© 2008 Microchip Technology Inc. DS21882D-page 1
MCP6241/1R/1U/2/4
Features
Gain Bandwidth Product: 550 kHz (typical)
Supply Current: IQ = 50 µA (typical)
Supply Voltage: 1.8V to 5.5V
Rail-to-Rail Input/Outp ut
Extended Temperature Range: -40°C to +125°C
Available in 5-pin SC-70 and SOT-23 packages
Applications
Automotive
Portable Equipment
Photodiode (Transimpedance) Amplifier
Analog Filters
Notebooks and PDAs
Battery-Powered Systems
Design Aids
SPICE Macro Models
Mindi™ Circui t Designer & Simulator
Microchip Advanced Part Selector (MAPS)
Analog Demonstration and Evaluation Boards
Application Notes
Typical Application
Description
The Microchip Technology Inc. MCP6241/1R/1U/2/4
operational amplifiers (op amps) provide wide
bandwidth for the quiescent current. The MCP6241/1R/
1U/2/4 has a 550 kHz gain bandwidth product and 68°
(typical) phase margin. This family operates from a
single supply voltage as low as 1.8V, while drawing
50 µA (typical) quiescent current. In addition, the
MCP6241/1R/1U/2/4 family supports rail-to-rail input
and output swing, with a common mode input voltage
range of VDD +300mV to V
SS 300 mV. These op
amps are designed in one of Microchip’s advanced
CMOS processes.
Package Types
MCP6241 VOUT
VIN2
+
VIN1
RG2
RG1
RF
RZ
VDD
RX
RY
Summing Amplifier Circuit
4
MCP6241
1
2
3
+
5VDD
VIN
VOUT
VSS
VIN+
SOT-23-5
4
1
2
3
+
5VDD
VOUT
VSS
MCP6241R
SOT-23-5
4
1
2
3
+
5VSS
VIN
VOUT
VDD
VIN+
MCP6241U
SC-70-5, SOT-23-5
4
1
2
3
+
5VDD
VOUT
VIN+
VSS
VIN
VIN+
VIN
MCP6241
VSS
VDD
VOUT
1
2
3
4
8
7
6
5
+
NC
NC
NC
PDIP, SOIC, MSOP
MCP6242
PDIP, SOIC, MSOP
1
2
3
4
8
7
6
5
-
+-
+
VINA_
VINA+
VSS
VOUTA
VOUTB
VDD
VINB_
VINB+
MCP6244
VINA+
VINA
VSS
1
2
3
4
14
13
12
11
-
VOUTA +-
+
VDD
VOUTD
VIND
VIND+
10
9
8
5
6
7
VOUTB
VINB
VINB+VINC+
VINC
VOUTC
+
--
+
PDIP, SOIC, TSSOP
MCP6241
2x3 DFN*
VIN+
VIN
VSS
VDD
VOUT
1
2
3
4
8
7
6
5NC
NCNC
EP
9
* Includes Exposed Thermal Pad (EP); see Table 3-1.
50 µA, 550 kHz Rail-to-Rail Op Amp
MCP6241/1R/1U/2/4
DS21882D-page 2 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21882D-page 3
MCP6241/1R/1U/2/4
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VDD –V
SS ........................................................................7.0V
Current at Analog Input Pins (VIN+, VIN–).....................±2 mA
Analog Inputs (VIN+, VIN–) ††........ VSS –1.0VtoV
DD +1.0V
All Other Inputs and Outputs ......... VSS 0.3V to VDD +0.3V
Difference Input Voltage ...................................... |VDD –V
SS|
Output Short Circuit Current ................................Continuous
Current at Output and Supply Pins ............................±30 mA
Storage Temperature ..................................–65° C to +150°C
Maximum Junction Temperature (TJ)..........................+150°C
ESD Protection On All Pins (HBM; MM).............. 4 k V; 300V
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification is not
implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
†† See Section 4.1.2 “Input Voltage and Current Limits”.
DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,
VCM = VDD/2, RL = 10 0 kΩ to VDD/2 and VOUT VDD/2.
Parameters Sym Min Typ Max Units Conditions
Input Offset
Input Offset Voltage VOS -5.0 +5.0 mV VCM = VSS
Extended Temperature VOS -7.0 +7.0 mV TA= -40°C to +125°C,
VCM = VSS (Note 1)
Input Offset Drift with
Temperature ΔVOS/ΔTA ±3.0 µV/°C TA= -40°C to +125°C,
VCM = VSS
Power Supply Rejection PSRR 83 dB VCM = VSS
Input Bias Current and Impedance
Input Bias Current: IB—±1.0pA
At Temperature IB—20pAT
A = +85°C
At Temperature IB 1100 pA TA = +125°C
Input Offset Current IOS —±1.0pA
Common Mode Input Impedance ZCM —10
13||6 Ω||pF
Differential Input Impedance ZDIFF —10
13||3 Ω||pF
Common Mode
Common Mode Input Range VCMR VSS – 0.3 VDD + 0.3 V
Common Mode Rejection Ratio CMRR 60 75 dB VCM = -0.3V to 5.3V, VDD = 5V
Open-Loop Gain
DC Open-Loop Gain
(large signal) AOL 90 110 dB VOUT = 0.3V to VDD – 0.3V,
VCM =V
SS
Output
Maximum Output Voltage Swing VOL, VOH VSS + 35 VDD – 35 mV RL = 10 kΩ, 0.5V Input
Overdrive
Output Short-Circuit Current ISC —±6mAV
DD = 1.8V
ISC —±23mAV
DD = 5.5V
Power Supply
Supply Voltage VDD 1.8 5.5 V
Quiescent Current per Amplifier IQ30 50 70 µA IO = 0, VCM = VDD – 0.5V
Note 1: The SC-70 package is only tested at +25°C.
