  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DDependable Texas Instruments Quality and
Reliability
description/ordering information
These devices contain six independent inverters.
Copyright 2004, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1A
1Y
2A
2Y
3A
3Y
GND
VCC
6A
6Y
5A
5Y
4A
4Y
SN5404 . . . J PACKAGE
SN54LS04, SN54S04 . . . J OR W PACKAGE
SN7404, SN74S04 . . . D, N, OR NS PACKAGE
SN74LS04 . . . D, DB, N, OR NS PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1A
2Y
2A
VCC
3A
3Y
4A
1Y
6A
6Y
GND
5Y
5A
4Y
SN5404 . . . W PACKAGE
(TOP VIEW)
3212019
910111213
4
5
6
7
8
18
17
16
15
14
6Y
NC
5A
NC
5Y
2A
NC
2Y
NC
3A
SN54LS04, SN54S04 . . . FK PACKAGE
(TOP VIEW)
1Y
1A
NC
4Y
4A 6A
3Y
GND
NC
NC − No internal connection
VCC
    !"   #!$% &"'
&!   #" #" (" "  ") !"
&& *+' &! #", &"  ""%+ %!&"
",  %% #""'
 #&! #%  -./.010 %% #"" " ""&
!%" ("*" "&'  %% (" #&! #&!
#", &"  ""%+ %!&" ",  %% #""'
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION
TAPACKAGEORDERABLE
PART NUMBER TOP-SIDE
MARKING
Tube SN7404N SN7404N
PDIP − N Tube SN74LS04N SN74LS04N
PDIP − N
Tube SN74S04N SN74S04N
Tube SN7404D
7404
Tape and reel SN7404DR 7404
SOIC − D
Tube SN74LS04D
LS04
0°C to 70°CSOIC − D Tape and reel SN74LS04DR LS04
0C to 70 C
Tube SN74S04D
S04
Tape and reel SN74S04DR S04
Tape and reel SN7404NSR SN7404
SOP − NS Tape and reel SN74LS04NSR 74LS04
SOP − NS
Tape and reel SN74S04NSR 74S04
SSOP − DB Tape and reel SN74LS04DBR LS04
Tube SN5404J SN5404J
Tube SNJ5404J SNJ5404J
CDIP − J
Tube SN54LS04J SN54LS04J
CDIP − J Tube SN54S04J SN54S04J
Tube SNJ54LS04J SNJ54LS04J
−55°C to 125°CTube SNJ54S04J SNJ54S04J
−55 C to 125 C
Tube SNJ5404W SNJ5404W
CFP − W Tube SNJ54LS04W SNJ54LS04W
CFP − W
Tube SNJ54S04W SNJ54S04W
LCCC − FK
Tube SNJ54LS04FK SNJ54LS04FK
LCCC − FK Tube SNJ54S04FK SNJ54S04FK
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
FUNCTION TABLE
(each inverter)
INPUT
AOUTPUT
Y
H L
L H
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
1A
2A
3A
4A
5A
6A
1Y
2Y
3Y
4Y
5Y
6Y
Y = A
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
schematics (each gate)
Input A
VCC
Output Y
GND
130
1 k
1.6 k
’04
4 k
Input
A
VCC
Output
Y
GND
20 k120
’LS04
8 k
12 k
1.5 k
3 k
4 k
Input
A
VCC
Outpu
t
Y
GND
2.8 k900
’S04
50
3.5 k
250
500
Resistor values shown are nominal.
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI: ’04, ’S04 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
’LS04 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Note 2): D package 86°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB package 96°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N package 80°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NS package 76°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. This are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Voltage values are with respect to network ground terminal.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN5404
SN7404
SN5404
SN7404
UNIT
MIN NOM MAX MIN NOM MAX
UNIT
VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V
VIH High-level input voltage 2 2 V
VIL Low-level input voltage 0.8 0.8 V
IOH High-level output current −0.4 −0.4 mA
IOL Low-level output current 16 16 mA
TAOperating free-air temperature −55 125 0 70 °C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
SN5404 SN7404
UNIT
PARAMETER
TEST CONDITIONS
MIN TYP§MAX MIN TYP§MAX
UNIT
VIK VCC = MIN, II = −12 mA 1.5 1.5 V
VOH VCC = MIN, VIL = 0.8 V, IOH = −0.4 mA 2.4 3.4 2.4 3.4 V
VOL VCC = MIN, VIH = 2 V, IOL = 16 mA 0.2 0.4 0.2 0.4 V
IIVCC = MAX, VI = 5.5 V 1 1 mA
IIH VCC = MAX, VI = 2.4 V 40 40 µA
IIL VCC = MAX, VI = 0.4 V 1.6 1.6 mA
IOSVCC = MAX −20 −55 −18 −55 mA
ICCH VCC = MAX, VI = 0 V 6 12 6 12 mA
ICCL VCC = MAX, VI = 4.5 V 18 33 18 33 mA
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§All typical values are at VCC = 5 V, TA = 25°C.
