Wireless Components ASK/FSK Transmitter 315 MHz TDA 5101 Version 1.6 Specification October 2001 Revision History Current Version: 1.6 as of October 2001 Previous Version: 1.5, March 2001 Page (in previous Version) Page (in current Version) Subjects (major changes since last revision) 2-2, 5-3, 5-6 2-2, 5-3, 5-6 Frequency range increased 3-3 ... 3-6 3-3 ... 3-6 ESD-structures added to interface schematics 3-10, 5-3 3-10, 5-3 Typical value for Power-Down-Mode current added 5-2 5-2 Supply voltage range added to Absolute Maximum Ratings 5-3, 5-6 5-3, 5-6 Loop filter voltages adapted 5-4, 5-7 5-4, 5-7 Saturation voltage of Clock Driver Output reduced 5-5, 5-8 5-5, 5-8 Output Power Tolerances reduced ABM(R), AOP(R), ARCOFI(R), ARCOFI(R)-BA, ARCOFI(R)-SP, DigiTape(R), EPIC(R)-1, EPIC(R)-S, ELIC(R), FALC(R)54, FALC(R)56, FALC(R)-E1, FALC(R)-LH, IDEC(R), IOM(R), IOM(R)-1, IOM(R)-2, IPAT(R)-2, ISAC(R)-P, ISAC(R)-S, ISAC(R)-S TE, ISAC(R)-P TE, ITAC(R), IWE(R), MUSAC(R)-A, OCTAT(R)-P, QUAT(R)-S, SICAT(R), SICOFI(R), SICOFI(R)2, SICOFI(R)-4, SICOFI(R)-4C, SLICOFI(R) are registered trademarks of Infineon Technologies AG. ACETM, ASMTM, ASPTM, POTSWIRETM, QuadFALCTM, SCOUTTM are trademarks of Infineon Technologies AG. Edition 15.02.2001 Published by Infineon Technologies AG, Balanstrae 73, 81541 Munchen (c) Infineon Technologies AG 2001. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with the express written approval of the Infineon Technologies AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that lifesupport device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. 1 Table of Contents 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-i 2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Functional Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 3.4 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1 50 Ohm-Output Testboard Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4.2 50 Ohm-Output Testboard Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 4.3 Bill of material (50 Ohm-Output Testboard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.4 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.5 Application Board Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.6 Application Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 4.7 Bill of material (Application Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 4.8 Application Board Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.3 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 TDA 5101 Product Info Product Info General Description Features Applications The TDA 5101 is a single chip ASK/ Package FSK transmitter for the frequency band 311-317 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additionally features like a power down mode, a low power detect and a divided clock output are implemented. The IC can be used for both ASK and FSK modulation. fully integrated frequency synthesizer voltage supply range 2.1 - 4 V VCO without external components power down mode high efficiency power amplifier low voltage sensor frequency range 311-317 MHz programmable divided clock output for C ASK/FSK modulation low external component count low supply current (typically 7mA) Keyless entry systems Alarm systems Remote control systems Communication systems Ordering Information Type Ordering Code Package TDA 5101 Q67036-A1120 P-TSSOP-16 available on tape and reel Wireless Components Product Info Specification, October 2001 2 Product Description Contents of this Chapter 2.1 2.2 2.3 2.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 TDA 5101 Product Description 2.1 Overview The TDA 5101 is a single chip ASK/FSK transmitter for the frequency band 311317 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additional features like a power down mode, a low power detect and a divided clock output are implemented. The IC can be used for both ASK and FSK modulation. 