COP8SAx Family
8-Bit CMOS ROM Based and One-Time Programmable
(OTP) Microcontroller with 1k to 4k Memory, Power On
Reset, and Very Small Packaging
General Description
Note: COP8SAx devices are instruction set and pin com-
patible supersets of the COP800 Family devices, and are
replacements for these in new designs when possible.
The COPSAx Rom based and OTP microcontrollers are
highly integrated COP8feature core devices, with 1k to 4k
memory and advanced features including low EMI. These
single-chip CMOS devices are suited for low cost applica-
tions requiring a full featured controller, low EMI, and POR.
100%form-fit-function compatible OTP versions are avail-
able with 1k, 2k, and 4k memory, and in a variety of pack-
ages including 28-pin CSP. Erasable windowed versions are
available for use with a range of COP8 software and hard-
ware development tools.
Family features include an 8-bit memory mapped architec-
ture, 10 MHz CKI with 1 µs instruction cycle, one multi-
function 16-bit timer/counter with PWM output,
MICROWIRE/PLUSserial I/O, two power saving HALT/
IDLE modes, MIWU, idle timer, on-chip R/C oscillator, 12
high current outputs, user selectable options (WATCH-
DOG, 4 clock/oscillator modes, power-on-reset), low EMI
2.7V to 5.5V operation, and 16/20/28/40/44 pin packages.
Devices included in this datasheet are:
Device Memory (bytes) RAM (bytes) I/O Pins Packages Temperature
COP8SAA5 1k ROM 64 12/16/24 16/20/28 DIP/SOIC 0 to +70˚C, -40 to +85˚C, -40
to +125˚C
COP8SAB5 2k ROM 128 16/24 20/28 DIP/SOIC 0 to +70˚C, -40 to +85˚C, -40
to +125˚C
COP8SAC5 4k ROM 128 16/24/36/40 20/28 DIP/SOIC, 28 CSP, 40
DIP, 44 PLCC/QFP 0 to +70˚C, -40 to +85˚C, -40
to +125˚C
COP8SAA7 1k OTP EPROM 64 12/16/24 16/20/28 DIP/SOIC 0 to +70˚C, -40 to +85˚C, -40
to +125˚C
COP8SAB7 2k OTP EPROM 128 16/24 20/28 DIP/SOIC 0 to +70˚C, -40 to +85˚C, -40
to +125˚C
COP8SAC7 4k OTP EPROM 128 16/24 20/28 DIP/SOIC, 28 CSP, 40
DIP, 44 PLCC/QFP 0 to +70˚C, -40 to +85˚C, -40
to +125˚C
COP8SAA7SLB9 1k OTP EPROM 64 24 28 CSP 0 to +70˚C
COP8SAB7SLB9 2k OTP EPROM 128 24 28 CSP 0 to +70˚C
COP8SAC7SLB9 4k OTP EPROM 128 24 28 CSP 0 to +70˚C
COP8SAC7-Q3 4k EPROM 128 16/24/36 20/28/40 DIP Room Temp. Only
COP8SAC7-J3 4k EPROM 128 40 44 PLCC Room Temp. Only
Key Features
nLow cost 8-bit OTP microcontroller
nOTP program space with read/write protection (fully
secured)
nQuiet Design (low radiated emissions)
nMulti-Input Wakeup pins with optional interrupts
(4 to 8 pins)
n8 bytes of user storage space in EPROM
nUser selectable clock options
Crystal/Resonator options
Crystal/Resonator option with on-chip bias resistor
External oscillator
Internal R/C oscillator
nInternal Power-On Resetuser selectable
nWATCHDOG and Clock Monitor Logic user selectable
nUp to 12 high current outputs
CPU Features
nVersatile easy to use instruction set
n1 µs instruction cycle time
TRI-STATE®is a registered trademark of National Semiconductor Corporation.
MICROWIRE/PLUS, COP8, MICROWIREand WATCHDOGare trademarks of National Semiconductor Corporation.
iceMASTER®is a registered trademark of MetaLink Corporation.
PRELIMINARY
July 1999
COP8SAx Family, 8-Bit CMOS ROM Based and One-Time Programmable (OTP) Microcontroller
with 1k to 4k Memory, Power On Reset, and Very Small Packaging
© 1999 National Semiconductor Corporation DS012838 www.national.com
CPU Features (Continued)
nEight multi-source vectored interrupts servicing
External interrupt
Idle Timer T0
One Timer (with 2 interrupts)
MICROWIRE/PLUS Serial Interface
Multi-Input Wake Up
Software Trap
Default VIS (default interrupt)
n8-bit Stack Pointer SP (stack in RAM)
nTwo 8-bit Register Indirect Data Memory Pointers
nTrue bit manipulation
nMemory mapped I/O
nBCD arithmetic instructions
Peripheral Features
nMulti-Input Wakeup Logic
nOne 16-bit timer with two 16-bit registers supporting:
Processor Independent PWM mode
External Event counter mode
Input Capture mode
nIdle Timer
nMICROWIRE/PLUS Serial Interface (SPI Compatible)
I/O Features
nSoftware selectable I/O options
TRI-STATE®Output
Push-Pull Output
Weak Pull Up Input
High Impedance Input
nSchmitt trigger inputs on ports G and L
nUp to 12 high current outputs
nPin efficient (i.e., 40 pins in 44-pin package are devoted
to useful I/O)
Fully Static CMOS Design
nLow current drain (typically <4 µA)
nSingle supply operation: 2.7V to 5.5V
nTwo power saving modes: HALT and IDLE
Temperature Ranges
0˚C to +70˚C, −40˚C to +85˚C, and −40˚C to +125˚C
Development Support
nWindowed packages for DIP and PLCC
nReal time emulation and full program debug offered by
MetaLink Development System
Block Diagram
General Description (Continued)
Key features include an 8-bit memory mapped architecture,
a 16-bit timer/counter with two associated 16-bit registers
supporting three modes (Processor Independent PWM gen-
eration, External Event counter, and Input Capture capabili-
ties), two power saving HALT/IDLE modes with a
multi-sourced wakeup/interrupt capability, on-chip R/C oscil-
lator, high current outputs, user selectable options such as
WATCHDOG, Oscillator configuration, and power-on-reset.
1.1 EMI REDUCTION
The COP8SAx family of devices incorporates circuitry that
guards against electromagnetic interference an increasing
problem in today’s microcontroller board designs. National’s
DS012838-1
FIGURE 1. COP8SAx Block Diagram
www.national.com 2
General Description (Continued) (Continued)
patented EMI reduction technology offers low EMI clock cir-
cuitry, gradual turn-on output drivers (GTOs) and internal I
CC
smoothing filters, to help circumvent many of the EMI issues
influencing embedded control designs. National has
achieved 15 dB–20 dB reduction in EMI transmissions when
designs have incorporated its patented EMI reducing cir-
cuitry.
1.2 ARCHITECTURE
The COP8SAx family is based on a modified Harvard archi-
tecture, which allows data tables to be accessed directly
from program memory. This is very important with modern
microcontroller-based applications, since program memory
is usually ROM or EPROM, while data memory is usually
RAM. Consequently data tables usually need to be con-
tained in ROM or EPROM, so they are not lost when the mi-
crocontroller is powered down. In a modified Harvard archi-
tecture, instruction fetch and memory data transfers can be
overlapped with a two stage pipeline, which allows the next
instruction to be fetched from program memory while the
current instruction is being executed using data memory.
This is not possible with a Von Neumann single-address bus
architecture.
The COP8SAx family supports a software stack scheme that
allows the user to incorporate many subroutine calls. This
capability is important when using High Level Languages.
With a hardware stack, the user is limited to a small fixed
number of stack levels.
1.3 INSTRUCTION SET
In today’s 8-bit microcontroller application arena cost/
performance, flexibility and time to market are several of the
key issues that system designers face in attempting to build
well-engineered products that compete in the marketplace.
Many of these issues can be addressed through the manner
in which a microcontroller’s instruction set handles process-
ing tasks. And that’s why COP8 family offers a unique and
code-efficient instruction setone that provides the flexibil-
ity, functionality, reduced costs and faster time to market that
today’s microcontroller based products require.
Code efficiency is important because it enables designers to
pack more on-chip functionality into less program memory
space (ROM/OTP). Selecting a microcontroller with less pro-
gram memory size translates into lower system costs, and
the added security of knowing that more code can be packed
into the available program memory space.
1.3.1 Key Instruction Set Features
The COP8SAx family incorporates a unique combination of
instruction set features, which provide designers with opti-
mum code efficiency and program memory utilization.
Single Byte/Single Cycle Code Execution
The efficiency is due to the fact that the majority of instruc-
tions are of the single byte variety, resulting in minimum pro-
gram space. Because compact code does not occupy a sub-
stantial amount of program memory space, designers can
integrate additional features and functionality into the micro-
controller program memory space.Also, the majority instruc-
tions executed by the device are single cycle, resulting in
minimum program execution time. In fact, 77%of the instruc-
tions are single byte single cycle, providing greater code and
I/O efficiency, and faster code execution.
1.3.2 Many Single-Byte, Multifunction Instructions
The COP8SAx instruction set utilizes many single-byte, mul-
tifunction instructions. This enables a single instruction to ac-
complish multiple functions, such as DRSZ, DCOR, JID, and
LOAD/EXCHANGE instructions with post-incrementing and
post-decrementing, to name just a few examples. In many
cases, the instruction set can simultaneously execute as
many as three functions with the same single-byte instruc-
tion.
JID: (Jump Indirect); Single byte instruction; decodes exter-
nal events and jumps to corresponding service routines
(analogous to “DO CASE” statements in higher level lan-
guages).
LAID: (Load Accumulator-Indirect); Single byte look up table
instruction provides efficient data path from the program
memory to the CPU. This instruction can be used for table
lookup and to read the entire program memory for checksum
calculations.
RETSK: (Return Skip); Single byte instruction allows return
from subroutine and skips next instruction. Decision to
branch can be made in the subroutine itself, saving code.
www.national.com3
General Description (Continued) (Continued)
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These
instructions use the two memory pointers B and X to effi-
ciently process a block of data (analogous to “FOR NEXT” in
higher level languages).
1.3.3 Bit-Level Control
Bit-level control over many of the microcontroller’s I/O ports
provides a flexible means to ease layout concerns and save
board space. All members of the COP8 family provide the
ability to set, reset and test any individual bit in the data
memory address space, including memory-mapped I/O ports
and associated registers. Three memory-mapped pointers
handle register indirect addressing and software stack
pointer functions. The memory data pointers allow the option
of post-incrementing or post-decrementing with the data
movement instructions (LOAD/EXCHANGE). And 15
memory-maped registers allow designers to optimize the
precise implementation of certain specific instructions.
1.4 PACKAGING/PIN EFFICIENCY
Real estate and board configuration considerations demand
maximum space and pin efficiency, particularly given today’s
high integration and small product form factors. Microcontrol-
ler users try to avoid using large packages to get the I/O
needed. Large packages take valuable board space and in-
creases device cost, two trade-offs that microcontroller de-
signs can ill afford.
The COP8 family offers a wide range of packages and do not
waste pins: up to 90.9%(or 40 pins in the 44-pin package)
are devoted to useful I/O.
www.national.com 4
Connection Diagrams
DS012838-2
Top View
DS012838-3
Top View
DS012838-4
Top View
DS012838-39
Top View
DS012838-5
Top View
DS012838-6
Top View
FIGURE 2. Connection Diagrams
www.national.com5
Ordering Information
1k EPROM 2k EPROM 4k EPROM 4k EPROM
Windowed
Device
Temperature Order Number Package Order Number Package Order Number Package Order Number Package
0˚C to +70˚C COP8SAA716M9 16M
COP8SAA720M9 20M COP8SAB720M9 20M COP8SAC720M9 20M
COP8SAA728M9 28M COP8SAB728M9 28M COP8SAC728M9 28M
COP8SAA716N9 16N
COP8SAA720N9 20N COP8SAB720N9 20N COP8SAC720N9 20N COP8SAC720Q3 20Q
COP8SAA728N9 28N COP8SAB728N9 28N COP8SAC728N9 28N COP8SAC728Q3 28Q
COP8SAC740N9 40N COP8SAC740Q3 40Q
COP8SAC744V9 44V COP8SAC744J3 44J
−40˚C to +85˚C COP8SAA716M8 16M
COP8SAA720M8 20M COP8SAB720M8 20M COP8SAC720M8 20M
COP8SAA728M8 28M COP8SAB728M8 28M COP8SAC728M8 28M
COP8SAA716N8 16N
COP8SAA720N8 20N COP8SAB720N8 20N COP8SAC720N8 20N
COP8SAA728N8 28N COP8SAB728N8 28N COP8SAC728N8 28N
COP8SAC740N8 40N
COP8SAC744V8 44V
COP8SAA7SLB8 SLB COP8SAB7SLB8 SLB COP8SAC7SLB8 SLB
−40˚C to
+125˚C COP8SAC720M7 20M
COP8SAC728M7 28M
COP8SAC720N7 20N
COP8SAC728N7 28N
COP8SAC740N7 40N
COP8SAC744V7 44V
DS012838-8
FIGURE 3. Part Numbering Scheme
www.national.com 6
4.0 Electrical Characteristics
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (V
CC
)7V
Voltage at Any Pin −0.6V to V
CC
+0.6V
ESD Protection Level 2 kV
(Human Body Model)
Total Current into V
CC
Pin (Source) 80 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range −65˚C to +140˚C
Note 1:
Absolute maximum ratings indicate limits beyond which damage to
the device may occur. DC and AC electrical specifications are not ensured
when operating the device at absolute maximum ratings.
DC Electrical Characteristics
0˚C T
A
+70˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Operating Voltage (Note 8) 2.7 5.5 V
Power Supply Rise Time from 0.0V
(On-Chip Power-On Reset Selected) 10 ns 50 ms
V
CC
Start Voltage to Guarantee POR 0.25 V
Power Supply Ripple (Note 3) Peak-to-Peak 0.1 V
CC
V
Supply Current (Note 4)
CKI =10 MHz V
CC
=5.5V, t
C
=s 6 mA
CKI =4 MHz V
CC
=4.5V, t
C
=2.5 µs 2.1 mA
HALT Current (Note 5) WATCHDOG Disabled V
CC
=5.5V, CKI =0 MHz <48 µA
IDLE Current (Note 4)
CKI =10 MHz V
CC
=5.5V, t
C
=1 µs 1.5 mA
CKI =4 MHz V
CC
=4.5V, t
C
=2.5 µs 0.8 mA
Input Levels (V
IH
,V
IL
)
RESET
Logic High 0.8 V
CC
V
Logic Low 0.2 V
CC
V
CKI, All Other Inputs
Logic High 0.7 V
CC
V
Logic Low 0.2 V
CC
V
Value of the Internal Bias Resistor 0.5 1.0 2.0 M
for the Crystal/Resonator Oscillator
CKI Resistance to V
CC
or GND when R/C V
CC
=5.5V 5 8 11 k
Oscillator is Selected
Hi-Z Input Leakage (same as TRI-STATE output) V
CC
=5.5V −2 +2 µA
Input Pullup Current V
CC
=5.5V, V
IN
=0V −40 −250 µA
G and L Port Input Hysteresis 0.25 V
CC
V
www.national.com7
DC Electrical Characteristics (Continued)
0˚C T
A
+70˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Output Current Levels
D Outputs
Source V
CC
=4.5V, V
OH
=3.3V −0.4 mA
V
CC
=2.7V, V
OH
=1.8V −0.2 mA
Sink V
CC
=4.5V, V
OL
=1.0V 10 mA
V
CC
=2.7V, V
OL
=0.4V 2 mA
L Port
Source (Weak Pull-Up) V
CC
=4.5V, V
OH
=2.7V −10 −110 µA
V
CC
=2.7V, V
OH
=1.8V −2.5 −33 µA
Source (Push-Pull Mode) V
CC
=4.5V, V
OH
=3.3V −0.4 mA
V
CC
=2.7V, V
OH
=1.8V −0.2 mA
Sink (L0–L3, Push-Pull Mode) V
CC
=4.5V, V
OL
=1.0V 10 mA
V
CC
=2.7V, V
OL
=0.4V 2 mA
Sink (L4–L7, Push-Pull Mode) V
CC
=4.5V, V
OL
=0.4V 1.6 mA
V
CC
=2.7V, V
OL
=0.4V 0.7 mA
All Others
Source (Weak Pull-Up Mode) V
CC
=4.5V, V
OH
=2.7V −10 −110 µA
V
CC
=2.7V, V
OH
=1.8V −2.5 −33 µA
Source (Push-Pull Mode) V
CC
=4.5V, V
OH
=3.3V −0.4 mA
V
CC
=2.7V, V
OH
=1.8V −0.2 mA
Sink (Push-Pull Mode) V
CC
=4.5V, V
OL
=0.4V 1.6 mA
V
CC
=2.7V, V
OL
=0.4V 0.7 mA
Allowable Sink Current per Pin (Note 8)
D Outputs and L0 to L3 15 mA
All Others 3mA
Maximum Input Current without Latchup ±200 mA
(Note 6)
RAM Retention Voltage, Vr 2.0 V
V
CC
Rise Time from a V
CC
2.0V (Note 9) 12 µs
Input Capacitance (Note 8) 7 pF
Load Capacitance on D2 (Note 8) 1000 pF
www.national.com 8
AC Electrical Characteristics
0˚C T
A
+70˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Instruction Cycle Time (t
C
)
Crystal/Resonator, External 4.5V V
CC
5.5V 1.0 DC µs
2.7V V
CC
<4.5V 2.0 DC µs
Internal R/C Oscillator 4.5V V
CC
5.5V 2.0 µs
2.7V V
CC
<4.5V TBD µs
R/C Oscillator Frequency Variation 4.5V V
CC
5.5V ±35 %
(Note 8) 2.7V V
CC
<4.5V TBD %
External CKI Clock Duty Cycle (Note 8) fr =Max 45 55 %
Rise Time (Note 8) fr =10 MHz Ext Clock 12 ns
Fall Time (Note 8) fr =10 MHz Ext Clock 8 ns
Inputs
t
SETUP
4.5V V
CC
5.5V 200 ns
2.7V V
CC
<4.5V 500 ns
t
HOLD
4.5V V
CC
5.5V 60 ns
2.7V V
CC
<4.5V 150 ns
Output Propagation Delay (Note 7) R
L
=2.2k, C
L
=100 pF
t
PD1
,t
PD0
SO, SK 4.5V V
CC
5.5V 0.7 µs
2.7V V
CC
<4.5V 1.75 µs
All Others 4.5V V
CC
5.5V 1.0 µs
2.7V V
CC
<4.5V 2.5 µs
MICROWIRE Setup Time (t
UWS
) (Note 7) 20 ns
MICROWIRE Hold Time (t
UWH
) (Note 7) 56 ns
MICROWIRE Output Propagation Delay (t
UPD
) 220 ns
MICROWIRE Maximum Shift Clock
Master Mode 500 kHz
Slave Mode 1 MHz
Input Pulse Width (Note 7)
Interrupt Input High Time 1 t
C
Interrupt Input Low Time 1 t
C
Timer 1 Input High Time 1 t
C
Timer 1 Input Low Time 1 t
C
Reset Pulse Width 1 µs
Note 2: tC=Instruction cycle time (Clock input frequency divided by 10).
Note 3: Maximum rate of voltage change must be <0.5 V/ms.
Note 4: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI, inputs connected to VCC
and outputs driven low but not connected to a load.
Note 5: The HALT mode will stop CKI from oscillating in the R/C and the Crystal configurations. In the R/C configuration, CKI is forced high internally. In the crystal
or external configuration, CKI is TRI-STATE. Measurement of IDD HALT is done with device neither sourcing nor sinking current; with L. F, C, G0, and G2–G5 pro-
grammed as low outputs and not driving a load; all outputs programmed low and not driving a load; all inputs tied to VCC; WATCHDOG and clock monitor disabled.
Parameter refers to HALT mode entered via setting bit 7 of the G Port data register.
Note 6: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages >VCC and the pins will have sink current to VCC when
biased at voltages >VCC (the pins do not have source current when biased at a voltage below VCC). The effective resistance to VCC is 750(typical). These two
pins will not latch up. The voltage at the pins must be limited to <14V. WARNING: Voltages in excess of 14V will cause damage to the pins. This warning ex-
cludes ESD transients.
Note 7: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.
Note 8: Parameter characterized but not tested.
Note 9: Rise times faster than this specification may reset the device if POR is enabled and may affect the value of Idle Timer T0 if POR is not enabled.
www.national.com9
Absolute Maximum Ratings (Note 10)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (V
CC
)7V
Voltage at Any Pin −0.6V to V
CC
+0.6V
ESD Protection Level 2 kV
(Human Body Model)
Total Current into V
CC
Pin (Source) 80 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range −65˚C to +140˚C
Note 10:
Absolute maximum ratings indicate limits beyond which damage to
the device may occur. DC and AC electrical specifications are not ensured
when operating the device at absolute maximum ratings.
DC Electrical Characteristics
−40˚C T
A
+85˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Operating Voltage 2.7 5.5 V
Power Supply Rise Time from 0.0V (Note 17)
(On-Chip Power-On Reset Selected) 10 ns 50 ms
V
CC
Start Voltage to Guarantee POR 0.25 V
Power Supply Ripple (Note 12) Peak-to-Peak 0.1 V
CC
V
Supply Current (Note 13)
CKI =10 MHz V
CC
=5.5V, t
C
=1 µs 6.0 mA
HALT Current (Note 14) WATCHDOG Disabled V
CC
=5.5V, CKI =0 MHz <4 10.0 µA
IDLE Current (Note 13)
CKI =10 MHz V
CC
=5.5V, t
C
=1 µs 1.5 mA
Input Levels (V
IH
,V
IL
)
RESET
Logic High 0.8 V
CC
V
Logic Low 0.2 V
CC
V
CKI, All Other Inputs
Logic High 0.7 V
CC
V
Logic Low 0.2 V
CC
V
Value of the Internal Bias Resistor 0.5 1.0 2.0 M
for the Crystal/Resonator Oscillator
CKI Resistance to V
CC
or GND when R/C V
CC
=5.5V 5 8 11 k
Oscillator is Selected
Hi-Z Input Leakage (same as TRI-STATE output) V
CC
=5.5V −2 +2 µA
Input Pullup Current V
CC
=5.5V, V
IN
=0V −40 −250 µA
G and L Port Input Hysteresis 0.25 V
CC
V
www.national.com 10
DC Electrical Characteristics (Continued)
−40˚C T
A
+85˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Output Current Levels
D Outputs
Source V
CC
=4.5V, V
OH
=3.3V −0.4 mA
V
CC
=2.7V, V
OH
=1.8V −0.2 mA
Sink V
CC
=4.5V, V
OL
=1.0V 10 mA
V
CC
=2.7V, V
OL
=0.4V 2 mA
L Port
Source (Weak Pull-Up) V
CC
=4.5V, V
OH
=2.7V −10.0 −110 µA
V
CC
=2.7V, V
OH
=1.8V −2.5 −33 µA
Source (Push-Pull Mode) V
CC
=4.5V, V
OH
=3.3V −0.4 mA
V
CC
=2.7V, V
OH
=1.8V −0.2 mA
Sink (L0–L3, Push-Pull Mode) V
CC
=4.5V, V
OL
=1.0V 10.0 mA
V
CC
=2.7V, V
OL
=0.4V 2 mA
Sink (L4–L7, Push-Pull Mode) V
CC
=4.5V, V
OL
=0.4V 1.6 mA
V
CC
=2.7V, V
OL
=0.4V 0.7 mA
All Others
Source (Weak Pull-Up Mode) V
CC
=4.5V, V
OH
=2.7V −10.0 −110 µA
V
CC
=2.7V, V
OH
=1.8V −2.5 −33 µA
Source (Push-Pull Mode) V
CC
=4.5V, V
OH
=3.3V −0.4 mA
V
CC
=2.7V, V
OH
=1.8V −0.2 mA
Sink (Push-Pull Mode) V
CC
=4.5V, V
OL
=0.4V 1.6 mA
V
CC
=2.7V, V
OL
=0.4V 0.7 mA
Allowable Sink Current per Pin (Note 17)
D Outputs and L0 to L3 15 mA
All Others 3mA
Maximum Input Current without Latchup (Note 15) ±200 mA
RAM Retention Voltage, Vr 2.0 V
V
CC
Rise Time from a V
CC
2.0V (Note 18) 12 µs
Input Capacitance (Note 17) 7 pF
Load Capacitance on D2 (Note 17) 1000 pF
AC Electrical Characteristics
−40˚C T
A
+85˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Instruction Cycle Time (t
C
)
Crystal/Resonator, External 4.5V V
CC
5.5V 1.0 DC µs
2.7V V
CC
<4.5V 2.0 DC µs
Internal R/C Oscillator 4.5V V
CC
5.5V 2.0 µs
2.7V V
CC
<4.5V TBD µs
R/C Oscillator Frequency Variation 4.5V V
CC
5.5V ±35 %
(Note 17) 2.7V V
CC
<4.5V TBD %
External CKI Clock Duty Cycle (Note 17) fr =Max 45 55 %
Rise Time (Note 17) fr =10 MHz Ext Clock 12 ns
Fall Time (Note 17) fr =10 MHz Ext Clock 8 ns
www.national.com11
AC Electrical Characteristics (Continued)
−40˚C T
A
+85˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Inputs
t
SETUP
4.5V V
CC
5.5V 200 ns
2.7V V
CC
<4.5V 500 ns
t
HOLD
4.5V V
CC
5.5V 60 ns
2.7V V
CC
<4.5V 150 ns
Output Propagation Delay (Note 16) R
L
=2.2k, C
L
=100 pF
t
PD1
,t
PD0
SO, SK 4.5V V
CC
5.5V 0.7 µs
2.7V V
CC
<4.5V 1.75 µs
All Others 4.5V V
CC
5.5V 1.0 µs
2.7V V
CC
<4.5V 2.5 µs
MICROWIRE Setup Time (t
UWS
) (Note 16) 20 ns
MICROWIRE Hold Time (t
UWH
) (Note 16) 56 ns
MICROWIRE Output Propagation Delay (t
UPD
) 220 ns
MICROWIRE Maximum Shift Clock
Master Mode 500 kHz
Slave Mode 1 MHz
Input Pulse Width (Note 17)
Interrupt Input High Time 1 t
C
Interrupt Input Low Time 1 t
C
Timer 1 Input High Time 1 t
C
Timer 1 Input Low Time 1 t
C
Reset Pulse Width 1 µs
Note 11: tC=Instruction cycle time (Clock input frequency divided by 10).
Note 12: Maximum rate of voltage change must be <0.5 V/ms.
Note 13: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI, inputs connected to VCC
and outputs driven low but not connected to a load.
Note 14: The HALT mode will stop CKI from oscillating in the R/C and the Crystal configurations. In the R/C configuration, CKI is forced high internally. In the crystal
or external configuration, CKI is TRI-STATE. Measurement of IDD HALT is done with device neither sourcing nor sinking current; with L. F, C, G0, and G2–G5 pro-
grammed as low outputs and not driving a load; all outputs programmed low and not driving a load; all inputs tied to VCC; clock monitor disabled. Parameter refers
to HALT mode entered via setting bit 7 of the G Port data register.
Note 15: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages >VCC and the pins will have sink current to VCC when
biased at voltages >VCC (the pins do not have source current when biased at a voltage below VCC). The effective resistance to VCC is 750(typical). These two
pins will not latch up. The voltage at the pins must be limited to <14V. WARNING: Voltages in excess of 14V will cause damage to the pins. This warning excludes
ESD transients.
Note 16: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.
Note 17: Parameter characterized but not tested.
Note 18: Rise times faster than this specification may reset the device if POR is enabled and may affect the value of Idle Timer T0 if POR is not enabled.
DS012838-9
FIGURE 4. MICROWIRE/PLUS Timing
www.national.com 12
Absolute Maximum Ratings (Note 19)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (V
CC
)7V
Voltage at Any Pin −0.6V to V
CC
+0.6V
ESD Protection Level 2 kV
(Human Body Model)
Total Current into V
CC
Pin (Source) 80 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range −65˚C to +140˚C
Note 19:
Absolute maximum ratings indicate limits beyond which damage to
the device may occur. DC and AC electrical specifications are not ensured
when operating the device at absolute maximum ratings.
DC Electrical Characteristics
−40˚C T
A
+125˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Operating Voltage 4.5 5.5 V
Power Supply Rise Time from 0.0V (Note 17)
(On-Chip Power-On Reset Selected) 10 ns 50 ms
V
CC
Start Voltage to Guarantee POR 0.25 V
Power Supply Ripple (Note 12) Peak-to-Peak 0.1 V
CC
V
Supply Current (Note 13)
CKI =10 MHz V
CC
=5.5V, t
C
=1 µs 6.0 mA
HALT Current (Note 14) WATCHDOG
Disabled V
CC
=5.5V, CKI =0 MHz <10 30 µA
IDLE Current (Note 13)
CKI =10 MHz V
CC
=5.5V, t
C
=1 µs 1.5 mA
Input Levels (V
IH
,V
IL
)
RESET
Logic High 0.8 V
CC
V
Logic Low 0.2 V
CC
V
CKI, All Other Inputs
Logic High 0.7 V
CC
V
Logic Low 0.2 V
CC
V
Value of the Internal Bias Resistor 0.5 1.0 2.0 M
for the Crystal/Resonator Oscillator
CKI Resistance to V
CC
or GND when R/C V
CC
=5.5V 5 8 11 k
Oscillator is Selected
Hi-Z Input Leakage V
CC
=5.5V −5 +5 µA
Input Pullup Current V
CC
=5.5V, V
IN
=0V −35 −400 µA
G and L Port Input Hysteresis 0.25 V
CC
V
Output Current Levels
D Outputs
Source V
CC
=4.5V, V
OH
=3.3V −0.4 mA
Sink V
CC
=4.5V, V
OL
=1.0V 9 mA
L Port
Source (Weak Pull-Up) V
CC
=4.5V, V
OH
=2.7V −9 −140 µA
Source (Push-Pull Mode) V
CC
=4.5V, V
OH
=3.3V −0.4 mA
Sink (L0–L3, Push-Pull Mode) V
CC
=4.5V, V
OL
=1.0V 9 mA
Sink (L4–L7, Push-Pull Mode) V
CC
=4.5V, V
OL
=0.4V 1.4 mA
All Others
Source (Weak Pull-Up Mode) V
CC
=4.5V, V
OH
=2.7V −9 −140 µA
Source (Push-Pull Mode) V
CC
=4.5V, V
OH
=3.3V −0.4 mA
Sink (Push-Pull Mode) V
CC
=4.5V, V
OL
=0.4V 1.4 mA
TRI-STATE Leakage V
CC
=5.5V −5 +5 µA
www.national.com13
DC Electrical Characteristics (Continued)
−40˚C T
A
+125˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Allowable Sink Current per Pin (Note 17)
D Outputs and L0 to L3 15 mA
All Others 3mA
Maximum Input Current without Latchup Room Temp ±200 mA
(Note 15)
RAM Retention Voltage, Vr 2.0 V
V
CC
Rise Time from a V
CC
2.0V (Note 18) 12 µs
Input Capacitance (Note 17) 7 pF
Load Capacitance on D2 (Note 17) 1000 pF
AC Electrical Characteristics
−40˚C T
A
+125˚C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Instruction Cycle Time (t
C
)
Crystal/Resonator, External 4.5V V
CC
5.5V 1.0 DC µs
Internal R/C Oscillator 4.5V V
CC
5.5V 2.0 DC µs
R/C Oscillator Frequency Variation 4.5V V
CC
5.5V TBD %
(Note 6)
External CKI Clock Duty Cycle (Note 6) fr =Max 45 55 %
Rise Time (Note 6) fr =10 MHz Ext Clock 12 ns
Fall Time (Note 6) fr =10 MHz Ext Clock 8 ns
Inputs
t
SETUP
4.5V V
CC
5.5V 200 ns
t
HOLD
4.5V V
CC
5.5V 60 ns
Output Propagation Delay (Note 5) R
L
=2.2k, C
L
=100 pF
t
PD1
,t
PD0
SO, SK 4.5V V
CC
5.5V 0.7 µs
All Others 4.5V V
CC
5.5V 1.0 µs
MICROWIRE Setup Time (t
UWS
) (Note 5) 20 ns
MICROWIRE Hold Time (t
UWH
) (Note 5) 56 ns
MICROWIRE Output Propagation Delay (t
UPD
) 220 ns
MICROWIRE Maximum Shift Clock
Master Mode 500 kHz
Slave Mode 1 MHz
Input Pulse Width (Note 6)
Interrupt Input High Time 1 t
C
Interrupt Input Low Time 1 t
C
Timer 1, 2, 3 Input High Time 1 t
C
Timer 1, 2, 3 Input Low Time 1 t
C
Reset Pulse Width 1 µs
www.national.com 14
5.0 Pin Descriptions
COP8SAx I/O structure minimizes external component re-
quirements. Software-switchable I/O enables designers to
reconfigure the microcontroller’s I/O functions with a
single instruction. Each individual I/O pin can be indepen-
dently configured as an output pin low, an output high, an
input with high impedance or an input with a weak pull-up
device.A typical example is the use of I/O pins as the key-
board matrix input lines. The input lines can be pro-
grammed with internal weak pull-ups so that the input
lines read logic high when the keys are all up. With a key
closure, the corresponding input line will read a logic zero
since the weak pull-up can easily be overdriven. When the
key is released, the internal weak pullup will pull the input
line back to logic high. This flexibility eliminates the need
for external pull-up resistors. The High current options are
available for driving LEDs, motors and speakers. This
flexibility helps to ensure a cleaner design, with less exter-
nal components and lower costs. Below is the general de-
scription of all available pins.
V
CC
and GND are the power supply pins. All V
CC
and
GND pins must be connected.
CKI is the clock input. This can come from the Internal
R/C oscillator, external, or a crystal oscillator (in conjunc-
tion with CKO). See Oscillator Description section.
RESET is the master reset input. See Reset description
section.
The device contains four bidirectional 8-bit I/O ports (C, G,
L and F), where each individual bit may be independently
configured as an input (Schmitt trigger inputs on ports L
and G), output or TRI-STATE under program control.
Three data memory address locations are allocated for
each of these I/O ports. Each I/O port has two associated
8-bit memory mapped registers, the CONFIGURATION
register and the output DATA register. A memory mapped
address is also reserved for the input pins of each I/O
port. (See the memory map for the various addresses as-
sociated with the I/O ports.)
Figure 5
shows the I/O port
configurations. The DATA and CONFIGURATION regis-
ters allow for each port bit to be individually configured un-
der software control as shown below:
CONFIGURATION DATA Port Set-Up
Register Register
0 0 Hi-Z Input
(TRI-STATE Output)
0 1 Input with Weak Pull-Up
1 0 Push-Pull Zero Output
1 1 Push-Pull One Output
Port L is an 8-bit I/O port. All L-pins have Schmitt triggers on
the inputs.
Port L supports the Multi-Input Wake Up feature on all eight
pins. The 16-pin device does not have a full complement of
Port L pins. The unavailable pins are not terminated. A read
operation these unterminated pins are not terminated.A read
operation these unterminated pins will return unpredictable
values. To minimize current drain, the unavailable pins must
be programmed as outputs.
Port G is an 8-bit port. Pin G0, G2–G5 are bi-directional I/O
ports. Pin G6 is always a general purpose Hi-Z input.All pins
have Schmitt Triggers on their inputs. Pin G1 serves as the
dedicated WDOUT WATCHDOG output with weak pullup
if WATCHDOG feature is selected by the ECON register.
The pin is a general purpose I/O if WATCHDOG feature is
not selected. If WATCHDOG feature is selected, bit 1 of the
Port G configuration and data register does not have any ef-
fect on Pin G1 setup. Pin G7 is either input or output depend-
ing on the oscillator option selected. With the crystal oscilla-
tor option selected, G7 serves as the dedicated output pin for
the CKO clock output. With the internal R/C or the external
oscillator option selected, G7 serves as a general purpose
Hi-Z input pin and is also used to bring the device out of
HALT mode with a low to high transition on G7. There are
two registers associated with Port G, a data register and a
configuration register. Using these registers, each of the 5
I/O pins (G0, G2–G5) can be individually configured under
software control.
Since G6 is an input only pin and G7 is the dedicated CKO
clock output pin (crystal clock option) or general purpose in-
put (R/C or external clock option), the associated bits in the
data and configuration registers for G6 and G7 are used for
special purpose functions as outlined below. Reading the G6
and G7 data bits will return zeroes.
The device will be placed in the HALT mode by writing a “1”
to bit 7 of the Port G Data Register. Similarly the device will
be placed in the IDLE mode by writing a “1” to bit 6 of the
Port G Data Register.
Writing a “1” to bit 6 of the Port G Configuration Register en-
ables the MICROWIRE/PLUS to operate with the alternate
phase of the SK clock. The G7 configuration bit, if set high,
enables the clock start up delay after HALT when the R/C
clock configuration is used.
Config. Reg. Data Reg.
G7 CLKDLY HALT
G6 Alternate SK IDLE
Port G has the following alternate features:
G6 SI (MICROWIRE Serial Data Input)
G5 SK (MICROWIRE Serial Clock)
G4 SO (MICROWIRE Serial Data Output)
G3 T1A (Timer T1 I/O)
G2 T1B (Timer T1 Capture Input)
G0 INTR (External Interrupt Input)
Port G has the following dedicated functions:
G7 CKO Oscillator dedicated output or general purpose in-
put
G1 WDOUT WATCHDOG and/or CLock Monitor if WATCH-
DOG enabled, otherwise it is a general purpose I/O
Port C is an 8-bit I/O port. The 40-pin device does not have
a full complement of Port C pins. The unavailable pins are
not terminated. A read operation on these unterminated pins
will return unpredictable values. Only the COP8SAC7 device
contains Port C. The 20/28 pin devices do not offer Port C.
On these devices, the associated Port C Data and Configu-
ration registers should not be used.
Port F is an 8-bit I/O port. The 28-pin device does not have
a full complement of Port F pins. The unavailable pins are
not terminated. A read operation on these unterminated pins
will return unpredictable values.
www.national.com15
5.0 Pin Descriptions (Continued)
Port D is an 8-bit output port that is preset high when RESET
goes low. The user can tie two or more D port outputs (ex-
cept D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the ex-
ternal loads on this pin must ensure that the output voltages stay
above 0.7 VCC to prevent the chip from entering special modes. Also
keep the external loading on D2 to less than 1000 pF.
6.0 Functional Description
The architecture of the device is a modified Harvard archi-
tecture. With the Harvard architecture, the program memory
EPROM is separated from the data store memory (RAM).
Both EPROM and RAM have their own separate addressing
space with separate address buses. The architecture,
though based on the Harvard architecture, permits transfer
of data from EPROM to RAM.
6.1 CPU REGISTERS
The CPU can do an 8-bit addition, subtraction, logical or shift
operation in one instruction (t
C
) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15-bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally
post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be
optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/
interrupt stack (in RAM). With reset the SP is initialized to
RAM address 02F Hex (devices with 64 bytes of RAM), or
initialized to RAM address 06F Hex (devices with 128 bytes
of RAM).
