IGBT
Highspeed5IGBTinTRENCHSTOPTM5technology
IGP30N65H5
650VIGBThighspeedswitchingseriesfifthgeneration
Datasheet
IndustrialPowerControl
2
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
Highspeed5IGBTinTRENCHSTOPTM5technology
FeaturesandBenefits:
HighspeedH5technologyoffering
•Best-in-Classefficiencyinhardswitchingandresonant
topologies
•PlugandplayreplacementofpreviousgenerationIGBTs
•650Vbreakdownvoltage
•LowgatechargeQG
•Maximumjunctiontemperature175°C
•QualifiedaccordingtoJEDECfortargetapplications
•Pb-freeleadplating;RoHScompliant
•CompleteproductspectrumandPSpiceModels:
http://www.infineon.com/igbt/
Applications:
•Solarconverters
•Uninterruptiblepowersupplies
•Weldingconverters
•Midtohighrangeswitchingfrequencyconverters
G
C
E
GCE
C
KeyPerformanceandPackageParameters
Type VCE ICVCEsat,Tvj=25°C Tvjmax Marking Package
IGP30N65H5 650V 30A 1.65V 175°C G30EH5 PG-TO220-3
3
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
TableofContents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Characteristics Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Testing Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
MaximumRatings
Foroptimumlifetimeandreliability,Infineonrecommendsoperatingconditionsthatdonotexceed80%ofthemaximumratingsstatedinthisdatasheet.
Parameter Symbol Value Unit
Collector-emittervoltage,Tvj25°C VCE 650 V
DCcollectorcurrent,limitedbyTvjmax
TC=25°C
TC=100°C
IC55.0
35.0
A
Pulsedcollectorcurrent,tplimitedbyTvjmax ICpuls 90.0 A
Turn off safe operating area
VCE650V,Tvj175°C,tp=1µs - 90.0 A
Gate-emitter voltage
TransientGate-emittervoltage(tp10µs,D<0.010) VGE ±20
±30 V
PowerdissipationTC=25°C
PowerdissipationTC=100°C Ptot 188.0
93.0 W
Operating junction temperature Tvj -40...+175 °C
Storage temperature Tstg -55...+150 °C
Soldering temperature,
wave soldering 1.6mm (0.063in.) from case for 10s 260 °C
Mounting torque, M3 screw
Maximum of mounting processes: 3 M0.6 Nm
ThermalResistance
Parameter Symbol Conditions Max.Value Unit
Characteristic
IGBT thermal resistance,
junction - case Rth(j-c) 0.80 K/W
Thermal resistance
junction - ambient Rth(j-a) 62 K/W
ElectricalCharacteristic,atTvj=25°C,unlessotherwisespecified
Value
min. typ. max.
Parameter Symbol Conditions Unit
StaticCharacteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V,IC=0.20mA 650 - - V
Collector-emitter saturation voltage VCEsat
VGE=15.0V,IC=30.0A
Tvj=25°C
Tvj=125°C
Tvj=175°C
-
-
-
1.65
1.85
1.95
2.10
-
-
V
Gate-emitter threshold voltage VGE(th) IC=0.30mA,VCE=VGE 3.2 4.0 4.8 V
Zero gate voltage collector current ICES
VCE=650V,VGE=0V
Tvj=25°C
Tvj=175°C
-
-
-
-
40.0
4000.0
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V,IC=30.0A - 39.5 - S
5
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
ElectricalCharacteristic,atTvj=25°C,unlessotherwisespecified
Value
min. typ. max.
Parameter Symbol Conditions Unit
DynamicCharacteristic
Input capacitance Cies - 1800 -
Output capacitance Coes - 45 -
Reverse transfer capacitance Cres - 7 -
VCE=25V,VGE=0V,f=1MHz pF
Gate charge QGVCC=520V,IC=30.0A,
VGE=15V - 70.0 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from
case
LE- 7.0 - nH
SwitchingCharacteristic,InductiveLoad
Value
min. typ. max.
Parameter Symbol Conditions Unit
IGBTCharacteristic,atTvj=25°C
Turn-on delay time td(on) - 19 - ns
Rise time tr- 9 - ns
Turn-off delay time td(off) - 177 - ns
Fall time tf- 14 - ns
Turn-on energy Eon - 0.28 - mJ
Turn-off energy Eoff - 0.10 - mJ
Total switching energy Ets - 0.38 - mJ
Tvj=25°C,
VCC=400V,IC=15.0A,
VGE=0.0/15.0V,
RG(on)=23.0,RG(off)=23.0,
Lσ=30nH,Cσ=30pF
Lσ,CσfromFig.E
Energy losses include “tail” and
diode reverse recovery.