Not more than one output should be shorted at a time.
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics, VCC = 5 V, TA = 25°C (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
SN5404
SN7404
UNIT
PARAMETER
(INPUT)
(OUTPUT)
MIN TYP MAX
UNIT
tPLH
A
Y
RL = 400 ,
CL = 15 pF
12 22
ns
tPHL
A
Y
R
L
= 400
,
C
L
= 15 pF
8 15
ns
recommended operating conditions (see Note 3)
SN54LS04
SN74LS04
SN54LS04
SN74LS04
UNIT
MIN NOM MAX MIN NOM MAX
UNIT
VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V
VIH High-level input voltage 2 2 V
VIL Low-level input voltage 0.7 0.8 V
IOH High-level output current −0.4 −0.4 mA
IOL Low-level output current 4 8 mA
TAOperating free-air temperature −55 125 0 70 °C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
SN54LS04 SN74LS04
UNIT
PARAMETER
TEST CONDITIONS
MIN TYPMAX MIN TYPMAX
UNIT
VIK VCC = MIN, II = −18 mA 1.5 1.5 V
VOH VCC = MIN, VIL = MAX, IOH = −0.4 mA 2.5 3.4 2.7 3.4 V
VOL
VCC = MIN,
VIH = 2 V
IOL = 4 mA 0.25 0.4 0.4
V
V
OL
V
CC
= MIN,
V
IH
= 2 V
IOL = 8 mA 0.25 0.5
V
IIVCC = MAX, VI = 7 V 0.1 0.1 mA
IIH VCC = MAX, VI = 2.7 V 20 20 µA
IIL VCC = MAX, VI = 0.4 V 0.4 0.4 mA
IOS§VCC = MAX −20 −100 −20 −100 mA
ICCH VCC = MAX, VI = 0 V 1.2 2.4 1.2 2.4 mA
ICCL VCC = MAX, VI = 4.5 V 3.6 6.6 3.6 6.6 mA
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at VCC = 5 V, TA = 25°C.
§Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.
switching characteristics, VCC = 5 V, TA = 25°C (see Figure 2)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
TEST CONDITIONS
SN54LS04
SN74LS04
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TEST CONDITIONS
MIN TYP MAX
UNIT
tPLH
A
Y
RL = 2 k,
CL = 15 pF
9 15
ns
tPHL
A
Y
R
L
= 2 k
,
C
L
= 15 pF
10 15
ns
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
recommended operating conditions (see Note 3)
SN54S04
SN74S04
SN54S04
SN74S04
UNIT
MIN NOM MAX MIN NOM MAX
UNIT
VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V
VIH High-level input voltage 2 2 V
VIL Low-level input voltage 0.8 0.8 V
IOH High-level output current −1 −1 mA
IOL Low-level output current 20 20 mA
TAOperating free-air temperature −55 125 0 70 °C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
SN54S04 SN74S04
UNIT
PARAMETER
TEST CONDITIONS
MIN TYPMAX MIN TYPMAX
UNIT
VIK VCC = MIN, II = −18 mA 1.2 1.2 V
VOH VCC = MIN, VIL = 0.8 V, IOH = −1 mA 2.5 3.4 2.7 3.4 V
VOL VCC = MIN, VIH = 2 V, IOL = 20 mA 0.5 0.5 V
IIVCC = MAX, VI = 5.5 V 1 1 mA
IIH VCC = MAX, VI = 2.7 V 50 50 µA
IIL VCC = MAX, VI = 0.5 V −2 −2 mA
IOS§VCC = MAX −40 −100 −40 −100 mA
ICCH VCC = MAX, VI = 0 V 15 24 15 24 mA
ICCL VCC = MAX, VI = 4.5 V 30 54 30 54 mA
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at VCC = 5 V, TA = 25°C.
§Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.
switching characteristics, VCC = 5 V, TA = 25°C (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
SN54S04
SN74S04
UNIT
PARAMETER
(INPUT)
(OUTPUT)
MIN TYP MAX
UNIT
tPLH
A
Y
RL = 280 ,
CL = 15 pF
3 4.5
ns
tPHL
A
Y
R
L
= 280
,
C
L
= 15 pF
3 5
ns
tPLH
A
Y
RL = 280 ,
CL = 50 pF
4.5
ns
tPHL
A
Y
R
L
= 280
,
C
L
= 50 pF
5
ns
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
SERIES 54/74 AND 54S/74S DEVICES
tPHL tPLH
tPLH tPHL
LOAD CIRCUIT
FOR 3-STATE OUTPUTS
High-Level
Pulse
Low-Level
Pulse
VOLTAGE WAVEFORMS
PULSE DURATIONS
Input
Out-of-Phase
Output
(see Note D)
3 V
0 V
VOL
VOH
VOH
VOL
In-Phase
Output
(see Note D)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VCC
RL
Test
Point
From Output
Under Test
CL
(see Note A)
LOAD CIRCUIT
FOR OPEN-COLLECTOR OUTPUTS
LOAD CIRCUIT
FOR 2-STATE TOTEM-POLE OUTPUTS
(see Note B)
VCC
RL
From Output
Under Test
CL
(see Note A)
Test
Point
(see Note B
)
V
CC RL
From Output
Under Test
CL
(see Note A)
Test
Point
1 k
NOTES: A. CL includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL
.
E. All input pulses are supplied by generators having the following characteristics: PRR 1 MHz, ZO 50 ; tr and tf 7 ns for Serie
s
54/74 devices and tr and tf 2.5 ns for Series 54S/74S devices.
F. The outputs are measured one at a time, with one input transition per measurement.
S1
S2
tPHZ
tPLZ
tPZL
tPZH
3 V
3 V
0 V
0 V
th
tsu
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
Timing
Input
Data
Input
3 V
0 V
Output
Control
(low-level
enabling)
Waveform 1
(see Notes C
and D)
Waveform 2
(see Notes C
and D) 1.5 V
VOH − 0.5 V
VOL + 0.5 V
1.5 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
1.5 V 1.5 V
1.5 V 1.5 V
1.5 V
1.5 V 1.5 V
1.5 V 1.5 V
1.5 V
1.5 V
tw
1.5 V 1.5 V
1.5 V 1.5 V
1.5 V 1.5 V
VOH
VOL
Figure 1. Load Circuits and Voltage Waveforms
  
  
 
SDLS029C − DECEMBER 1983 − REVISED JANUAR Y 2004
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
SERIES 54LS/74LS DEVICES
tPHL tPLH
tPLH tPHL
LOAD CIRCUIT
FOR 3-STATE OUTPUTS
High-Level
Pulse
Low-Level
Pulse
VOLTAGE WAVEFORMS
PULSE DURATIONS
Input
Out-of-Phase
Output
(see Note D)
3 V
0 V
VOL
VOH
VOH
VOL
In-Phase
Output
(see Note D)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VCC
RL
Test
Point
From Output
Under Test
CL
(see Note A)
LOAD CIRCUIT
FOR OPEN-COLLECTOR OUTPUTS
LOAD CIRCUIT
FOR 2-STATE TOTEM-POLE OUTPUTS
(see Note B)
VCC
RL
From Output
Under Test
CL
(see Note A)
Test
Point
(see Note B
)
V
CC RL
From Output
Under Test
CL
(see Note A)
Test
Point
5 k
NOTES: A. CL includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL
.
E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
F. All input pulses are supplied by generators having the following characteristics: PRR 1 MHz, ZO 50 , tr 1.5 ns, tf 2.6 ns
.