All the CPU registers are memory mapped with the excep-
tion of the Accumulator (A) and the Program Counter (PC).
6.2 PROGRAM MEMORY
The program memory consists of 1024, 2048, or 4096 bytes
of EPROM or ROM.
Table 1
shows the program memory
sizes for the different devices. These bytes may hold pro-
gram instructions or constant data (data tables for the LAID
instruction, jump vectors for the JID instruction, and interrupt
vectors for the VIS instruction). The program memory is ad-
dressed by the 15-bit program counter (PC). All interrupts in
the device vector to program memory location 0FF Hex. The
contents of the program memory read 00 Hex in the erased
state.
6.3 DATA MEMORY
The data memory address space includes the on-chip RAM
and data registers, the I/O registers (Configuration, Data and
Pin), the control registers, the MICROWIRE/PLUS SIO shift
register, and the various registers, and counters associated
with the timers (with the exception of the IDLE timer). Data
memory is addressed directly by the instruction or indirectly
by the B, X and SP pointers.
The data memory consists of 64 or 128 bytes of RAM.
Table
1
shows the data memory sizes for the different devices. Fif-
teen bytes of RAM are mapped as “registers” at addresses
0F0 to 0FE Hex. These registers can be loaded immediately,
and also decremented and tested with the DRSZ (decrement
register and skip if zero) instruction. The memory pointer
registers X, SP and B are memory mapped into this space at
address locations 0FC to 0FE Hex respectively, with the
other registers (except 0FF) being available for general us-
age.Address location 0FF is reserved for future RAM expan-
sion. If compatibility with future devices (with more RAM) is
not desired, this location can be used as a general purpose
RAM location.
DS012838-10
FIGURE 5. I/O Port Configurations
DS012838-12
FIGURE 6. I/O Port Configurations Output Mode
DS012838-11
FIGURE 7. I/O Port Configurations Input Mode
www.national.com 16
6.0 Functional Description (Continued)
The instruction set permits any bit in memory to be set, reset
or tested. All I/O and registers (except A and PC) are
memory mapped; therefore, I/O bits and register bits can be
directly and individually set, reset and tested. The accumula-
tor (A) bits can also be directly and individually tested.
RAM contents are undefined upon power-up.
TABLE 1. Program/Data Memory Sizes
Program Data User
Device Memory Memory Storage
(Bytes) (Bytes) (Bytes)
COP8SAA7 1024 64 8
COP8SAB7 2048 128 8
COP8SAC7 4096 128 8
6.4 ECON (CONFIGURATION) REGISTER
The ECON register is used to configure the user selectable
clock, security, power-on reset, WATCHDOG, and HALT op-
tions. The register can be programmed and read only in
EPROM programming mode. Therefore, the register should
be programmed at the same time as the program memory.
The contents of the ECON register shipped from the factory
read 00 Hex (windowed device), 80 Hex (OTP device) or as
specified by the customer (ROM device).
The format of the ECON register is as follows:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X POR SECURITY CKI 2 CKI 1 WATCH Reserved HALT
DOG
Bit 7 =x This is for factory test. The polarity is al-
ways 0.
Bit 6 =1 Power-on reset enabled.
=0 Power-on reset disabled.
Bit 5 =1 Security enabled. EPROM read and write
are not allowed.
=0 Security disabled. EPROM read and write
are allowed.
Bits 4, 3 =0, 0 External CKI option selected. G7 is avail-
able as a HALT restart and/or general pur-
pose input. CKI is clock input.
=0, 1 R/C oscillator option selected. G7 is avail-
able as a HALT restart and/or general pur-
pose input. CKI clock input. Internal R/C
components are supplied for maximum
R/C frequency.
=1, 0 Crystal oscillator with on-chip crystal bias
resistor disabled. G7 (CKO) is the clock
generator output to crystal/resonator.
=1, 1 Crystal oscillator with on-chip crystal bias
resistor enabled. G7 (CKO) is the clock
generator output to crystal/resonator.
Bit 2 =1 WATCHDOG feature disabled. G1 is a
general purpose I/O.
=0 WATCHDOG feature enabled. G1 pin is
WATCHDOG output with waek pullup.
Bit 1 =Reserved.
Bit 0 =1 HALT mode disabled.
=0 HALT mode enabled.
6.5 USER STORAGE SPACE IN EPROM
In addition to the ECON register, there are 8 bytes of
EPROM available for “user information”. ECON and these 8
bytes are outside of the code area and are not protected by
the security bit of the ECON register. Even when security is
set, information in the 8-byte USER area is both read and
write enabled allowing the user to read from and write into
the area at all times while still protecting the code from unau-
thorized access.
Both ECON and USER area, 9 bytes total, are outside of the
normal address range of the EPROM and can not be ac-
cessed by the executing software. This allows for the stor-
age of non-secured information. Typical uses are for storage
of serial numbers, data codes, version numbers, copyright
information, lot numbers, etc.
The COP8 assembler defines a special ROM section type,
CONF, into which the ECON and USER data may be coded.
Both ECON and User Data are programmed automatically
by programmers that are certified by National.
The following examples illustrate the declaration of ECON
and the User information.
Syntax:
[label:] .sect econ, conf
.db value ;1 byte,
;configures options
.db
.endsect<user information>
;up to 8 bytes
Example: The following sets a value in the ECON register
and User Identification for a COP8SAC728M7. The ECON
bit values shown select options: Power-on enabled, Security
disabled, Crystal oscillator with on-chip bias disabled,
WATCHDOG enabled and HALT mode enabled.
.chip 8SAC
.sect econ, conf
.db 0x55 ;por, extal, wd, halt
.db 'my v1.00' ;user data declaration
.endsect
...
.end start
Note: All programmers certified for programming this family of parts will sup-
port programming of the CONFiguration section. Please contact Na-
tional or your device programmer supplier for more information.
6.6 OTP SECURITY
The device has a security feature that, when enabled, pre-
vents external reading of the OTP program memory. The se-
curity bit in the ECON register determines, whether security
is enabled or disabled. If the security feature is disabled, the
contents of the internal EPROM may be read.
If the security feature is enabled, then any attempt to ex-
ternally read the contents of the EPROM will result in the
value FF Hex being read from all program locations. Un-
der no circumstances can a secured part be read. In ad-
dition, with the security feature enabled, the write operation
to the EPROM program memory and ECON register is inhib-
ited. The ECON register is readable regardless of the state
of the security bit. The security bit, when set, cannot be
erased, even in windowed packages. If the security bit is
set in a device in a windowed package, that device may be
erased but will not be further programmable.
If security is being used, it is recommended that all other bits
in the ECON register be programmed first. Then the security
bit can be programmed.
www.national.com17
6.0 Functional Description (Continued)
6.7 RESET
The device is initialized when the RESET pin is pulled low or
the On-chip Power-On Reset is enabled.
The following occurs upon initialization:
Port L: TRISTATE
Port C: TRISTATE
Port G: TRISTATE
Port F: TRISTATE
Port D: HIGH
PC: CLEARED to 0000
PSW, CNTRL and ICNTRL registers: CLEARED
SIOR: UNAFFECTED after RESET with power already
applied
RANDOM after RESET at power-on
T1CNTRL: CLEARED
Accumulator, Timer 1:
RANDOM after RESET with crystal clock option
(power already applied)
UNAFFECTED after RESET with R/C clock option
(power already applied)
RANDOM after RESET at power-on
WKEN, WKEDG: CLEARED
WKPND: RANDOM
SP (Stack Pointer):
Initialized to RAM address 02F Hex (devices with
64 bytes of RAM), or initialized to
RAM address 06F Hex (devices with
128 bytes of RAM).
B and X Pointers:
UNAFFECTED after RESET with power
already applied
RANDOM after RESET at power-on
RAM:
UNAFFECTED after RESET with power already
applied
RANDOM after RESET at power-on
WATCHDOG (if enabled):
The device comes out of reset with both the WATCHDOG
logic and the Clock Monitor detector armed, with the
WATCHDOG service window bits set and the Clock Monitor
bit set. The WATCHDOG and Clock Monitor circuits are in-
hibited during reset. The WATCHDOG service window bits
being initialized high default to the maximum WATCHDOG
service window of 64k t
C
clock cycles. The Clock Monitor bit
being initialized high will cause a Clock Monitor error follow-
ing reset if the clock has not reached the minimum specified
frequency at the termination of reset. A Clock Monitor error
will cause an active low error output on pin G1. This error
output will continue until 16 t
C
–32 t
C
clock cycles following
the clock frequency reaching the minimum specified value,
at which time the G1 output will go high.
6.7.1 External Reset
The RESET input when pulled low initializes the device. The
RESET pin must be held low for a minimum of one instruc-
tion cycle to guarantee a valid reset. During Power-Up initial-
ization, the user must ensure that the RESET pin is held low
until the device is within the specified V
CC
voltage. An R/C
circuit on the RESET pin with a delay 5 times (5x) greater
than the power supply rise time or 15 µs whichever is
greater, is recommended. Reset should also be wide enough
to ensure crystal start-up upon Power-Up.
RESET may also be used to cause an exit from the HALT
mode.
Arecommended reset circuit for this deviced is shown in
Fig-
ure 9
.
6.7.2 On-Chip Power-On Reset
The on-chip reset circuit is selected by a bit in the ECON reg-
ister. When enabled, the device generates an internal reset
as V
CC
rises to a voltage level above 2.0V. The on-chip reset
circuitry is able to detect both fast and slow rise times on V
CC
(V
CC
rise time between 10 ns and 50 ms).
Under no circumstances should the RESET pin be allowed
to float. If the on-chip Power-On Reset feature is being used,
RESET pin should be connected directly to V
CC
. The output
of the power-on reset detector will always preset the Idle
timer to 0FFF(4096 t
C
). At this time, the internal reset will be
generated.
If the Power-On Reset feature is enabled, the internal reset
will not be turned off until the Idle timer underflows. The inter-
nal reset will perform the same functions as external reset.
The user is responsible for ensuring that V
CC
is at the mini-
mum level for the operating frequency within the 4096 t
C
. Af-
ter the underflow, the logic is designed such that no addi-
tional internal resets occur as long as V
CC
remains above
2.0V.
Note: While the POR feature of the COP8SAx was never intended to function
as a brownout detector, there are certain constraints of this block that
the system designer must address to properly recover from a brownout
condition. This is true regardless of whether the internal POR or the
external reset feature is used.
A brownout condition is reached when VCC of the device goes below
the minimum operating conditions of the device. The minimum guaran-
teed operating conditions are defined as VCC = 4.5V @10 MHz CKI,
VCC = 2.7V @4 MHz, or VCC = 2.0V during HALT mode (or when CKI
is stopped) operation.
When using either the external reset or the POR feature to recover
from a brownout condition, VCC must be lowered to 0.25V or an exter-
nal reset must be applied whenever it goes below the minimum oper-
ating conditions as stated above.
DS012838-13
FIGURE 8. Reset Logic
DS012838-14
RC >5x power supply rise time or 15 µs, whichever is greater.
FIGURE 9. Reset Circuit Using External Reset
www.national.com 18
6.0 Functional Description (Continued)
The contents of data registers and RAM are unknown follow-
ing the on-chip reset.
6.8 OSCILLATOR CIRCUITS
There are four clock oscillator options available: Crystal Os-
cillator with or without on-chip bias resistor, R/C Oscillator
with on-chip resistor and capacitor, and External Oscillator.
The oscillator feature is selected by programming the ECON
register, which is summarized in
Table 2
.
TABLE 2. Oscillator Option
ECON4 ECON3 Oscillator Option
0 0 External Oscillator
1 0 Crystal Oscillator without Bias Resistor
0 1 R/C Oscillator
ECON4 ECON3 Oscillator Option
1 1 Crystal Oscillator with Bias Resistor
DS012838-15
FIGURE 10. Reset Timing (Power-On Reset Enabled)
with V
CC
Tied to RESET
DS012838-16
FIGURE 11. Reset Circuit Using Power-On Reset
www.national.com19
6.0 Functional Description (Continued)
6.8.1 Crystal Oscillator
The crystal Oscillator mode can be selected by programming
ECON Bit 4 to 1. CKI is the clock input while G7/CKO is the
clock generator output to the crystal.An on-chip bias resistor
connected between CKI and CKO can be enabled by pro-
gramming ECON Bit 3 to 1 with the crystal oscillator option
selection. The value of the resistor is in the range of 0.5M to
2M (typically 1.0M).
Table 3
shows the component values re-
quired for various standard crystal values. Resistor R2 is
only used when the on-chip bias resistor is disabled.
Figure
12
shows the crystal oscillator connection diagram.
TABLE 3. Crystal Oscillator Configuration,
T
A
=25˚C, V
CC
=5V
R1 (k)R2(M) C1 (pF) C2 (pF) CKI Freq. (MHz)
0 1 30 30 15
0 1 32 32 10
0 1 45 3036 4
5.6 1 100 100–156 0.455
6.8.2 External Oscillator
The External Oscillator mode can be selected by program-
ming ECON Bit 3 to 0 and ECON Bit 4 to 0. CKI can be
driven by an external clock signal provided it meets the
specified duty cycle, rise and fall times, and input levels. G7/
CKO is available as a general purpose input G7 and/or Halt
control.
