NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A Single Low Noise Operational Amplifier The NE/SA/SE5534/5534A are single high-performance low noise operational amplifiers. Compared to other operational amplifiers, such as TL083, they show better noise performance, improved output drive capability, and considerably higher small-signal and power bandwidths. This makes the devices especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amps are internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew rate, low overshoot, etc.). http://onsemi.com SOIC-8 D SUFFIX CASE 751 8 1 PDIP-8 N SUFFIX CASE 626 8 1 Features * * * * * * * * * Small-Signal Bandwidth: 10 MHz Output Drive Capability: 600 W, 10 VRMS at VS = "18 V Input Noise Voltage: 4 nV Hz DC Voltage Gain: 100000 AC Voltage Gain: 6000 at 10 kHz Power Bandwidth: 200 kHz Slew Rate: 13 V/ms Large Supply Voltage Range: "3.0 to "20 V Pb-Free Packages are Available July, 2012 - Rev. 3 BALANCE 1 8 BALANCE/ COMPENSATION INVERTING INPUT 2 7 V+ NON-INVERTING 3 6 OUTPUT V- 4 5 COMPENSATION DEVICE MARKING INFORMATION See general marking information in the device marking section on page 8 of this data sheet. Audio Equipment Instrumentation and Control Circuits Telephone Channel Amplifiers Medical Equipment (c) Semiconductor Components Industries, LLC, 2012 D, N Packages Top View Applications * * * * PIN CONNECTIONS ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. 1 Publication Order Number: NE5534/D NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A 8 1 5 7 2 3 6 4 Figure 1. Equivalent Schematic MAXIMUM RATINGS Symbol Value Unit Supply Voltage Rating VS "22 V Input Voltage VIN "V Supply V Differential Input Voltage (Note 1) VDIFF "0.5 V Operating Temperature Range NE SA SE Tamb Storage Temperature Range Tstg -65 to +150 C Tj 150 C Junction Temperature Power Dissipation at 25C Thermal Resistance, Junction-to-Ambient PD N Package D Package RqJA N Package D Package Output Short-Circuit Duration (Note 2) Lead Soldering Temperature (10 sec max) 0 to +70 -40 to +85 -55 to +125 1150 750 130 158 C mW C/W - Indefinite - Tsld 230 C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6 V. Maximum current should be limited to "10 mA. 2. Output may be shorted to ground at VS = "15 V, Tamb = 25C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded. http://onsemi.com 2 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A DC ELECTRICAL CHARACTERISTICS (Tamb = 25C; VS = "15 V, unless otherwise noted.) (Notes 3, 4 and 5) NE/SA5534/5534A Characteristic Min Typ Max Min Typ Max Unit - 0.5 4.0 - 0.5 2.0 mV - - 5.0 - - 3.0 mV DVOS/DT - 5.0 - - 5.0 - mV/C IOS - 20 300 - 10 200 nA - - 400 - - 500 nA DIOS/DT - 200 - - 200 - pA/C IB - 500 1500 - 400 800 nA - - 2000 - - 1500 nA DIB/DT - 5.0 - - 5.0 - nA/C ICC - - 4.0 - 8.0 10 - - 4.0 - 6.5 9.0 mA "12 70 - "13 100 10 - - 100 "12 80 - "13 100 10 - - 50 V dB mV/V RL 600 W, VO = "10 V Overtemperature 25 100 - 50 100 - V/mV 15 - - 25 - - RL w 600 W "12 "13 - "12 "13 - Overtemperature RL w 600 W; VS = "18 V RL w 2.0 kW Overtemperature "10 "15 "12 "16 - - "10 "15 "12 16 - - "13 "12 "13.5 "12.5 - - "13 "12 "13.5 "12.5 - - Symbol Test Conditions VOS Offset Voltage Overtemperature Offset Current Overtemperature Input Current Supply Current Per Op Amp Common Mode Input Range Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing SE5534/5534A Overtemperature Overtemperature VCM CMRR PSRR AVOL VOUT V Input Resistance RIN 30 100 - 50 100 - kW Output Short Circuit Current ISC - 38 - - 38 - mA 3. For NE5534/5534A, TMIN = 0C, TMAX = 70C. 4. For SA5534/5534A, TMIN = -40C, TMAX = +85C. 5. For SE5534/5534A, TMIN = -55C, TMAX = +125C. http://onsemi.com 3 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A AC ELECTRICAL