MCP6241/1R/1U/2/4
DS21882D-page 4 © 2008 Microchip Technology Inc.
AC ELECTRICAL CHARACTERISTICS
TEMPERATURE CHARACTERISTICS
1.1 Test Circuits
The test circuits used for the DC and AC tests are
shown in Figure 1-1 and Figure 1-2. The bypass
capacitors are laid out according to the rules discussed
in Section 4.6 “PCB Surface Leakage”.
FIGURE 1-1: AC and DC Test Circuit for
Most Non-Inverting Gain Conditions.
FIGURE 1-2: AC and DC Test Circuit for
Most Inverting Gain Conditions.
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CL = 60 pF.
Parameters Sym Min Typ Max Units Conditions
AC Response
Gain Bandwidth Product GBWP 550 kHz
Phase Margin PM 68 ° G = +1 V/V
Slew Rate SR 0.30 V/µs
Noise
Input Noise Voltage Eni —10µV
P-P f = 0.1 Hz to 10 Hz
Input Noise Voltage Density eni —45nV/Hz f = 1 kHz
Input Noise Current Density ini —0.6fA/Hz f = 1 kHz
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Extended Temperature Range TA-40 +125 °C
Operating Temperature Range TA-40 +125 °C (Note)
Storage Temperature Range TA-65 +150 °C
Thermal Package Resistances
Thermal Resistance, 5L-SC70 θJA 331 °C/W
Thermal Resistance, 5L-SOT-23 θJA 256 °C/W
Thermal Resistance, 8L-DFN (2x3) θJA 84.5 °C/W
Thermal Resistance, 8L-MSOP θJA —206°C/W
Thermal Resistance, 8L-PDIP θJA —85°C/W
Thermal Resistance, 8L-SOIC θJA —163°C/W
Thermal Resistance, 14L-PDIP θJA —70°C/W
Thermal Resistance, 14L-SOIC θJA —120°C/W
Thermal Resistance, 14L-TSSOP θJA —100°C/W
Note: The internal Junction Temperature (T J) must not exceed the Absolute Maximum specification of +150°C.
VDD
MCP624X
RGRF
RNVOUT
VIN
VDD/2
F
CLRL
VL
0.1 µF
VDD
MCP624X
RGRF
RNVOUT
VDD/2
VIN
F
CLRL
VL
0.1 µF
© 2008 Microchip Technology Inc. DS21882D-page 5
MCP6241/1R/1U/2/4
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-1: Input Offset Voltage.
FIGURE 2-2: PSRR, CMRR vs.
Frequency.
FIGURE 2-3: Input Bias Current at +85°C.
FIGURE 2-4: CMRR, PSRR vs. Ambient
Temperature.
FIGURE 2-5: Open-Loop Gain, Phase vs.
Frequency.
FIGURE 2-6: Input Bias Current at
+125°C.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provide d for informational purposes only. The performance characteristics listed here in
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified pow er supply range) and therefore outside the warranted range.
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
-5
-4
-3
-2
-1
0
1
2
3
4
5
Input Offset Voltage (mV)
Percentage of Occurrences
630 Samples
VCM = VSS
20
30
40
50
60
70
80
90
100
110
1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
Frequency (Hz)
PSRR, CMRR (dB)
10 1k 10k 100k100
PSRR+
PSRR-
CMRR
0%
5%
10%
15%
20%
25%
0
6
12
18
24
30
36
42
Input Bias Current (pA)
Percentage of Occurrences
180 Samples
VCM = VDD/2
TA = +85°C
70
75
80
85
90
-50 -25 0 25 50 75 100 125
Ambient Temperature (°C)
CMRR, PSRR (dB)
PSRR (VCM = VSS)
CMRR (VCM = -0.3V to +5.3V,
VDD = 5.0V)
-20
0
20
40
60
80
100
120
1.E-
01
1.E+
00
1.E+
01
1.E+
02
1.E+
03
1.E+
04
1.E+
05
1.E+
06
1.E+
07
Frequency (Hz)
Open-Loop Gain (dB)
-210
-180
-150
-120
-90
-60
-30
0
Open-Loop Phase (°)
RL = 10.0 k
VCM = VDD/2
0.1 1 10 100 1k 10k 100k 1M 10M
Gain
Phase
0%
5%
10%
15%
20%
25%
30%
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Input Bias Current (nA)
Percentage of Occurrences
180 Samples
VCM = VDD/2
TA = +125°C
MCP6241/1R/1U/2/4
DS21882D-page 6 © 2008 Microchip Technology Inc.
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-7: Input Noise Voltage Density
vs. Frequency.
FIGURE 2-8: Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 1.8V.
FIGURE 2-9: Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 5.5V.
FIGURE 2-10: Input Offset Voltage Drift.
FIGURE 2-11: Input Offset Voltage vs.
Output Voltage.
FIGURE 2-12: Output Short-Circuit Current
vs. Ambient Temperature.