Figure 13
shows the external oscillator connection
diagram.
6.8.3 R/C Oscillator
The R/C Oscillator mode can be selected by programming
ECON Bit 3 to 1 and ECON Bit 4 to 0. In R/C oscillation
mode, CKI is left floating, while G7/CKO is available as a
general purpose input G7 and/or HALT control.The R/C con-
trolled oscillator has on-chip resistor and capacitor for maxi-
mum R/C oscillator frequency operation. The maximum fre-
quency is 5 MHz ±35%for V
CC
between 4.5V to 5.5V and
temperature range of −40˚C to +85˚C. For max frequency
operation, the CKI pin should be left floating. For lower fre-
quencies, an external capacitor should be connected be-
tween CKI and either V
CC
or GND. Immunity of the R/C os-
cillator to external noise can be improved by connecting one
half the external capacitance to V
CC
and one half to GND.
PC board trace length on the CKI pin should be kept as short
as possible.
Table 4
shows the oscillator frequency as a
function of external capacitance on the CKI pin.
Figure 14
shows the R/C oscillator configuration.
TABLE 4. R/C Oscillator Configuration,
−40˚C to +85˚C, V
CC
=4.5V to 5.5V,
OSC Freq. Variation of ±35%
External Capacitor R/C OSC Freq Instr. Cycle
(pF) (MHz) (µs)
0 5 2.0
9 4 2.5
52 2 5.0
150 1 10
TBD 32 kHz 312.5
With On-Chip Bias Resistor
DS012838-17
Without On-Chip Bias Resistor
DS012838-18
FIGURE 12. Crystal Oscillator
DS012838-19
FIGURE 13. External Oscillator
www.national.com 20
6.0 Functional Description (Continued)
DS012838-20
For operation at lower than maximum R/C oscillator frequency.
DS012838-21
For operation at maximum R/C oscillator frequency.
FIGURE 14. R/C Oscillator
www.national.com21
6.0 Functional Description (Continued)
6.9 CONTROL REGISTERS
CNTRL Register (Address X'00EE)
T1C3 T1C2 T1C1 T1C0 MSEL IEDG SL1 SL0
Bit 7 Bit 0
The Timer1 (T1) and MICROWIRE/PLUS control register
contains the following bits:
T1C3 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C1 Timer T1 mode control bit
T1C0 Timer T1 Start/Stop control in timer
modes 1 and 2, T1 Underflow Interrupt
Pending Flag in timer mode 3
MSEL Selects G5 and G4 as MICROWIRE/PLUS
signals SK and SO respectively
IEDG External interrupt edge polarity select
(0 = Rising edge, 1 = Falling edge)
SL1 & SL0 Select the MICROWIRE/PLUS clock divide
by (00 = 2, 01 = 4, 1x = 8)
PSW Register (Address X'00EF)
HC C T1PNDA T1ENA EXPND BUSY EXEN GIE
Bit 7 Bit 0
The PSW register contains the following select bits:
HC Half Carry Flag
C Carry Flag
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload
RA in mode 1, T1 Underflow in Mode 2, T1A
capture edge in mode 3)
T1ENA Timer T1 Interrupt Enable for Timer Underflow
or T1A Input capture edge
EXPND External interrupt pending
BUSY MICROWIRE/PLUS busy shifting flag
EXEN Enable external interrupt
GIE Global interrupt enable (enables interrupts)
The Half-Carry flag is also affected by all the instructions that
affect the Carry flag. The SC (Set Carry) and R/C (Reset
Carry) instructions will respectively set or clear both the carry
flags. In addition to the SC and R/C instructions, ADC,
SUBC, RRC and RLC instructions affect the Carry and Half
Carry flags.
ICNTRL Register (Address X'00E8)
Reserved LPEN T0PND T0EN µWPND µWEN T1PNDB T1ENB
Bit 7 Bit 0
The ICNTRL register contains the following bits:
Reserved This bit is reserved and should to zero
LPEN L Port Interrupt Enable (Multi-Input Wakeup/
Interrupt)
T0PND Timer T0 Interrupt pending
T0EN Timer T0 Interrupt Enable (Bit 12 toggle)
µWPND MICROWIRE/PLUS interrupt pending
µWEN Enable MICROWIRE/PLUS interrupt
T1PNDB Timer T1 Interrupt Pending Flag for T1B cap-
ture edge
T1ENB Timer T1 Interrupt Enable for T1B Input cap-
ture edge
7.0 Timers
The device contains a very versatile set of timers (T0, T1).
Timer T1 and associated autoreload/capture registers power
up containing random data.
7.1 TIMER T0 (IDLE TIMER)
The device supports applications that require maintaining
real time and low power with the IDLE mode. This IDLE
mode support is furnished by the IDLE timer T0. The Timer
T0 runs continuously at the fixed rate of the instruction cycle
clock, t
C
. The user cannot read or write to the IDLETimer T0,
which is a count down timer.
The Timer T0 supports the following functions:
Exit out of the Idle Mode (See Idle Mode description)
WATCHDOG logic (See WATCHDOG description)
Start up delay out of the HALT mode
Timing the width of the internal power-on-reset
The IDLE Timer T0 can generate an interrupt when the
twelfth bit toggles. This toggle is latched into the T0PND
pending flag, and will occur every 4.096 ms at the maximum
clock frequency (t
C
=1 µs).Acontrol flag T0EN allows the in-
terrupt from the twelfth bit of Timer T0 to be enabled or dis-
abled. Setting T0EN will enable the interrupt, while resetting
it will disable the interrupt.
7.2 TIMER T1
One of the main functions of a microcontroller is to provide
timing and counting capability for real-time control tasks. The
COP8 family offers a very versatile 16-bit timer/counter
structure, and two supporting 16-bit autoreload/capture reg-
isters (R1A and R1B), optimized to reduce software burdens
in real-time control applications. The timer block has two pins
associated with it, T1A and T1B. Pin T1A supports I/O re-
quired by the timer block, while pin T1B is an input to the
timer block.
The timer block has three operating modes: Processor Inde-
pendent PWM mode, External Event Counter mode, and In-
put Capture mode.
The control bits T1C3,T1C2, and T1C1 allow selection of the
different modes of operation.
7.2.1 Mode 1. Processor Independent PWM Mode
One of the timer’s operating modes is the Processor Inde-
pendent PWM mode. In this mode, the timer generates a
“Processor Independent” PWM signal because once the
timer is setup, no more action is required from the CPU
which translates to less software overhead and greater
throughput. The user software services the timer block only
when the PWM parameters require updating. This capability
is provided by the fact that the timer has two separate 16-bit
reload registers. One of the reload registers contains the
“ON” timer while the other holds the “OFF” time. By contrast,
a microcontroller that has only a single reload register re-
quires an additional software to update the reload value (al-
ternate between the on-time/off-time).
The timer can generate the PWM output with the width and
duty cycle controlled by the values stored in the reload reg-
isters. The reload registers control the countdown values
and the reload values are automatically written into the timer
when it counts down through 0, generating interrupt on each
reload. Under software control and with minimal overhead,
www.national.com 22
7.0 Timers (Continued)
the PMW outputs are useful in controlling motors, triacs, the
intensity of displays, and in providing inputs for data acquisi-
tion and sine wave generators.
In this mode, the timer T1 counts down at a fixed rate of t
C
.
Upon every underflow the timer is alternately reloaded with
the contents of supporting registers, R1A and R1B. The very
first underflow of the timer causes the timer to reload from
the register R1A. Subsequent underflows cause the timer to
be reloaded from the registers alternately beginning with the
register R1B.
The T1 Timer control bits, T1C3, T1C2 and T1C1 set up the
timer for PWM mode operation.
Figure 15
shows a block diagram of the timer in PWM mode.
The underflows can be programmed to toggle the T1Aoutput
pin. The underflows can also be programmed to generate in-
terrupts.
Underflows from the timer are alternately latched into two
pending flags, T1PNDA and T1PNDB. The user must reset
these pending flags under software control. Two control en-
able flags, T1ENA and T1ENB, allow the interrupts from the
timer underflow to be enabled or disabled. Setting the timer
enable flag T1ENA will cause an interrupt when a timer un-
derflow causes the R1A register to be reloaded into the
timer. Setting the timer enable flag T1ENB will cause an in-
terrupt when a timer underflow causes the R1B register to be
reloaded into the timer. Resetting the timer enable flags will
disable the associated interrupts.
Either or both of the timer underflow interrupts may be en-
abled. This gives the user the flexibility of interrupting once
per PWM period on either the rising or falling edge of the
PWM output. Alternatively, the user may choose to interrupt
on both edges of the PWM output.
7.2.2 Mode 2. External Event Counter Mode
This mode is quite similar to the processor independent
PWM mode described above. The main difference is that the
timer, T1, is clocked by the input signal from the T1Apin. The
T1 timer control bits, T1C3, T1C2 and T1C1 allow the timer
to be clocked either on a positive or negative edge from the
T1A pin. Underflows from the timer are latched into the
T1PNDA pending flag. Setting the T1ENA control flag will
cause an interrupt when the timer underflows.
In this mode the input pin T1B can be used as an indepen-
dent positive edge sensitive interrupt input if the T1ENB con-
trol flag is set. The occurrence of a positive edge on the T1B
input pin is latched into the T1PNDB flag.
Figure 16
shows a block diagram of the timer in External
Event Counter mode.
Note: The PWM output is not available in this mode since the T1A pin is be-
ing used as the counter input clock.
DS012838-22
FIGURE 15. Timer in PWM Mode
DS012838-23
FIGURE 16. Timer in External Event Counter Mode
www.national.com23
7.0 Timers (Continued)
7.2.3 Mode 3. Input Capture Mode
The device can precisely measure external frequencies or
time external events by placing the timer block, T1, in the in-
put capture mode. In this mode, the reload registers serve as
independent capture registers, capturing the contents of the
timer when an external event occurs (transition on the timer
input pin). The capture registers can be read while maintain-
ing count, a feature that lets the user measure elapsed time
and time between events. By saving the timer value when
the external event occurs, the time of the external event is
recorded. Most microcontrollers have a latency time be-
cause they cannot determine the timer value when the exter-
nal event occurs. The capture register eliminates the latency
time, thereby allowing the applications program to retrieve
the timer value stored in the capture register.
In this mode, the timer T1 is constantly running at the fixed t
C
rate. The two registers, R1A and R1B, act as capture regis-
ters. Each register acts in conjunction with a pin. The register
R1A acts in conjunction with the T1A pin and the register
R1B acts in conjunction with the T1B pin.
The timer value gets copied over into the register when a
trigger event occurs on its corresponding pin. Control bits,
T1C3, T1C2 and T1C1, allow the trigger events to be speci-
fied either as a positive or a negative edge. The trigger con-
dition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate
interrupts. The occurrence of the specified trigger condition
on the T1Aand T1B pins will be respectively latched into the
pending flags, T1PNDA and T1PNDB. The control flag
T1ENA allows the interrupt on T1A to be either enabled or
disabled. Setting the T1ENA flag enables interrupts to be
generated when the selected trigger condition occurs on the
T1A pin. Similarly, the flag T1ENB controls the interrupts
from the T1B pin.
Underflows from the timer can also be programmed to gen-
erate interrupts. Underflows are latched into the timer T1C0
pending flag (the T1C0 control bit serves as the timer under-
flow interrupt pending flag in the Input Capture mode). Con-
sequently, the T1C0 control bit should be reset when enter-
ing the Input Capture mode. The timer underflow interrupt is
enabled with the T1ENA control flag. When a T1A interrupt
occurs in the Input Capture mode, the user must check both
the T1PNDA and T1C0 pending flags in order to determine
whether a T1A input capture or a timer underflow (or both)
caused the interrupt.
Figure 17
shows a block diagram of the timer in Input Cap-
ture mode.
DS012838-24
FIGURE 17. Timer in Input Capture Mode
www.national.com 24
7.0 Timers (Continued)
7.3 TIMER CONTROL FLAGS
The control bits and their functions are summarized below.
