PA ANTENNA
RFIN OUT
LMH2100
RF
VDD
GND
50 :
REF
ADC
2
CP
RP
16
3
4 5 -
+
COUPLER
EN
PA ANTENNA
RFIN OUT
LMH2100
RF
VDD
GND
50 :
EN REF
ADC
2
CS
RS
16
3
4 5 -
+
COUPLER
Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
LMH2100 50-MHz to 4-GHz 40-dB Logarithmic Power Detector for CDMA and WCDMA
1 Features 3 Description
The LMH2100 is a 40-dB RF power detector intended
1 Supply Voltage: 2.7 V to 3.3 V for use in CDMA and WCDMA applications. The
Output Voltage: 0.3 V to 2 V device has an RF frequency range from 50 MHz to
40-dB Linear in dB Power Detection Range 4 GHz. It provides an accurate temperature and
supply compensated output voltage that relates
Shutdown linearly to the RF input power in dBm. The circuit
Multi-Band Operation from 50 MHz to 4 GHz operates with a single supply from 2.7 V to 3.3 V.
0.5-dB Accurate Temperature Compensation The LMH2100 has an RF power detection range from
External Configurable Output Filter Bandwidth 45 dBm to 5 dBm, and is ideally suited for direct
0.4-mm Pitch DSBGA Package use in combination with a 30-dB directional coupler.
Additional low-pass filtering of the output signal can
2 Applications be realized by means of an external resistor and
capacitor. Typical Application: Output RC Low Pass
UMTS/CDMA/WCDMA RF Power Control Filter shows a detector with an additional output low
GSM/GPRS RF Power Control pass filter. The filter frequency is set with RSand CS.
PA Modules Typical Application: Feedback (R)C Low Pass Filter
IEEE 802.11b, g (WLAN) shows a detector with an additional feedback low
pass filter. Resistor RPis optional and will lower the
Trans impedance gain (RTRANS). The filter frequency
is set with CP//CTRANS and RP//RTRANS.
The device is active for Enable = High; otherwise it is
in a low power-consumption shutdown mode. To save
power and prevent discharge of an external filter
capacitance, the output (OUT) is high-impedance
during shutdown.
Device Information(1)
PART NUMBER PACKAGE BODY SIZE (MAX)
LMH2100 DSBGA (6) 1.274 mm × 0.874 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Typical Application: Output RC Low Pass Filter Typical Application: Feedback (R)C Low Pass
Filter
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Table of Contents
7.3 Feature Description................................................. 23
1 Features.................................................................. 17.4 Device Functional Modes........................................ 29
2 Applications ........................................................... 18 Application and Implementation ........................ 30
3 Description............................................................. 18.1 Application Information............................................ 30
4 Revision History..................................................... 28.2 Typical Applications ............................................... 33
5 Pin Configuration and Functions......................... 39 Power Supply Recommendations...................... 39
6 Specifications......................................................... 410 Layout................................................................... 40
6.1 Absolute Maximum Ratings ..................................... 410.1 Layout Guidelines ................................................ 40
6.2 ESD Ratings.............................................................. 410.2 Layout Example .................................................... 42
6.3 Recommended Operating Ratings ........................... 411 Device and Documentation Support................. 43
6.4 Thermal Information.................................................. 511.1 Community Resources.......................................... 43
6.5 2.7-V DC and AC Electrical Characteristics.............. 511.2 Trademarks........................................................... 43
6.6 Timing Requirements.............................................. 11 11.3 Electrostatic Discharge Caution............................ 43
6.7 Typical Characteristics............................................ 11 11.4 Glossary................................................................ 43
7 Detailed Description............................................ 23 12 Mechanical, Packaging, and Orderable
7.1 Overview................................................................. 23 Information........................................................... 43
7.2 Functional Block Diagram....................................... 23
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision B (March 2013) to Revision C Page
Added Device Information and Pin Configuration and Functions sections, ESD Ratings table, Feature Description,
Device Functional Modes,Application and Implementation,Power Supply Recommendations,Layout,Device and
Documentation Support, and Mechanical, Packaging, and Orderable Information sections................................................. 1
Changes from Revision A (March 2013) to Revision B Page
Changed layout of National Data Sheet to TI format ........................................................................................................... 42
2Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
A1
VDD
B1
RFIN
C2
EN
B2
REF
A2
OUT
C1
GND
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
5 Pin Configuration and Functions
YFQ Package
6-Pin DSBGA
Top View
Pin Functions
PIN I/O DESCRIPTION
NUMBER NAME
A1 VDD Power Supply Positive supply voltage
A2 OUT Output Ground referenced detector output voltage (linear in dB)
B1 RFIN Analog Input RF input signal to the detector, internally terminated with 50 .
Reference output, for differential output measurement (without pedestal). Connected
B2 REF Reference Output to inverting input of output amplifier.
C1 GND GND Power ground
The device is enabled for EN = High, and brought to a low-power shutdown mode for
C2 EN Logic Input EN = Low.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Supply voltage, VDD to GND 3.6 V
RF input, input power 10 dBm
RF input, DC voltage 400 mV
Enable input voltage VSS 0.4 < VEN < VDD + 0.4 V
Junction temperature (3) 150 °C
Maximum lead temperature (soldering,10 sec) 260 °C
Storage temperature, Tstg 65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. For ensured
specifications and the test conditions, see the 2.7-V DC and AC Electrical Characteristics.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
(3) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is
PD= (TJ(MAX) TA)/RθJA. All numbers apply for packages soldered directly into a PC board.
6.2 ESD Ratings VALUE UNIT
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000
V(ESD) Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±2000 V
Machine model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
Supply voltage 2.7 3.3 V
Temperature range –40 85 °C
RF frequency range 50 4000 MHz
–45 –5 dBm
RF input power range(2) –58 –18 dBV
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. For ensured
specifications and the test conditions, see the 2.7-V DC and AC Electrical Characteristics.
(2) Power in dBV = dBm + 13 when the impedance is 50 .
4Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
6.4 Thermal Information LMH2100
THERMAL METRIC(1) YFQ (DSBGA) UNIT
6 PINS
RθJA Junction-to-ambient thermal resistance (2) 133.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 1.7 °C/W
RθJB Junction-to-board thermal resistance 22.6 °C/W
ψJT Junction-to-top characterization parameter 5.7 °C/W
ψJB Junction-to-board characterization parameter 22.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
(2) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is
PD= (TJ(MAX) - TA)/RθJA. All numbers apply for packages soldered directly into a PC board.
6.5 2.7-V DC and AC Electrical Characteristics
Unless otherwise specified, all limits are ensured at TA= 25°C, VDD = 2.7 V, RF input frequency ƒ = 1855 MHz CW
(Continuous Wave, unmodulated). Maximum and minimum limits apply at the temperature extremes.(1).
PARAMETER TEST CONDITIONS MIN (2) TYP(3) MAX (2) UNIT
SUPPLY INTERFACE
IDD Supply current Active mode: EN = High, no signal present 6.3 7.1 7.9 mA
at RFIN
Active mode: EN = High, no signal present
at RFIN 5 9.2
TA= –40°C to +85°C
Shutdown: EN = Low, no signal present at 0.5 0.9
RFIN.
Shutdown: EN = Low, no signal present at
RFIN. 1.9 µA
TA= –40°C to +85°C
EN = Low: PIN = 0 dBm(4) 10
TA= –40°C to +85°C
LOGIC ENABLE INTERFACE
VLOW EN logic low input level (Shutdown TA= –40°C to +85°C 0.6 V
Mode)
VHIGH EN logic high input level TA= –40°C to +85°C 1.1 V
IEN Current into EN pin TA= –40°C to +85°C 60 nA
RF INPUT INTERFACE
RIN Input resistance 46.7 51.5 56.4
(1) 2.7-V DC and AC Electrical Characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing
conditions result in very limited self-heating of the device such that TJ= TA. No specification of parametric performance is indicated in
the electrical tables under conditions of internal self-heating where TJ> TA.
(2) All limits are ensured by test or statistical analysis.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped
production material.
(4) All limits are ensured by design and measurements which are performed on a limited number of samples. Limits represent the mean
±3–sigma values.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
2.7-V DC and AC Electrical Characteristics (continued)
Unless otherwise specified, all limits are ensured at TA= 25°C, VDD = 2.7 V, RF input frequency ƒ = 1855 MHz CW
(Continuous Wave, unmodulated). Maximum and minimum limits apply at the temperature extremes.(1).
PARAMETER TEST CONDITIONS MIN (2) TYP(3) MAX (2) UNIT
OUTPUT INTERFACE
From positive rail, sourcing, 15.3 23.9
VREF = 0 V, IOUT = 1 mA
From positive rail, sourcing,
VREF = 0 V, IOUT = 1 mA 28.9
TA= –40°C to +85°C
VOUT Output voltage swing mV
From negative rail, sinking, 13.1 22.3
VREF = 2.7 V, IOUT = 1 mA
From negative rail, sinking,
VREF = 2.7 V, IOUT = 1 mA 28.3
TA= –40°C to +85°C
Sourcing, VREF = 0 V, VOUT = 2.6 V 5.8 7.3
Sourcing, VREF = 0 V, VOUT = 2.6 V 5.2
TA= –40°C to +85°C
IOUT Output short circuit current mA
Sinking, VREF = 2.7 V, VOUT = 0.1 V 6.2 8.3
Sinking, VREF = 2.7 V, VOUT = 0.1 V 5.4
TA= –40°C to +85°C
BW Small signal bandwidth No RF input signal. Measured from REF 416 kHz
input current to VOUT
RTRANS Output amp transimpedance gain No RF input signal, from IREF to VOUT, DC 40.7 43.3 46.7 k
Positive, VREF from 2.7 V to 0 V 3.4 3.9
Positive, VREF from 2.7 V to 0 V 3.3
TA= –40°C to +85°C
SR Slew rate V/µs
Negative, VREF from 0 V to 2.7 V 3.8 4.4
Negative, VREF from 0 V to 2.7 V 3.7
TA= –40°C to +85°C
No RF input signal, EN = High, DC 0.2 1.8
measurement
ROUT Output impedance(5)
No RF input signal, EN = High, DC 4
measurement
IOUT,SD Output leakage current in EN = Low, VOUT = 2 V 100 nA
shutdown mode TA= –40°C to +85°C
RF DETECTOR TRANSFER
ƒ = 50 MHz, MIN and MAX at TA= –40°C 1.69 1.77 1.82
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C 1.67 1.78 1.83
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=1.57 1.65 1.70
–40°C to +85°C
Maximum output voltage ƒ = 2500 MHz, MIN and MAX at TA=
VOUT,MAX 1.47 1.55 1.60 V
PIN=5 dBm(5) –40°C to +85°C
ƒ = 3000 MHz, MIN and MAX at TA=1.38 1.46 1.51
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=1.25 1.34 1.40
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=1.16 1.25 1.30
–40°C to +85°C
No input signal 207 266 324
VOUT,MIN Minimum output voltage (pedestal) mV
No input signal, TA= –40°C to +85°C 173 365
(5) All limits are ensured by design and measurements which are performed on a limited number of samples. Limits represent the mean
±3–sigma values. The typical value represents the statistical mean value.
6Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
2.7-V DC and AC Electrical Characteristics (continued)
Unless otherwise specified, all limits are ensured at TA= 25°C, VDD = 2.7 V, RF input frequency ƒ = 1855 MHz CW
(Continuous Wave, unmodulated). Maximum and minimum limits apply at the temperature extremes.(1).
PARAMETER TEST CONDITIONS MIN (2) TYP(3) MAX (2) UNIT
ƒ = 50 MHz, MIN and MAX at TA= –40°C 1.38 1.44 1.49
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C 1.34 1.43 1.46
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=1.27 1.32 1.36
–40°C to +85°C
Output voltage range ƒ = 2500 MHz, MIN and MAX at TA=
ΔVOUT 1.19 1.23 1.27 V
PIN from 45 dBm to 5 dBm(5) –40°C to +85°C
ƒ = 3000 MHz, MIN and MAX at TA=1.11 1.16 1.19
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=1 1.05 1.1
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=0.91 0.97 1.01
–40°C to +85°C
ƒ = 50 MHz 39.6 40.9 42.1
ƒ = 900 MHz 37.0 38.2 39.4
ƒ = 1855 MHz 34.5 35.5 36.5
KSLOPE Logarithmic slope(5) ƒ = 2500 MHz 32.7 33.7 34.6 mV/dB
ƒ = 3000 MHz 31.1 32.1 33.1
ƒ = 3500 MHz 29.7 30.7 31.6
f = 4000 MHz 28.5 29.4 30.3
ƒ = 50 MHz –50.2 49.5 –48.8
ƒ = 900 MHz –53.6 52.7 –51.8
ƒ = 1855 MHz –53.2 52.3 51.4
PINT Logarithmic intercept(5) ƒ = 2500 MHz –52.4 51.2 –50.1 dBm
ƒ = 3000 MHz –51.2 50.1 48.9
ƒ = 3500 MHz –49.1 47.8 46.4
ƒ = 4000 MHz –47.3 46.1 44.9
enOutput referred noise(6) PIN =10 dBm at 10 kHz 1.5 µV/Hz
vNOutput referred noise(5) Integrated over frequency band, 1 kHz to 100
6.5 kHz µVRMS
Integrated over frequency band, 1 kHz to
6.5 kHz 150
TA= –40°C to +85°C
PIN =10 dBm, ƒ = 1800 MHz 60
PSRR Power supply rejection ratio(6) dB
PIN =10 dBm, ƒ = 1800 MHz 55
TA= –40°C to +85°C
(6) This parameter is ensured by design and/or characterization and is not tested in production.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
2.7-V DC and AC Electrical Characteristics (continued)
Unless otherwise specified, all limits are ensured at TA= 25°C, VDD = 2.7 V, RF input frequency ƒ = 1855 MHz CW
(Continuous Wave, unmodulated). Maximum and minimum limits apply at the temperature extremes.(1).
PARAMETER TEST CONDITIONS MIN (2) TYP(3) MAX (2) UNIT
POWER MEASUREMENT PERFORMANCE
ƒ = 50 MHz –0.2 0.12 1.2
ƒ = 50 MHz, MIN and MAX at TA= –40°C –0.8 1.3
to +85°C
ƒ = 900 MHz –0.4 –0.06 0.2
ƒ = 900 MHz, MIN and MAX at TA= –40°C –1 0.3
to +85°C
ƒ = 1855 MHz –0.3 -0.03 0.3
ƒ = 1855 MHz, MIN and MAX at TA=–0.7 0.4
–40°C to +85°C
ƒ = 2500 MHz –0.2 0.04 0.8
Log conformance error(5)
ELC dB
ƒ = 2500 MHz, MIN and MAX at TA=
40 dBm PIN 10 dBm –0.8 1.1
–40°C to +85°C
ƒ = 3000 MHz –0.1 0.13 1.6
ƒ = 3000 MHz, MIN and MAX at TA=1 1.8
–40°C to +85°C
ƒ = 3500 MHz -0.036 0.35 3.3
ƒ = 3500 MHz, MIN and MAX at TA=–1 3.5
–40°C to +85°C
ƒ = 4000 MHz –0.048 0.65 4.6
ƒ = 4000 MHz, MIN and MAX at TA=–1 4.9
–40°C to +85°C
ƒ = 50 MHz, MIN and MAX at TA= –40°C –0.63 0.43
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C –0.94 0.30
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=–0.71 0.33
–40°C to +85°C
Variation over temperature(5) ƒ = 2500 MHz, MIN and MAX at TA=
EVOT –0.88 0.35 dB
40 dBm PIN 10 dBm –40°C to +85°C
ƒ = 3000 MHz, MIN and MAX at TA=–1.03 0.37
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=–1.10 0.33
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=–1.12 0.33
–40°C to +85°C
ƒ = 50 MHz, MIN and MAX at TA= –40°C –0.064 0.066
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C –0.123 0.051
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=–0.050 0.067
–40°C to +85°C
Measurement Error for a 1-dB ƒ = 2500 MHz, MIN and MAX at TA=
E1 dB Input power step(5) –0.058 0.074 dB
–40°C to +85°C
40 dBm PIN 10 dBm ƒ = 3000 MHz, MIN and MAX at TA=–0.066 0.069
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=–0.082 0.066
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=–0.098 0.072
–40°C to +85°C
8Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
2.7-V DC and AC Electrical Characteristics (continued)
Unless otherwise specified, all limits are ensured at TA= 25°C, VDD = 2.7 V, RF input frequency ƒ = 1855 MHz CW
(Continuous Wave, unmodulated). Maximum and minimum limits apply at the temperature extremes.(1).
PARAMETER TEST CONDITIONS MIN (2) TYP(3) MAX (2) UNIT
ƒ = 50 MHz, MIN and MAX at TA= –40°C –0.40 0.27
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C –0.58 0.22
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=–0.29 0.20
–40°C to +85°C
Measurement Error for a 10-dB ƒ = 2500 MHz, MIN and MAX at TA=
E10 dB Input power step (5) –0.28 0.24 dB
–40°C to +85°C
40 dBm PIN 10 dBm ƒ = 3000 MHz, MIN and MAX at TA=–0.38 0.29
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=–0.60 0.40
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=–0.82 0.43
–40°C to +85°C
ƒ = 50 MHz, MIN and MAX at TA= –40°C –6.5 8.6
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C –4.7 14.5
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=–5.1 11.0
–40°C to +85°C
Temperature sensitivity ƒ = 2500 MHz, MIN and MAX at TA=
ST–40°C < TA < 25°C –4.3 13.6 mdB/°C
–40°C to +85°C
40 dBm PIN 10 dBm(5) ƒ = 3000 MHz, MIN and MAX at TA=–1.5 15.8
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=0.1 16.9
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=0.5 17.3
–40°C to +85°C
ƒ = 50 MHz, MIN at TA= –40°C to +85°C –10.5 0.5
ƒ = 900 MHz, MIN at TA= –40°C to +85°C –10.5 2.6
ƒ = 1855 MHz, MIN at TA= –40°C to –11.3 3.4
+85°C
ƒ = 2500 MHz, MIN at TA= –40°C to
Temperature sensitivity –10.6 5.8
+85°C
ST25°C < TA< 85°C mdB/°C
ƒ = 3000 MHz, MIN at TA= –40°C to
40 dBm PIN 10 dBm(5) –11.2 6.1
+85°C
ƒ = 3500 MHz, MIN at TA= –40°C to –12.9 5.5
+85°C
ƒ = 4000 MHz, MIN at TA= –40°C to –17.8 5.5
+85°C
ƒ = 50 MHz, MAX at TA= –40°C to +85°C –5.4 8.6
ƒ = 900 MHz, MAX at TA= –40°C to +85°C 0.3 14.5
ƒ = 1855 MHz, MAX at TA= –40°C to –3.1 11.0
+85°C
ƒ = 2500 MHz, MAX at TA= –40°C to
Temperature sensitivity –1.6 13.6
+85°C
ST40°C < TA< 25°C(5) mdB/°C
ƒ = 3000 MHz, MAX at TA= –40°C to
PIN =10 dBm 0.9 15.8
+85°C
ƒ = 3500 MHz, MAX at TA= –40°C to 2.5 16.9
+85°C
ƒ = 4000 MHz, MAX at TA= –40°C to 2.7 17.3
+85°C
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
2.7-V DC and AC Electrical Characteristics (continued)
Unless otherwise specified, all limits are ensured at TA= 25°C, VDD = 2.7 V, RF input frequency ƒ = 1855 MHz CW
(Continuous Wave, unmodulated). Maximum and minimum limits apply at the temperature extremes.(1).