10
100
1,000
10,000
1.E-01 1.E+0
0
1.E+0
1
1.E+0
2
1.E+0
3
1.E+0
4
1.E+0
5
Frequency (Hz)
Input Noise Voltage Density
(nV/Hz)
0.1 100 1k 10k 100k101
-300
-200
-100
0
100
200
300
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Common Mode Input Voltage (V)
Input Offset Voltage (µV)
VDD = 1.8V
TA = -40°C
TA = +25°C
TA = +85°C
TA
= +125°C
-200
-100
0
100
200
300
400
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Common Mode Input Voltage (V)
Input Offset Voltage (µV)
VDD
= 5.5
V
TA = -40°C
TA = +25°C
TA = +85°C
TA
= +125°C
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
Input Offset Voltage Drift (µV/°C)
Percentage of Occurrences
628 Samples
VCM = VSS
TA = -40°C to +125°C
300
350
400
450
500
550
600
650
700
0.00.51.01.52.02.53.03.54.04.55.05.5
Output Voltage (V)
Input Offset Voltage (µV)
VDD = 1.8V
VCM = VSS
VDD = 5.5V
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
Short Circuit Current (mA)
TA = +125°C
TA = +85°C
TA = +25°C
TA = -40°C
+ISC
-ISC
© 2008 Microchip Technology Inc. DS21882D-page 7
MCP6241/1R/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-13: Slew Rate vs. Ambient
Temperature.
FIGURE 2-14: Output Voltage Headroom
vs. Output Current Magnitude.
FIGURE 2-15: Maximum Output Voltage
Swing vs. Frequency.
FIGURE 2-16: Small-Signal, Non-Inverting
Pulse Response.
FIGURE 2-17: Large-Signal, Non-Inverting
Pulse Response.
FIGURE 2-18: Quiescent Current vs.
Power Supply Voltage.
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
-50-250 255075100125
Ambient Temperature (°C)
Slew Rate (V/µs)
Falling Edge
Rising Edge
VDD = 1.8V
VDD = 5.5V
1
10
100
1,000
1.E-02 1.E-01 1.E+00 1.E+01
Output Current Magnitude (A)
Output Voltage Headroom
(mV)
VDDVOH
10m1m
VOL – VSS
100µ10µ
0.1
1
10
1.E+03 1.E+04 1.E+05 1.E+06
Frequency (Hz)
Output Voltage Swing (VP-P)
VDD = 5.5V
VDD = 1.8V
1k 10k 100k 1M
Time (1 µs/div)
Output Voltage (10 mV/div)
G = +1 V/V
RL = 10 k
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Time (10 µs/div)
Output Voltage (V)
VDD = 5.0V
G = +1 V/V
0
10
20
30
40
50
60
70
80
0.00.51.01.52.02.53.03.54.04.55.05.5
Power Supply Voltage (V)
Quiescent Current
per Amplifier (µA)
VCM = 0.9VDD
TA = +125°C
TA = +85°C
TA = +25°C
TA = -40°C
MCP6241/1R/1U/2/4
DS21882D-page 8 © 2008 Microchip Technology Inc.
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-19: Measured Input Current vs.
Input Voltage (below VSS).
1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Input Voltage (V)
Input Current Magnitude (A)
+125°C
+85°C
+25°C
-40°C
10m
1m
100µ
10µ
100n
10n
1n
100p
10p
1p
© 2008 Microchip Technology Inc. DS21882D-page 9
MCP6241/1R/1U/2/4
3.0 PIN DESCRIPTIONS
Description s of the pi ns are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).
TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS
TABLE 3-2: PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS
3.1 Analog Outputs
The output pins are low-impedance voltage sources.
3.2 Analog Inputs
The non-inverting and inverting inputs are high-
impedance CMOS inputs with low bias currents.
3.3 Power Supply (VSS and VDD)
The positive power supply (VDD) is 1.8V to 5.5V higher
than the negative power supply (VSS). For normal
operation, the other pins are between VSS and VDD.
Typically, these parts are used in a single (positive)
supply configuration. In this case, VSS is connected to
ground and VDD is connected to the supply. VDD will
need bypass capacitors.
3.4 Exposed Thermal Pad (EP)
There is an internal ele ctrical connection between the
Exposed Thermal Pad (EP) and the VSS pin; they must
be connected to the same potential on the Printed
Circuit Board (PCB).
MCP6241 MCP6241R MCP6241U
Symbol Description
DFN MSOP, PDIP,
SOIC SOT-23-5 SOT-23-5 SOT-23-5,
SC-70
6611 4V
OUT Analog Output
2244 3V
IN Inverting Input
3333 1V
IN+ Non-inverting Input
7752 5V
DD Positive Power Supply
4425 2V
SS Negative Power Supply
1, 5, 8 1, 5, 8 NC No Internal Connection
9———EP
Exposed Thermal Pad (EP);
must be connected to VSS.
MCP6242 MCP6244
Symbol Description
MSOP, PDIP, SOIC PDIP, SOIC, TSSOP
11V
OUTA Analog Output (op amp A)
22V
INA Inverting Input (op amp A)
33V
INA+ Non-inverting Input (op amp A)
84V
DD Positive Power Supply
55V
INB+ Non-inverting Input (op amp B)
66V
INB Inverting Input (op amp B)
77V
OUTB Analog Output (op amp B)
—8V
OUTC Analog Output (op amp C)
—9V
INC Inverting Input (op amp C)
—10V
INC+ Non-inverting Input (op amp C)
411V
SS Negative Power Supply
—12V
IND+ Non-inverting Input (op amp D)
—13V
IND Inverting Input (op amp D)
—14V
OUTD Analog Output (op amp D)
MCP6241/1R/1U/2/4
DS21882D-page 10 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21882D-page 11
MCP6241/1R/1U/2/4
4.0 APPLICATION INFORMATION
The MCP6241/1R/1U/2/4 family of op amps is manu-
factured using Microchip’s state-of-the-art CMOS
process and is specifically designed for low-power and
general-purpose applications. The low supply voltage,
low quiescent current and wide bandwidth makes the
MCP6241/1R/1U/2/4 ideal for battery-powered
applications.