T1C3 Timer mode control
T1C2 Timer mode control
T1C1 Timer mode control
T1C0 Timer Start/Stop control in Modes 1 and 2 (Pro-
cessor Independent PWM and External Event
Counter), where 1 = Start, 0 = Stop
Timer Underflow Interrupt Pending Flag in
Mode 3 (Input Capture)
T1PNDA Timer Interrupt Pending Flag
T1ENA Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
0 = Timer Interrupt Disabled
T1PNDB Timer Interrupt Pending Flag
T1ENB Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
0 = Timer Interrupt Disabled
The timer mode control bits (T1C3, T1C2 and T1C1) are detailed below:
Mode T1C3 T1C2 T1C1 Description Interrupt A
Source Interrupt B
Source Timer
Counts On
11 0 1 PWM: T1A Toggle Autoreload RA Autoreload RB t
C
1 0 0 PWM: No T1A
Toggle Autoreload RA Autoreload RB t
C
2
0 0 0 External Event
Counter Timer
Underflow Pos. T1B Edge Pos. T1A
Edge
0 0 1 External Event
Counter Timer
Underflow Pos. T1B Edge Pos. T1A
Edge
3
0 1 0 Captures: Pos. T1A Edge Pos. T1B Edge t
C
T1A Pos. Edge or Timer
T1B Pos. Edge Underflow
1 1 0 Captures: Pos. T1A Neg. T1B t
C
T1A Pos. Edge Edge or Timer Edge
T1B Neg. Edge Underflow
0 1 1 Captures: Neg. T1A Neg. T1B t
C
T1A Neg. Edge Edge or Timer Edge
T1B Neg. Edge Underflow
1 1 1 Captures: Neg. T1A Neg. T1B t
C
T1A Neg. Edge Edge or Timer Edge
T1B Neg. Edge Underflow
www.national.com25
8.0 Power Save Modes
Today, the proliferation of battery-operated based applica-
tions has placed new demands on designers to drive power
consumption down. Battery-operated systems are not the
only type of applications demanding low power. The power
budget constraints are also imposed on those consumer/
industrial applications where well regulated and expensive
power supply costs cannot be tolerated. Such applications
rely on low cost and low power supply voltage derived di-
rectly from the “mains” by using voltage rectifier and passive
components. Low power is demanded even in automotive
applications, due to increased vehicle electronics content.
This is required to ease the burden from the car battery. Low
power 8-bit microcontrollers supply the smarts to control
battery-operated, consumer/industrial, and automotive appli-
cations.
The COP8SAx devices offer system designers a variety of
low-power consumption features that enable them to meet
the demanding requirements of today’s increasing range of
low-power applications. These features include low voltage
operation, low current drain, and power saving features such
as HALT, IDLE, and Multi-Input wakeup (MIWU).
The devices offer the user two power save modes of opera-
tion: HALT and IDLE. In the HALT mode, all microcontroller
activities are stopped. In the IDLE mode, the on-board oscil-
lator circuitry and timer T0 are active but all other microcon-
troller activities are stopped. In either mode, all on-board
RAM, registers, I/O states, and timers (with the exception of
T0) are unaltered.
Clock Monitor if enabled can be active in both modes.
8.1 HALT MODE
The device can be placed in the HALT mode by writing a “1”
to the HALT flag (G7 data bit). All microcontroller activities,
including the clock and timers, are stopped. The WATCH-
DOG logic on the device is disabled during the HALT mode.
However, the clock monitor circuitry, if enabled, remains ac-
tive and will cause the WATCHDOG output pin (WDOUT) to
go low. If the HALT mode is used and the user does not want
to activate the WDOUT pin, the Clock Monitor should be dis-
abled after the device comes out of reset (resetting the Clock
Monitor control bit with the first write to the WDSVR register).
In the HALT mode, the power requirements of the device are
minimal and the applied voltage (V
CC
) may be decreased to
V
r
(V
r
=2.0V) without altering the state of the machine.
The device supports three different ways of exiting the HALT
mode. The first method of exiting the HALT mode is with the
Multi-Input Wakeup feature on Port L. The second method is
with a low to high transition on the CKO (G7) pin. This
method precludes the use of the crystal clock configuration
(since CKO becomes a dedicated output), and so may only
be used with an R/C clock configuration. The third method of
exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the
oscillator, the Wakeup signal is not allowed to start the chip
running immediately since crystal oscillators and ceramic
resonators have a delayed start up time to reach full ampli-
tude and frequency stability. The IDLE timer is used to gen-
erate a fixed delay to ensure that the oscillator has indeed
stabilized before allowing instruction execution. In this case,
upon detecting a valid Wakeup signal, only the oscillator cir-
cuitry is enabled. The IDLE timer is loaded with a value of
256 and is clocked with the t
C
instruction cycle clock. The t
C
clock is derived by dividing the oscillator clock down by a fac-
tor of 10. The Schmitt trigger following the CKI inverter on
the chip ensures that the IDLE timer is clocked only when the
oscillator has a sufficiently large amplitude to meet the
Schmitt trigger specifications. This Schmitt trigger is not part
of the oscillator closed loop. The start-up time-out from the
IDLE timer enables the clock signals to be routed to the rest
of the chip.
If an R/C clock option is being used, the fixed delay is intro-
duced optionally. A control bit, CLKDLY, mapped as configu-
ration bit G7, controls whether the delay is to be introduced
or not. The delay is included if CLKDLY is set, and excluded
if CLKDLY is reset. The CLKDLY bit is cleared on reset.
The device has two options associated with the HALT mode.
The first option enables the HALT mode feature, while the
second option disables the HALT mode selected through bit
0 of the ECON register. With the HALT mode enable option,
the device will enter and exit the HALT mode as described
above. With the HALT disable option, the device cannot be
placed in the HALT mode (writing a “1” to the HALT flag will
have no effect, the HALT flag will remain “0”).
The WATCHDOG detector circuit is inhibited during the
HALT mode. However, the clock monitor circuit if enabled re-
mains active during HALT mode in order to ensure a clock
monitor error if the device inadvertently enters the HALT
mode as a result of a runaway program or power glitch.
If the device is placed in the HALT mode, with the R/C oscil-
lator selected, the clock input pin (CKI) is forced to a logic
high internally. With the crystal or external oscillator the CKI
pin is TRI-STATE.
www.national.com 26
8.0 Power Save Modes (Continued)
8.2 IDLE MODE
The device is placed in the IDLE mode by writing a “1” to the
IDLE flag (G6 data bit). In this mode, all activities, except the
associated on-board oscillator circuitry and the IDLE Timer
T0, are stopped.
As with the HALT mode, the device can be returned to nor-
mal operation with a reset, or with a Multi-Input Wakeup from
the L Port. Alternately, the microcontroller resumes normal
operation from the IDLE mode when the twelfth bit (repre-
senting 4.096 ms at internal clock frequency of 10 MHz, t
C
=
1 µs) of the IDLE Timer toggles.
This toggle condition of the twelfth bit of the IDLE Timer T0 is
latched into the T0PND pending flag.
The user has the option of being interrupted with a transition
on the twelfth bit of the IDLE Timer T0. The interrupt can be
enabled or disabled via the T0EN control bit. Setting the
T0EN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer T0 inter-
rupt enabled. In this case, when the T0PND bit gets set, the
device will first execute the Timer T0 interrupt service routine
and then return to the instruction following the “Enter Idle
Mode” instruction.
Alternatively, the user can enter the IDLE mode with the
IDLE Timer T0 interrupt disabled. In this case, the device will
resume normal operation with the instruction immediately
following the “Enter IDLE Mode” instruction.
Note: It is necessary to program two NOP instructions following both the set
HALT mode and set IDLE mode instructions. These NOP instructions
are necessary to allow clock resynchronization following the HALT or
IDLE modes.
DS012838-25
FIGURE 18. Wakeup from HALT
DS012838-26
FIGURE 19. Wakeup from IDLE
www.national.com27
8.0 Power Save Modes (Continued)
8.3 MULTI-INPUT WAKEUP
The Multi-Input Wakeup feature is used to return (wakeup)
the device from either the HALT or IDLE modes. Alternately
Multi-Input Wakeup/Interrupt feature may also be used to
generate up to 8 edge selectable external interrupts.
Figure 20
shows the Multi-Input Wakeup logic.
The Multi-Input Wakeup feature utilizes the L Port. The user
selects which particular L port bit (or combination of L Port
bits) will cause the device to exit the HALT or IDLE modes.
The selection is done through the register WKEN. The regis-
ter WKEN is an 8-bit read/write register, which contains a
control bit for every L port bit. Setting a particular WKEN bit
enables a Wakeup from the associated L port pin.
The user can select whether the trigger condition on the se-
lected L Port pin is going to be either a positive edge (low to
high transition) or a negative edge (high to low transition).
This selection is made via the register WKEDG, which is an
8-bit control register with a bit assigned to each L Port pin.
Setting the control bit will select the trigger condition to be a
negative edge on that particular L Port pin. Resetting the bit
selects the trigger condition to be a positive edge. Changing
an edge select entails several steps in order to avoid a
Wakeup condition as a result of the edge change. First, the
associated WKEN bit should be reset, followed by the edge
select change in WKEDG. Next, the associated WKPND bit
should be cleared, followed by the associated WKEN bit be-
ing re-enabled.
An example may serve to clarify this procedure. Suppose we
wish to change the edge select from positive (low going high)
to negative (high going low) for L Port bit 5, where bit 5 has
previously been enabled for an input interrupt. The program
would be as follows:
RBIT 5, WKEN ; Disable MIWU
SBIT 5, WKEDG ; Change edge polarity
RBIT 5, WKPND ; Reset pending flag
SBIT 5, WKEN ; Enable MIWU
If the L port bits have been used as outputs and then
changed to inputs with Multi-Input Wakeup/Interrupt, a safety
procedure should also be followed to avoid wakeup condi-
tions. After the selected L port bits have been changed from
output to input but before the associated WKEN bits are en-
abled, the associated edge select bits in WKEDG should be
set or reset for the desired edge selects, followed by the as-
sociated WKPND bits being cleared.
This same procedure should be used following reset, since
the L port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for
Multi-Input Wakeup is latched into a pending register called
WKPND. The respective bits of the WKPND register will be
set on the occurrence of the selected trigger edge on the cor-
responding Port L pin. The user has the responsibility of
clearing these pending flags. Since WKPND is a pending
register for the occurrence of selected wakeup conditions,
the device will not enter the HALT mode if any Wakeup bit is
both enabled and pending. Consequently, the user must
clear the pending flags before attempting to enter the HALT
mode.
WKEN and WKEDG are all read/write registers, and are
cleared at reset. WKPND register contains random value af-
ter reset.
DS012838-27
FIGURE 20. Multi-Input Wake Up Logic
www.national.com 28
9.0 Interrupts
9.1 INTRODUCTION
The device supports eight vectored interrupts. Interrupt
sources include Timer 1, Timer T0, Port L Wakeup, Software
Trap, MICROWIRE/PLUS, and External Input.
All interrupts force a branch to location 00FF Hex in program
memory. The VIS instruction may be used to vector to the
appropriate service routine from location 00FF Hex.
The Software trap has the highest priority while the default
VIS has the lowest priority.
Each of the six maskable inputs has a fixed arbitration rank-
ing and vector.
Figure 21
shows the Interrupt Block Diagram.
DS012838-28
FIGURE 21. Interrupt Block Diagram
www.national.com29
9.0 Interrupts (Continued)
9.2 MASKABLE INTERRUPTS
All interrupts other than the Software Trap are maskable.
Each maskable interrupt has an associated enable bit and
pending flag bit. The pending bit is set to 1 when the interrupt
condition occurs. The state of the interrupt enable bit, com-
bined with the GIE bit determines whether an active pending
flag actually triggers an interrupt. All of the maskable inter-
rupt pending and enable bits are contained in mapped con-
trol registers, and thus can be controlled by the software.
Amaskable interrupt condition triggers an interrupt under the
following conditions:
1. The enable bit associated with that interrupt is set.
2. The GIE bit is set.
3. The device is not processing a non-maskable interrupt.
(If a non-maskable interrupt is being serviced, a
maskable interrupt must wait until that service routine is
completed.)
An interrupt is triggered only when all of these conditions are
met at the beginning of an instruction. If different maskable
interrupts meet these conditions simultaneously, the highest
priority interrupt will be serviced first, and the other pending
interrupts must wait.
Upon Reset, all pending bits, individual enable bits, and the
GIE bit are reset to zero. Thus, a maskable interrupt condi-
tion cannot trigger an interrupt until the program enables it by
setting both the GIE bit and the individual enable bit. When
enabling an interrupt, the user should consider whether or
not a previously activated (set) pending bit should be ac-
knowledged. If, at the time an interrupt is enabled, any pre-
vious occurrences of the interrupt should be ignored, the as-
sociated pending bit must be reset to zero prior to enabling
the interrupt. Otherwise, the interrupt may be simply en-
abled; if the pending bit is already set, it will immediately trig-
ger an interrupt. A maskable interrupt is active if its associ-
ated enable and pending bits are set.
An interrupt is an asychronous event which may occur be-
fore, during, or after an instruction cycle. Any interrupt which
occurs during the execution of an instruction is not acknowl-
edged until the start of the next normally executed instruction
is to be skipped, the skip is performed before the pending in-
terrupt is acknowledged.
At the start of interrupt acknowledgment, the following ac-
tions occur:
1. The GIE bit is automatically reset to zero, preventing any
subsequent maskable interrupt from interrupting the cur-
rent service routine. This feature prevents one maskable
interrupt from interrupting another one being serviced.
2. The address of the instruction about to be executed is
pushed onto the stack.
3. The program counter (PC) is loaded with 00FF Hex,
causing a jump to that program memory location.
The device requires seven instruction cycles to perform the
actions listed above.
If the user wishes to allow nested interrupts, the interrupts
service routine may set the GIE bit to 1 by writing to the PSW
register, and thus allow other maskable interrupts to interrupt
the current service routine. If nested interrupts are allowed,
caution must be exercised. The user must write the program
in such a way as to prevent stack overflow, loss of saved
context information, and other unwanted conditions.
The interrupt service routine stored at location 00FF Hex
should use the VIS instruction to determine the cause of the
interrupt, and jump to the interrupt handling routine corre-
sponding to the highest priority enabled and active interrupt.
