December 2008 Rev 5 1/34
34
VN920
Single channel high-side solid-state relay
Features
CMOS compatible input
Proportional load current sense
Shorted load protection
Under-voltage and over-voltage shutdown
Over-voltage clamp
Thermal shutdown
Current limitation
Protection against loss of ground and loss of
VCC
Very low standby power dissipation
Reverse battery protected (see Application
schematic )
Description
The VN920 is a monolithic device designed in
STMicroelectronics VIPower M0-3 technology.
The VN920 is intended for driving any type of load
with one side connected to ground. The active
VCC pin voltage clamp protects the device against
low energy spikes (see ISO7637 transient
compatibility table). Active current limitation
combined with thermal shutdown and automatic
restart protects the device against over-load.
The device integrates an analog current sense
output which delivers a current proportional to the
load current. The device automatically turns off in
the case where the ground pin becomes
disconnected.
Type RDS(on) IOUT VCC
VN920
VN920-B5
VN920SO
16 m30 A 36 V
PENTAWATT P2PAK
SO-16L
Table 1. Device summary
Package
Order codes
Tube Tape and reel
PENTAWATT VN920 -
P2PAK VN920-B5 VN920-B513TR
SO-16L VN920SO VN920SO13TR
www.st.com
Contents VN920
2/34
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16
3.1.1 Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 16
3.1.2 Solution 2: diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . 17
3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 P2PAK maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . 18
3.5 SO-16L maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . 19
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 SO-16L thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 P2PAK thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 PENTAWATT mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 P2PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 SO-16L packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 PENTAWATT packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 P2PAK packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
VN920 List of tables
3/34
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Switching (VCC=13V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. Current sense (9V VCC 16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 9. VCC output diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 10. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 12. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 13. SO-16L thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. P2PAK thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 15. SO-16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 16. PENTAWATT mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17. P2PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
List of figures VN920
4/34
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. Over-voltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 14. On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Input high-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 19. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 20. P2PAK maximum turn-off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. SO-16L maximum turn-off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. SO-16L PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 23. SO-16L Rthj-amb Vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . 20
Figure 24. SO-16L thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 25. Thermal fitting model of a single channel HSD in SO-16L . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 26. P2PAK PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 27. P2PAK Rthj-amb Vs. PCB copper area in open box free air condition . . . . . . . . . . . . . . . 23
Figure 28. P2PAK thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 29. Thermal fitting model of a single channel HSD in P2PAK. . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 30. SO-16L package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 31. PENTAWATT package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 32. P2PAK package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 33. SO-16L tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 34. SO-16L tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 35. PENTAWATT tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 36. P2PAK tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 37. P2PAK tape and reel (suffix “13TR”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VN920 Block diagram and pin description
5/34
1 Block diagram and pin description
Figure 1. Block diagram
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection / pin Current Sense N.C. Output Input
Floating X X X
To ground Through 1K
resistor XThrough 10K
resistor
UNDERVOLTAGE
OVERTEMPERATURE
VCC
GND
INPUT
OUTPUT
OVERVOLTAGE
CURRENT LIMITER
LOGIC
DRIVER
Power CLAMP
VCC
CLAMP
VDS LIMITER
DETECTION
DETECTION
DETECTION
K
IOUT CURRENT
SENSE
OUTPUT
C.SENSE
V
CC
INPUT
GND
5
4
3
2
1
P2PAK/ PENTAWATT
V
CC
OUTPUT
OUTPUT
OUTPUT
OUTPUT
V
CC
OUTPUT
OUTPUT
V
CC
N.C.
N.C.
C.SENSE
INPUT
V
CC
GND
N.C.
1
89
16
SO-16L
Electrical specifications VN920
6/34
2 Electrical specifications
Figure 3. Current and voltage conventions
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to Absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics sure
program and other relevant quality document.