PARAMETER TEST CONDITIONS MIN (2) TYP(3) MAX (2) UNIT
ƒ = 50 MHz, MIN and MAX at TA= –40°C –10.5 0.5
to +85°C
ƒ = 900 MHz, MIN and MAX at TA= –40°C –10.5 2.6
to +85°C
ƒ = 1855 MHz, MIN and MAX at TA=–11.3 3.3
–40°C to +85°C
Temperature sensitivity ƒ = 2500 MHz, MIN and MAX at TA=
ST25°C < TA< 85°C(5) –10.6 5.4 mdB/°C
–40°C to +85°C
PIN =10 dBm ƒ = 3000 MHz, MIN and MAX at TA=–11.2 6.1
–40°C to +85°C
ƒ = 3500 MHz, MIN and MAX at TA=–12.9 4.4
–40°C to +85°C
ƒ = 4000 MHz, MIN and MAX at TA=–17.8 –1.1
–40°C to +85°C
ƒ = 50 MHz, MIN at TA= –40°C to +85°C –9.2 –7.4
ƒ = 900 MHz, MIN at TA= –40°C to +85°C –10.5 –8.6
ƒ = 1855 MHz, MIN at TA= –40°C to –8.2 –6.5
+85°C
ƒ = 2500 MHz, MIN at TA= –40°C to -7.3 –5.6
Maximum input power for ELC = 1 +85°C
PMAX dBm
dB(5) ƒ = 3000 MHz, MIN at TA= –40°C to –6.3 –4.4
+85°C
ƒ = 3500 MHz, MIN at TA= –40°C to –6.9 –1.9
+85°C
ƒ = 4000 MHz, MIN at TA= –40°C to –11.1 –7.2
+85°C
ƒ = 50 MHz, MAX at TA= –40°C to +85°C –38.9 –38.1
ƒ = 900 MHz, MAX at TA= –40°C to +85°C –43.1 –42.3
ƒ = 1855 MHz, MAX at TA= –40°C to –42.2 –41
+85°C
ƒ = 2500 MHz, MAX at TA= –40°C to –40.6 -38.9
Minimum input power for ELC = 1 +85°C
PMIN dBm
dB(5) ƒ = 3000 MHz, MAX at TA= –40°C to –38.7 –37
+85°C
ƒ = 3500 MHz, MAX at TA= –40°C to –35.9 –34.7
+85°C
ƒ = 4000 MHz, MAX at TA= –40°C to –33.5 –32
+85°C
ƒ = 50 MHz, MIN at TA= –40°C to +85°C 29.5 31.6
ƒ = 900 MHz, MIN at TA= –40°C to +85°C 33.3 35.2
ƒ = 1855 MHz, MIN at TA= –40°C to 34.2 36.5
+85°C
ƒ = 2500 MHz, MIN at TA= –40°C to 34.1 36.1
+85°C
DR Dynamic range for ELC = 1 dB(5) dB
ƒ = 3000 MHz, MIN at TA= –40°C to 33.4 35.5
+85°C
ƒ = 3500 MHz, MIN at TA= –40°C to 28.5 35.1
+85°C
ƒ = 4000 MHz, MIN at TA= –40°C to 22.7 26.3
+85°C
10 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
FREQUENCY (Hz)
LOGARITHMIC SLOPE (mV/dB)
45
40
35
30
25
10M 100M 1G 10G
25°C
85°C
-40°C
FREQUENCY (Hz)
LOGARITHMIC INTERCEPT (dBm)
-38
-42
-46
-50
-54
10M 100M 1G 10G
25°C
85°C
-40°C
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
10
8
6
4
2
0
2.2 2.5 2.8 3.1 3.4
85°C 25°C -40°C
10
8
6
4
2
0
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
6.6 Timing Requirements MIN NOM MAX UNIT
Turnon time, no signal at PIN, Low-High transition EN, VOUT to 90% 8.2 9.8
tON µs
Turnon time, no signal at PIN, Low-High transition EN, VOUT to 90% 12
TA= –40°C to +85°C
Rise time(1), PIN = no signal to 0 dBm, VOUT from 10% to 90% 2
tRµs
Rise time(1), PIN = no signal to 0 dBm, VOUT from 10% to 90% 12
TA= –40°C to +85°C
Fall time(1), PIN = no signal to 0 dBm, VOUT from 90% to 10% 2
tFµs
Fall time(1), PIN = no signal to 0 dBm, VOUT from 90% to 10% 12
TA= –40°C to +85°C
(1) This parameter is ensured by design and/or characterization and is not tested in production.
6.7 Typical Characteristics
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 1. Supply Current vs Supply Voltage Figure 2. Supply Current vs Enable Voltage
Figure 3. Log Slope vs Frequency Figure 4. Log Intercept vs Frequency
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LMH2100
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C 85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C -40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 6. Mean Output Voltage and Log Conformance Error
Figure 5. Mean Output Voltage and Log Conformance Error vs
vs RF Input Power at 900 MHz
RF Input Power at 50 MHz
Figure 7. Mean Output Voltage and Log Conformance Error Figure 8. Mean Output Voltage and Log Conformance Error
vs vs
RF Input Power at 1855 MHz RF Input Power at 2500 MHz
Figure 9. Mean Output Voltage and Log Conformance Error Figure 10. Mean Output Voltage and Log Conformance Error
vs vs
RF Input Power at 3000 MHz RF Input Power at 3500 MHz
12 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 11. Mean Output Voltage and Log Conformance Error Figure 12. Log Conformance Error (Mean ±3 sigma) vs
vs RF Input Power at 50 MHz
RF Input Power at 4000 MHz
Figure 13. Log Conformance Error (Mean ±3 sigma) vs Figure 14. Log Conformance Error (Mean ±3 sigma) vs
RF Input Power at 900 MHz RF Input Power at 1855 MHz
Figure 16. Log Conformance Error (Mean ±3 sigma) vs
Figure 15. Log Conformance Error (Mean ±3 sigma) vs RF Input Power at 3000 MHz
RF Input Power at 2500 MHz
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 18. Log Conformance Error (Mean ±3 sigma) vs
Figure 17. Log Conformance Error (Mean ±3 sigma) vs RF Input Power at 4000 MHz
RF Input Power at 3500 MHz
Figure 20. Mean Temperature Drift Error vs
Figure 19. Mean Temperature Drift Error vs RF Input Power at 900 MHz
RF Input Power at 50 MHz
Figure 21. Mean Temperature Drift Error vs Figure 22. Mean Temperature Drift Error vs
RF Input Power at 1855 MHz RF Input Power at 2500 MHz
14 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 23. Mean Temperature Drift Error vs Figure 24. Mean Temperature Drift Error vs
RF Input Power at 3000 MHz RF Input Power at 3500 MHz
Figure 25. Mean Temperature Drift Error vs Figure 26. Temperature Drift Error (Mean ±3 sigma) vs
RF Input Power at 4000 MHz RF Input Power at 50 MHz
Figure 28. Temperature Drift Error (Mean ±3 sigma) vs
Figure 27. Temperature Drift Error (Mean ±3 sigma) vs RF Input Power at 1855 MHz
RF Input Power at 900 MHz
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 29. Temperature Drift Error (Mean ±3 sigma) vs Figure 30. Temperature Drift Error (Mean ±3 sigma) vs
RF Input Power at 2500 MHz RF Input Power at 3000 MHz
Figure 32. Temperature Drift Error (Mean ±3 sigma) vs
Figure 31. Temperature Drift Error (Mean ±3 sigma) vs RF Input Power at 4000 MHz
RF Input Power at 3500 MHz
Figure 34. Error for 1 dB Input Power Step vs
Figure 33. Error for 1 dB Input Power Step vs RF Input Power at 900 MHz
RF Input Power at 50 MHz
16 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
RF INPUT POWER (dBm)
ERROR (dB)
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
0.3
0.2
0.1
0.0
-0.1
-0.3
-0.2
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 35. Error for 1 dB Input Power Step vs Figure 36. Error for 1 dB Input Power Step vs
RF Input Power at 1855 MHz RF Input Power at 2500 MHz
Figure 37. Error for 1 dB Input Power Step vs Figure 38. Error for 1 dB Input Power Step vs
RF Input Power at 3000 MHz RF Input Power at 3500 MHz
Figure 39. Error for 1 dB Input Power step vs Figure 40. Error for 10 dB Input Power Step vs
RF Input Power at 4000 MHz RF Input Power at 50 MHz
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
RF INPUT POWER (dBm)
ERROR (dB)
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-60 -50 -40 -30 -20 -10 0
-40°C
85°C
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-1.00
-0.75
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 42. Error for 10 dB Input Power Step vs
Figure 41. Error for 10 dB Input Power Step vs RF Input Power at 1855 MHz
RF Input Power at 900 MHz
Figure 44. Error for 10 dB Input Power Step vs
Figure 43. Error for 10 dB Input Power Step vs RF Input Power at 3000 MHz
RF Input Power at 2500 MHz
Figure 46. Error for 10 dB Input Power step vs
Figure 45. Error for 10 dB Input Power Step vs RF Input Power at 4000 MHz
RF Input Power at 3500 MHz
18 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 47. Mean Temperature Sensitivity vs Figure 48. Mean Temperature Sensitivity vs
RF Input Power at 50 MHz RF Input Power at 900 MHz
Figure 49. Mean Temperature Sensitivity vs Figure 50. Mean Temperature Sensitivity vs
RF Input Power at 1855 MHz RF Input Power at 2500 MHz
Figure 51. Mean Temperature Sensitivity vs Figure 52. Mean Temperature Sensitivity vs
RF Input Power at 3000 MHz RF Input Power at 3500 MHz
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
SENS ITIVITY (mdBC)
20
15
10
5
0
-5
-10
-15
-20-55 -45 -35 -25 -15 -5 5
85°C
-40°C
RF INPUT POWER (dBm)
SENS ITIVITY (mdBC)
20
15
-15
-20-55 -45 -35 -25 -15 -5 5
-40°C
10
5
0
-5
-10
85°C
RF INPUT POWER (dBm)
SENS ITIVITY (mdBC)
20
15
10
5
0
-5
-10
-15
-20-55 -45 -35 -25 -15 -5 5
85°C
-40°C
RF INPUT POWER (dBm)
SENSITIVITY (mdBC)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
85°C
-40°C
RF INPUT POWER (dBm)
SENS ITIVITY (mdBC)
20
15
10
5
0
-5
-10
-15
-20-55 -45 -35 -25 -15 -5 5
85°C
-40°C
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
20
15
10
5
0
-5
-10
-20
-15
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 53. Mean Temperature Sensitivity vs Figure 54. Temperature Sensitivity (Mean ±3 sigma) vs
RF Input power at 4000 MHz RF Input Power at 50 MHz
Figure 55. Temperature Sensitivity (Mean ±3 sigma) vs Figure 56. Temperature Sensitivity (Mean ±3 sigma) vs
RF Input Power at 900 MHz RF Input Power at 1855 MHz
Figure 57. Temperature Sensitivity (Mean ±3 sigma) vs Figure 58. Temperature Sensitivity (Mean ±3 sigma) vs
RF Input Power at 2500 MHz RF Input Power at 3000 MHz
20 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
FREQUENCY (Hz)
RF INPUT IMPEDANCE (Ö)
100
75
50
25
0
-25
-50
-75
-100
10M 100M 1G 10G
R
X
FREQUENCY (Hz)
VOLTAGE NOISE (µV/ Hz)
10
9
8
7
6
5
4
3
2
1
0
10 100 1k 10k 100k 1M
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
CW
IS-95
WCDMA 64 CH
CW
WCDMA 64 ch
IS-95
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
CW
IS-95
IS-95
WCDMA 64 CH
CW
WCDMA 64 ch
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
RF INPUT POWER (dBm)
SENS ITIVITY (mdBC)
20
15
10
5
0
-5
-10
-15
-20-55 -45 -35 -25 -15 -5 5
85°C
-40°C
RF INPUT POWER (dBm)
SENSITIVITY (mdB/°C)
20
15
10
5
0
-5
-10
-15
-20-55 -45 -35 -25 -15 -5 5
85°C
-40°C
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 59. Temperature Sensitivity (Mean ±3 sigma) vs Figure 60. Temperature Sensitivity (mean ±3 sigma) vs.