Alternately, the user may choose to poll all interrupt pending
and enable bits to determine the source(s) of the interrupt. If
more than one interrupt is active, the user’s program must
decide which interrupt to service.
Within a specific interrupt service routine, the associated
pending bit should be cleared. This is typically done as early
as possible in the service routine in order to avoid missing
the next occurrence of the same type of interrupt event.
Thus, if the same event occurs a second time, even while the
first occurrence is still being serviced, the second occur-
rence will be serviced immediately upon return from the cur-
rent interrupt routine.
An interrupt service routine typically ends with an RETI in-
struction. This instruction sets the GIE bit back to 1, pops the
address stored on the stack, and restores that address to the
program counter. Program execution then proceeds with the
next instruction that would have been executed had there
been no interrupt. If there are any valid interrupts pending,
the highest-priority interrupt is serviced immediately upon re-
turn from the previous interrupt.
9.3 VIS INSTRUCTION
The general interrupt service routine, which starts at address
00FF Hex, must be capable of handling all types of inter-
rupts. The VIS instruction, together with an interrupt vector
table, directs the device to the specific interrupt handling rou-
tine based on the cause of the interrupt.
VIS is a single-byte instruction, typically used at the very be-
ginning of the general interrupt service routine at address
00FF Hex, or shortly after that point, just after the code used
for context switching. The VIS instruction determines which
enabled and pending interrupt has the highest priority, and
causes an indirect jump to the address corresponding to that
interrupt source. The jump addresses (vectors) for all pos-
sible interrupts sources are stored in a vector table.
The vector table may be as long as 32 bytes (maximum of 16
vectors) and resides at the top of the 256-byte block contain-
ing the VIS instruction. However, if the VIS instruction is at
the very top of a 256-byte block (such as at 00FF Hex), the
vector table resides at the top of the next 256-byte block.
Thus, if the VIS instruction is located somewhere between
00FF and 01DF Hex (the usual case), the vector table is lo-
cated between addresses 01E0 and 01FF Hex. If the VIS in-
struction is located between 01FF and 02DF Hex, then the
vector table is located between addresses 02E0 and 02FF
Hex, and so on.
Each vector is 15 bits long and points to the beginning of a
specific interrupt service routine somewhere in the 32 kbyte
memory space. Each vector occupies two bytes of the vector
table, with the higher-order byte at the lower address. The
vectors are arranged in order of interrupt priority. The vector
of the maskable interrupt with the lowest rank is located to
0yE0 (higher-order byte) and 0yE1 (lower-order byte). The
next priority interrupt is located at 0yE2 and 0yE3, and so
forth in increasing rank. The Software Trap has the highest
rank and its vector is always located at 0yFE and 0yFF. The
number of interrupts which can become active defines the
size of the table.
Table 5
shows the types of interrupts, the interrupt arbitration
ranking, and the locations of the corresponding vectors in
the vector table.
The vector table should be filled by the user with the memory
locations of the specific interrupt service routines. For ex-
www.national.com 30
9.0 Interrupts (Continued)
ample, if the Software Trap routine is located at 0310 Hex,
then the vector location 0yFE and -0yFF should contain the
data 03 and 10 Hex, respectively. When a Software Trap in-
terrupt occurs and the VIS instruction is executed, the pro-
gram jumps to the address specified in the vector table.
The interrupt sources in the vector table are listed in order of
rank, from highest to lowest priority. If two or more enabled
and pending interrupts are detected at the same time, the
one with the highest priority is serviced first. Upon return
from the interrupt service routine, the next highest-level
pending interrupt is serviced.
If the VIS instruction is executed, but no interrupts are en-
abled and pending, the lowest-priority interrupt vector is
used, and a jump is made to the corresponding address in
the vector table. This is an unusual occurrence, and may be
the result of an error. It can legitimately result from a change
in the enable bits or pending flags prior to the execution of
the VIS instruction, such as executing a single cycle instruc-
tion which clears an enable flag at the same time that the
pending flag is set. It can also result, however, from inadvert-
ent execution of the VIS command outside of the context of
an interrupt.
The default VIS interrupt vector can be useful for applica-
tions in which time critical interrupts can occur during the
servicing of another interrupt. Rather than restoring the pro-
gram context (A, B, X, etc.) and executing the RETI instruc-
tion, an interrupt service routine can be terminated by return-
ing to the VIS instruction. In this case, interrupts will be
serviced in turn until no further interrupts are pending and
the default VIS routine is started. After testing the GIE bit to
ensure that execution is not erroneous, the routine should
restore the program context and execute the RETI to return
to the interrupted program.
This technique can save up to fifty instruction cycles (t
c
), or
more, (50 µs at 10 MHz oscillator) of latency for pending in-
terrupts with a penalty of fewer than ten instruction cycles if
no further interrupts are pending.
To ensure reliable operation, the user should always use the
VIS instruction to determine the source of an interrupt. Al-
though it is possible to poll the pending bits to detect the
source of an interrupt, this practice is not recommended. The
use of polling allows the standard arbitration ranking to be al-
tered, but the reliability of the interrupt system is compro-
mised. The polling routine must individually test the enable
and pending bits of each maskable interrupt. If a Software
Trap interrupt should occur, it will be serviced last, even
though it should have the highest priority. Under certain con-
ditions, a Software Trap could be triggered but not serviced,
resulting in an inadvertent “locking out” of all maskable inter-
rupts by the Software Trap pending flag. Problems such as
this can be avoided by using VIS instruction.
TABLE 5. Interrupt Vector Table
Arbitration Vector (Note 20)
Ranking Source Description Address
(Hi-Low Byte)
(1) Highest Software INTR Instruction 0yFE–0yFF
(2) Reserved Future 0yFC–0yFD
(3) External G0 0yFA–0yFB
(4) Timer T0 Underflow 0yF8–0yF9
(5) Timer T1 T1A/Underflow 0yF6–0yF7
(6) Timer T1 T1B 0yF4–0yF5
(7) MICROWIRE/PLUS BUSY Low 0yF2–0yF3
(8) Reserved Future 0yF0–0yF1
(9) Reserved Future 0yEE–0yEF
(10) Reserved Future 0yEC–0yED
(11) Reserved Future 0yEA–0yEB
(12) Reserved Future 0yE8–0yE9
(13) Reserved Future 0yE6–0yE7
(14) Reserved Future 0yE4–0yE5
(15) Port L/Wakeup Port L Edge 0yE2–0yE3
(16) Lowest Default VIS Instruction 0yE00yE1
Execution without any interrupts
Note 20: y is a variable which represents the VIS block. VIS and the vector table must be located in the same 256-byte block except if VIS is located at the last ad-
dress of a block. In this case, the table must be in the next block.
www.national.com31
9.0 Interrupts (Continued)
9.3.1 VIS Execution
When the VIS instruction is executed it activates the arbitra-
tion logic. The arbitration logic generates an even number
between E0 and FE (E0, E2, E4, E6 etc...) depending on
which active interrupt has the highest arbitration ranking at
the time of the 1st cycle of VIS is executed. For example, if
the software trap interrupt is active, FE is generated. If the
external interrupt is active and the software trap interrupt is
not, then FAis generated and so forth. If the only active inter-
rupt is software trap, than E0 is generated. This number re-
places the lower byte of the PC. The upper byte of the PC re-
mains unchanged. The new PC is therefore pointing to the
vector of the active interrupt with the highest arbitration rank-
ing. This vector is read from program memory and placed
into the PC which is now pointed to the 1st instruction of the
service routine of the active interrupt with the highest arbitra-
tion ranking.
Figure 22
illustrates the different steps performed by the VIS
instruction.
Figure 23
shows a flowchart for the VIS instruc-
tion.
The non-maskable interrupt pending flag is cleared by the
RPND (Reset Non-Maskable Pending Bit) instruction (under
certain conditions) and upon RESET.
DS012838-29
FIGURE 22. VIS Operation
www.national.com 32
9.0 Interrupts (Continued)
DS012838-30
FIGURE 23. VIS Flowchart
www.national.com33
9.0 Interrupts (Continued)
Programming Example: External Interrupt
PSW =00EF
CNTRL =00EE
RBIT 0,PORTGC
RBIT 0,PORTGD ; G0 pin configured Hi-Z
SBIT IEDG, CNTRL ; Ext interrupt polarity; falling edge
SBIT GIE, PSW ; Set the GIE bit
SBIT EXEN, PSW ; Enable the external interrupt
WAIT: JP WAIT ; Wait for external interrupt
.
.
.
.=0FF ; The interrupt causes a
VIS ; branch to address 0FF
;The VIS causes a branch to
;interrupt vector table
.
.
.
.=01FA ; Vector table (within 256 byte
.ADDRW SERVICE ; of VIS inst.) containing the ext
;interrupt service routine
.
.
.
SERVICE: ; Interrupt Service Routine
RBIT, EXPND, PSW ; Reset ext interrupt pend. bit
.
.
.
RET ; Return, set the GIE bit
www.national.com 34
9.0 Interrupts (Continued)
9.4 NON-MASKABLE INTERRUPT
9.4.1 Pending Flag
There is a pending flag bit associated with the non-maskable
interrupt, called STPND. This pending flag is not
memory-mapped and cannot be accessed directly by the
software.
The pending flag is reset to zero when a device Reset oc-
curs. When the non-maskable interrupt occurs, the associ-
ated pending bit is set to 1. The interrupt service routine
should contain an RPND instruction to reset the pending flag
to zero. The RPND instruction always resets the STPND
flag.
9.4.2 Software Trap
The Software Trap is a special kind of non-maskable inter-
rupt which occurs when the INTR instruction (used to ac-
knowledge interrupts) is fetched from program memory and
placed in the instruction register. This can happen in a vari-
ety of ways, usually because of an error condition. Some ex-
amples of causes are listed below.
If the program counter incorrectly points to a memory loca-
tion beyond the available program memory space, the
non-existent or unused memory location returns zeroes
which is interpreted as the INTR instruction.
If the stack is popped beyond the allowed limit (address 02F
or 06F Hex), a Software Trap is triggered.
A Software Trap can be triggered by a temporary hardware
condition such as a brownout or power supply glitch.
The Software Trap has the highest priority of all interrupts.
When a Software Trap occurs, the STPND bit is set. The GIE
bit is not affected and the pending bit (not accessible by the
user) is used to inhibit other interrupts and to direct the pro-
gram to the ST service routine with the VIS instruction. Noth-
ing can interrupt a Software Trap service routine except for
another Software Trap. The STPND can be reset only by the
RPND instruction or a chip Reset.
The Software Trap indicates an unusual or unknown error
condition. Generally, returning to normal execution at the
point where the Software Trap occurred cannot be done re-
liably. Therefore, the Software Trap service routine should
reinitialize the stack pointer and perform a recovery proce-
dure that restarts the software at some known point, similar
to a device Reset, but not necessarily performing all the
same functions as a device Reset. The routine must also ex-
ecute the RPND instruction to reset the STPND flag. Other-
wise, all other interrupts will be locked out. To the extent pos-
sible, the interrupt routine should record or indicate the
context of the device so that the cause of the Software Trap
can be determined.
If the user wishes to return to normal execution from the
point at which the Software Trap was triggered, the user
must first execute RPND, followed by RETSK rather than
RETI or RET. This is because the return address stored on
the stack is the address of the INTR instruction that triggered
the interrupt. The program must skip that instruction in order
to proceed with the next one. Otherwise, an infinite loop of
Software Traps and returns will occur.
Programming a return to normal execution requires careful
consideration. If the Software Trap routine is interrupted by
another Software Trap, the RPND instruction in the service
routine for the second Software Trap will reset the STPND
flag; upon return to the first Software Trap routine, the
STPND flag will have the wrong state. This will allow
maskable interrupts to be acknowledged during the servicing
of the first Software Trap. To avoid problems such as this, the
user program should contain the Software Trap routine to
perform a recovery procedure rather than a return to normal
execution.
Under normal conditions, the STPND flag is reset by a
RPND instruction in the Software Trap service routine. If a
programming error or hardware condition (brownout, power
supply glitch, etc.) sets the STPND flag without providing a
way for it to be cleared, all other interrupts will be locked out.
To alleviate this condition, the user can use extra RPND in-
structions in the main program and in the WATCHDOG ser-
vice routine (if present). There is no harm in executing extra
RPND instructions in these parts of the program.
9.5 PORT L INTERRUPTS
Port L provides the user with an additional eight fully select-
able, edge sensitive interrupts which are all vectored into the
same service subroutine.
The interrupt from Port L shares logic with the wake up cir-
cuitry. The register WKEN allows interrupts from Port L to be
individually enabled or disabled. The register WKEDG speci-
fies the trigger condition to be either a positive or a negative
edge. Finally, the register WKPND latches in the pending
trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt
function.
A control flag, LPEN, functions as a global interrupt enable
for Port L interrupts. Setting the LPEN flag will enable inter-
rupts and vice versa. A separate global pending flag is not
needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the
HALT or IDLE modes, the user can elect to exit the HALT or
IDLE modes either with or without the interrupt enabled. If he
elects to disable the interrupt, then the device will restart ex-
ecution from the instruction immediately following the in-
struction that placed the microcontroller in the HALT or IDLE
modes. In the other case, the device will first execute the in-
terrupt service routine and then revert to normal operation.