I
S
I
GND
V
CC
V
CC
V
SENSE
OUTPUT
I
OUT
CURRENT SENSE
I
SENSE
INPUT
I
IN
V
IN
V
OUT
GND
V
F
Table 3. Absolute maximum ratings
Symbol Parameter
Value
Unit
SO-16L PENTAWATT P2PAK
VCC DC supply voltage 41 V
- VCC Reverse DC supply voltage - 0.3 V
- Ignd DC reverse ground pin current - 200 mA
IOUT DC output current Internally limited A
- IOUT Reverse DC output current - 21 A
IIN DC input current +/- 10 mA
VCSENSE Current sense maximum voltage - 3
+ 15
V
V
VESD
Electrostatic discharge
(human body model: R = 1.5KΩ;
C = 100pF)
INPUT
CURRENT SENSE
OUTPUT
VCC
4000
2000
5000
5000
V
V
V
V
VN920 Electrical specifications
7/34
2.2 Thermal data
Symbol Parameter
Value
Unit
SO-16L PENTAWATT P2PAK
EMAX
Maximum switching energy
(L = 0.25mH; RL= 0;
Vbat = 13.5V; Tjstart = 150ºC;
IL = 45A)
352 364 mJ
Ptot Power dissipation TC 25°C 8.3 96.1 96.1 W
TjJunction operating temperature Internally limited °C
TcCase operating temperature - 40 to 150 °C
Tstg Storage temperature - 55 to 150 °C
Table 3. Absolute maximum ratings (continued)
Table 4. Thermal data
Symbol Parameter
Max. value
Unit
SO-16L PENTAWATT P2PAK
Rthj-case
Thermalresistance
junction-case -1.31.3°C/W
Rthj-lead
Thermalresistance
junction-lead 15 - °C/W
Rthj-amb
Thermalresistance
junction-ambient
65(1)
1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins.
61.3 51.3(2)
2. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
°C/W
48(3)
3. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35µm thick) connected to all VCC pins.
37(4)
4. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35µm thick).
°C/W
Electrical specifications VN920
8/34
2.3 Electrical characteristics
Values specified in this section are for 8V < VCC < 36V; -40°C < Tj < 150°C, unless otherwise
stated.
Note: VCLAMP and VOV are correlated. Typical difference is 5V.
Table 5. Power
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC Operating supply voltage 5.5 13 36 V
VUSD Under-voltage shutdown 3 4 5.5 V
VOV Over-voltage shutdown 36 V
RON On-state resistance
IOUT = 10A; Tj = 25°C;
IOUT = 10A;
IOUT = 3A; VCC = 6V
16
32
55
m
m
m
VCLAMP Clamp voltage ICC = 20mA 41 48 55 V
ISSupply current
Off-state; VCC = 13V;
VIN = VOUT = 0V
Off-state; VCC = 13V;
VIN = VOUT = 0V; Tj = 25°C
On-state; VCC = 13V; VIN = 5V;
IOUT = 0A; RSENSE = 3.9 k
10
10
25
20
5
µA
µA
mA
IL(off1) Off-state output current VIN = VOUT = 0V 0 50 µA
IL(off2) Off-state output current VIN = 0V; VOUT = 3.5V -75 0 µA
IL(off3) Off-state output current VIN = VOUT = 0V; VCC = 13V;
Tj = 125°C A
IL(off4) Off-state output current VIN = VOUT = 0V; VCC = 13V;
Tj = 25°C A
Table 6. Switching (VCC=13V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
td(on) Turn-on delay time RL = 1.3 (see Figure 4.)50µs
td(off) Turn-off delay time RL = 1.3 (see Figure 4.)50µs
dVOUT/dt(on) Turn-on voltage slope RL = 1.3 (see Figure 4.) See Figure 10. V/µs
dVOUT/dt(off) Turn-off voltage slope RL = 1.3 (see Figure 4.) See Figure 12. V/µs
VN920 Electrical specifications
9/34
Table 7. Logic inputs
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Input low level voltage 1.25 V
IIL Low level input current VIN = 1.25V 1 µA
VIH Input high-level voltage 3.25 V