RF Input Power at 3500 MHz RF Input Power at 4000 MHz
Figure 61. Output Voltage and Log Conformance Error vs Figure 62. Output Voltage and Log Conformance Error vs
RF Input Power for Various Modulation Types at 900 MHz RF Input Power for Various Modulation Types at 1855 MHz
Figure 63. RF Input Impedance vs Figure 64. Output Noise Spectrum vs Frequency
Frequency (Resistance and Reactance)
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: LMH2100
SOURCING CURRENT (mA)
OUTPUT VOLTAGE (V)
2.70
2.68
2.66
2.64
2.62
2.60
0 1 2 3 4 5
25°C
85°C
-40°C
2.70
2.68
2.66
2.64
2.62
2.60
SINKING CURRENT (mA)
OUTPUT VOLTAGE (V)
0.08
0.06
0.04
0.02
0.00
012345
85°C 25°C
-40°C
0.08
0.06
0.04
0.02
0.00
VOUT (V)
SOURCING OUTPUT CURRENT (mA)
60
50
40
30
20
10
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
25°C 85°C
-40°C
60
50
40
30
20
0
10
VOUT (V)
SINKING OUTPUT CURRENT (mA)
60
50
40
30
20
10
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
25°C 85°C
-40°C
60
50
40
30
20
0
10
FREQUENCY (Hz)
PSRR (dB)
80
70
60
50
40
30
20
10
0
10 100 1k 10k 100k 1M
PHASE (°)
FREQUENCY (Hz)
TRANSIMPEDANCE GAIN
100k
10k
1k
100
270
225
180
135
90
45
0
-45
-90
GAIN
PHASE
100 1k 10k 100k 1M 10M
100k
10k
100
1k
270
225
180
135
45
90
0
-45
-90
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified, VDD = 2.7 V, TA= 25°C, measured on a limited number of samples.
Figure 66. Output Amplifier Gain and Phase vs Frequency
Figure 65. Power Supply Rejection Ratio vs Frequency
Figure 67. Sourcing Output Current vs Output Voltage Figure 68. Sinking Output Current vs Output Voltage
Figure 70. Output Voltage vs Sinking Current
Figure 69. Output Voltage vs Sourcing Current
22 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
OUT
V-V 10 dB
RFIN 10 dB
EN
VDD
GN
D
I / I
10 dB 10 dB
-
+
REF
VREF +
-
en
en
en
RIN
RTRANS
A1
C2
B1
C1
A2
B2
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
7 Detailed Description
7.1 Overview
The LMH2100 is a versatile logarithmic RF power detector suitable for use in power measurement systems. The
LMH2100 is particularly well suited for CDMA and UMTS applications. It produces a DC voltage that is a
measure for the applied RF power.
The core of the LMH2100 is a progressive compression LOG detector consisting of four gain stages. Each of
these saturating stages has a gain of approximately 10 dB and therefore realizes about 10 dB of the detector
dynamic range. The five diode cells perform the actual detection and convert the RF signal to a DC current. This
DC current is subsequently supplied to the transimpedance amplifier at the output, that converts it into an output
voltage. In addition, the amplifier provides buffering of and applies filtering to the detector output signal. To
prevent discharge of filtering capacitors between OUT and GND in shutdown, a switch is inserted at the amplifier
input that opens in shutdown to realize a high impedance output of the device.
7.2 Functional Block Diagram
7.3 Feature Description
7.3.1 Characteristics of the LMH2100
The LMH2100 is a logarithmic RF power detector with approximately 40-dB dynamic range. This dynamic range
plus its logarithmic behavior make the LMH2100 ideal for various applications such as wireless transmit power
control for CDMA and UMTS applications. The frequency range of the LMH2100 is from 50 MHz to 4 GHz, which
makes it suitable for various applications.
The LMH2100 transfer function is accurately temperature compensated. This makes the measurement accurate
for a wide temperature range. Furthermore, the LMH2100 can easily be connected to a directional coupler
because of its 50-input termination. The output range is adjustable to fit the ADC input range. The detector can
be switched into a power saving shutdown mode for use in pulsed conditions.
7.3.2 Accurate Power Measurement
The power measurement accuracy achieved with a power detector is not only determined by the accuracy of the
detector itself, but also by the way it is integrated into the application. In many applications some form of
calibration is employed to improve the accuracy of the overall system beyond the intrinsic accuracy provided by
the power detector. For example, for LOG-detectors calibration can be used to eliminate part to part spread of
the LOG-slope and LOG-intercept from the overall power measurement system, thereby improving its power
measurement accuracy.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Links: LMH2100
ELCE = PEST - PIN = - (PIN - PINTERCEPT )
VOUT
KSLOPE
VOUT - VOUT,MOD
KSLOPE
=
PEST = FEST(VOUT) = + PINTERCEPT
VOUT
KSLOPE
VOUT,MOD = FDET,MOD(PIN) = KSLOPE(PIN ± PINTERCEPT)
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Feature Description (continued)
This section shows how calibration techniques can be used to improve the accuracy of a power measurement
system beyond the intrinsic accuracy of the power detector itself. The main focus of the section is on power
measurement systems using LOG-detectors, specifically the LMH2100, but the more generic concepts can also
be applied to other power detectors. Other factors influencing the power measurement accuracy, such as the
resolution of the ADC reading the detector output signal will not be considered here since they are not
fundamentally due to the power detector.
7.3.2.1 LOG-Conformance Error
Probably the simplest power measurement system that can be realized is obtained when the LOG-detector
transfer function is modelled as a perfect linear-in-dB relationship between the input power and output voltage:
(1)
in which KSLOPE represents the LOG-slope and PINTERCEPT the LOG-intercept. The estimator based on this model
implements the inverse of the model equation, that is:
(2)
The resulting power measurement error, the LOG-conformance error, is thus equal to:
(3)
The most important contributions to the LOG-conformance error are generally:
The deviation of the actual detector transfer function from an ideal Logarithm (the transfer function is
nonlinear in dB).
Drift of the detector transfer function over various environmental conditions, most importantly temperature;
KSLOPE and PINTERCEPT are usually determined for room temperature only.
Part-to-part spread of the (room temperature) transfer function.
The latter component is conveniently removed by means of calibration, that is, if the LOG slope and LOG-
intercept are determined for each individual detector device (at room temperature). This can be achieved by
measurement of the detector output voltage - at room temperature - for a series of different power levels in the
LOG-linear range of the detector transfer function. The slope and intercept can then be determined by means of
linear regression.
An example of this type of error and its relationship to the detector transfer function is depicted in Figure 71.
24 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
EDRIFT (T,T0) = PEST - PIN = FDET[VOUT(T),T0] - PIN
= FDET[VOUT(T),T0] - FDET[VOUT(T),T)]
-1
-1
-1
PEST = FDET[VOUT(T),T0]
-1
LOG CONFORMANCE ERROR (dB)
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-55 -45 -35 -25 -15 -5 5
-40°C
25°C
25°C
85°C
-40°C
85°C
2.0
1.8
1.6
1.4
1.0
1.2
0.8
0.6
0.4
0.0
0.2
2.5
2.0
1.5
1.0
0.0
0.5
-0.5
-1.0
-1.5
-2.5
-2.0
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Feature Description (continued)
Figure 71. LOG-Conformance Error and LOG-Detector Transfer Function
In the center of the detector's dynamic range, the LOG-conformance error is small, especially at room
temperature; in this region the transfer function closely follows the linear-in-dB relationship while KSLOPE and
PINTERCEPT are determined based on room temperature measurements. At the temperature extremes the error in
the center of the range is slightly larger due to the temperature drift of the detector transfer function. The error
rapidly increases toward the top and bottom end of the detector's dynamic range; here the detector saturates and
its transfer function starts to deviate significantly from the ideal LOG-linear model. The detector dynamic range is
usually defined as the power range for which the LOG conformance error is smaller than a specified amount.