2.2 Applications Keyless entry systems Remote control systems Alarm systems Communication systems 2.3 Features Wireless Components fully integrated frequency synthesizer VCO without external components high efficiency power amplifier frequency range 311-317 MHz ASK/FSK modulation low supply current (typically 7 mA) voltage supply range 2.1 - 4 V power down mode low voltage sensor programmable divided clock output for C low external component count 2-2 Specification, October 2001 TDA 5101 Product Description 2.4 Package Outlines Figure 2-1 Wireless Components P-TSSOP-16 2-3 Specification, October 2001 3 Functional Description Contents of this Chapter 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.5.1 3.4.5.2 3.4.5.3 3.4.5.4 3.4.6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Functional Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Functional Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 PLL Synthesizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Low Power Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Power Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 PLL Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Transmit Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Power mode control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Recommended timing diagrams for ASK- and FSK-Modulation . . 3-12 TDA 5101 Functional Description 3.1 Pin Configuration PDWN 1 16 CSEL LPD 2 15 FSEL VS 3 14 PAOUT LF 4 13 PAGND TDA 5101 GND 5 12 FSKGND ASKDTA 6 11 FSKOUT FSKDTA 7 10 COSC CLKOUT 8 9 CLKDIV Pin_config.wmf Figure 3-1 IC Pin Configuration Table 3-1 Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Wireless Components Symbol PDWN LPD VS LF GND ASKDTA FSKDTA CLKOUT CLKDIV COSC FSKOUT FSKGND PAGND PAOUT FSEL CSEL Function Power Down Mode Control Low Power Detect Output Voltage Supply Loop Filter Ground Amplitude Shift Keying Data Input Frequency Shift Keying Data Input Clock Driver Output Clock Divider Control Crystal Oscillator Input Frequency Shift Keying Switch Output Frequency Shift Keying Ground Power Amplifier Ground Power Amplifier Output Frequency Range Selection: Has to be shorted to ground for 315 MHz operation Crystal Frequency Selection: Has to be left open 3-2 Specification, October 2001 TDA 5101 Functional Description 3.2 Pin Definitions and Functions Table 3-2 Pin No. Symbol 1 PDWN Interface Schematic Function Disable pin for the complete transmitter circuit. VS 40 A (ASKDTA+FSKDTA) A logic low (PDWN < 0.7 V) turns off all transmitter functions. 5 k A logic high (PDWN > 1.5 V) gives access to all transmitter functions. 1 "ON" PDWN input will be pulled up by 40 A internally by setting FSKDTA or ASKDTA to a logic high-state. 150 k 250 k 2 LPD This pin provides an output indicating the low-voltage state of the supply voltage VS. VS VS < 2.15 V will set LPD to the low-state. 40 A 2 300 3 VS Wireless Components An internal pull-up current of 40 A gives the output a high-state at supply voltages above 2.15 V. This pin is the positive supply of the transmitter electronics. An RF bypass capacitor should be connected directly to this pin and returned to GND (pin 5) as short as possible. 3-3 Specification, October 2001 TDA 5101 Functional Description 4 LF Output of the charge pump and input of the VCO control voltage. The loop bandwidth of the PLL is 150 kHz when only the internal loop filter is used. The loop bandwidth may be reduced by applying an external RC network referencing to the positive supply VS (pin 3). VS 140 pF 15 pF 35 k 10 k 4 5 GND 6 ASKDTA VS General ground connection. VS Digital amplitude modulation can be imparted to the Power Amplifier through this pin. +1.2 V A logic high (ASKDTA > 1.5 V or open) enables the Power Amplifier. 60 k 6 +1.1 V 90 k 50 pF 7 30 A FSKDTA VS A logic low (ASKDTA < 0.5 V) disables the Power Amplifier. Digital frequency modulation can be imparted to the Xtal Oscillator by this pin. The VCO-frequency varies in accordance to the frequency of the reference oscillator. +1.2 V 60 k 7 +1.1 V 90 k 30 A A logic high (FSKDTA > 1.5V or open) sets the FSK switch to a high impedance state. A logic low (FSKDTA < 0.5 V) closes the FSK switch from FSKOUT (pin 11) to FSKGND (pin 12). A capacitor can be switched to the reference crystal network this way. The Xtal Oscillator frequency will be shifted giving the designed FSK frequency deviation. Wireless Components 3-4 Specification, October 2001 TDA 5101 Functional Description 8 CLKOUT Clock output to supply an external device. An external pull-up resistor has to be added in accordance to the driving requirements of the external device. A clock frequency of 2.46 MHz is selected by a logic low at CLKDIV input (pin9). A clock frequency of 615 kHz is selected by a logic high at CLKDIV input (pin9). VS 8 300 9 CLKDIV This pin is used to select the desired clock division rate for the CLKOUT signal. VS +1.2 V VS A logic low (CLKDIV < 0.2 V) applied to this pin selects the 2.46 MHz output signal at 5 A CLKOUT (pin 8). 