4.1 Rail-to-Rail Inputs
4.1.1 PHASE REVERSAL
The MCP6241/1R/1U/2/4 op amp is designed to
prevent phase reversal when the input pins exceed the
supply voltages. Figure 4-1 shows the input voltage
exceeding the supply voltage without any phase
reversal.
FIGURE 4-1: The MCP6241/1R/1U/2/4
Show No Phase Reversa l.
4.1.2 INPUT VOLTAGE AND CURRENT
LIMITS
The ESD protection on the inputs can be depicted as
shown in Figure 4-2. This structure was chosen to
protect the input transistors, and to minimize input bias
current (IB). The input ESD diodes clamp the inputs
when they try to go more than one diode drop below
VSS. They also clamp any voltages that go too far
above VDD; their breakdown voltage is high enough to
allow normal operation, and low enough to bypass
quick ESD events within the specified limits.
FIGURE 4-2: Simplified Analog Input ESD
Structures.
In order to prevent damage and/or improper operation
of these op amps, the circuit they are in must limit the
currents and voltages at the VIN+ and VIN– pins (see
Absolute Maximum Ratings † at the beginning of
Section 1.0 “Electrical Characteristics”). Figure 4-3
shows the recommended approach to protecting these
inputs. The internal ESD diodes preven t the input pins
(VIN+ and VIN–) from going too far below ground, and
the resistors R1 and R2 limit the possible current drawn
out of the input pins. Diodes D1 and D2 prevent the
input pins (VIN+ and VIN–) from going too far above
VDD, and dump any currents onto VDD. When
implemented as shown, resistors R1 and R2 also limit
the current through D1 and D2.
FIGURE 4-3: Protecting the Analog
Inputs.
It is also possible to connect the diodes to the left of
resistors R1 and R2. In this case, current through the
diodes D1 and D2 needs to be limited by some other
mechanism. The resistors then serve as in-rush current
limiters; the DC current into the input pins (VIN+ and
VIN–) should be very small.
-1
0
1
2
3
4
5
6
Time (1 ms/div)
Input, Output Voltage (V)
VOUT
VIN
VDD = 5.0V
G = +2 V/V
Bond
Pad
Bond
Pad
Bond
Pad
VDD
VIN+
VSS
Input
Stage Bond
Pad VIN
V1
MCP624X
R1
VDD
D1
R1>VSS (minimum expected V1)
2mA
R2>VSS (minimum expected V2)
2mA
V2R2
D2
R3
MCP6241/1R/1U/2/4
DS21882D-page 12 © 2008 Microchip Technology Inc.
A significant amount of current can flow out of the
inputs when the common mode voltage (VCM) is below
ground (VSS); see Figure 2-19. Applications that are
high impedance may need to limit the use able voltage
range.
4.1.3 NORMAL OPER ATION
The input stage of the MCP6241/1R/1U/2/4 op amps
use two differential CMOS input stages in parallel. One
operates at low common mode input voltage (VCM),
while the other operates at high VCM. WIth this topol-
ogy, the device operates with VCM up to 0.3V above
VDD and 0.3V below VSS.
4.2 Rail-to-Rail Output
The output voltage range of the MCP6241/1R/1U/2/4
op amps is VDD –35mV (maximum) and V
SS +35mV
(minimum) when RL=10kΩ is connected to VDD/2 and
VDD = 5.5V. Refer to Figure 2-14 for more information.
4.3 Capacitive Loads
Driving large capacitive loads can cause stability
problems for voltage-feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produce s gain peaking in the frequency
response, with overshoot and ringing in the step
response. A unity-gain buffer (G = +1) is the most
sensitive to capacitive loads, but all gains show the
same general behavior.
When driving large capacitive loads with these op
amps (e.g., > 70 pF when G = +1), a small series
resistor at the output (RISO in Figure 4-4) improves the
feedback loop’s phase margin (stability) by making the
output load resistive at higher frequencies. The
bandwidth will be generally lower than the bandwidth
with no capacitive load.
FIGURE 4-4: Output Resistor, RISO
stabilizes large capacitive loads.
Figure 4-5 gives recommended RISO values for
different capacitive loads and gains. The x-axis is the
normalized load capacitance (CL/GN), where GN is the
circuit’s noise gain. For non-inverting gains, GN and the
signal gain are equal. For inverting gains, GN is
1 + |Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).
FIGURE 4-5: Recommended RISO V alues
for Capacitive Loads.
After selecting RISO for your circuit, double-check the
resulting frequency response peaking and step
response overshoot. Evaluation on the bench and
simulations with the MCP6241/1R/1U/2/4 SPICE
macro model are very helpful. Modify RISO’s valu e until
the response is reasonable.
4.4 Supply Bypass
With this op amp, the power supply pin (VDD for
single-supply) should have a local bypass capacitor
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-
frequency performance. It can use a bulk capacitor
(i.e., 1 µF or larger) within 100 mm to provide large,
slow currents. This bulk capacitor can be shared with
other nearby analog parts.
4.5 Unused Op Amps
An unused op amp in a quad package (MCP6244)
should be configured as shown in Figure 4-6. Both
circuits prevent the output from toggling and causing
crosstalk. Circuit A can use any reference voltage
between the supplies, provid es a buffered DC voltage,
and minimizes the supply current draw of the unused
op amp. Circuit B minimizes the number of
components, but may draw a little more supply current
for the unuse d op amp .