Turn-on delay time td(on) - 18 - ns
Rise time tr- 4 - ns
Turn-off delay time td(off) - 180 - ns
Fall time tf- 22 - ns
Turn-on energy Eon - 0.09 - mJ
Turn-off energy Eoff - 0.03 - mJ
Total switching energy Ets - 0.12 - mJ
Tvj=25°C,
VCC=400V,IC=5.0A,
VGE=0.0/15.0V,
RG(on)=23.0,RG(off)=23.0,
Lσ=30nH,Cσ=30pF
Lσ,CσfromFig.E
Energy losses include “tail” and
diode reverse recovery.
6
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
SwitchingCharacteristic,InductiveLoad
Value
min. typ. max.
Parameter Symbol Conditions Unit
IGBTCharacteristic,atTvj=150°C
Turn-on delay time td(on) - 18 - ns
Rise time tr- 10 - ns
Turn-off delay time td(off) - 208 - ns
Fall time tf- 16 - ns
Turn-on energy Eon - 0.41 - mJ
Turn-off energy Eoff - 0.14 - mJ
Total switching energy Ets - 0.55 - mJ
Tvj=150°C,
VCC=400V,IC=15.0A,
VGE=0.0/15.0V,
RG(on)=23.0,RG(off)=23.0,
Lσ=30nH,Cσ=30pF
Lσ,CσfromFig.E
Energy losses include “tail” and
diode reverse recovery.
Turn-on delay time td(on) - 16 - ns
Rise time tr- 5 - ns
Turn-off delay time td(off) - 228 - ns
Fall time tf- 27 - ns
Turn-on energy Eon - 0.15 - mJ
Turn-off energy Eoff - 0.05 - mJ
Total switching energy Ets - 0.20 - mJ
Tvj=150°C,
VCC=400V,IC=5.0A,
VGE=0.0/15.0V,
RG(on)=23.0,RG(off)=23.0,
Lσ=30nH,Cσ=30pF
Lσ,CσfromFig.E
Energy losses include “tail” and
diode reverse recovery.
7
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
Figure 1. Forwardbiassafeoperatingarea
(D=0,TC=25°C,Tvj175°C,VGE=15V,tp=1µs.
RecommendeduseatVGE7.5V)
VCE,COLLECTOR-EMITTERVOLTAGE[V]
IC,COLLECTORCURRENT[A]
1 10 100 1000
0.1
1
10
100
not for linear use
Figure 2. Powerdissipationasafunctionofcase
temperature
(Tvj175°C)
TC,CASETEMPERATURE[°C]
Ptot,POWERDISSIPATION[W]
25 50 75 100 125 150 175
0
20
40
60
80
100
120
140
160
180
200
Figure 3. Collectorcurrentasafunctionofcase
temperature
(VGE15V,Tvj175°C)
TC,CASETEMPERATURE[°C]
IC,COLLECTORCURRENT[A]
25 50 75 100 125 150 175
0
10
20
30
40
50
60
Figure 4. Typicaloutputcharacteristic
(Tvj=25°C)
VCE,COLLECTOR-EMITTERVOLTAGE[V]
IC,COLLECTORCURRENT[A]
012345
0
10
20
30
40
50
60
70
80
90
VGE=18V
15V
12V
10V
8V
7V
6V
5V
4V
8
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
Figure 5. Typicaloutputcharacteristic
(Tvj=150°C)
VCE,COLLECTOR-EMITTERVOLTAGE[V]
IC,COLLECTORCURRENT[A]
012345
0
10
20
30
40
50
60
70
80
90
VGE=18V
15V
12V
10V
8V
7V
6V
5V
4V
Figure 6. Typicaltransfercharacteristic
(VCE=20V)
VGE,GATE-EMITTERVOLTAGE[V]
IC,COLLECTORCURRENT[A]
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
0
10
20
30
40
50
60
70
80
90
Tj=25°C
Tj=150°C
Figure 7. Typicalcollector-emittersaturationvoltageas
afunctionofjunctiontemperature
(VGE=15V)
Tvj,JUNCTIONTEMPERATURE[°C]
VCEsat,COLLECTOR-EMITTERSATURATION[V]
0 25 50 75 100 125 150 175
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
IC=7.5A
IC=15A
IC=30A
Figure 8. Typicalswitchingtimesasafunctionof
collectorcurrent
(inductiveload,Tvj=150°C,VCE=400V,
VGE=15/0V,rG=23,Dynamictestcircuitin
Figure E)
IC,COLLECTORCURRENT[A]
t,SWITCHINGTIMES[ns]
0 10 20 30 40 50 60 70 80 90
1
10
100
td(off)
tf
td(on)
tr
9
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
Figure 9. Typicalswitchingtimesasafunctionofgate
resistor
(inductiveload,Tvj=150°C,VCE=400V,
VGE=15/0V,IC=15A,Dynamictestcircuitin
Figure E)
rG,GATERESISTOR[]
t,SWITCHINGTIMES[ns]
5 15 25 35 45 55 65 75 85
1
10
100
1000
td(off)
tf
td(on)
tr
Figure 10. Typicalswitchingtimesasafunctionof
junctiontemperature
(inductiveload,VCE=400V,VGE=15/0V,
IC=15A,rG=23,Dynamictestcircuitin
Figure E)
Tvj,JUNCTIONTEMPERATURE[°C]
t,SWITCHINGTIMES[ns]
25 50 75 100 125 150 175
1
10
100 td(off)
tf
td(on)
tr
Figure 11. Gate-emitterthresholdvoltageasafunction
ofjunctiontemperature
(IC=0.3mA)
Tvj,JUNCTIONTEMPERATURE[°C]
VGE(th),GATE-EMITTERTHRESHOLDVOLTAGE[V]
0 25 50 75 100 125 150
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
typ.
min.
max.