Often an error of ±1 dB is used as a criterion.
7.3.2.2 Temperature Drift Error
A more accurate power measurement system can be obtained if the first error contribution, due to the deviation
from the ideal LOG-linear model, is eliminated. This is achieved if the actual measured detector transfer function
at room temperature is used as a model for the detector, instead of the ideal LOG-linear transfer function used in
the previous section.
The formula used for such a detector is:
VOUT,MOD = FDET(PIN,TO)
where
TOrepresents the temperature during calibration (room temperature). (4)
The transfer function of the corresponding estimator is thus the inverse of this:
(5)
In this expression VOUT(T) represents the measured detector output voltage at the operating temperature T.
The resulting measurement error is only due to drift of the detector transfer function over temperature, and can
be expressed as:
(6)
Unfortunately, the (numeric) inverse of the detector transfer function at different temperatures makes this
expression rather impractical. However, since the drift error is usually small VOUT(T) is only slightly different from
VOUT(TO). This means that we can apply the following approximation:
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
TEMPERATURE DRIFT (dB)
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-55 -45 -35 -25 -15 -5 5
-40°C
85°C
1.5
1.0
0.5
0.0
-0.5
-1.5
-1.0
EDRIFT (T,T0) | (T ± T0) FDET[VOUT(T),T0]
-1
w
w7
= (T ± T0) FDET[VOUT(T),T0]
-1
wVOUT(T)w
w7wVOUT
| VOUT(T) ± VOUT(T0)
KSLOPE
EDRIFT(T,T0) | EDRIFT(T0,T0)
-1 -1
w7
+ (T - T0) {FDET[VOUT(T),T0] - FDET[VOUT(T),T]}
w
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Feature Description (continued)
(7)
This expression is easily simplified by taking the following considerations into account:
The drift error at the calibration temperature E(TO,TO) equals zero (by definition).
The estimator transfer FDET(VOUT,TO) is not a function of temperature; the estimator output changes over
temperature only due to the temperature dependence of VOUT.
The actual detector input power PIN is not temperature dependent (in the context of this expression).
The derivative of the estimator transfer function to VOUT equals approximately 1/KSLOPE in the LOG-linear
region of the detector transfer function (the region of interest).
Using this, we arrive at:
(8)
This expression is very similar to the expression of the LOG-conformance error determined previously. The only
difference is that instead of the output of the ideal LOG-linear model, the actual detector output voltage at the
calibration temperature is now subtracted from the detector output voltage at the operating temperature.
Figure 72 depicts an example of the drift error.
Figure 72. Temperature Drift Error of the LMH2100 at ƒ = 1855 MHz
In agreement with the definition, the temperature drift error is zero at the calibration temperature. Further, the
main difference with the LOG-conformance error is observed at the top and bottom end of the detection range;
instead of a rapid increase the drift error settles to a small value at high and low input power levels due to the
fact that the detector saturation levels are relatively temperature independent.
In a practical application it may not be possible to use the exact inverse detector transfer function as the
algorithm for the estimator. For example it may require too much memory and/or too much factory calibration
time. However, using the ideal LOG-linear model in combination with a few extra data points at the top and
bottom end of the detection range - where the deviation is largest - can already significantly reduce the power
measurement error.
26 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
T
ERROR
T
ERROR
AFTER
TEMPERATURE
CORRECTION
-3s
-3s
+3s
+3s
MEAN
MEAN
+ (T-T0)2S2[VOUT(T)] + O(T3)}
| FDET[VOUT(T),T0]{1 + (T-T0)S1[VOUT(T)]}
-1
-1
PEST = FDET[VOUT(T),T0]{1 + (T-T0)S1[VOUT(T)] +
VOUT,MOD = FDET(PIN,T0)[1 + (T-T0)TC1(PIN)
+ (T-T0)2TC2(PIN) + O(T3)]
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Feature Description (continued)
7.3.2.2.1 Temperature Compensation
A further reduction of the power measurement error is possible if the operating temperature is measured in the
application. For this purpose, the detector model used by the estimator should be extended to cover the
temperature dependency of the detector.
Since the detector transfer function is generally a smooth function of temperature (the output voltage changes
gradually over temperature), the temperature is in most cases adequately modeled by a first-order or second-
order polynomial (see Equation 9).
(9)
The required temperature dependence of the estimator, to compensate for the detector temperature dependence
can be approximated similarly:
(10)
The last approximation results from the fact that a first-order temperature compensation is usually sufficiently
accurate. The remainder of this section will therefore concentrate on first-order compensation. For second and
higher-order compensation a similar approach can be followed.
Ideally, the temperature drift could be completely eliminated if the measurement system is calibrated at various
temperatures and input power levels to determine the Temperature Sensitivity S1. In a practical application,
however that is usually not possible due to the associated high costs. The alternative is to use the average
temperature drift in the estimator, instead of the temperature sensitivity of each device individually. In this way it
becomes possible to eliminate the systematic (reproducible) component of the temperature drift without the need
for calibration at different temperatures during manufacturing. What remains is the random temperature drift,
which differs from device to device. Figure 73 illustrates the idea. The graph at the left schematically represents
the behavior of the drift error versus temperature at a certain input power level for a large number of devices.
Figure 73. Elimination of the Systematic Component from the Temperature Drift
The mean drift error represents the reproducible - systematic - part of the error, while the mean ± 3 sigma limits
represent the combined systematic plus random error component. Obviously the drift error must be zero at
calibration temperature T0. If the systematic component of the drift error is included in the estimator, the total drift
error becomes equal to only the random component, as illustrated in the graph at the right of Figure 73. A
significant reduction of the temperature drift error can be achieved in this way only if:
The systematic component is significantly larger than the random error component (otherwise the difference
is negligible).
The operating temperature is measured with sufficient accuracy.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Feature Description (continued)
It is essential for the effectiveness of the temperature compensation to assign the appropriate value to the
temperature sensitivity S1. Two different approaches can be followed to determine this parameter:
Determination of a single value to be used over the entire operating temperature range.
Division of the operating temperature range in segments and use of separate values for each of the
segments.
Also for the first method, the accuracy of the extracted temperature sensitivity increases when the number of
measurement temperatures increases. Linear regression to temperature can then be used to determine the two
parameters of the linear model for the temperature drift error: the first order temperature sensitivity S1and the
best-fit (room temperature) value for the power estimate at T0: FDET[VOUT(T),T0]. Note that to achieve an overall -
over all temperatures - minimum error, the room temperature drift error in the model can be non-zero at the
calibration temperature (which is not in agreement with the strict definition).
The second method does not have this drawback but is more complex. In fact, segmentation of the temperature
range is a form of higher-order temperature compensation using only a first-order model for the different
segments: one for temperatures below 25°C, and one for temperatures above 25°C. The mean (or typical)
temperature sensitivity is the value to be used for compensation of the systematic drift error component.
Figure 75 shows the temperature drift error without and with temperature compensation using two segments.
With compensation the systematic component is completely eliminated; the remaining random error component
is centered around zero. Note that the random component is slightly larger at 40°C than at 85°C.
Figure 74. Temperature Drift Error without Temperature Figure 75. Temperature Drift Error without with
Compensation Temperature Compensation
In a practical power measurement system, temperature compensation is usually only applied to a small power
range around the maximum power level for two reasons:
The various communication standards require the highest accuracy in this range to limit interference.
The temperature sensitivity itself is a function of the power level it becomes impractical to store a large
number of different temperature sensitivity values for different power levels.
The 2.7-V DC and AC Electrical Characteristics in the datasheet specifies the temperature sensitivity for the
aforementioned two segments at an input power level of 10 dBm (near the top-end of the detector dynamic
range). The typical value represents the mean which is to be used for calibration.
7.3.2.2.2 Differential Power Errors
Many third generation communication systems contain a power control loop through the base station and mobile
unit that requests both to frequently update the transmit power level by a small amount (typically 1 dB). For such
applications it is important that the actual change of the transmit power is sufficiently close to the requested
power change.
28 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
E1dB(PIN,T)= EDRIFT(PIN+1dB,T) - EDRIFT(PIN,T)
E10dB(PIN,T)=
EDRIFT(PIN+10dB,T) - EDRIFT(PIN,T)
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Feature Description (continued)
The error metrics in the datasheet that describe the accuracy of the detector for a change in the input power are
E1 dB (for a 1-dB change in the input power) and E10 dB (for a 10-dB step, or ten consecutive steps of 1 dB). Since
it can be assumed that the temperature does not change during the power step the differential error equals the
difference of the drift error at the two involved power levels:
(11)
It should be noted that the step error increases significantly when one (or both) power levels in the above
expression are outside the detector dynamic range. For E10 dB this occurs when PIN is less than 10 dB below the
maximum input power of the dynamic range, PMAX.
7.4 Device Functional Modes
7.4.1 Shutdown
To save power, the LMH2100 can be brought into a low-power shutdown mode. The device is active for EN =
HIGH (VEN>1.1 V) and in the low-power shutdown mode for EN = LOW (VEN < 0.6 V). In this state the output of
the LMH2100 is switched to a high impedance mode. Using the shutdown function, care must be taken not to
exceed the absolute maximum ratings. Forcing a voltage to the enable input that is 400 mV higher than VDD or
400 mV lower than GND will damage the device and further operations is not ensured. The absolute maximum
ratings can also be exceeded when the enable EN is switched to HIGH (from shutdown to active mode) while the
supply voltage is low (off). This should be prevented at all times. A possible solution to protect the part is to add
a resistor of 100 kin series with the enable input.
7.4.1.1 Output Behavior in Shutdown
In order to save power, the LMH2100 can be used in pulsed mode, such that it is active to perform the power
measurement only during a fraction of the time. During the remaining time the device is in low-power shutdown.