CHARACTERISTICS (Tamb = 25C; VS = "15 V, unless otherwise noted.) NE/SA5534/5534A Characteristic Output Resistance SE5534/5534A Symbol Test Conditions Min Typ Max Min Typ Max Unit ROUT AV = 30 dB closed-loop f = 10 kHz; RL = 600 W; CC = 22 pF - 0.3 - - 0.3 - W Transient Response Voltage-follower, VIN = 50 mV RL = 600 W, CC = 22 pF, CL = 100 pF Rise Time tR - 20 - - 20 - ns Overshoot - - 20 - - 20 - % Transient Response VIN = 50 mV, RL = 600 W, CC = 47 pF, CL = 500 pF Rise Time tR - 50 - - 50 - ns Overshoot - - 35 - - 35 - % Gain Gain Bandwidth Product Slew Rate Power Bandwidth AV f = 10 kHz, CC = 0 f = 10 kHz, CC = 22 pF - - 6.0 2.2 - - - - 6.0 2.2 - - V/mV GBW CC = 22 pF, CL = 100 pF - 10 - - 10 - MHz SR CC = 0 CC = 22 pF - - 13 6.0 - - - - 13 6.0 - - V/ms - VOUT = "10 V, CC = 0 pF VOUT = "10 V, CC = 22 pF VOUT = "14 V, RL = 600 W, CC = 22 pF, VCC = "18 V - 200 - - 200 - kHz - 95 - - 95 - - 70 - - 70 - ELECTRICAL CHARACTERISTICS (Tamb = 25C; VS = 15 V, unless otherwise noted.) NE/SA/SE5534 NE/SA/SE5534A Symbol Test Conditions Min Typ Max Min Typ Max Unit Input Noise Voltage VNOISE fO = 30 Hz fO = 1.0 kHz - - 7.0 4.0 - - - - 5.5 3.5 7.0 4.5 nV/Hz Input Noise Current INOISE fO = 30 Hz fO = 1.0 kHz - - 2.5 0.6 - - - - 1.5 0.4 - - pA/Hz Broadband Noise Figure - f = 10 Hz to 20 kHz; RS = 5.0 kW - - - - 0.9 - dB Channel Separation - f = 1.0 kHz; RS = 5.0 kW - 110 - - 110 - dB Characteristic http://onsemi.com 4 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A TYPICAL PERFORMANCE CHARACTERISTICS 16 TYPICAL VALUES GAIN (dB) 80 12 CC = 0 CC = 22pF 40 TYPICAL VALUES 5 CC = 0; RF = 10kW; RE = 100W 40 8 S 8 (V/ms) CC = 0; RF = 9kW; RE = 1kW 20 TYP 0 -40 60 VS = +15V CC GAIN (dB) 120 4 102 10 103 104 105 106 0 107 0 40 -20 103 80 Figure 2. Open-Loop Frequency Response CC = 0pF 22pF 47pF VS = +15V 1,2 IO 40 (mA) II (mA) TYP 106 0 -55 107 Figure 5. Large-Signal Frequency Response 0 -25 0 25 50 75 100 -55 +125 -25 0 TYP 4 10 IP IN POS (mA) 10 100 +125 102 IO = 0 NEG 75 50 Figure 7. Input Bias Current 6 TYPICAL VALUES 25 Tamb (oC) Figure 6. Output Short-Circuit Current 30 VIN (V) TYP Tamb (oC) f (Hz) 20 0,8 0,4 20 10 108 1,4 60 105 107 VS = +15V 30 104 106 Figure 4. Closed-Loop Frequency Response 80 VS = +15V TYPICAL VALUES 103 105 f (Hz) Figure 3. Slew Rate as a Function of Compensation Capacitance 40 0 102 104 CC(pF) f (Hz) (V) Vo(p-p) 20 CC = 22pF; RF = 1kW; RE = 0 TYP (nV Hz) 1 2 10-1 0 0 10 20 Vp; -VN (V) Figure 8. Input Common-Mode Voltage Range 0 0 10 20 Vp; -VN (V) Figure 9. Supply Current Per Op Amp http://onsemi.com 5 10-2 10 102 103 f (Hz) Figure 10. Input Noise Voltage Density 104 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A TYPICAL PERFORMANCE CHARACTERISTICS 102 106 102 TYPICAL VALUES 105 104 10 TYP 10Hz TO 20kHz 1kHz Vn(rms) (mV) 200Hz TO 4kHz 10-1 1 THERMAL NOISE OF SOURCE RESISTANCE 10-1 10 102 f (Hz) 1 10 10-1 10-2 10 10Hz Vn(rms) 103 (nV Hz) 102 In(rms) (pA Hz) 1 TYPICAL VALUES 103 Figure 11. Input Noise Current Density 104 10-2 10 102 103 104 RS (W) 105 Figure 12. Total Input Noise Density http://onsemi.com 6 106 10-2 0 10 RS (W) 20 Figure 13. Broadband Input Noise Voltage NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A TEST LOAD CIRCUITS V+ CC 22kW 100kW 2 CC 5 5534 3 RS 25W 1 2 8 + 6 RF 8 5 7 6 5534 3 + VI RE 100pF 600W 4 V- Figure 14. Frequency Compensation and Offset Voltage Adjustment Circuit CAL OSC Figure 15. Closed-Loop Frequency Response POWER SUPPLY +VCC -VCC (nV Hz) CAL METER BANDPASS AT 1kHz 1W + DUT 10kW (nV Hz) +40dB BANDPASS AT 30Hz 100W TEST BOARD GND Figure 16. Noise Test Block Diagram http://onsemi.com 7 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A MARKING DIAGRAMS 8 1 8 N5234 ALYWA G 1 8 S5234 ALYWA G 1 NE5234xN AWL YYWWG S5234 ALYW G SOIC-8 D SUFFIX CASE 751 SA5234xN AWL YYWWG SE5234xN AWL YYWWG PDIP-8 N SUFFIX CASE 626 x A WL, L YY, Y WW, W G or G = Blank or A = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package ORDERING INFORMATION Description Temperature Range Shipping 8-Pin Plastic Small Outline (SO-8) Package 0 to +70C 98 Units / Rail NE5534ADG 8-Pin Plastic Small Outline (SO-8) Package (Pb-Free) 0 to +70C 98 Units / Rail NE5534ADR2 8-Pin Plastic Small Outline (SO-8) Package 0 to +70C 2500 / Tape & Reel 8-Pin Plastic Small Outline (SO-8) Package (Pb-Free) 0 to +70C 2500 / Tape & Reel 8-Pin Plastic Dual In-Line Package (PDIP-8) 0 to +70C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free) 0 to +70C 50 Units / Rail 8-Pin Plastic Small Outline (SO-8) Package 0 to +70C 98 Units / Rail 8-Pin Plastic Small Outline (SO-8) Package (Pb-Free) 0 to +70C 98 Units / Rail Device NE5534AD NE5534ADR2G NE5534AN NE5534ANG NE5534D NE5534DG NE5534DR2 8-Pin Plastic Small Outline (SO-8) Package 0 to +70C 2500 / Tape & Reel 8-Pin Plastic Small Outline (SO-8) Package (Pb-Free) 0 to +70C 2500 / Tape & Reel 8-Pin Plastic Dual In-Line Package (PDIP-8) 0 to +70C 50 Units / Rail NE5534NG 8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free) 0 to +70C 50 Units / Rail SA5534AD 8-Pin Plastic Small Outline (SO-8) Package -40 to +85C 98 Units / Rail 8-Pin Plastic Small Outline (SO-8) Package (Pb-Free) -40 to +85C 98 Units / Rail NE5534DR2G NE5534N SA5534ADG SA5534ADR2 SA5534ADR2G SA5534AN SA5534ANG SA5534N SA5534NG SE5534AN SE5534ANG SE5534N SE5534NG 8-Pin Plastic Small Outline (SO-8) Package -40 to +85C 2500 / Tape & Reel 8-Pin Plastic Small Outline (SO-8) Package (Pb-Free) -40 to +85C 2500 / Tape & Reel 8-Pin Plastic Dual In-Line Package (PDIP-8) -40 to +85C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free) -40 to +85C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) -40 to +85C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free) -40 to +85C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) -55 to +125C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free) -55 to +125C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) -55 to +125C 50 Units / Rail 8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free) -55 to +125C 50 Units / Rail For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. http://onsemi.com 8 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 ISSUE AK -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. A 8 5 S B 0.25 (0.010) M Y M 1 4 -Y- K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE -Z- 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 9 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 _ 8 _ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 NE5534, SA5534, SE5534, NE5534A, SA5534A, SE5534A PACKAGE DIMENSIONS PDIP-8 N SUFFIX CASE 626-05 ISSUE M D A D1 E 8 5 E1 1 4 NOTE 5 F c E2 END VIEW TOP VIEW NOTE 3 e/2 A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION E IS MEASURED WITH THE LEADS RESTRAINED PARALLEL AT WIDTH E2. 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. DIM A A1 b C D D1 E E1 E2 E3 e L INCHES NOM MAX ---- 0.210 ---- ---- 0.018 0.022 0.010 0.014 0.365 0.400 ---- ---- 0.310 0.325 0.250 0.280 0.300 BSC ---- ---- 0.430 0.100 BSC 0.115 0.130 0.150 MIN ---- 0.015 0.014 0.008 0.355 0.005 0.300 0.240 MILLIMETERS MIN NOM MAX ---- ---- 5.33 0.38 ---- ---- 0.35 0.46 0.56 0.20 0.25 0.36 9.02 9.27 10.02 0.13 ---- ---- 7.62 7.87 8.26 6.10 6.35 7.11 7.62 BSC ---- ---- 10.92 2.54 BSC 2.92 3.30 3.81 L A1 C SEATING PLANE E3 e 8X SIDE VIEW b 0.010 M C A END VIEW ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf . SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 http://onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative NE5534/D