60 k A logic high (CLKDIV open) applied to this +0.8 V pin selects the 615 kHz output signal at 60 k CLKOUT (pin 8). 9 10 COSC VS VS 6 k 10 This pin is connected to the reference oscillator circuit. The reference oscillator is working as a negative impedance converter. It presents a negative resistance in series to an inductance at the COSC pin. 100 A 11 FSKOUT This pin is connected to a switch to FSKGND (pin 12). VS VS The switch is closed when the signal at FSKDTA (pin 7) is in a logic low state. The switch is open when the signal at FSKDTA (pin 7) is in a logic high state. 200 A 1.5 k 11 FSKOUT can switch an additional capacitor to the reference crystal network to pull the crystal frequency by an amount resulting in the desired FSK frequency shift of the transmitter output frequency. 12 12 FSKGND Wireless Components Ground connection for FSK modulation output FSKOUT. 3-5 Specification, October 2001 TDA 5101 Functional Description 13 PAGND Ground connection of the power amplifier. The RF ground return path of the power amplifier output PAOUT (pin 14) has to be concentrated to this pin. 14 PAOUT RF output pin of the transmitter. 14 A DC path to the positive supply VS has to be supplied by the antenna matching network. 13 15 FSEL This pin has to be shorted to ground to select the 315 MHz transmitter frequency range. +1.2 V VS 30 k 15 +1.1 V A logic low (FSEL < 0.5 V) applied to this pin sets the transmitter to the 315 MHz frequency range. 90 k 30 A 16 CSEL VS +1.2 V 60 k A logic high (FSEL open) applied to this pin sets the transmitter to the 630 MHz frequency range. This pin is used to select the desired reference frequency. VS 5 A 16 A logic high (CSEL open) applied to this pin sets the internal frequency divider to accept a reference frequency of 9.84 MHz. +0.8 V 60 k Wireless Components 3-6 Specification, October 2001 Figure 3-2 Wireless Components 3-7 Clock Output Frequency Select 0.615/2.46 MHz 9 10 11 FSK Switch Crystal 9,84 MHz 12 FSK Ground XTAL Osc Clock Output 8 :2/8 :4/16 PFD 7 FSK Data Input OR 1 Power Down Control Crystal Select always open 16 :128/64 6 ASK Data Input Loop Filter 4 LF VCO 15 :1/2 On Ground 5 Power AMP Low Voltage Sensor 2.2V 2 Low Power Detect Output Frequency Select low for 315 MHz Power Supply 3 Positive Supply VS Power Amplifier Output Power Amplifier Ground 14 13 TDA 5101 Functional Description 3.3 Functional Block diagram Funct_Block_Diagram.wmf Functional Block diagram Specification, October 2001 TDA 5101 Functional Description 3.4 Functional Blocks 3.4.1 PLL Synthesizer The Phase Locked Loop synthesizer consists of a Voltage Controlled Oscillator (VCO), an asynchronous divider chain, a phase detector, a charge pump and a loop filter. It is fully implemented on chip. The tuning circuit of the VCO consisting of spiral inductors and varactor diodes is on chip, too. Therefore no additional external components are necessary. The nominal center frequency of the VCO is 630 MHz. The oscillator signal is fed both, to the synthesizer divider chain and to the power amplifier. The overall division ratio of the asynchronous divider chain is 64. The phase detector is a Type IV PD with charge pump. The passive loop filter is realized on chip. In all 315 MHz applications, the FSEL pin is shorted to ground (logic low) and the CSEL pin is not connected (logic high). 