G. The outputs are measured one at a time, with one input transition per measurement.
S1
S2
tPHZ
tPLZ
tPZL
tPZH
3 V
3 V
0 V
0 V
th
tsu
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
Timing
Input
Data
Input
3 V
0 V
Output
Control
(low-level
enabling)
Waveform 1
(see Notes C
and D)
Waveform 2
(see Notes C
and D) 1.5 V
VOH − 0.5 V
VOL + 0.5 V
1.5 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
1.3 V 1.3 V
1.3 V 1.3 V
1.3 V
1.3 V 1.3 V
1.3 V 1.3 V
1.3 V
1.3 V
tw
1.3 V 1.3 V
1.3 V 1.3 V
1.3 V 1.3 V
VOL
VOH
Figure 2. Load Circuits and Voltage Waveforms
PACKAGE OPTION ADDENDUM
www.ti.com 24-Jan-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Top-Side Markings
(4)
Samples
JM38510/00105BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
00105BCA
JM38510/00105BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
00105BDA
JM38510/07003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
07003BCA
JM38510/30003B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 JM38510/
30003B2A
JM38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003BCA
JM38510/30003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003BDA
JM38510/30003SCA ACTIVE CDIP J 14 25 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003SCA
JM38510/30003SDA ACTIVE CFP W 14 25 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003SDA
M38510/00105BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
00105BCA
M38510/00105BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
00105BDA
M38510/07003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
07003BCA
M38510/30003B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 JM38510/
30003B2A
M38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003BCA
M38510/30003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003BDA
M38510/30003SCA ACTIVE CDIP J 14 25 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003SCA
M38510/30003SDA ACTIVE CFP W 14 25 TBD A42 N / A for Pkg Type -55 to 125 JM38510/
30003SDA
SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN5404J
PACKAGE OPTION ADDENDUM
www.ti.com 24-Jan-2013
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Top-Side Markings
(4)
Samples
SN54LS04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN54LS04J
SN54S04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN54S04J
SN7404D ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404
SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404
SN7404DG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404
SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404
SN7404DRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404
SN7404DRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404
SN7404N ACTIVE PDIP N 14 25 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 SN7404N
SN7404N3 OBSOLETE PDIP N 14 TBD Call TI Call TI 0 to 70
SN7404NE4 ACTIVE PDIP N 14 25 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 SN7404N
SN74LS04D ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04
SN74LS04DE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04
SN74LS04DG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04
SN74LS04DR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04
SN74LS04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04
SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04
SN74LS04J OBSOLETE CDIP J 14 TBD Call TI Call TI 0 to 70
SN74LS04N ACTIVE PDIP N 14 25 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 SN74LS04N
PACKAGE OPTION ADDENDUM
www.ti.com 24-Jan-2013
Addendum-Page 3
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Top-Side Markings
(4)
Samples
SN74LS04N3 OBSOLETE PDIP N 14 TBD Call TI Call TI 0 to 70
SN74LS04NE4 ACTIVE PDIP N 14 25 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 SN74LS04N
SN74LS04NSR ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 74LS04
SN74LS04NSRG4 ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 74LS04
SN74S04D ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04
SN74S04DE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04
SN74S04DG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04
SN74S04DR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04
SN74S04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04
SN74S04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04
SN74S04N ACTIVE PDIP N 14 25 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 SN74S04N
SN74S04N3 OBSOLETE PDIP N 14 TBD Call TI Call TI 0 to 70
SN74S04NE4 ACTIVE PDIP N 14 25 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 SN74S04N
SN74S04NSR ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 74S04
SN74S04NSRE4 ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 74S04
SN74S04NSRG4 ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 74S04
SNJ5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ5404J
SNJ5404W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ5404W
SNJ54LS04FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 SNJ54LS
04FK
PACKAGE OPTION ADDENDUM
www.ti.com 24-Jan-2013
Addendum-Page 4
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Top-Side Markings
(4)
Samples
SNJ54LS04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54LS04J
SNJ54LS04W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54LS04W
SNJ54S04FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 SNJ54S
04FK
SNJ54S04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54S04J
SNJ54S04W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54S04W
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) Only one of markings shown within the brackets will appear on the physical device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 24-Jan-2013
Addendum-Page 5
OTHER QUALIFIED VERSIONS OF SN5404, SN54LS04, SN54LS04-SP, SN54S04, SN7404, SN74LS04, SN74S04 :
Catalog: SN7404, SN74LS04, SN54LS04, SN74S04
Military: SN5404, SN54LS04, SN54S04
Space: SN54LS04-SP
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Military - QML certified for Military and Defense Applications
Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
SN7404DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74LS04DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74S04DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74S04NSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 8-Apr-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
SN7404DR SOIC D 14 2500 367.0 367.0 38.0
SN74LS04DR SOIC D 14 2500 367.0 367.0 38.0
SN74S04DR SOIC D 14 2500 367.0 367.0 38.0
SN74S04NSR SO NS 14 2000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 8-Apr-2013
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated