, so that
10% of the difference (Ic1 – Ic2) can be subtracted from
Ic1 and added to Ic2.
Ic1 = 210
A – 18
A = 192
A
Ic2 = 30
A + 18
A = 48
A
The suitable load resistance, RE, at the emitter of the
photo-transistor is then determined from the low and high
levels 0.8 V and 2.0 V for the 74HCTxx gate.
RE < 0.8 V/ Ic2 and RE > 2.0 V/ Ic1,
i.e., 10.2 k
< RE < 16.7 k
12 k
is selected for RE
The corresponding levels for determining RE must be
used if a Schmitt trigger of the 74HCTxx family is
employed.
The frequency limit of the reflex sensor is then deter-
mined with RE = 12 k
and compared with the maximum
operating frequency in order to check whether signal
damping attributable to the frequency that can occur.
Figure 39 shows for Vs = 5 V and RE = 12 k
approxi-
mately, for the TCRT9000, fc = 1.5 kHz.
Sixteen black/ white stripes appear in front of the sensor
in each revolution. This produces a maximum signal
frequency of approximately 400 Hz for the maximum
speed of 3000 rpm up to 50 rps. This is significantly less
than the fc of the sensor, which means there is no risk of
signal damping.
In the circuit in figure 45, a resistor , Rc, can be used on the
collector of the photoelectric transistor instead of RE. In
this case, an inverted signal and somewhat modified
dimensioning results. The current Ic1 now determines the
low signal level and the current Ic2 the high. The voltages
(Vs – 2 V) and (Vs – 0.8 V) and not the high level and low
level 2 V and 0.8 V, are now decisive for determining the
resistance, Rc.
Circuits with Reflex Sensors
The couple factor of the reflex sensors is relatively small.
Even in the case of good reflecting surfaces, it is less than
10%. Therefore, the photocurrents are in practice only in
the region of a few µA. As this is not enough to process
the signals any further, an additional amplifier is neces-
sary at the sensor output. Figure 46 shows two simple
circuits with sensors and follow-up operational amplifi-
ers.
The circuit in figure 46b is a transimpedance which offers
in addition to the amplification the advantage of a higher
cut-off frequency for the whole layout.
Two similar amplification circuits incorporating transis-
tors are shown in figure 47.
The circuit in figure 48 is a simple example for operating
the reflex sensors with chopped light. It uses a pulse
generator constructed with a timer IC. This pulse
generator operates with the pulse duty factor of approxi-
mately 1. The frequency is set to approximately 22 kHz.
On the receiver side, a conventional LC resonance circuit
(fo = 22 kHz) filters the fundamental wave out of the
received pulses and delievers it to an operational ampli-
fier via the capacitor, Ck. The LC resonance circuit
simultaneously represents the photo transistor’s load
resistance. For direct current, the photo transistors load
resistance is very low
*
in this case approximately 0.4,
which means that the photo transistor is practically
shorted for dc ambient light.
At resonance frequencies below 5 kHz, the necessary
coils and capacitors for the oscillator become unwieldy
and expensive. Therefore, active filters, made up with op-
erational amplifiers or transistors, are more suitable
(figures 49 and 50). It is not possible to obtain the quality
characteristics of passive filters. In addition to that, the
load resistance on the emitter of the photo transistor has
remarkably higher values than the dc resistance of a coil.
On the other hand, the construction with active filters is
more compact and cheaper. The smaller the resonance
frequency becomes, the greater the advantages of active
filters compared to LC resonant circuits.
In some cases, reflex sensors are used to count steps or
objects, while at the same time recognition of a change in
the direction of rotation (= movement direction) is neces-
sary. The circuit shown in figure 51 is suitable for such
applications. The circuit is composed of two independent
channels with reflex sensors. The sensor signals are
formed via the Schmitt trigger into TTL impulses with
step slopes, which are supplied to the pulse inputs of the
binary counter 74LS393. The outputs of the 74LS393 are
coupled to the reset inputs. This is made in such a way that
TELEFUNKEN Semiconductors
06.96
64
the first output, whose condition changes from ‘low’ to
‘high’, sets the directly connected counter . In this way , the
counter of the other channel is deleted and blocked. The
outputs of the active counter can be displaced or
connected to more electronics for evaluation.
It should be mentioned that such a circuit is only suited
to evenly distributed objects and constant movements. If
this is not the case, the channels must be close to each
other, so that the movement of both sensors are collected
successively. The circuit also works perfectly if the last
mentioned condition is fulfilled. Figure 52 shows a pulse
circuit combining analog with digital components and
offering the possibility of temporary storage of the signal
delivered by the reflex sensor. A timer IC is used as the
pulse generator.
The negative pulse at the timers output triggers the clock
input of the 74HCT74 flip-flop and, at the same time, the
reflex sensors transmitter via a driver transistor. The
flip-flop can be positively triggered, so that the condition
of the data input at this point can be received as the edge
of the pulse rises. This then remains stored until the next
rising edge.
The reflex sensor is therefore only active for the duration
of the negative pulse and can only detect reflection
changes within this time period. During the time of nega-
tive impulses, electrical and optical interferences are
suppressed. A sample and hold circuit can also be
employed instead of the flip-flop. This is switched on via
an analog switch at the sensor output as the pulse rises.
+10 V
b)
+10 V
Reflex sensor
7
2
3 6
TLC271
Reflex sensor
7
4
2
3 6
TLC271
220 K
6
R
1 K
1 K
390
4
1 K
390
R
1 K
220 K
GND
GND
Output
RRE
IF
= 20 mA
S
IF
= 20 mA
Output
RSRERF
RF
l
l
a)
Figure 46. Circuits with operational amplifier
+10 V
b)
+10 V
a)
1 K BC178B
PNP
220 Reflex sensor 1 K
220 K BC108B
NPN
C
10 K
Reflex sensor
390 GND 390 1 K GND
RR
R
R
E
S
= 20 mA
IF
C
L= 20 mA
IF
RSRE
RL
RF
Output
Output
K
2.2 F
m
Figure 47. Circuits with transistor amplifier
TELEFUNKEN Semiconductors
06.96 65
V = + 5 V
82
Reflex sensor
1.2 K
2.7 K Q
3
TR
2
G
N
D
1
THR
6 CV 5
DIS
7 R
48 555
100 nF
CTLC 271
4
3
2 6
7
0.86
L10 K
100
62 nF
C
100 nF
10 nF
GND
RF
Output
S
K
mH
Figure 48. AC operation with oscillating circuit to suppress ambient light
+V (10 V)
R
9.1 K
R
220 C
1 nF
4
2
3 6
7
33 K
R
33 K
R
C
Reflex sensor
Q 3
TR
2 G
N
D
1
THR
6
CV 5
DIS
7 R
48 Timer
555
R
5.1 K
C
100 nF 100 nF
R
510
R
1 K
TLC 271
(CA3160)
C
22 nF
GND
GND
A
S
E
Output
S
B
F
K
lq
1 F
m
Timer dimensions: tp (pulse width) = 0.8 RC = 400
m
s
T (period) = 0.8 (RA + RB)
C = 1 ms
Active filter : C
+
Cf
Cq
Ǹ
Q
+
Cq
Cf
Ǹ
fo
+
1
ń
(6.28
C
R) Vuo
+
2R
R
E
Q
2
Figure 49. AC operation with active filter made up of an operational amplifier, circuit and dimensions
TELEFUNKEN Semiconductors
06.96
66
+V (10 V)
R
220 R
1 K
C
1.5 nF
NPN
R
51 K
C
R
51 K
C
Reflex sensor
R
9.1 K
Q 3
TR
2 G
N
D
1
THR
6
CV 5
DIS
7 R
48 Timer
555
R
5.1 K
C
100 nF 100 nF
R
1.8 K
C
33 nF
GND
GND
A
B
E
S
C
Output
V
K
F
K
q
Timer dimensions: tp (pulse width) = 0.8 RC = 400
m
s
T (period) = 0.8 (RA + RB)
C = 1 ms
Active filter : C
+
Cf
Cq
Ǹ
Q
+
Cq
Cf
Ǹ
fo
+
1
ń
(6.28
C
R) Vuo
+
2R
R
E
Q
2
1 F
m
1 F
m
Figure 50. AC operation with transistor amplifier as active filter
CLK
CLR
QA
QB
QC
QD
A
LS393
+5 V
Reflex sensor
A
74HCT14
CLK
CLR
QA
QB
QC
QD
B
LS393
3.3 K
+5 V
D
CLK
GND
15 K
Reflex sensor
+5 V D
Q
CLK
Q
S
D
RD GND
Reset
CLK
CLR
QA
QB
QC
QD
A
LS393
B
74HCT14
15 K
R
100
GND
CLK
CLR
QA
QB
QC
QD
B
LS393
Left
Right
Display system
or report
RE
V
RE
B7474
A
or report
Display system
S
D
Q
Q
RD
Figure 51. Circuit for objects count and recognition of movement direction
TELEFUNKEN Semiconductors
06.96 67
(+5 V)
V
PNP
3.3 K
R
PNP
82 R
R
Q 3
TR
2 G
N
D
1
THR
6
CV 5
DIS
7 R
48
555
R
100
Reflex
CD
2 Q 5
CLK
3
Q 6
S
D
4
RD
1
74HCT74
R
100 nF
C
GND
sensor
ACS
B
l
K
2
Figure 52. Pulse circuit with buffer storage
TELEFUNKEN Semiconductors
06.96
68
Cross Reference List Opto
Competition–Type Competitor Device TFK–Device Code Prio
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Isolators
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3C63B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Hafo
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY66
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3C63C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Hafo
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY66
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3C91B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Hafo
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY18
ÁÁÁÁ
ÁÁÁÁ
B,E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3C91C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Hafo
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY18
ÁÁÁÁ
ÁÁÁÁ
B,E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3C92B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Hafo
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY18
ÁÁÁÁ
ÁÁÁÁ
B,E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3C92C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Hafo
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY18
ÁÁÁÁ
ÁÁÁÁ
B,E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3N243
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K120P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3N244
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K120P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3N245
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K120P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
3N281
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K120P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N25, 25A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N26
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N27
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N28
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N28
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N29
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N29A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N30
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N31
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N32
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N33
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N33
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N35
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N35
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N37
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N37
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N38
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N38
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4N38A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N38A
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CLA7
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Clairex
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CLA7AA
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Clairex
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNX21
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY21N
ÁÁÁÁ
ÁÁÁÁ
A, C
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNX35
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNX36
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNX38
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNX82
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCDT1100
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNX83
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–3
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17D
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–3
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–F1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCDT1101
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–F2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCDT1102
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
TELEFUNKEN Semiconductors
06.96 69
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–F3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY17–F4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Various Suppliers
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1124
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY47
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY47A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY48
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
CNY51
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY57
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY57A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY62
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY21N
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY63
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY21N
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY65
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY65
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY75A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY75C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GEPS2001
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GFH600–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
GFH600–2
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GFH600–3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N28
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A5100
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N35
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A520
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A550
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11A4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11AV1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
H11AV2
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
B, E
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11AV3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11B1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11B2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11B3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11J1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11J2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11J3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11J4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11J5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H11L1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
H11L2
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H.24A1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H.24A2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–100
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–101
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–201
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
TELEFUNKEN Semiconductors
06.96
70
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–202
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–250
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY71
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80NG
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–74
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
IL–CT6
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
MCT6
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ILCA2–30
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ILD–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ILD–74
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ILQ–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–4
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ILQ–74
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–4
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCA230
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCA230
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCA231
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCA231
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCP3009
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCP3010
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
MCP3011
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
K3011P
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCP3020
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3020P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCP3021
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3021P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCP3022
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3022P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT2E
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT210
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N35
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT210
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N35
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT2200
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT2201
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT2202
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
MCT26
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
4N26
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT26
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT270
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT271
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT272
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75 A
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT273
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT274
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT275
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT276
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT277
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N36
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N28
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
MCT4
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
K120P
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT6
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MCT66
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC1005
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC1006
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC119
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC205
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCMT1021
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
TELEFUNKEN Semiconductors
06.96 71
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC206
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1022
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC207
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1023
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC215
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1031
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC216
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1032
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC217
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1033
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
MOC221
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
TCMT1033
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC222
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1034
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC223
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCMT1034
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3009
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3010
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3011
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3011P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3012
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3012P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3020
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3020P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3021
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3021P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3022
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3022P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC3023
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3023P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
MOC5005
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC5006
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC5007
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC5008
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC5009
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDS1001
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC8101
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1101
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC8102
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1102
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC8103
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1103
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC8104
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1124
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC8112
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1100
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC8113
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1110
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
OPI110
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
CNY21N
ÁÁÁÁ
E
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI113
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY65
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI120
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY66
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI123
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY66
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI1264A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY21N
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI1264B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY65
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI1264C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY65
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI140
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K120P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2100
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2150
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2151
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
OPI2152
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2153
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2154
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2155
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2250
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2251
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2252
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
TELEFUNKEN Semiconductors
06.96
72
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2253
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2254
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2255
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI2500
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY71
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3009
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
OPI3010
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
K3010P
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3011
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3011P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3012
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3012P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3020
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optex
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3020P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3021
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3021P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3022
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3022P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3023
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K3023P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3150
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N33
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3151
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N33
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3153
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N33
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3250
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N33
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
OPI3251
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
B
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI3253
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI7002
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPI7010
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY64
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC508
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY65
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC613
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC627
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K827P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC713U
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC733
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY71
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC827U
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K827P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PC829
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY74–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
PC847U
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
K827P
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2001A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2001B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2003A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2003B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2004A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
D
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2004B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2005A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2005B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2010
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2011
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
PS2013
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
B
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2014
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2015
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2021
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2022
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2401A–2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K827P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PS2401A–4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
NEC
ÁÁÁÁÁ
ÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
K827P
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
TELEFUNKEN Semiconductors
06.96 73
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH600–0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH600–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY17–2
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH600–2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY17–3
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH600–3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH601–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY17–1
ÁÁÁÁ
ÁÁÁÁ
D
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
SFH601–2
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH601–3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
SFH601–4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Siemens
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL111
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL112
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N27
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL113
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N33
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL114
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL115
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL116
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL117
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL120
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K120P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
TIL121
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
K120P
ÁÁÁÁ
B
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL124
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL125
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL126
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL127
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL153
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N26
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL154
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N25
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL155
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL156
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP3051
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3052P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP3052
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K3051P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
TLP504–A
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
K827P
ÁÁÁÁ
A
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP521–2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K827P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP521–4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
K827P
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP531–A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP531–BL
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75C
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP531–GB
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP531–GR
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75B
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP531–Y
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CNY75A
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP531–YG
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP533
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP535
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CQY80N
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
TLP571
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
4N32
ÁÁÁÁ
B
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP595
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Isolator
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCDT1900
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Sensors
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
CNY28
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
EE–SMR1–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Omron
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT9050
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
EE–SMR3–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Omron
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT9000
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
EE–SX1025
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Omron
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1230
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
TELEFUNKEN Semiconductors
06.96
74
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GP1A05
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCSS6201
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GP1A21
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCYS5201
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GP1S01
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GP1S01F
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
GP1S02
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
GP1S04
ÁÁÁÁÁÁÁÁ
Sharp
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
A, C
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H21A1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H21A2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H21A4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H21A5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H21L
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCSS2100
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H22A1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H22A2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H22A4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H22A5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
H22L
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCSS1100
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
HOA0870–055
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
C
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0870–251
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0870–255
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0871–051
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0871–255
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0872–051
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1300
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0872–055
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0872–251
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA0872–255
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA1397–1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY70
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA1397–2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY70
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
HOA1872–11
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
C
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA1872–12
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA1873–11
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA1873–12
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
HOA1879–15
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Honeywell
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC7811
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC7812
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC7821
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MOC7822
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Motorola
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
A
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MST8
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
MST81
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
QTC
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
OPB706A
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
CNY70
ÁÁÁÁ
C
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB706B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY70
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB706C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CNY70
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB710
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCSS2100
ÁÁÁÁ
ÁÁÁÁ
A, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB804
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST1000
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB813
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB813S10
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁ
ÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
TELEFUNKEN Semiconductors
06.96 75
PrioCodeTFK–DeviceDeviceCompetitorCompetition–Type
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB814
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB815
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB816
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB817
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB870N55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
OPB870T51
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
C
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB870T55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB871N51
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1300
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB871N55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB871T51
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB871T55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB872N51
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1300
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB872N55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB872T51
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB872T55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB875N55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1000
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
OPB875T55
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
C
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB971P55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCSS1100
ÁÁÁÁ
ÁÁÁÁ
A, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB973N55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCSS1100
ÁÁÁÁ
ÁÁÁÁ
A, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPB973T55
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCSS2100
ÁÁÁÁ
ÁÁÁÁ
A, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPD819S10
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2300
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPD823A
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPD824B
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPD847
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPD848
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
B, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
OPD870N51
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Optek
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1300
ÁÁÁÁ
ÁÁÁÁ
C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TIL147
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
TIL148
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
D, E
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TlL143
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TlL144
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Texas
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2000
ÁÁÁÁ
ÁÁÁÁ
D, E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP1001
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCSS2100
ÁÁÁÁ
ÁÁÁÁ
B
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP800
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST2103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP801
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1103
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP804
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCST1202
ÁÁÁÁ
ÁÁÁÁ
B, C
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP908
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT1000
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
TLP908(LB)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Toshiba
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Sensor
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TCRT1010
ÁÁÁÁ
ÁÁÁÁ
E
ÁÁÁÁÁ
ÁÁÁÁÁ
4