3.4.2 Crystal Oscillator The crystal oscillator operates at 9.84 MHz. Frequencies of 615 kHz or 2.46 MHz are available at the clock output CLKOUT (pin 8) to drive the clock input of a micro controller. The frequency at CLKOUT (pin 8) is controlled by the signal at CLKDIV (pin 9) Table 3-3 CLKDIV (pin 9) 1) 2.46 MHz 615 kHz Low Open2) 1) Low: 2) Open: CLKOUT Frequency Voltage at pin < 0.2 V Pin open To achieve FSK transmission, the oscillator frequency can be detuned by a fixed amount by switching an external capacitor via FSKOUT (pin 11). The condition of the switch is controlled by the signal at FSKDTA (pin 7). Table 3-4 FSKDTA (pin7) 1) Low Open2), High3) 1) Low: 2) Open: 3) High: Wireless Components FSK Switch CLOSED OPEN Voltage at pin < 0.5 V Pin open Voltage at pin > 1.5 V 3-8 Specification, October 2001 TDA 5101 Functional Description 3.4.3 Power Amplifier For operation at 315 MHz, the power amplifier is fed with the VCO frequency divided by 2. It is possible to feed the power amplifier directly from the voltage controlled oscillator. This is controlled by FSEL (pin 15) as described in the table below. Table 3-5 FSEL (pin 15) Radiated Frequency Band 1) 315 MHz 630 MHz Low Open2) 1) Low: 2) Open: Voltage at pin < 0.5 V Pin open In all 315 MHz applications, the pin FSEL is connected to ground. The Power Amplifier can be switched on and off by the signal at ASKDTA (pin 6). Table 3-6 ASKDTA (pin 6) 1) Low Open2), High3) 1) Low: 2) Open: 3) High: Power Amplifier OFF ON Voltage at pin < 0.5 V Pin open Voltage at pin > 1.5 V The Power Amplifier has an Open Collector output at PAOUT (pin 14) and requires an external pull-up coil to provide bias. The coil is part of the tuning and matching LC circuitry to get best performance with the external loop antenna. To achieve the best power amplifier efficiency, the high frequency voltage swing at PAOUT (pin 14) should be twice the supply voltage. The power amplifier has its own ground pin PAGND (pin 13) in order to reduce the amount of coupling to the other circuits. 3.4.4 Low Power Detect The supply voltage is sensed by a low power detector. When the supply voltage drops below 2.15 V, the output LPD (pin 2) switches to the low-state. To minimize the external component count, an internal pull-up current of 40 A gives the output a high-state at supply voltages above 2.15 V. The output LPD (pin 2) can either be connected to ASKDTA (pin 6) to switch off the PA as soon as the supply voltage drops below 2.15 V or it can be used to inform a micro-controller to stop the transmission after the current data packet. Wireless Components 3-9 Specification, October 2001 TDA 5101 Functional Description 3.4.5 Power Modes The IC provides three power modes, the POWER DOWN MODE, the PLL ENABLE MODE and the TRANSMIT MODE. 3.4.5.1 Power Down Mode In the POWER DOWN MODE the complete chip is switched off. The current consumption is typically 0.3 nA at 3 V 25C. 3.4.5.2 PLL Enable Mode In the PLL ENABLE MODE the PLL is switched on but the power amplifier is turned off to avoid undesired power radiation during the time the PLL needs to settle. The turn on time of the PLL is determined mainly by the turn on time of the crystal oscillator and is less than 1 msec when the specified crystal is used. The current consumption is typically 3.5 mA. 3.4.5.3 Transmit Mode In the TRANSMIT MODE the PLL is switched on and the power amplifier is turned on too. The current consumption of the IC is typically 7 mA when using a proper transforming network at PAOUT, see Figure 4-1. 3.4.5.4 Power mode control The bias circuitry is powered up via a voltage V > 1.5 V at the pin PDWN (pin 1). When the bias circuitry is powered up, the pins ASKDTA and FSKDTA are pulled up internally. Forcing the voltage at the pins low overrides the internally set state. Alternatively, if the voltage at ASKDTA or FSKDTA is forced high externally, the PDWN pin is pulled up internally via a current source. In this case, it is not necessary to connect the PDWN pin, it is recommended to leave it open. The principle schematic of the power mode control circuitry is shown in Figure 3-5. Wireless Components 3 - 10 Specification, October 2001 TDA 5101 Functional Description PDWN ASKDTA OR FSKDTA On Bias Source Bias Voltage 120 k 120 k FSKOUT FSK On PLL 315 MHz PA PAOUT IC Power_Mode.wmf Figure 3-5 Power mode control circuitry Table 3-7 provides a listing of how to get into the different power modes Table 3-7 PDWN FSKDTA ASKDTA Low1) Low, Open Low, Open Open2) Low Low High3) Low, Open, High Low Open High Low High Low, Open, High Open, High Open High Open, High Open Low, Open, High High 1) Low: 2) Open: 3) High: MODE POWER DOWN PLL ENABLE TRANSMIT Voltage at pin < 0.7 V (PDWN) Voltage at pin < 0.5 V (FSKDTA, ASKDTA) Pin open Voltage at pin > 1.5 V Other combinations of the control pins PDWN, FSKDTA and ASKDTA are not recommended. Wireless Components 3 - 11 Specification, October 2001 TDA 5101 Functional Description 3.4.6 Recommended timing diagrams for ASK- and FSK-Modulation ASK Modulation using FSKDTA and ASKDTA, PDWN not connected Modes: Power Down PLL Enable Transmit High FSKDTA Low to t DATA Open, High ASKDTA Low to t min. 1 msec. ASK_mod.wmf Figure 3-6 ASK Modulation FSK Modulation using FSKDTA and ASKDTA, PDWN not connected Modes: Power Down PLL Enable Transmit DATA High FSKDTA Low to t to t High ASKDTA Low min. 1 msec. FSK_mod.wmf Figure 3-7 Wireless Components FSK Modulation 3 - 12 Specification, October 2001 TDA 5101 Functional Description Alternative ASK Modulation, FSKDTA not connected. Modes: Power Down PLL Enable Transmit High PDWN Low to t DATA Open, High ASKDTA Low to t min. 1 msec. Alt_ASK_mod.wmf Figure 3-8 Alternative ASK Modulation Alternative FSK Modulation Modes: Power Down PLL Enable Transmit High PDWN Low to t to t Open, High ASKDTA Low DATA Open, High FSKDTA Low to t min. 1 msec. Alt_FSK_mod.wmf Figure 3-9 Wireless Components Alternative FSK Modulation 3 - 13 Specification, October 2001 4 Applications Contents of this Chapter 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 50 Ohm-Output Testboard Schematic . . . . . . . . . . . . . . . . . . . . . . . . 4-2 50 Ohm-Output Testboard Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Bill of material (50 Ohm-Output Testboard) . . . . . . . . . . . . . . . . . . . . 4-4 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Application Board Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 Application Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 Bill of material (Application Board) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 Application Board Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 TDA 5101 Applications 4.1 50 Ohm-Output Testboard Schematic X2SMA C8 C2 C4 L2 L1 VCC C7 C6 C3 10 9 7 8 11 12 13 14 15 16 Q1 0.615 (2.46) MHz VCC 6 5 4 3 2 VCC 1 TDA5101 C1 T1 R3A R3F R4 R2 FSK ASK R1 C5 X1SMA 50ohm_test_v5.wmf Figure 4-1 Wireless Components 50 -Output testboard schematic 4-2 Specification, October 2001 TDA 5101 Applications 4.2 50 Ohm-Output Testboard Layout Wireless Components Figure 4-2 Top Side of TDA 5101-Testboard with 50 -Output. It is the same testboard as for the TDA 5100. Figure 4-3 Bottom Side of TDA 5101-Testboard with 50 -Output. It is the same testboard as for the TDA 5100. 4-3 Specification, October 2001 TDA 5101 Applications 4.3 Bill of material (50 Ohm-Output Testboard) Table 4-1 Bill of material Part R1 ASK 315 MHz FSK 315 MHz Specification 4.7 k 4.7 k 0805, 5% 12 k 0805, 5% R2 R3A 15 k 0805, 5% R3F Wireless Components 15 k 0805, 5% R4 open open 0805, 5% C1 47 nF 47 nF 0805, X7R, 10% C2 56 pF 56 pF 0805, COG, 5% C3 5.6 pF 5.6 pF 0805, COG, 0.1 pF C4 330 pF 330 pF 0805, COG, 5% C5 1 nF 1 nF 0805, X7R, 10% C6 8.2 pF 8.2 pF 0805, COG, 0.1 pF C7 0 Jumper 47 pF 0805, COG, 5% 0805, 0 Jumper C8 22 pF 22 pF 0805, COG, 5% L1 220 nH 220 nH TOKO LL2012-J L2 56 nH 56 nH TOKO LL2012-J Q3 9.843745 MHz, CL=12pF 9.843745 MHz, CL=12pF Tokyo Denpa TSS-3B 9843.75 kHz Spec.No. 20-18905 IC1 TDA 5101 TDA 5101 T1 Push-button Push-button replaced by a short B1 Battery clip Battery clip HU2031-1, RENATA X1 SMA-S SMA-S SMA standing X2 SMA-S SMA-S SMA standing 4-4 Specification, October 2001 TDA 5101 Applications 4.4 Hints 1. Application Hints on the crystal oscillator As mentioned before, the crystal oscillator achieves a turn on time less than 1 msec. To achieve this, a NIC oscillator type is implemented in the TDA 5101. The input impedance of this oscillator is a negative resistance in series to an inductance. Therefore the load capacitance of the crystal CL (specified by the crystal supplier) is transformed to the capacitance Cv. -R L f, CL Cv IC Cv = 1 Formula 1) 1 +2L CL CL: crystal load capacitance for nominal frequency : angular frequency L: inductivity of the crystal oscillator Example for the ASK-Mode: Referring to the application circuit, in ASK-Mode the capacitance C7 is replaced by a short to ground. Assume a crystal frequency of 9.84 MHz and a crystal load capacitance of CL = 12 pF. The inductance L is specified within the electrical characteristics at 9.84 MHz to a value of 11 H. Therefore C6 is calculated to 8.0 pF. Cv = Wireless Components 4-5 1 1 + 2L CL = C6 Specification, October 2001 TDA 5101 Applications Example for the FSK-Mode: FSK modulation is achieved by switching the load capacitance of the crystal as shown below. FSKDTA FSKOUT Csw -R L f, CL Cv1 Cv2 COSC IC The frequency deviation of the crystal oscillator is multiplied with the divider factor N of the Phase Locked Loop to the output of the power amplifier. In case of small frequency deviations (up to +/- 1000 ppm), the two desired load capacitances can be calculated with the formula below. 2(C 0 + CL ) f ) (1 + N * f1 C1 2(C 0 + CL ) f ) 1 (1 + N * f1 C1 CL # C 0 CL = C L: C 0: f: : N: df: crystal load capacitance for nominal frequency shunt capacitance of the crystal frequency = 2f: angular frequency division ratio of the PLL peak frequency deviation Because of the inductive part of the TDA 5101, these values must be corrected by formula 1). The value of Cv can be calculated. Wireless Components 4-6 Specification, October 2001 TDA 5101 Applications If the FSK switch is closed, Cv- is equal to Cv1 (C6 in the application diagram). If the FSK switch is open, Cv2 (C7 in the application diagram) can be calculated. Cv 2 = C 7 = Csw Cv1 - (Cv + ) (Cv1 + Csw) (Cv + ) - Cv1 Csw: parallel capacitance of the FSK switch (3 pF) Remark: These calculations are only approximations. The necessary values depend on the layout also and must be adapted for the specific application board. 2. Design hints on the buffered clock output (CLKOUT) The CLKOUT pin is an open collector output. An external pull up resistor (RL) should be connected between this pin and the positive supply voltage. The value of RL is depending on the clock frequency and the load capacitance CLD (PCB board plus input capacitance of the microcontroller). RL can be calculated to: RL = 1 fCLKOUT * 8 * CLD Table 4-2 fCLKOUT= 615 kHz CLD[pF] RL[kOhm] CLD[pF] RL[kOhm] 5 39 5 10 10 18 10 4.7 20 10 20 2.2 Remark: Wireless Components fCLKOUT= 2.46 MHz To achieve a low current consumption and a low spurious radiation, the largest possible RL should be chosen. 4-7 Specification, October 2001 TDA 5101 Applications 4.5 Application Board Schematic VCC R4 C3 C2 Antenna L1 C7 C4 C6 10 9 7 8 11 12 13 14 15 16 Q3 0.615 (2.46) MHz 6 5 4 3 2 VCC 1 TDA5101 C1 T1 VCC R2A R2F R3A R3F FSK ASK C5 5 6 R1 7 8 VCC 4 3 2 1 HCS360 Application_circuit.wmf Figure 4-4 Wireless Components Application board schematic 4-8 Specification, October 2001 TDA 5101 Applications 4.6 Application Board Layout Wireless Components Figure 4-5 Top Side of TDA 5101-Application Board Figure 4-6 Bottom Side of TDA 5101-Application Board 4-9 Specification, October 2001 TDA 5101 Applications 4.7 Bill of material (Application Board) Table 4-3 Bill of material 315 MHz ASK 315 MHz FSK Specification R1 4.7 k 4.7 k 0805, 5% R2A 15 k Part R2F R3A 15 k R3F Wireless Components 0805, 5% 12 k 0805, 5% 15 k 0805, 5% 12 k 0805, 5% R4 1 k 1 k 0805, 5% C1 47 nF 47 nF 0805, X7R, 10% C2 18 pF 18 pF 0805, COG, 1% C3 330 pF 330 pF 0805, COG, 10% C4 10 pF 10 pF 0805, COG, 1% C5 4.7 nF 4.7 nF 0805, X7R, 10% C6 8.2 pF 8.2 pF 0805, COG, 0.1 pF C7 0 47 pF 0805, COG, 10% 0805, 0 Jumper L1 39 nH 39 nH TOKO LL2012-J Q3 9.84375 MHz CL=12pF 9.84375 MHz CL=12pF Tokyo Denpa TSS-3B 9843.75 kHz Spec.No. 20-18905 IC1 TDA 5101 TDA 5101 IC2 HCS360 HCS360 Microchip B1 Battery clip Battery clip HU2031-1, RENATA T1 Push-button Push-button STTSKHMPW, ALPS 4 - 10 Specification, October 2001 TDA 5101 Applications 4.8 Application Board Photo TDA5101ApplBoard.jpg Figure 4-7 Wireless Components Photo of Application Board TDA 5101 4 - 11 Specification, October 2001 5 Reference Contents of this Chapter 5.1 5.2 5.3 5.3.1 5.3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 AC/DC Characteristics at 3V, 25C . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 AC/DC Characteristics at 2.1 V ... 4.0 V, -25C ... +85C. . . . . . . . . . 5-6 TDA 5101 Reference 5.1 Absolute Maximum Ratings The AC / DC characteristic limits are not guaranteed. The maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC may result. Table 5-1 Symbol Parameter Limit Values Min Max Unit Junction Temperature TJ -40 150 C Storage Temperature Ts -40 125 C 230 K/W Thermal Resistance RthJA Supply voltage ESD integrity, all pins VS -0.3 4.0 V VESD -1 +1 kV Remarks 100 pF, 1500 Ambient Temperature under bias: TA=-25 to +85C 5.2 Operating Range Within the operational range the IC operates as described in the circuit description. Table 5-2 Parameter Symbol Limit Values Min Max Unit Supply voltage VS 2.1 4.0 V Ambient temperature TA -25 85 C Wireless Components 5-2 Test Conditions Specification, October 2001 TDA 5101 Reference 5.3 AC/DC Characteristics 5.3.1 AC/DC Characteristics at 3V, 25C Table 5-3 Supply Voltage VS = 3 V, Ambient temperature Tamb = 25C Parameter Symbol Limit Values Min Unit Typ Max Test Conditions Current consumption Power down mode IS PDWN 0.3 100 nA V (Pins 1, 6 and 7) < 0.2 V PLL enable mode IS PLL_EN 3.3 4.2 mA Transmit mode IS TRANSM 7 9 mA Load tank see Figure 4-1 and 4-2 Power Down Mode Control (Pin 1) Power down mode VPDWN 0 0.7 V VASKDTA < 0.2 V VFSKDTA < 0.2 V PLL enable mode VPDWN 1.5 VS V VASKDTA < 0.5 V Transmit mode VPDWN 1.5 VS V VASKDTA > 1.5 V Input bias current PDWN IPDWN 30 A VPDWN = VS Low Power Detect Output (Pin 2) Internal pull up current I LPD1 30 A VS = 2.3 V ... VS Input current low voltage I LPD2 1 mA VS = 1.9 V ... 2.1 V V fVCO = 630 MHz 324 MHz VS-VLF = 0.4V...1.9V VFSEL = 0 V Loop Filter (Pin 4) VCO tuning voltage VLF Output frequency range 315 MHz-band fOUT, 315 VS - 1.5 VS - 0.7 305 315 ASK Modulation Data Input (Pin 6) ASK Transmit disabled VASKDTA 0 0.5 V ASK Transmit enabled VASKDTA 1.5 VS V Input bias current ASKDTA IASKDTA 30 A VASKDTA = VS Input bias current ASKDTA IASKDTA A VASKDTA = 0 V ASK data rate fASKDTA Wireless Components -20 20 5-3 kHz Specification, October 2001 TDA 5101 Reference Table 5-3 Supply Voltage VS = 3 V, Ambient temperature Tamb = 25C Parameter Symbol Limit Values Min Typ Unit Test Conditions Max FSK Modulation Data Input (Pin 7) FSK Switch on VFSKDTA 0 0.5 V FSK Switch off VFSKDTA 1.5 VS V Input bias current FSKDTA IFSKDTA 30 A VFSKDTA = VS Input bias current FSKDTA IFSKDTA A VFSKDTA = 0 V FSK data rate fFSKDTA -20 20 kHz Clock Driver Output (Pin 8) Output current (Low) ICLKOUT Output current (High) ICLKOUT Saturation Voltage (Low) VSATL 1 mA VCLKOUT = VS 5 A VCLKOUT = VS 0.56 V ICLKOUT = 1 mA 0.2 V Clock Divider Control (Pin 9) Setting Clock Driver output frequency fCLKOUT=2.46 MHz VCLKDIV Setting Clock Driver output frequency fCLKOUT=615 kHz VCLKDIV Input bias current CLKDIV ICLKDIV Input bias current CLKDIV ICLKDIV 0 30 -20 V pin open A VCLKDIV = VS A VCLKDIV = 0 V Crystal Oscillator Input (Pin 10) Load capacitance CCOSCmax Serial Resistance of the crystal 5 pF 100 f = 9.84 MHz H f = 9.84 MHz 11 Input inductance of the COSC pin FSK Switch Output (Pin 11) On resistance RFSKOUT 220 VFSKDTA = 0 V On capacitance CFSKOUT 6 pF VFSKDTA = 0 V Off resistance RFSKOUT k VFSKDTA = VS Off capacitance CFSKOUT pF VFSKDTA = VS Wireless Components 10 1.5 5-4 Specification, October 2001 TDA 5101 Reference Table 5-3 Supply Voltage VS = 3 V, Ambient temperature Tamb = 25C Parameter Symbol Limit Values Unit Test Conditions fOUT = 315 MHz VFSEL = 0 V Min Typ Max 3.5 5 6.5 dBm 0.5 V 30 A VFSEL = VS A VFSEL = 0 V V pin open A VCSEL = VS A VCSEL = 0 V Power Amplifier Output (Pin 14) Output Power1) transformed to 50 Ohm POUT315 Frequency Range Selection (Pin 15) Transmit frequency 315 MHz VFSEL Input bias current FSEL IFSEL Input bias current FSEL IFSEL 0 -20 Crystal Frequency Selection (Pin 16) Crystal frequency 9.84 MHz VCSEL Input bias current CSEL ICSEL Input bias current CSEL ICSEL 50 -25 1) Power amplifier in overcritical C-operation. Matching circuitry as used in the 50 Ohm-Output Testboard. Tolerances of the passive elements not taken into account. Wireless Components 5-5 Specification, October 2001 TDA 5101 Reference 5.3.2 AC/DC Characteristics at 2.1 V ... 4.0 V, -25C ... +85C Table 5-4 Supply Voltage VS = 2.1 V ... 4.0 V, Ambient temperature Tamb = -25C ... +85C Parameter Symbol Limit Values Min Typ Unit Test Conditions Max Current consumption Power down mode IS PDWN PLL enable mode IS PLL_EN Transmit mode IS TRANSM 250 nA V (Pins 1, 6, and 7) = 0.2 V 3.3 4.6 mA 7 9.5 mA Load tank see Figure 4-1 and 4-2 Power Down Mode Control (Pin 1) Power down mode VPDWN 0 0.5 V VASKDTA < 0.2 V VFSKDTA < 0.2 V PLL enable mode VPDWN 1.5 VS V VASKDTA < 0.5 V Transmit mode VPDWN 1.5 VS V VASKDTA > 1.5 V Input bias current PDWN IPDWN 30 A VPDWN = VS Low Power Detect Output (Pin 2) Internal pull up current I LPD1 30 A VS = 2.3 V ... VS Input current low voltage I LPD2 1 mA VS = 1.9 V ... 2.1 V V fVCO = 630 MHz 317 MHz VS-VLF = 0.4V...1.9V VFSEL = 0 V Loop Filter (Pin 4) VCO tuning voltage VLF Output frequency range 315 MHz-band fOUT, 315 VS - 1.8 VS - 0.5 311 315 ASK Modulation Data Input (Pin 6) ASK Transmit disabled VASKDTA 0 0.5 V ASK Transmit enabled VASKDTA 1.5 VS V Input bias current ASKDTA IASKDTA 30 A VASKDTA = VS Input bias current ASKDTA IASKDTA A VASKDTA = 0 V ASK data rate fASKDTA Wireless Components -20 20 5-6 kHz Specification, October 2001 TDA 5101 Reference Table 5-4 Supply Voltage VS = 2.1 V ... 4.0 V, Ambient temperature Tamb = -25C ... +85C Parameter Symbol Limit Values Min Typ Unit Test Conditions Max FSK Modulation Data Input (Pin 7) FSK Switch on VFSKDTA 0 0.5 V FSK Switch off VFSKDTA 1.5 VS V Input bias current FSKDTA IFSKDTA 30 A VFSKDTA = VS Input bias current FSKDTA IFSKDTA A VFSKDTA = 0 V FSK data rate fFSKDTA -20 20 kHz Clock Driver Output (Pin 8) Output current (Low) ICLKOUT Output current (High) ICLKOUT Saturation Voltage (Low)1) VSATL 1 mA VCLKOUT = VS 5 A VCLKOUT = VS 0.5 V ICLKOUT = 0.8 mA 0.2 V Clock Divider Control (Pin 9) Setting Clock Driver output frequency fCLKOUT=2.46 MHz VCLKDIV Setting Clock Driver output frequency fCLKOUT=615 kHz VCLKDIV Input bias current CLKDIV ICLKDIV Input bias current CLKDIV ICLKDIV 0 30 -20 V pin open A VCLKDIV = VS A VCLKDIV = 0 V Crystal Oscillator Input (Pin 10) Load capacitance CCOSCmax Serial Resistance of the crystal Input inductance of the COSC pin 5 pF 100 f = 9.84 MHz H f = 9.84 MHz 11 FSK Switch Output (Pin 11) On resistance RFSKOUT 220 VFSKDTA = 0 V On capacitance CFSKOUT 6 pF VFSKDTA = 0 V Off resistance RFSKOUT k VFSKDTA = VS Off capacitance CFSKOUT pF VFSKDTA = VS 10 1.5 1) Derating linearly to a saturation voltage of max. 140 mV at ICLKOUT = 0 mA Wireless Components 5-7 Specification, October 2001 TDA 5101 Reference Table 5-4 Supply Voltage VS = 2.1 V ... 4.0 V, Ambient temperature Tamb = -25C ... +85C Parameter Symbol Limit Values Min Typ Max Unit Test Conditions Power Amplifier Output (Pin 14) Output Power 1) at 315 MHz transformed to 50 Ohm. POUT, 315 0.4 2.2 3.5 dBm VS = 2.1 V POUT, 315 2.5 5 6.9 dBm VS = 3.0 V VFSEL = 0 V POUT, 315 3.3 6.8 9.4 dBm VS = 4.0 V 0.5 V 30 A VFSEL = VS A VFSEL = 0 V V pin open A VCSEL = VS A VCSEL = 0 V Frequency Range Selection (Pin 15) Transmit frequency 315 MHz VFSEL Input bias current FSEL IFSEL Input bias current FSEL IFSEL 0 -20 Crystal Frequency Selection (Pin 16) Crystal frequency 9.84 MHz VCSEL Input bias current CSEL ICSEL Input bias current CSEL ICSEL 50 -25 1) Matching circuitry as used in the 50 Ohm-Output Testboard. Range @ 2.1 V, +25C: 2.2 dBm +/- 1.0 dBm Temperature dependency at 2.1 V: +0.3 dBm@-25C and -0.8 dBm@+85C, reference +25C. Range @ 3.0 V, +25C: 5.0 dBm +/- 1.5 dBm Temperature dependency at 3.0 V: +0.4 dBm@-25C and -1.0 dBm@+85C, reference +25C. Range @ 4.0 V, +25C: 6.8 dBm +/- 2.0 dBm Temperature dependency at 4.0 V: +0.6 dBm@-25C and -1.5 dBm@+85C, reference +25C. Tolerances of the passive elements not taken into account. A smaller load impedance reduces the supply-voltage dependency. A higher load impedance reduces the temperature dependency. Wireless Components 5-8 Specification, October 2001