Applications using this approach usually require that the output value is available at all times, also when the
LMH2100 is in shutdown. The settling time in active mode, however, should not become excessively large. This
can be realized by the combination of the LMH2100 and a low pass output filter (see Figure 81).
In active mode, the filter capacitor CSis charged to the output voltage of the LMH2100, which in this mode has a
low output impedance to enable fast settling. During shutdown-mode, the capacitor should preserve this voltage.
Discharge of CSthrough any current path should therefore be avoided in shutdown. The output impedance of the
LMH2100 becomes high in shutdown, such that the discharge current cannot flow from the capacitor top plate,
through RS, and the LMH2100 devices's OUT pin to GND. This is realized by the internal shutdown mechanism
of the output amplifier and by the switch depicted in Figure 85. Additionally, it should be ensured that the ADC
input impedance is high as well, to prevent a possible discharge path through the ADC.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 29
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
8.1.1 Functionality and Application of RF Power Detectors
This section describes the functional behavior of RF power detectors and their typical application. Based on a
number of key electrical characteristics of RF power detectors, Functionality of RF Power Detectors discusses
the functionality of RF power detectors in general and of the LMH2100 LOG detector in particular. Subsequently,
Typical Applications describes two important applications of the LMH2100 detector.
8.1.1.1 Functionality of RF Power Detectors
An RF power detector is a device that produces a DC output voltage in response to the RF power level of the
signal applied to its input. A wide variety of power detectors can be distinguished, each having certain properties
that suit a particular application. This section provides an overview of the key characteristics of power detectors,
and discusses the most important types of power detectors. The functional behavior of the LMH2100 is
discussed in detail.
8.1.1.1.1 Key Characteristics of RF Power Detectors
Power detectors are used to accurately measure the power of a signal inside the application. The attainable
accuracy of the measurement is therefore dependent upon the accuracy and predictability of the detector transfer
function from the RF input power to the DC output voltage.
Certain key characteristics determine the accuracy of RF detectors and they are classified accordingly:
Temperature Stability
Dynamic Range
Waveform Dependency
Transfer Shape
Generally, the transfer function of RF power detectors is slightly temperature dependent. This temperature drift
reduces the accuracy of the power measurement, because most applications are calibrated at room temperature.
In such systems, the temperature drift significantly contributes to the overall system power measurement error.
The temperature stability of the transfer function differs for the various types of power detectors. Generally,
power detectors that contain only one or few semiconductor devices (diodes, transistors) operating at RF
frequencies attain the best temperature stability.
The dynamic range of a power detector is the input power range for which it creates an accurately reproducible
output signal. What is considered accurate is determined by the applied criterion for the detector accuracy; the
detector dynamic range is thus always associated with certain power measurement accuracy. This accuracy is
usually expressed as the deviation of its transfer function from a certain predefined relationship, such as ”linear in
dB" for LOG detectors and ”square-law" transfer (from input RF voltage to DC output voltage) for Mean-Square
detectors. For LOG-detectors, the dynamic range is often specified as the power range for which its transfer
function follows the ideal linear-in-dB relationship with an error smaller than or equal to ±1 dB. Again, the
attainable dynamic range differs considerably for the various types of power detectors.
According to its definition, the average power is a metric for the average energy content of a signal and is not
directly a function of the shape of the signal in time. In other words, the power contained in a 0-dBm sine wave is
identical to the power contained in a 0-dBm square wave or a 0-dBm WCDMA signal; all these signals have the
same average power. Depending on the internal detection mechanism, though, power detectors may produce a
slightly different output signal in response to the aforementioned waveforms, even though their average power
30 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
RF INPUT POWER (dBm)
VOUT (V)
2
0
-60 0
ÂPÂP
ÂV1
ÂV2
RF INPUT POWER (dBm)
VOUT (V)
2
0
-60 0
ÂPÂP
ÂV
ÂV
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Application Information (continued)
level is the same. This is due to the fact that not all power detectors strictly implement the definition formula for
signal power, being the mean of the square of the signal. Most types of detectors perform some mixture of peak
detection and average power detection. A waveform independent detector response is often desired in
applications that exhibit a large variety of waveforms, such that separate calibration for each waveform becomes
impractical.
The shape of the detector transfer function from the RF input power to the DC output voltage determines the
required resolution of the ADC connected to it. The overall power measurement error is the combination of the
error introduced by the detector, and the quantization error contributed by the ADC. The impact of the
quantization error on the overall transfer's accuracy is highly dependent on the detector transfer shape, as shown
in Figure 76 and Figure 77.
Figure 76. Convex Detector Transfer Function Figure 77. Linear Transfer Function
Figure 76 and Figure 77 shows two different representations of the detector transfer function. In both graphs the
input power along the horizontal axis is displayed in dBm, since most applications specify power accuracy
requirements in dBm (or dB). The figure on the left shows a convex detector transfer function, while the transfer
function on the right hand side is linear (in dB). The slope of the detector transfer function the detector
conversion gain is of key importance for the impact of the quantization error on the total measurement error. If
the detector transfer function slope is low, a change, ΔP, in the input power results only in a small change of the
detector output voltage, such that the quantization error will be relatively large. On the other hand, if the detector
transfer function slope is high, the output voltage change for the same input power change will be large, such
that the quantization error is small. The transfer function on the left has a very low slope at low input power
levels, resulting in a relatively large quantization error. Therefore, to achieve accurate power measurement in this
region, a high-resolution ADC is required. On the other hand, for high input power levels the quantization error
will be very small due to the steep slope of the curve in this region. For accurate power measurement in this
region, a much lower ADC resolution is sufficient. The curve on the right has a constant slope over the power
range of interest, such that the required ADC resolution for a certain measurement accuracy is constant. For this
reason, the LOG-linear curve on the right will generally lead to the lowest ADC resolution requirements for
certain power measurement accuracy.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 31
Product Folder Links: LMH2100
CS
RSVOUT
Z0D
VREF
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Application Information (continued)
8.1.1.1.2 Types of RF Power Detectors
Three different detector types are distinguished based on the four characteristics previously discussed:
Diode Detector
(Root) Mean Square Detector
Logarithmic Detectors
8.1.1.1.2.1 Diode Detector
A diode is one of the simplest types of RF detectors. As depicted in Figure 78, the diode converts the RF input
voltage into a rectified current. This unidirectional current charges the capacitor. The RC time constant of the
resistor and the capacitor determines the amount of filtering applied to the rectified (detected) signal.
Figure 78. Diode Detector
The advantages and disadvantages can be summarized as follows:
The temperature stability of the diode detectors is generally very good, since they contain only one
semiconductor device that operates at RF frequencies.
The dynamic range of diode detectors is poor. The conversion gain from the RF input power to the output
voltage quickly drops to very low levels when the input power decreases. Typically a dynamic range of 20 dB
to 25 dB can be realized with this type of detector.
The response of diode detectors is waveform dependent. As a consequence of this dependency for example
its output voltage for a 0-dBm WCDMA signal is different than for a 0-dBm unmodulated carrier. This is due to
the fact that the diode measures peak power instead of average power. The relation between peak power and
average power is dependent on the wave shape.
The transfer shape of diode detectors puts high requirements on the resolution of the ADC that reads their
output voltage. Especially at low input power levels a very high ADC resolution is required to achieve
sufficient power measurement accuracy (See Figure 76).
8.1.1.1.2.2 (Root) Mean Square Detector
This type of detector is particularly suited for the power measurements of RF modulated signals that exhibits
large peak to average power ratio variations. This is because its operation is based on direct determination of the
average power and not like the diode detector of the peak power.
The advantages and disadvantages can be summarized as follows:
The temperature stability of (R)MS detectors is almost as good as the temperature stability of the diode
detector; only a small part of the circuit operates at RF frequencies, while the rest of the circuit operates at
low frequencies.
The dynamic range of (R)MS detectors is limited. The lower end of the dynamic range is limited by internal
device offsets.
The response of (R)MS detectors is highly waveform independent. This is a key advantage compared to other
types of detectors in applications that employ signals with high peak-to-average power variations. For
example, the (R)MS detector response to a 0-dBm WCDMA signal and a 0-dBm unmodulated carrier is
essentially equal.
The transfer shape of R(MS) detectors has many similarities with the diode detector and is therefore subject
to similar disadvantages with respect to the ADC resolution requirements (see Figure 77).
8.1.1.1.2.3 Logarithmic Detectors
The transfer function of a logarithmic detector has a linear in dB response, which means that the output voltage
changes linearly with the RF power in dBm. This is convenient since most communication standards specify
transmit power levels in dBm as well.
32 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
PA ANTENNA
RFIN
OUT
LMH2100
RF
GND
50 :
EN
CS
RS
COUPLER
VGA
B
A
S
E
B
A
N
D
GAIN
ADC
LOGIC
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Application Information (continued)
The advantages and disadvantages can be summarized as follows:
The temperature stability of the LOG detector transfer function is generally not as good as the stability of
diode and R(MS) detectors. This is because a significant part of the circuit operates at RF frequencies.
The dynamic range of LOG detectors is usually much larger than that of other types of detectors.
Since LOG detectors perform a kind of peak detection their response is wave form dependent, similar to
diode detectors.
The transfer shape of LOG detectors puts the lowest possible requirements on the ADC resolution (See
Figure 77).
8.2 Typical Applications
RF power detectors can be used in a wide variety of applications. The first example shows the LMH2100 in a
Figure 79, the second application measures the Figure 88.
8.2.1 Application With Transmit Power Control Loop
The key benefit of a transmit power control loop circuit is that it makes the transmit power insensitive to changes
in the Power Amplifier (PA) gain control function, such as changes due to temperature drift. When a control loop
is used, the transfer function of the PA is eliminated from the overall transfer function. Instead, the overall
transfer function is determined by the power detector. The overall transfer function accuracy depends thus on the
RF detector accuracy. The LMH2100 is especially suited for this application, due to the accurate temperature
stability of its transfer function.