Figure 12. Typicalswitchingenergylossesasa
functionofcollectorcurrent
(inductiveload,Tvj=150°C,VCE=400V,
VGE=15/0V,rG=23,Dynamictestcircuitin
Figure E)
IC,COLLECTORCURRENT[A]
E,SWITCHINGENERGYLOSSES[mJ]
0 10 20 30 40 50 60 70 80 90
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Eoff
Eon
Ets
10
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
Figure 13. Typicalswitchingenergylossesasa
functionofgateresistor
(inductiveload,Tvj=150°C,VCE=400V,
VGE=15/0V,IC=15A,Dynamictestcircuitin
Figure E)
rG,GATERESISTOR[]
E,SWITCHINGENERGYLOSSES[mJ]
5 15 25 35 45 55 65 75 85
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Eoff
Eon
Ets
Figure 14. Typicalswitchingenergylossesasa
functionofjunctiontemperature
(inductiveload,VCE=400V,VGE=15/0V,
IC=15A,rG=23,Dynamictestcircuitin
Figure E)
Tvj,JUNCTIONTEMPERATURE[°C]
E,SWITCHINGENERGYLOSSES[mJ]
25 50 75 100 125 150 175
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Eoff
Eon
Ets
Figure 15. Typicalswitchingenergylossesasa
functionofcollectoremittervoltage
(inductiveload,Tvj=150°C,VGE=15/0V,
IC=15A,rG=23,Dynamictestcircuitin
Figure E)
VCE,COLLECTOR-EMITTERVOLTAGE[V]
E,SWITCHINGENERGYLOSSES[mJ]
200 250 300 350 400 450 500
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Eoff
Eon
Ets
Figure 16. Typicalgatecharge
(IC=30A)
QGE,GATECHARGE[nC]
VGE,GATE-EMITTERVOLTAGE[V]
0 10 20 30 40 50 60 70 80
0
2
4
6
8
10
12
14
16
130V
520V
11
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
Figure 17. Typicalcapacitanceasafunctionof
collector-emittervoltage
(VGE=0V,f=1MHz)
VCE,COLLECTOR-EMITTERVOLTAGE[V]
C,CAPACITANCE[pF]
0 5 10 15 20 25 30
1
10
100
1000
1E+4
Cies
Coes
Cres
Figure 18. IGBTtransientthermalimpedance
(D=tp/T)
tp,PULSEWIDTH[s]
Zth(j-c),TRANSIENTTHERMALIMPEDANCE[K/W]
1E-6 1E-5 1E-4 0.001 0.01 0.1 1
0.001
0.01
0.1
1
D=0.5
0.2
0.1
0.05
0.02
0.01
single pulse
i:
ri[K/W]:
τi[s]:
1
0.07749916
3.7E-5
2
0.2797936
3.6E-4
3
0.2828165
4.9E-3
4
0.1598907
0.04086392
12
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
PG-TO220-3
13
IGP30N65H5
Highspeedswitchingseriesfifthgeneration
Rev.2.2,2014-12-04
t
a
a
b
b
td(off) tftr
td(on)
90% IC
10% IC
90% IC
10% VGE
10% IC
t
90% VGE
vGE(t)
t
t
IC(t)
vCE(t)
90% VGE
vGE(t)
t
t
vCE(t)
t
t1t4
2% IC
10% VGE
2% VCE
t2t3
Et
tV I t
off = x x d
1
2
CE C
Et
tV I t
on = x x d
3
4
CE C
CC
dI /dt
F
dI
I,V
Figure A.
Figure B.
Figure C. Definition of diode switching
characteristics
Figure E. Dynamic test circuit
Figure D.
IC(t)
Parasitic inductance L ,
parasitic capacitor L ,
relief capacitor C ,
(only for ZVT switching)
s
s
r
14
IGP30N65H5
High speed switching series fifth generation
Rev. 2.2, 2014-12-04
Revision History
IGP30N65H5
Revision: 2014-12-04, Rev. 2.2
Previous Revision
Revision Date Subjects (major changes since last revision)
2.1 2014-06-11 Final data sheet
2.2 2014-12-04 Minor changes Fig.1 and Fig.14
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to: erratum@infineon.com
Published by
Infineon Technologies AG
81726 Munich, Germany
81726 München, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the
application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,
including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon
Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems
and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon
Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support,
automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be
endangered.