IIH High-level input current VIN = 3.25V 10 µA
VI(hyst) Input hysteresis voltage 0.5 V
VICL Input clamp voltage IIN = 1mA
IIN = - 1mA
66.8
- 0.7
8V
V
Table 8. Current sense (9V VCC 16V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
K1IOUT/ISENSE
IOUT = 1A; VSENSE = 0.5V;
Tj = -40°C...150°C 3300 4400 6000
dK1/K1
Current sense
ratio drift
IOUT = 1A; VSENSE = 0.5V;
Tj= - 40°C...150°C -10 +10 %
K2IOUT/ISENSE
IOUT = 10A; VSENSE = 4V;
Tj = - 40°C
Tj= 25°C...150°C
4200
4400
4900
4900
6000
5750
dK2/K2
Current sense
ratio drift
IOUT = 10A; VSENSE = 4V;
Tj = -40°C...150°C -8 +8 %
K3IOUT/ISENSE
IOUT = 30A; VSENSE = 4V;
Tj = -40°C
Tj = 25°C...150°C
4200
4400
4900
4900
5500
5250
dK3/K3
Current sense
ratio drift
IOUT = 30A; VSENSE = 4V;
Tj = -40°C...150°C -6 +6 %
ISENSE0
Analog sense
current
VCC = 6...16V; IOUT = 0A;
VSENSE = 0V;
Tj = -40°C...150°C 0 10 µA
VSENSE
Max analog
sense output
voltage
VCC = 5.5V; IOUT = 5A;
RSENSE = 10k
VCC > 8V, IOUT = 10A;
RSENSE = 10k
2
4
V
V
VSENSEH
Sense voltage in
over-temperature
condition
VCC = 13V; RSENSE = 3.9k5.5 V
Electrical specifications VN920
10/34
RVSENSEH
Analog sense
output
impedance in
over-temperature
condition
VCC = 13V; Tj > TTSD;
output open 400
tDSENSE
Current sense
delay response To 9 0 % I SENSE(1) 500 µs
1. Current sense signal delay after positive input slope.
Table 9. VCC output diode
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFForward on voltage - IOUT = 5A; Tj = 150°C 0.6 V
Table 10. Protections(1)
1. To ensure long term reliability under heavy over-load or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device operates under
abnormal conditions this software must limit the duration and number of activation cycles.
Symbol Parameter Test conditions Min. Typ. Max. Unit
TTSD Shutdown temperature 150 175 200 °C
TRReset temperature 135 °C
Thyst Thermal hysteresis 7 15 °C
Ilim Current limitation VCC = 13V
5V < VCC < 36V
30 45 75
75
A
A
Vdemag
Turn-off output clamp
voltage
IOUT = 2 A;
VIN = 0V;
L = 6mH
VCC - 41 VCC - 48 VCC - 55 V
VON
Output voltage drop
limitation
IOUT = 1 A;
Tj = -40°C...150°C 50 mV
Table 8. Current sense (9V VCC 16V) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
VN920 Electrical specifications
11/34
Table 11. Truth table
Conditions Input Output Sense
Normal operation L
H
L
H
0
Nominal
Over-temperature L
H
L
L
0
VSENSEH
Under-voltage L
H
L
L
0
0
Over-voltage L
H
L
L
0
0
Short circuit to GND
L
H
H
L
L
L
0
(Tj<TTSD) 0
(Tj>TTSD) VSENSEH
Short circuit to VCC
L
H
H
H
0
< Nominal
Negative output voltage clamp L L 0
Table 12. Electrical transient requirements
ISO T/R
7637/1
Test pulse
Test level
I II III IV Delays and impedance
1- 25V
(1)
1. All functions of the device are performed as designed after exposure to disturbance.
- 50V(1) - 75V(1) - 100V(1) 2ms, 10
2 + 25V(1) + 50V(1) + 75V(1) + 100V(1) 0.2ms, 10
3a - 25V(1) - 50V(1) - 100V(1) - 150V(1) 0.1µs, 50
3b + 25V(1) + 50V(1) + 75V(1) + 100V(1) 0.1µs, 50
4- 4V
(1) - 5V(1) - 6V(1) - 7V(1) 100ms, 0.01
5+ 26.5V
(1) + 46.5V(2)
2. One or more functions of the device is not performed as designed after exposure and cannot be returned to
proper operation without replacing the device.
+ 66.5V(2) + 86.5V(2) 400ms, 2
Electrical specifications VN920
12/34
Figure 4. Switching characteristics
Figure 5. IOUT/ISENSE versus IOUT
VOUT
dVOUT/dt(on)
tr
80%
10% tf
dVOUT/dt(off)
ISENSE
t
t
90%
td(off)
INPUT
t
90%
td(on)
tDSENSE
0 2 4 6 8 101214161820222426283032
3000
3500
4000
4500
5000
5500
6000
6500
min.Tj=-40°C
max.Tj=-40°C
min.Tj=25...150°C
max.Tj=25...150°C
typical value
I
OUT
(A)
I
OUT
/I
SENSE
VN920 Electrical specifications
13/34
Figure 6. Waveforms
SENSE
INPUT
NORMAL OPERATION
UNDERVOLTAGE
VCC
VUSD
VUSDhyst
INPUT
OVERVOLTAGE
VCC
SENSE
INPUT
SENSE
LOAD CURRENT
LOAD CURRENT
LOAD CURRENT
VOV
VOVhyst
VCC > VUSD
SHORT TO GROUND
INPUT
LOAD CURRENT
SENSE
LOAD VOLTAGE
INPUT
LOAD VOLTAGE
SENSE
LOAD CURRENT
<Nominal <Nominal
SHORT TO VCC
OVERTEMPERATURE
INPUT
SENSE
TTSD
TR
Tj
LOAD CURRENT
ISENSE=RSENSE
VSENSEH
Electrical specifications VN920
14/34
2.4 Electrical characteristics curves
Figure 7. Off-state output current Figure 8. High-level input current
Figure 9. Input clamp voltage Figure 10. Turn-on voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc C )
5
5.5
6
6.5
7
7.5
8
8.5
9
9.5
10
Vicl (V)
Iin =1m A
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
250
300
350
400
450
500
550
600
650
700
dVout/dt(on) (V/ms)
Vcc=13V
Rl=1.3Ohm
Figure 11. Over-voltage shutdown Figure 12. Turn-off voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
30
32
34
36
38
40
42
44
46
48
50
Vov (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
50
100
150
200
250
300
350
400
450
500
550
dVout/dt(off) (V/ms)
Vcc=13V
Rl=1.3Ohm
VN920 Electrical specifications
15/34
Figure 13. ILIM vs Tcase Figure 14. On-state resistance vs VCC
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
10
20
30
40
50
60
70
80
90
100
Ili m (A )
Vcc=13V
5 10152025303540
Vcc (V)
0
5
10
15
20
25
30
35
40
45
50
Ron (mOhm)
Tc = - 40ºC
Tc = 25ºC
Tc = 150ºC
Figure 15. Input high-level Figure 16. Input hysteresis voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
Vhyst (V)
Figure 17. On-state resistance vs Tcase Figure 18. Input low level
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0
5
10
15
20
25
30
35
40
45
50
Ron (mOhm)
Iout=10A
Vc c=8V; 36V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
Application information VN920
16/34
3 Application information
Figure 19. Application schematic
3.1 GND protection network against reverse battery
3.1.1 Solution 1: resistor in the ground line (RGND only)
This can be used with any type of load.
The following is an indication on how to dimension the RGND resistor.
1. RGND 600mV / (IS(on)max).
2. RGND ≥ (- VCC) / (- IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power Dissipation in RGND (when VCC < 0: during reverse battery situations) is:
PD= (- VCC)2/ RGND
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that if the microprocessor ground is not shared by the device ground then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are ON in the case of several
high-side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor or several devices have to share
the same resistor then ST suggests to utilize Solution 2 (see below).
V
CC
GND
OUTPUT
D
GND
R
GND
D
ld
µ
C
+5V
R
prot
V
GND
INPUT
CURRENT SENSE
R
SENSE
R
prot
VN920 Application information
17/34
3.1.2 Solution 2: diode (DGND) in the ground line
A resistor (RGND = 1kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network will produce a shift (600mV) in the input
threshold and in the status output values if the microprocessor ground is not common to the
device ground. This shift will not vary if more than one HSD shares the same diode/resistor
network.
Series resistor in INPUT and STATUS lines are also required to prevent that, during battery
voltage transient, the current exceeds the absolute maximum rating.
Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.
3.2 Load dump protection
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the
VCC max DC rating. The same applies if the device is subject to transients on the VCC line
that are greater than the ones shown in the ISO 7637-2: 2004(E) table.
3.3 MCU I/Os protection
If a ground protection network is used and negative transient are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage current of µC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os.
-VCCpeak/Ilatchup Rprot (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup 20mA; VOHµC 4.5V
5k Rprot 65k.
Recommended values: Rprot =10k .
Application information VN920
18/34
3.4
P
2
PAK
maximum demagnetization energy (VCC = 13.5V)
Figure 20.
P
2
PAK
maximum turn-off current versus inductance
Note: Values are generated with RL =0 Ω. In case of repetitive pulses, Tjstart (at beginning of each
demagnetization) of every pulse must not exceed the temperature specified above for
curves A and B.
C: Tjstart = 125°C repetitive pulse
A: Tjstart = 150°C single pulse
B: Tjstart = 100°C repetitive pulse
Demagnetization Demagnetization Demagnetization
t
VIN, IL
1
10
100
0.01 0.1 1 10 100
L(mH)
I
LMAX (A)
A
B
C
VN920 Application information
19/34
3.5 SO-16L maximum demagnetization energy (V
CC
= 13.5V)
Figure 21. SO-16L maximum turn-off current versus inductance
Note: Values are generated with RL =0 Ω. In case of repetitive pulses, Tjstart (at beginning of each
demagnetization) of every pulse must not exceed the temperature specified above for
curves A and B.
C: Tjstart = 125°C repetitive pulse
A: Tjstart = 150°C single pulse
B: Tjstart = 100°C repetitive pulse
Demagnetization Demagnetization Demagnetization
t
VIN, IL
Package and PCB thermal data VN920
20/34
4 Package and PCB thermal data
4.1 SO-16L thermal data
Figure 22. SO-16L PC board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 41mm x 48mm, PCB
thickness = 2mm, Cu thickness = 35µm, Copper areas: 0.5cm2, 6cm2).
Figure 23. SO-16L Rthj-amb Vs PCB copper area in open box free air condition
40
45
50
55
60
65
70
01234567
PCB Cu heatsink area (cm^2)
RTH j-amb (°C/W)
VN920 Package and PCB thermal data
21/34
Figure 24. SO-16L thermal impedance junction ambient single pulse
Equation 1: pulse calculation formula
Figure 25. Thermal fitting model of a single channel HSD in SO-16L
ZTHδRTH δZTHtp 1δ()+=
where
δtpT=
T_amb
C1
R1 R2
C2
R3
C3
R4
C4
R5
C5
R6
C6
Pd
Tj
Package and PCB thermal data VN920
22/34
4.2 P2PAK the rmal data
Figure 26. P2PAK P C board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 60mm x 60mm, PCB
thickness = 2 mm, Cu thickness = 35µm , Copper areas: 0.97cm2, 8cm2).
Table 13. SO-16L thermal parameters
Area / island (cm2) Footprint 6
R1 (°C/W) 0.02
R2 (°C/W) 0.1
R3 (°C/W) 2.2
R4 (°C/W) 12
R5 (°C/W) 15
R6 (°C/W) 35 20
C1 (W.s/°C) 0.0015
C2 (W.s/°C) 7E-03
C3 (W.s/°C) 1.5E-02
C4 (W.s/°C) 0.14
C5 (W.s/°C) 1
C6 (W.s/°C) 5 8
VN920 Package and PCB thermal data
23/34
Figure 27. P2PAK R thj-amb Vs. PCB copper area in open box free air condition
Figure 28. P2PAK thermal impedance junction ambient single pulse
30
35
40
45
50
55
024681
0
PCB Cu heatsink area
(
cm^2
)
RTHj_amb (°C/W)
Tj-Tamb=50°C
0.01
0.1
1
10
100
1000
0.0001 0.001 0.01 0.1 1 10 100 1000
Time (s)
ZT H (°C /W)
0.97 cm2
6 cm2
Package and PCB thermal data VN920
24/34
Equation 2: pulse calculation formula
where δ = tP/T
Figure 29. Thermal fitting model of a single channel HSD in P2PAK
Table 14. P2PAK thermal parameter
Area/island (cm2)0.976
R1 (°C/W) 0.02
R2 (°C/W) 0.1
R3 (°C/W) 0.22
R4 (°C/W) 4
R5 (°C/W) 9
R6 (°C/W) 37 22
C1 (W·s/°C) 0.0015
C2 (W·s/°C) 0.007
C3 (W·s/°C) 0.015
C4 (W·s/°C) 0.4
C5 (W·s/°C) 2
C6 (W·s/°C) 3 5
ZTHδRTH δZTHtp 1δ()+=
VN920 Package and packing information
25/34
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 30. SO-16L package dimensions
Table 15. SO-16L mechanical data
DIM.
mm.