Figure 79 shows a block diagram of a typical transmit power control system. The output power of the PA is
measured by the LMH2100 through a directional coupler. The measured output voltage of the LMH2100 is
filtered and subsequently digitized by the ADC inside the baseband chip. The baseband adjusts the PA output
power level by changing the gain control signal of the RF VGA accordingly. With an input impedance of 50 , the
LMH2100 can be directly connected to a 30 dB directional coupler without the need for an additional external
attenuator. The setup can be adjusted to various PA output ranges by selection of a directional coupler with the
appropriate coupling factor.
Figure 79. Transmit Power Control System
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 33
Product Folder Links: LMH2100
E = PEST - PIN {0
œPEST = FEST[FDET(PIN)] = PIN
œFEST(VOUT) = FDET(VOUT)
-1
PIN PEST
FDET
MODEL
PARAMETERS
VOUT
FEST
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Typical Applications (continued)
8.2.1.1 Design Requirements
Some of the design requirements for this logarithmic RMS power detector include:
Table 1. Design Parameters
DESIGN PARAMETER EXAMPLE VALUE
Supply voltage 2.7 V
RF input frequency (unmodulated continuous wave) 1855 MHz
Minimum power level 0 dBm
Maximum power level –5 dBm
Maximum output voltage 2 V
8.2.1.2 Detailed Design Procedure
8.2.1.2.1 Detector Interfacing
For optimal performance of the LMH2100, it is important that all its pins are connected to the surrounding
circuitry in the appropriate way. This section discusses guidelines and requirements for the electrical connection
of each pin of the LMH2100 to ensure proper operation of the device. Starting from a block diagram, the function
of each pin is elaborated. Subsequently, the details of the electrical interfacing are separately discussed for each
pin. Special attention will be paid to the output filtering options and the differences between single ended and
differential interfacing with an ADC.
8.2.1.2.1.1 Concept of Power Measurements
Power measurement systems generally consists of two clearly distinguishable parts with different functions:
1. A power detector device, that generates a DC output signal (voltage) in response to the power level of the
(RF) signal applied to its input.
2. An “estimator” that converts the measured detector output signal into a (digital) numeric value representing
the power level of the signal at the detector input.
A sketch of this conceptual configuration is depicted in Figure 80.
Figure 80. Generic Concept of a Power Measurement System
The core of the estimator is usually implemented as a software algorithm, receiving a digitized version of the
detector output voltage. Its transfer FEST from detector output voltage to a numerical output should be equal to
the inverse of the detector transfer FDET from (RF) input power to DC output voltage. If the power measurement
system is ideal, that is, if no errors are introduced into the measurement result by the detector or the estimator,
the measured power PEST - the output of the estimator - and the actual input power PIN should be identical. In
that case, the measurement error E, the difference between the two, should be identically zero:
(12)
34 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
PINT-SHIFT = 10 LOG 2 RSOURCE
RSOURCE + 50¹
·
©
§
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
From the expression above it follows that one would design the FEST transfer function to be the inverse of the
FDET transfer function.
In practice the power measurement error will not be zero, due to the following effects:
The detector transfer function is subject to various kinds of random errors that result in uncertainty in the
detector output voltage; the detector transfer function is not exactly known.
The detector transfer function might be too complicated to be implemented in a practical estimator.
The function of the estimator is then to estimate the input power PIN, that is, to produce an output PEST such that
the power measurement error is - on average - minimized, based on the following information:
1. Measurement of the not completely accurate detector output voltage VOUT
2. Knowledge about the detector transfer function FDET, for example the shape of the transfer function, the
types of errors present (part-to-part spread, temperature drift) etc.
Obviously the total measurement accuracy can be optimized by minimizing the uncertainty in the detector output
signal (select an accurate power detector), and by incorporating as much accurate information about the detector
transfer function into the estimator as possible.
The knowledge about the detector transfer function is condensed into a mathematical model for the detector
transfer function, consisting of:
A formula for the detector transfer function.
Values for the parameters in this formula.
The values for the parameters in the model can be obtained in various ways. They can be based on
measurements of the detector transfer function in a precisely controlled environment (parameter extraction). If
the parameter values are separately determined for each individual device, errors like part-to-part spread are
eliminated from the measurement system.
Errors may occur when the operating conditions of the detector (for example, the temperature) become
significantly different from the operating conditions during calibration (for example, room temperature). Examples
of simple estimators for power measurements that result in a number of commonly used metrics for the power
measurement error are discussed in LOG-Conformance Error, the Temperature Drift Error, the Temperature
Compensation and Temperature Drift Error.
8.2.1.2.1.2 RF Input
RF parts typically use a characteristic impedance of 50 . To comply with this standard the LMH2100 has an
input impedance of 50 . Using a characteristic impedance other then 50 will cause a shift of the logarithmic
intercept with respect to the value given in the 2.7-V DC and AC Electrical Characteristics. This intercept shift
can be calculated according to Equation 13.
(13)
The intercept will shift to higher power levels for RSOURCE > 50 , and will shift to lower power levels for RSOURCE
< 50 .
8.2.1.2.1.3 Output and Reference
The possible filtering techniques that can be applied to reduce ripple in the detector output voltage are discussed
in Filtering. In addition two different topologies to connect the LMH2100 to an ADC are elaborated.
8.2.1.2.1.3.1 Filtering
The output voltage of the LMH2100 is a measure for the applied RF signal on the RF input pin. Usually, the
applied RF signal contains AM modulation that causes low frequency ripple in the detector output voltage. CDMA
signals for instance contain a large amount of amplitude variations. Filtering of the output signal can be used to
eliminate this ripple. The filtering can either be realized by a low pass output filter or a low pass feedback filter.
Those two techniques are depicted in Figure 81 and Figure 82.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 35
Product Folder Links: LMH2100
RFIN OUT
LMH2100
VDD
GND
EN REF
ADC
2
CP
RP
16
3
4 5 -
+
RFIN OUT
LMH2100
VDD
GND
EN REF
ADC
2
CP
RP
16
3
4 5 -
+
RFIN OUT
LMH2100
VDD
GND
EN REF
ADC
2
CS
RS
16
3
4 5 -
+
RFIN OUT
LMH2100
VDD
GND
EN REF
ADC
2
CP
RP
16
3
4 5 -
+
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Figure 82. Low Pass Feedback Filter
Figure 81. Low Pass Output Filter
Depending on the system requirements one of the these filtering techniques can be selected. The low pass
output filter has the advantage that it preserves the output voltage when the LMH2100 is brought into shutdown.
This is elaborated in Output Behavior in Shutdown. In the feedback filter, resistor RPdischarges capacitor CPin
shutdown and therefore changes the output voltage of the device.
A disadvantage of the low pass output filter is that the series resistor RSlimits the output drive capability. This
may cause inaccuracies in the voltage read by an ADC when the ADC input impedance is not significantly larger
than RS. In that case, the current flowing through the ADC input induces an error voltage across filter resistor RS.
The low pass feedback filter doesn’t have this disadvantage.
Note that adding an external resistor between OUT and REF reduces the transfer gain (LOG-slope and LOG-
intercept) of the device. The internal feedback resistor sets the gain of the transimpedance amplifier.
The filtering of the low pass output filter is realized by resistor RSand capacitor CS. The 3 dB bandwidth of this
filter can then be calculated by: ƒ3 dB =1/2πRSCS. The bandwidth of the low pass feedback filter is determined
by external resistor RPin parallel with the internal resistor RTRANS, and external capacitor CPin parallel with
internal capacitor CTRANS (see Figure 85). The 3 dB bandwidth of the feedback filter can be calculated by ƒ3 dB
=1/2π(RP//RTRANS) (CP+ CTRANS). The bandwidth set by the internal resistor and capacitor (when no external
components are connected between OUT and REF) equals ƒ3 dB =1/2πRTRANS CTRANS = 450 kHz.
8.2.1.2.1.4 Interface to the ADC
The LMH2100 can be connected to the ADC with a single-ended or a differential topology. The single ended
topology connects the output of the LMH2100 to the input of the ADC and the reference pin is not connected. In
a differential topology, both the output and the reference pins of the LMH2100 are connected to the ADC. The
topologies are depicted in Figure 83 and Figure 84.
Figure 84. Differential Application
Figure 83. Single-Ended
The differential topology has the advantage that it is compensated for temperature drift of the internal reference
voltage. This can be explained by looking at the transimpedance amplifier of the LMH2100 (Figure 85).
36 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
FREQUENCY (Hz)
VOUT (V)
2.0
1.6
1.2
0.8
0.4
0.0
10M 100M 1G 10G
RFIN = -45 dBm
RFIN = -35 dBm
RFIN = -25 dBm
RFIN = -15 dBm
RFIN = - 5 dBm
RF INPUT POWER (dBm)
VOUT (V)
2.0
1.6
1.2
0.8
0.4
0.0
-60 -50 -40 -30 -20 -10 0 10
50 MHz
3000 MHz
900 MHz
1855 MHz
2500 MHz
4000 MHz
2.0
1.6
1.2
0.8
0.4
0.0
OUT
-
+
REF
VREF +
-
IDET
RTRANS
CTRANS
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Figure 85. Output Stage of the LMH2100
It can be seen that the output of the amplifier is set by the detection current IDET multiplied by the resistor RTRANS
plus the reference voltage VREF:
VOUT = IDET RTRANS + VREF (14)
IDET represents the detector current that is proportional to the RF input power. The equation shows that
temperature variations in VREF are also present in the output VOUT. In case of a single ended topology the output
is the only pin that is connected to the ADC. The ADC voltage for single ended is thus:
VADC = IDET RTRANS + VREF (15)
A differential topology also connects the reference pin, which is the value of reference voltage VREF. The ADC
reads VOUT VREF:
VADC = VOUT VREF = IDET RTRANS (16)
Equation 16 does not contain the reference voltage VREF anymore. Temperature variations in this reference
voltage are therefore not measured by the ADC.