FIGURE 4-6: Unused Op Amps.
VIN
RISO VOUT
MCP624X
CL
+
1.E+02
1.E+03
1.E+04
1.E+01 1.E+02 1.E+03 1.E+04
Normalized Load Capacitance; CL/GN (F)
Recommended RISO ()
10p 100p 1n 10n
10k
1k
100
GN = +1 V/V
GN +2 V/V
VDD
VDD
¼ MCP6244 (A) ¼ MCP6244 (B)
R1
R2
VDD
VREF
VREF VDD R2
R1R2
+
------------------
=
© 2008 Microchip Technology Inc. DS21882D-page 13
MCP6241/1R/1U/2/4
4.6 PCB Surface Leakage
In applications where low input bias current is critical,
PCB (printed circuit board) surface leakage effects
need to be considered. Surface leakage is caused by
humidity, dust or other contamination on the board.
Under low humidity conditions, a typical resistance
between nearby traces is 1012Ω. A 5V difference would
cause 5 pA of current to flow, which is greater than the
MCP6241/1R/1U/2/4 family’s bias current at 25°C
(1 pA, typical).
The easiest way to reduce surface leaka ge is to use a
guard ring around sensitive pins (or traces). The guard
ring is biased at the same voltage as the sensitive pin.
An example of this type of layout is shown in
Figure 4-7.
FIGURE 4-7: Example Guard Ring Layout
for Inverting Gain.
1. Non-inverting Gain and Unity-Gain Buffer:
a. Connect the non-inverting pin (VIN+) to the
input with a wire that does not touch the
PCB surface.
b. Connect the guard ring to the inverting input
pin (VIN–). This biases the guard ring to the
common mode input voltage.
2. Inverting Gain and Transimpedance Amplifiers
(convert current to voltage, such as photo
detectors):
a. Connect the guard ring to th e non-inverting
input pin (VIN+). This biases the guard ring
to the same reference voltage as the op
amp (e.g., VDD/2 or ground).
b. Conne ct the inverting pin (VIN–) to the input
with a wire that does not touch the PCB
surface.
4.7 Application Circuits
4.7.1 MATCHING THE IMPEDANCE AT
THE INPUTS
To minimize the effect of offset voltage in an amplifier
circuit, the impedances at the inverting and non-
inverting inputs need to be matched. This is done by
choosing the circuit resistor values so that the total
resistance at each input is the same. Figure 4-8 shows
a summing amplifier circuit.
FIGURE 4-8: Summing Amplifier Circuit.
To match the inputs, set all voltage sources to ground
and calculate the total resistance at the input nodes. In
this summing amplifier circuit, the resistance at the
inverting input is calculated by setting VIN1, VIN2 and
VOUT to ground. In this case, RG1, RG2 and RF are in
parallel. The total resistance at the inverting input is:
At the non-inverting input, VDD is the only voltage
source. When VDD is set to ground, both RX and RY are
in parallel. The total resistance at the non-inverting
input is:
To minimize offset voltage and increase circuit
accuracy, the resistor values need to meet the
condition:
Guard Rin g
VSS
VIN-V
IN+
MCP6241 VOUT
VIN2
+
VIN1
RG2
RG1
RF
RZ
VDD
RX
RY
RVIN1
1
RG1
--------- 1
RG2
--------- 1
RF
------++
⎝⎠
⎛⎞
---------------------------------------------=
Where:
RVIN = total resist ance at the inverting input
RVIN+1
1
RX
------ 1
RY
------+
⎝⎠
⎛⎞
------------------------- RZ
+=
Where:
RVIN+ = total resistance at the inverting
input
RVIN+RVIN=
MCP6241/1R/1U/2/4
DS21882D-page 14 © 2008 Microchip Technology Inc.
4.7.2 COMPENSATING FOR THE
PARASITIC CAPACITANCE
In analog circuit design, the PCB parasitic capacitance
can compromise the circuit behavior; Figure 4-9 shows
a typical scenario. If the input of an amplifier sees
parasitic capacitance of several picofarad (CPARA,
which includes the common mode capacitance of 6 pF,
typical) and large RF and RG, the frequency response
of the circuit will include a zero. This parasitic zero
introduces gain peaking and can cause circuit
instability.
FIGURE 4-9: Effect of Parasitic
Capacitance at the Input.
One solution is to use smaller resistor values to push
the zero to a higher frequency. Another solution is to
compensate by introducing a pole at the point at which
the zero occurs. This can be done by adding CF in
parallel with the feedback resistor (RF). CF needs to be
selected so that the ratio CPARA:CF is equal to the ratio
of RF:RG.
VOUT
CF
VDC
+
VAC
RGRF
CPARA
CFCPARA RG
RF
-------
=
MCP624X
© 2008 Microchip Technology Inc. DS21882D-page 15
MCP6241/1R/1U/2/4
5.0 DESIGN AIDS
Microchip provides the basic design tools needed for
the MCP6241/1R/1U/2/4 family of op amps.
5.1 SPICE Macro Model
The latest SPICE macro model for the MCP6241/1R/
1U/2/4 op amps is available on the Microchip web site
at www .microchip.com. This model is intended to be an
initial design tool that works well in the op amp’s linear
region of operation over the temperature range. See
the model file for information on its capabilities.
Bench testing is a very important part of any design and
cannot be replaced with simulations. Also, simulation
results using this macro model need to be validated by
comparing them to the data sheet specifications and
characteristic curves.
5.2 Mindi™ Circuit Designer &
Simulator
Microchip’s Mindi™ Circuit Designer & Simulator aids
in the design of various circuits useful for active filter,
amplifier and power-management applications. It is a
free online circuit designer & simulator available from
the Microchip web site at www.microchip.com/mindi.
This interactive circuit designer & simulator enables
designers to quickly generate circuit diagrams, simu-
late circuits. Circuits developed using the Mindi Circuit
Designer & Simulator can be downloaded to a personal
computer or workstation.
5.3 Microchip Advanced Part Selector
(MAPS)
MAPS is a software tool that helps semiconductor
professionals efficiently identify Microchip devices that
fit a particular design requirement. Available at no cost
from the Microchip web site at www.microchip.com/
maps, the MAPS is an overall selection tool for
Microchip’s product portfolio that includes Analog,
Memory, MCUs and DSCs. Using this tool you can
define a filter to sort features for a parametric search of
devices and export side-by-side technical comparison
reports. Helpful links are also provided for Data sheets,
Purchase, and Sampling of Microchip parts.
5.4 Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog Demon-
stration and Evaluation Boards that are designed to
help you achieve faster time to market. For a complete
listing of these boards and their corresponding user s
guides and technical information, visit the Microchip
web site at www.microchip.com/analogtools.
Two of our boards that are especially useful are:
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP
Evaluation Board
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP
Evaluation Board
5.5 Application Notes
The following Microchip Application Notes are avail-
able on the Microchip web site at www.microchip. com/
appnotes and are recommended a s supplemental ref-
erence resources.
ADN003: “Select the Right Operational Amplifier for
your Filtering Circuits”, DS21821
AN722: “Operational Amplifier Topologies and DC
Specifications”, DS00722
AN723: “Operational Amplifier AC Specifications and
Applications”, DS00723
AN884: “Driving Capacitive Loads With Op Amps”,
DS00884
AN990: “Analog Sensor Conditioning Circuits An
Overview”, DS00990
These application notes and others are listed in the
design guide:
“Signal Chain Design Guide”, DS21825
MCP6241/1R/1U/2/4
DS21882D-page 16 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21882D-page 17
MCP6241/1R/1U/2/4
6.0 PACKAGING INFORMATION
6.1 Package Marking Information
123
54
5-Lead SOT-23 (MCP6241, MCP6241R, MCP6241U) Example:
XXNN
123
54
BQ25
Device Code
MCP6241 BQNN
MCP6241RBRNN
MCP6241U BSNN
Note: Applies to 5-Lead SOT-23.
XXXXXXXX
XXXXXNNN
YYWW
8-Lead PDIP (300 mil)
MCP6242
E/P ^^256
0834
8-Lead MSOP Example:
XXXXXX
YWWNNN
6242E
834256
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
3
e
5-Lead SC-70 (MCP6241U Only) Example:
XXNN AT25
8-Lead DFN (2x3) (MCP6241 Only) Example:
XXX
YWW
NN
AER
834
25
Example:
MCP6242
E/P256
0818 OR
MCP6241/1R/1U/2/4
DS21882D-page 18 © 2008 Microchip Technology Inc.
Package Marking Information (Continued)
14-Lead PDIP (300 mil) (MCP6244)Example:
14-Lead TSSOP (MCP6244)Example:
14-Lead SOIC (150 mil) (MCP6244)Example:
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXX
YYWWNNN
XXXXXXXX
YYWW
NNN
MCP6244
0546256
6244E
0546
256
XXXXXXXXXX MCP6244
0546256
E/P^^
E/SL^^
3
e
3
e
8-Lead SOIC (150 mil)
XXXXXXXX
XXXXYYWW
NNN
MCP6242E
SN^^ 0834
256
Example:
MCP6242
E/SN0818
256 OR
© 2008 Microchip Technology Inc. DS21882D-page 19
MCP6241/1R/1U/2/4
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU/7>6&@
1RWHV
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
2YHUDOO+HLJKW $  ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± 
6WDQGRII $  ± 
2YHUDOO:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
)RRW/HQJWK /   
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
D
b
1
23
E1
E
45
ee
c
L
A1
AA2
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP6241/1R/1U/2/4
DS21882D-page 20 © 2008 Microchip Technology Inc.
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
© 2008 Microchip Technology Inc. DS21882D-page 21
MCP6241/1R/1U/2/4
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU27>627@
1RWHV
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
/HDG3LWFK H %6&
2XWVLGH/HDG3LWFK H %6&
2YHUDOO+HLJKW $  ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± 
6WDQGRII $  ± 
2YHUDOO:LGWK (  ± 
0ROGHG3DFNDJH:LGWK (  ± 
2YHUDOO/HQJWK '  ± 
)RRW/HQJWK /  ± 
)RRWSULQW /  ± 
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
φ
N
b
E
E1
D
123
e
e1
A
A1
A2 c
L
L1
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP6241/1R/1U/2/4
DS21882D-page 22 © 2008 Microchip Technology Inc.
/HDG3ODVWLF'XDO)ODW1R/HDG3DFNDJH0&±[[PP%RG\>')1@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 3DFNDJHPD\KDYHRQHRUPRUHH[SRVHGWLHEDUVDWHQGV
 3DFNDJHLVVDZVLQJXODWHG
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
2YHUDOO+HLJKW $   
6WDQGRII $   
&RQWDFW7KLFNQHVV $ 5()
2YHUDOO/HQJWK ' %6&
2YHUDOO:LGWK ( %6&
([SRVHG3DG/HQJWK '  ± 
([SRVHG3DG:LGWK (  ± 
&RQWDFW:LGWK E   
&RQWDFW/HQJWK /   
&RQWDFWWR([SRVHG3DG .  ± ±
D
N
E
NOTE 1
12
EXPOSED PAD
NOTE 1
21
D2
K
L
E2
N
e
b
A3 A1
A
NOTE 2
BOTTOM VIEW
TOP VIEW
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &&
© 2008 Microchip Technology Inc. DS21882D-page 23
MCP6241/1R/1U/2/4
/HDG3ODVWLF'XDO)ODW1R/HDG3DFNDJH0&±[[PP%RG\>')1@
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
MCP6241/1R/1U/2/4
DS21882D-page 24 © 2008 Microchip Technology Inc.
/HDG3ODVWLF0LFUR6PDOO2XWOLQH3DFNDJH06>0623@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
2YHUDOO+HLJKW $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
6WDQGRII $  ± 
2YHUDOO:LGWK ( %6&
0ROGHG3DFNDJH:LGWK ( %6&
2YHUDOO/HQJWK ' %6&
)RRW/HQJWK /   
)RRWSULQW / 5()
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
D
N
E
E1
NOTE 1
12
e
b
A
A1
A2
c
L1 L
φ
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
© 2008 Microchip Technology Inc. DS21882D-page 25
MCP6241/1R/1U/2/4
/HDG3ODVWLF'XDO,Q/LQH3±PLO%RG\>3',3@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKWKHKDWFKHGDUHD
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV ,1&+(6
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
7RSWR6HDWLQJ3ODQH $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
%DVHWR6HDWLQJ3ODQH $  ± ±
6KRXOGHUWR6KRXOGHU:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
7LSWR6HDWLQJ3ODQH /   
/HDG7KLFNQHVV F   
8SSHU/HDG:LGWK E   
/RZHU/HDG:LGWK E   
2YHUDOO5RZ6SDFLQJ H% ± ± 
N
E1
NOTE 1
D
12
3
A
A1
A2
L
b1
b
e
E
eB
c
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP6241/1R/1U/2/4
DS21882D-page 26 © 2008 Microchip Technology Inc.
/HDG3ODVWLF6PDOO2XWOLQH61±1DUURZPP%RG\>62,&@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1
3LWFK H %6&
2YHUDOO+HLJKW $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± ±
6WDQGRII
$  ± 
2YHUDOO:LGWK ( %6&
0ROGHG3DFNDJH:LGWK ( %6&
2YHUDOO/HQJWK ' %6&
&KDPIHURSWLRQDO K  ± 
)RRW/HQJWK /  ± 
)RRWSULQW / 5()
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
0ROG'UDIW$QJOH7RS  ± 
0ROG'UDIW$QJOH%RWWRP  ± 
D
N
e
E
E1
NOTE 1
12 3
b
A
A1
A2
L
L1
c
h
h
φ
β
α
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
© 2008 Microchip Technology Inc. DS21882D-page 27
MCP6241/1R/1U/2/4
/HDG3ODVWLF6PDOO2XWOLQH61±1DUURZPP%RG\>62,&@
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
MCP6241/1R/1U/2/4
DS21882D-page 28 © 2008 Microchip Technology Inc.
/HDG3ODVWLF'XDO,Q/LQH3±PLO%RG\>3',3@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKWKHKDWFKHGDUHD
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV ,1&+(6
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
7RSWR6HDWLQJ3ODQH $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
%DVHWR6HDWLQJ3ODQH $  ± ±
6KRXOGHUWR6KRXOGHU:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
7LSWR6HDWLQJ3ODQH /   
/HDG7KLFNQHVV F   
8SSHU/HDG:LGWK E   
/RZHU/HDG:LGWK E   
2YHUDOO5RZ6SDFLQJ H% ± ± 
N
E1
D
NOTE 1
123
E
c
eB
A2
L
A
A1
b1
be
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
© 2008 Microchip Technology Inc. DS21882D-page 29
MCP6241/1R/1U/2/4
/HDG3ODVWLF6PDOO2XWOLQH6/±1DUURZPP%RG\>62,&@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
2YHUDOO+HLJKW $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $  ± ±
6WDQGRII $  ± 
2YHUDOO:LGWK ( %6&
0ROGHG3DFNDJH:LGWK ( %6&
2YHUDOO/HQJWK ' %6&
&KDPIHURSWLRQDO K  ± 
)RRW/HQJWK /  ± 
)RRWSULQW / 5()
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
0ROG'UDIW$QJOH7RS  ± 
0ROG'UDIW$QJOH%RWWRP  ± 
NOTE 1
N
D
E
E1
123
b
e
A
A1
A2
L
L1
c
h
hα
β
φ
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP6241/1R/1U/2/4
DS21882D-page 30 © 2008 Microchip Technology Inc.
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
© 2008 Microchip Technology Inc. DS21882D-page 31
MCP6241/1R/1U/2/4
/HDG3ODVWLF7KLQ6KULQN6PDOO2XWOLQH67±PP%RG\>76623@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
2YHUDOO+HLJKW $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
6WDQGRII $  ± 
2YHUDOO:LGWK ( %6&
0ROGHG3DFNDJH:LGWK (   
0ROGHG3DFNDJH/HQJWK '   
)RRW/HQJWK /   
)RRWSULQW / 5()
)RRW$QJOH  ± 
/HDG7KLFNQHVV F  ± 
/HDG:LGWK E  ± 
NOTE 1
D
N
E
E1
12
e
b
c
A
A1
A2
L1 L
φ
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
MCP6241/1R/1U/2/4
DS21882D-page 32 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21882D-page 33
MCP6241/1R/1U/2/4
APPENDIX A: REVISION HISTORY
Revision D (October 2008)
The following is the list of modificatio ns:
1. Changed Heading “Available Tools” to “Design
Aids”.