Min. Typ. Max.
A2.65
a1 0.1 0.2
a2 2.45
b 0.35 0.49
b1 0.23 0.32
C0.5
c1 45° (typ.)
Package and packing information VN920
26/34
5.2 PENTAWATT mechanical data
Figure 31. PENTAWATT package dimensions
DIM.
mm.
Min. Typ. Max.
D 10.1 10.5
E 10.0 10.65
e1.27
e3 8.89
F7.4 7.6
L 0.5 1.27
M0.75
S 8° (max.)
Table 15. SO-16L mechanical data (continued)
VN920 Package and packing information
27/34
Table 16. PENTAWATT mechanical data
Dim.
mm
Min. Typ. Max.
A4.8
C1.37
D2.4 2.8
D1 1.2 1.35
E 0.35 0.55
F 0.8 1.05
F1 1 1.4
G3.23.43.6
G1 6.6 6.8 7
H2 10.4
H3 10.05 10.4
L17.85
L1 15.75
L2 21.4
L3 22.5
L5 2.6 3
L6 15.1 15.8
L7 6 6.6
M4.5
M1 4
Diam. 3.65 3.85
Package and packing information VN920
28/34
5.3 P2PAK mechanical data
Figure 32. P2PAK package dimensions
P010R
VN920 Package and packing information
29/34
Table 17. P2PAK mechanical data
Dim.
mm
Min. Typ. Max.
A 4.30 4.80
A1 2.40 2.80
A2 0.03 0.23
b 0.80 1.05
c 0.45 0.60
c2 1.17 1.37
D 8.95 9.35
D2 8.00
E 10.00 10.40
E1 8.50
e 3.20 3.60
e1 6.60 7.00
L 13.70 14.50
L2 1.25 1.40
L3 0.90 1.70
L5 1.55 2.40
R0.40
V2
Package weight 1.40 Gr (typ)
Package and packing information VN920
30/34
5.4 SO-16L packing information
Figure 33. SO-16L tube shipment (no suffix)
Figure 34. SO-16L tape and reel shipment (suffix “TR”)
All dimensions are in mm.
Base Q.ty 50
Bulk Q.ty 1000
Tube length (± 0.5) 532
A3.5
B13.8
C (± 0.1) 0.6
A
C
B
Base Q.ty 1000
Bulk Q.ty 1000
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 16.4
N (min) 60
T (max) 22.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 16
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 12
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 7.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
Reel dimensions
VN920 Package and packing information
31/34
5.5 PENTAWATT packing information
Figure 35. PENTAWATT tube shipment (no suffix)
5.6 P2PAK packing information
Figure 36. P2PAK tube shipment (no suffix)
All dimensions are in mm.
Base Q.ty 50
Bulk Q.ty 1000
Tube length (± 0.5) 532
A18
B33.1
C (± 0.1) 1
C
B
A
All dimensions are in mm.
Base Q.ty 50
Bulk Q.ty 1000
Tube length (± 0.5) 532
A18
B33.1
C (± 0.1) 1
C
B
A
Package and packing information VN920
32/34
Figure 37. P2PAK tape and reel (suffix “13TR”)
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
All dimensions are in mm.
Tape width W 24
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 12
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 11.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
REEL DIMENSIONS
All dimensions are in mm.
Base Q.ty 1000
Bulk Q.ty 1000
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 24.4
N (min) 60
T (max) 30.4
VN920 Revision history
33/34
6 Revision history
Table 18. Document revision history
Date Revision Changes
22-Jun-2004 1 Initial release.
07-Jul-2004 2
Current and voltage convention update (page 2).
Configuration diagram (top view) & suggested connections for unused
and n.c. pins insertion (page 2).
6cm2 Cu condition insertion in thermal data table (page 3).
09-Jul-2004 3
VCC - output diode section update (page 5).
Protections note insertion (page 5).
Revision history table insertion (page 24).
Disclaimers update (page 25).
03-May-2006 4 Suggested connections for unused and n.c.pins? correction (page 2).
17-Dec-2008 5
Document reformatted and restructured.
Added content, list of figures and tables.
Added ECOPACK® packages information.
Updated Figure 37.: P2PAK tape and reel (suffix “13TR”): changed
component spacing (P) in tape dimensions table from 16 mm to 12
mm.
VN920
34/34
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com