8.2.1.3 Application Curves
Figure 86. Output Voltage vs RF Input Power Figure 87. Output Voltage vs Frequency
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 37
Product Folder Links: LMH2100
PA ANTENNA
RFIN OUT
LMH2100
RF
VDD
GND
REF
ADC1
2
CP1
RP1
16
3
4 5
COUPLER
EN
RFIN OUT
LMH2100
GND
REF
ADC2
2
CP2
RP2
16
3
4 5
EN
MICRO
CONTROLLER
REVERSE
POWER
TRANSMITTED
POWER
VSWR = 1+_*_
1 - _*_
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
8.2.2 Application With Voltage Standing Wave Ratio Measurement
Transmission in RF systems requires matched termination by the proper characteristic impedance at the
transmitter and receiver side of the link. In wireless transmission systems though, matched termination of the
antenna can rarely be achieved. The part of the transmitted power that is reflected at the antenna bounces back
toward the PA and may cause standing waves in the transmission line between the PA and the antenna. These
standing waves can attain unacceptable levels that may damage the PA. A Voltage Standing Wave Ratio
(VSWR) measurement is used to detect such an occasion. It acts as an alarm function to prevent damage to the
transmitter.
VSWR is defined as the ratio of the maximum voltage divided by the minimum voltage at a certain point on the
transmission line:
(17)
Where Γ= VREFLECTED / VFORWARD denotes the reflection coefficient.
This means that to determine the VSWR, both the forward (transmitted) and the reflected power levels have to
be measured. This can be accomplished by using two LMH2100 RF power detectors according to Figure 88. A
directional coupler is used to separate the forward and reflected power waves on the transmission line between
the PA and the antenna. One secondary output of the coupler provides a signal proportional to the forward power
wave, the other secondary output provides a signal proportional to the reflected power wave. The outputs of both
RF detectors that measure these signals are connected to a micro-controller or baseband that calculates the
VSWR from the detector output signals.
Figure 88. VSWR Application
38 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
9 Power Supply Recommendations
The LMH2100 is designed to operate from an input voltage supply range between 2.7 V to 3.3 V. This input
voltage must be well regulated. Enable voltage levels lower than 400 below GND could lead to incorrect
operation of the device. Also, the resistance of the input supply rail must be low enough to ensure correct
operation of the device.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 39
Product Folder Links: LMH2100
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
10 Layout
10.1 Layout Guidelines
As with any other RF device, careful attention must be paid to the board layout. If the board layout is not properly
designed, unwanted signals can easily be detected or interference will be picked up. This section gives
guidelines for proper board layout for the LMH2100.
Electrical signals (voltages and currents) need a finite time to travel through a trace or transmission line. RF
voltage levels at the generator side and at the detector side can therefore be different. This is not only true for
the RF strip line, but for all traces on the PCB. Signals at different locations or traces on the PCB will be in a
different phase of the RF frequency cycle. Phase differences in, for example, the voltage across neighboring
lines, may result in crosstalk between lines due to parasitic capacitive or inductive coupling. This crosstalk is
further enhanced by the fact that all traces on the PCB are susceptible to resonance. The resonance frequency
depends on the trace geometry. Traces are particularly sensitive to interference when the length of the trace
corresponds to a quarter of the wavelength of the interfering signal or a multiple thereof.
10.1.1 Supply Lines
Because the PSRR of the LMH2100 is finite, variations of the supply can result in some variation at the output.
This can be caused among others by RF injection from other parts of the circuitry or the on/off switching of the
PA.
10.1.1.1 Positive Supply (VDD)
In order to minimize the injection of RF interference into the LMH2100 through the supply lines, the phase
difference between the PCB traces connecting to VDD and GND should be minimized. A suitable way to achieve
this is to short both connections for RF. This can be done by placing a small decoupling capacitor between the
VDD and GND. It should be placed as close as possible to the VDD and GND pins of the LMH2100 as indicated
in Figure 91. Be aware that the resonance frequency of the capacitor itself should be above the highest RF
frequency used in the application, because the capacitor acts as an inductor above its resonance frequency.
Low frequency supply voltage variations due to PA switching might result in a ripple at the output voltage. The
LMH2100 has a PSRR of 60 dB for low frequencies.
10.1.1.2 Ground (GND)
The LMH2100 needs a ground plane free of noise and other disturbing signals. It is important to separate the RF
ground return path from the other grounds. This is due to the fact that the RF input handles large voltage swings.
A power level of 0 dBm will cause a voltage swing larger than 0.6 VPP, over the internal 50-input resistor. This
will result in a significant RF return current toward the source. It is therefore recommended that the RF ground
return path not be used for other circuits in the design. The RF path should be routed directly back to the source
without loops.
10.1.2 RF Input Interface
The LMH2100 is designed to be used in RF applications, having a characteristic impedance of 50. To achieve
this impedance, the input of the LMH2100 needs to be connected via a 50transmission line. Transmission lines
can be easily created on PCBs using microstrip or (grounded) coplanar waveguide (GCPW) configurations. This
section will discuss both configurations in a general way. For more details about designing microstrip or GCPW
transmission lines, a microwave designer handbook is recommended.
10.1.3 Microstrip Configuration
One way to create a transmission line is to use a microstrip configuration. A cross section of the configuration is
shown in Figure 89, assuming a two-layer PCB.
40 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
W
GROUND PLANE
METAL CONDUCTOR
FR4 PCB
SS
H
WH
GROUND PLANE
METAL CONDUCTOR
FR4 PCB
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
Layout Guidelines (continued)
Figure 89. Microstrip Configuration
A conductor (trace) is placed on the topside of a PCB. The bottom side of the PCB has a fully copper ground
plane. The characteristic impedance of the microstrip transmission line is a function of the width W, height H, and
the dielectric constant εr.
Characteristics such as height and the dielectric constant of the board have significant impact on transmission
line dimensions. A 50-transmission line may result in impractically wide traces. A typical 1.6-mm thick FR4
board results in a trace width of 2.9 mm, for instance. This is impractical for the LMH2100 because the pad width
of the 6-Bump DSBGA package is 0.24 mm. The transmission line has to be tapered from 2.9 mm to 0.24 mm.
Significant reflections and resonances in the frequency transfer function of the board may occur due to this
tapering.
10.1.4 GCPW Configuration
A transmission line in a (grounded) coplanar waveguide (GCPW) configuration will give more flexibility in terms of
trace width. The GCPW configuration is constructed with a conductor surrounded by ground at a certain
distance, S, on the top side. Figure 90 shows a cross section of this configuration. The bottom side of the PCB is
a ground plane. The ground planes on both sides of the PCB should be firmly connected to each other by
multiple vias. The characteristic impedance of the transmission line is mainly determined by the width W and the
distance S. In order to minimize reflections, the width W of the center trace should match the size of the package
pad. The required value for the characteristic impedance can subsequently be realized by selection of the proper
gap width S.
Figure 90. GCPW Configuration
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 41
Product Folder Links: LMH2100
DECOUPLING
CAPACITOR
REF
EN
GND
CROSSTALK FILTER
CAPACITOR
OUT
GND
GND
TRANSMISSION LINE
VDD
GND
GND
RFIN
LMH2100
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
www.ti.com
Layout Guidelines (continued)
10.1.5 Reference (REF)
The Reference pin can be used to compensate for temperature drift of the internal reference voltage as
described in Interface to the ADC. The REF pin is directly connected to the inverting input of the transimpedance
amplifier. Thus, RF signals and other spurious signals couple directly through to the output. Introduction of RF
signals can be prevented by connecting a small capacitor between the REF pin and ground. The capacitor
should be placed close to the REF pin as depicted in Figure 91.
10.1.6 Output (OUT)
The OUT pin is sensitive to crosstalk from the RF input, especially at high power levels. The ESD diode between
OUT and VDD may rectify the crosstalk, but may add an unwanted inaccurate DC component to the output
voltage.
The board layout should minimize crosstalk between the detectors input RFIN and the detectors output. Using an
additional capacitor connected between the output and the positive supply voltage (VDD pin) or GND can
prevent this. For optimal performance this capacitor should be placed as close as possible to the OUT pin of the
LMH2100.
10.2 Layout Example
Figure 91. Recommended LMH2100 Board Layout
42 Submit Documentation Feedback Copyright © 2007–2015, Texas Instruments Incorporated
Product Folder Links: LMH2100
LMH2100
www.ti.com
SNWS020C NOVEMBER 2007REVISED OCTOBER 2015
11 Device and Documentation Support
11.1 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
11.2 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.3 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
11.4 Glossary
SLYZ022 TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2007–2015, Texas Instruments Incorporated Submit Documentation Feedback 43
Product Folder Links: LMH2100
PACKAGE OPTION ADDENDUM
www.ti.com 19-Oct-2017
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LMH2100TM/NOPB NRND DSBGA YFQ 6 250 Green (RoHS
& no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 85 J
LMH2100TMX/NOPB NRND DSBGA YFQ 6 3000 Green (RoHS
& no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 85 J
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 19-Oct-2017
Addendum-Page 2
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LMH2100TM/NOPB DSBGA YFQ 6 250 178.0 8.4 1.04 1.4 0.76 4.0 8.0 Q1
LMH2100TMX/NOPB DSBGA YFQ 6 3000 178.0 8.4 1.04 1.4 0.76 4.0 8.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 18-Jan-2018
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LMH2100TM/NOPB DSBGA YFQ 6 250 210.0 185.0 35.0
LMH2100TMX/NOPB DSBGA YFQ 6 3000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 18-Jan-2018
Pack Materials-Page 2
MECHANICAL DATA
YFQ0006xxx
www.ti.com
TMD06XXX (Rev B)
E
0.600±0.075
D
A
. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
NOTES:
4215075/A 12/12
D: Max =
E: Max =
1.274 mm, Min =
0.874 mm, Min =
1.214 mm
0.814 mm
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
LMH2100TM/NOPB LMH2100TMX/NOPB