2. Design Aids: Name change for Mindi Simulator
Tool.
3. Package Types: Added DFN to MCP6231
Device.
4. Absolute Maximum Ratings: Numerous
changes in this section.
5. Updated notes to Section 1.0 “Electrical Char-
acteristics”.
6. Added Figure 2-19.
7. Numerous changes to Section 3.0 “Pin
Descriptions”.
8. Added Section 4.1.1 “Phase Reversal”,
Section 4.1.2 “Input Voltage and Current
Limits”, and Section 4.1.3 “Normal Opera-
tion”.
9. Replaced Section 5.0 “Design Aids” with
additional information.
10. Added 2x3 DFN package to Section 6.0 “Pack-
aging Information” and updated Package Out-
line Drawings.
1 1. Added 2x3 DFN package to Product Identifica-
tion System section.
Revision C (March 2005)
The following is the list of modificatio ns:
1. Added the MCP6244 quad op amp.
2. Re-compensated parts. Specifications that
change are: Gain Bandwidth Product (BWP)
and Phase Margin (PM) in AC Electrical
Characteristics table.
3. Corrected plots in Section 2.0 “Typical Perfor-
mance Curves”.
4. Added Section 3.0 “Pin Descriptions”.
5. Added new SC-70 package markings. Added
PDIP-14, SOIC-14, and TSSOP-14 packages
and corrected package marking information
(Section 6.0 “Packaging Information”).
6. Added Appendix A: “Revision History”.
Revision B (August 2004)
Undocumented changes.
Revision A (March 2004)
Original Release of this Document.
MCP6241/1R/1U/2/4
DS21882D-page 34 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21882D-page 35
MCP6241/1R/1U/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: MCP6241: Single Op Amp (MSOP, PDIP, SOIC)
MCP6241T: Single Op Amp (Tape and Reel)
(MSOP, SOIC, SOT-23)
MCP6241RT: Single Op Amp (Tape and Reel)
(SOT-23)
MCP6241UT: Single Op Amp (Tape and Reel)
(SC-70, SOT-23)
MCP6242: Dual Op Amp
MCP6242T: Dual Op Amp (Tape and Reel)
(MSOP, SOIC)
MCP6244: Quad Op Amp
MCP6244T: Quad Op Amp (Tape and Reel)
(SOIC, TSSOP)
Temperature Range: E = -40° C to +125° C
Package: LT = Plastic Package (SC-70), 5-lead (MCP6241U only)
MC = Plastic Dual Flat, No Lead (DFN), 8-lead,
(MCP6241 only)
MS = Plastic Micro Small Outline (MSOP), 8-lead
P = Plastic DIP (300 mil Body), 8-lead, 14-lead
OT = Plastic Small Outline Transistor (SOT-23), 5-lead
(MCP6241, MCP6241R, MCP6241U)
SN = Plastic SOIC (150 mil Body), 8-lead
SL = Plastic SOIC (150 mil Body), 14-lead
ST = Plastic TSSOP (4.4 mil Body), 14-lead
PART NO. -X /XX
PackageTemperature
Range
Device
Examples:
a) MCP6241-E/SN: Extended Temp.,
8LD SOIC package.
b) MCP6241-E/MS: Extended Temp.,
8LD MSOP package.
c) MCP6241-E/P: Extended Temp.,
8LD PDIP package.
d) MCP6241-E/MC: Extended Temp.,
8LD DFN package.
e) MCP6241RT-E/OT: Tape and Reel,
Extended Temp.,
5LD SOT-23 package
f) MCP6241UT-E/OT: Tape and Reel,
Extended Temp.,
5LD SOT-23 package.
g) MCP6241UT-E/LT: Tape and Reel,
Extended Temp.,
5LD SC-70 package.
a) MCP6242-E/SN: Extended Temp.,
8LD SOIC package.
b) MCP6242-E/MS: Extended Temp.,
8LD MSOP package.
c) MCP6242-E/P: Extended Temp.,
8LD PDIP package.
d) MCP6242T-E/SN: Tape and Reel,
Extended Temp.,
8LD SOIC package.
a) MCP6244-E/P: Extended Temp.,
14LD PDIP package.
b) MCP6244-E/SL: Extended Temp.,
14LD SOIC package.
c) MCP6244-E/ST: Extended Temp.,
14LD TSSOP
package.
d) MCP6244T-E/SL: Tape and Reel,
Extended Temp.,
14LD SOIC package.
e) MCP6244T-E/ST: Tape and Reel,
Extended Temp.,
14LD TSSOP
package.
X
Tape and Reel
Alternate Pinout
and/or
MCP6241/1R/1U/2/4
DS21882D-page 36 © 2008 Microchip Technology Inc.
NOTES:
© 2008 Microchip Technology Inc. DS21882D-page 37
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defen d, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt a nd UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEV AL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip T echnology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Dat a
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection featur es of our
products. Attempts to break Microchip’ s code protection feature may be a violation of the Digit al Millennium Copyright Act. If such acts
allow unauthorized access to you r software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:200 2 certif ication for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperi pherals, nonvola tile memo ry and
analog product s. In addition, Microchip s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS21882D-page 38 © 2008 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
01/02/08