(See HALT MODE for clock option wakeup information.)
9.6 INTERRUPT SUMMARY
The device uses the following types of interrupts, listed be-
low in order of priority:
1. The Software Trap non-maskable interrupt, triggered by
the INTR (00 opcode) instruction. The Software Trap is
acknowledged immediately. This interrupt service rou-
tine can be interrupted only by another Software Trap.
The Software Trap should end with two RPND instruc-
tions followed by a restart procedure.
2. Maskable interrupts, triggered by an on-chip peripheral
block or an external device connected to the device. Un-
der ordinary conditions, a maskable interrupt will not in-
terrupt any other interrupt routine in progress. A
maskable interrupt routine in progress can be inter-
rupted by the non-maskable interrupt request. A
maskable interrupt routine should end with an RETI in-
struction.
10.0 WATCHDOG/Clock Monitor
The devices contain a user selectable WATCHDOG and
clock monitor. The following section is applicable only if
WATCHDOG feature has been selected in the ECON regis-
www.national.com35
10.0 WATCHDOG/Clock Monitor
(Continued)
ter. The WATCHDOG is designed to detect the user program
getting stuck in infinite loops resulting in loss of program con-
trol or “runaway” programs.
The WATCHDOG logic contains two separate service win-
dows. While the user programmable upper window selects
the WATCHDOG service time, the lower window provides
protection against an infinite program loop that contains the
WATCHDOG service instruction.
The COP8SAx devices provide the added feature of a soft-
ware trap that provides protection against stack overpops
and addressing locations outside valid user program space.
The Clock Monitor is used to detect the absence of a clock or
a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks:
WD UPPER and WD LOWER. WD UPPER establishes the
upper limit on the service window and WD LOWER defines
the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific
value to a WATCHDOG Service Register named WDSVR
which is memory mapped in the RAM. This value is com-
posed of three fields, consisting of a 2-bit Window Select, a
5-bit Key Data field, and the 1-bit Clock Monitor Select field.
Table 6
shows the WDSVR register.
TABLE 6. WATCHDOG Service Register (WDSVR)
Window Key Data Clock
Select Monitor
X X 01100 Y
The lower limit of the service window is fixed at 256 instruc-
tion cycles. Bits 7 and 6 of the WDSVR register allow the
user to pick an upper limit of the service window.
Table 7
shows the four possible combinations of lower and
upper limits for the WATCHDOG service window. This flex-
ibility in choosing the WATCHDOG service window prevents
any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the
5-bit Key Data field. The key data is fixed at 01100. Bit 0 of
the WDSVR Register is the Clock Monitor Select bit.
TABLE 7. WATCHDOG Service Window Select
WDSVR WDSVR Clock Service Window
Bit 7 Bit 6 Monitor (Lower-Upper Limits)
0 0 x 2048–8k t
C
Cycles
0 1 x 2048–16k t
C
Cycles
1 0 x 2048–32k t
C
Cycles
1 1 x 2048–64k t
C
Cycles
x x 0 Clock Monitor Disabled
x x 1 Clock Monitor Enabled
10.1 CLOCK MONITOR
The Clock Monitor aboard the device can be selected or de-
selected under program control. The Clock Monitor is guar-
anteed not to reject the clock if the instruction cycle clock (1/
t
C
) is greater or equal to 10 kHz. This equates to a clock
input rate on CKI of greater or equal to 100 kHz.
10.2 WATCHDOG/CLOCK MONITOR OPERATION
The WATCHDOG is enabled by bit 2 of the ECON register.
When this ECON bit is 0, the WATCHDOG is enabled and
pin G1 becomes the WATCHDOG output with a weak pullup.
The WATCHDOG and Clock Monitor are disabled during re-
set. The device comes out of reset with the WATCHDOG
armed, the WATCHDOG Window Select bits (bits 6, 7 of the
WDSVR Register) set, and the Clock Monitor bit (bit 0 of the
WDSVR Register) enabled. Thus, a Clock Monitor error will
occur after coming out of reset, if the instruction cycle clock
frequency has not reached a minimum specified value, in-
cluding the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset
and the key data (bits 5 through 1 of the WDSVR Register)
must match to be a valid write. This write to the WDSVR reg-
ister involves two irrevocable choices: (i) the selection of the
WATCHDOG service window (ii) enabling or disabling of the
Clock Monitor. Hence, the first write to WDSVR Register in-
volves selecting or deselecting the Clock Monitor, select the
WATCHDOG service window and match the WATCHDOG
key data. Subsequent writes to the WDSVR register will
compare the value being written by the user to the WATCH-
DOG service window value and the key data (bits 7 through
1) in the WDSVR Register.
Table 8
shows the sequence of
events that can occur.
The user must service the WATCHDOG at least once before
the upper limit of the service window expires. The WATCH-
DOG may not be serviced more than once in every lower
limit of the service window. The user may service the
WATCHDOG as many times as wished in the time period be-
tween the lower and upper limits of the service window. The
first write to the WDSVR Register is also counted as a
WATCHDOG service.
The WATCHDOG has an output pin associated with it. This
is the WDOUT pin, on pin 1 of the port G. WDOUT is active
low and must be externally connected to the RESET pin or to
some other external logic which handles WATCHDOG event.
The WDOUT pin has a weak pullup in the inactive state. This
pull-up is sufficient to serve as the connection to V
CC
for sys-
tems which use the internal Power On Reset. Upon trigger-
ing the WATCHDOG, the logic will pull the WDOUT (G1) pin
low for an additional 16 t
C
–32 t
C
cycles after the signal level
on WDOUT pin goes below the lower Schmitt trigger thresh-
old. After this delay, the device will stop forcing the WDOUT
output low. The WATCHDOG service window will restart
when the WDOUT pin goes high.
AWATCHDOG service while the WDOUT signal is active will
be ignored. The state of the WDOUT pin is not guaranteed
on reset, but if it powers up low then the WATCHDOG will
time out and WDOUT will go high.
The Clock Monitor forces the G1 pin low upon detecting a
clock frequency error. The Clock Monitor error will continue
until the clock frequency has reached the minimum specified
value, after which the G1 output will go high following 16
t
C
–32 t
C
clock cycles. The Clock Monitor generates a con-
tinual Clock Monitor error if the oscillator fails to start, or fails
to reach the minimum specified frequency. The specification
for the Clock Monitor is as follows:
1/t
C
>10 kHzNo clock rejection.
1/t
C
<10 HzGuaranteed clock rejection.
www.national.com 36
10.0 WATCHDOG/Clock Monitor (Continued)
TABLE 8. WATCHDOG Service Actions
Key Window Clock Action
Data Data Monitor
Match Match Match Valid Service: Restart Service Window
Don’t Care Mismatch Don’t Care Error: Generate WATCHDOG Output
Mismatch Don’t Care Don’t Care Error: Generate WATCHDOG Output
Don’t Care Don’t Care Mismatch Error: Generate WATCHDOG Output
10.3 WATCHDOG AND CLOCK MONITOR SUMMARY
The following salient points regarding the WATCHDOG and
CLOCK MONITOR should be noted:
Both the WATCHDOG and CLOCK MONITOR detector
circuits are inhibited during RESET.
Following RESET, the WATCHDOG and CLOCK MONI-
TOR are both enabled, with the WATCHDOG having the
maximum service window selected.
The WATCHDOG service window and CLOCK MONI-
TOR enable/disable option can only be changed once,
during the initial WATCHDOG service following RESET.
The initial WATCHDOG service must match the key data
value in the WATCHDOG Service register WDSVR in or-
der to avoid a WATCHDOG error.
Subsequent WATCHDOG services must match all three
data fields in WDSVR in order to avoid WATCHDOG er-
rors.
The correct key data value cannot be read from the
WATCHDOG Service register WDSVR. Any attempt to
read this key data value of 01100 from WDSVR will read
as key data value of all 0’s.
The WATCHDOG detector circuit is inhibited during both
the HALT and IDLE modes.
The CLOCK MONITOR detector circuit is active during
both the HALT and IDLE modes. Consequently, the de-
vice inadvertently entering the HALT mode will be de-
tected as a CLOCK MONITOR error (provided that the
CLOCK MONITOR enable option has been selected by
the program).
With the single-pin R/C oscillator option selected and the
CLKDLY bit reset, the WATCHDOG service window will
resume following HALT mode from where it left off before
entering the HALT mode.
With the crystal oscillator option selected, or with the
single-pin R/C oscillator option selected and the CLKDLY
bit set, the WATCHDOG service window will be set to its
selected value from WDSVR following HALT. Conse-
quently, the WATCHDOG should not be serviced for at
least 256 instruction cycles following HALT, but must be
serviced within the selected window to avoid a WATCH-
DOG error.
The IDLE timer T0 is not initialized with external RESET.
The user can sync in to the IDLE counter cycle with an
IDLE counter (T0) interrupt or by monitoring the T0PND
flag. TheT0PND flag is set whenever the twelfth bit of the
IDLE counter toggles (every 4096 instruction cycles). The
user is responsible for resetting the T0PND flag.
A hardware WATCHDOG service occurs just as the de-
vice exits the IDLE mode. Consequently, the WATCH-
DOG should not be serviced for at least 256 instruction
cycles following IDLE, but must be serviced within the se-
lected window to avoid a WATCHDOG error.
Following RESET, the initial WATCHDOG service (where
the service window and the CLOCK MONITOR enable/
disable must be selected) may be programmed any-
where within the maximum service window (65,536 in-
struction cycles) initialized by RESET. Note that this initial
WATCHDOG service may be programmed within the ini-
tial 256 instruction cycles without causing a WATCHDOG
error.
In order to RESET the device on the occurrence of a
WATCH event, the user must connect the WDOUT pin
(G1) pin to the RESET external to the device. The weak
pull-up on the WDOUT pin is sufficient to provide the RE-
SET connection to V
CC
for devices which use both Power
On Reset and WATCHDOG.
10.4 DETECTION OF ILLEGAL CONDITIONS
The device can detect various illegal conditions resulting
from coding errors, transient noise, power supply voltage
drops, runaway programs, etc.
Reading of undefined ROM gets zeroes. The opcode for
software interrupt is 00. If the program fetches instructions
from undefined ROM, this will force a software interrupt, thus
signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to sub-
routine), interrupt, or PUSH, and grows up for each return or
POP.The stack pointer is initialized to RAM location 06F Hex
during reset. Consequently, if there are more returns than
calls, the stack pointer will point to addresses 070 and 071
Hex (which are undefined RAM). Undefined RAM from ad-
dresses 070 to 07F (Segment 0), and all other segments
(i.e., Segments 4 etc.) is read as all 1’s, which in turn will
cause the program to return to address 7FFF Hex. This is an
undefined ROM location and the instruction fetched (all 0’s)
from this location will generate a software interrupt signaling
an illegal condition.
Thus, the chip can detect the following illegal conditions:
1. Executing from undefined ROM
2. Over “POP”ing the stack by having more returns than
calls.
When the software interrupt occurs, the user can re-initialize
the stack pointer and do a recovery procedure before restart-
ing (this recovery program is probably similar to that follow-
ing reset, but might not contain the same program initializa-
tion procedures). The recovery program should reset the
software interrupt pending bit using the RPND instruction.
11.0 MICROWIRE/PLUS
MICROWIRE/PLUS is a serial SPI compatible synchronous
communications interface. The MICROWIRE/PLUS capabil-
ity enables the device to interface with MICROWIRE/PLUS
or SPI peripherals (i.e. A/D converters, display drivers, EE-
PROMs etc.) and with other microcontrollers which support
the MICROWIRE/PLUS or SPI interface. It consists of an
www.national.com37
11.0 MICROWIRE/PLUS (Continued)
8-bit serial shift register (SIO) with serial data input (SI), se-
rial data output (SO) and serial shift clock (SK).
Figure 24
shows a block diagram of the MICROWIRE/PLUS logic.
The shift clock can be selected from either an internal source
or an external source. Operating the MICROWIRE/PLUS ar-
rangement with the internal clock source is called the Master
mode of operation. Similarly, operating the MICROWIRE/
PLUS arrangement with an external shift clock is called the
Slave mode of operation.
The CNTRL register is used to configure and control the
MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS,
the MSEL bit in the CNTRL register is set to one. In the mas-
ter mode, the SK clock rate is selected by the two bits, SL0
and SL1, in the CNTRL register.
Table 9
details the different
clock rates that may be selected.
TABLE 9. MICROWIRE/PLUS
Master Mode Clock Select
SL1 SL0 SK Period
0 0 2xt
C
0 1 4xt
C
1 x 8xt
C
Where tCis the instruction cycle clock
11.1 MICROWIRE/PLUS OPERATION
Setting the BUSY bit in the PSW register causes the
MICROWIRE/PLUS to start shifting the data. It gets reset
when eight data bits have been shifted. The user may reset
the BUSY bit by software to allow less than 8 bits to shift. If
enabled, an interrupt is generated when eight data bits have
been shifted. The device may enter the MICROWIRE/PLUS
mode either as a Master or as a Slave.
Figure 24
shows how
two microcontroller devices and several peripherals may be
interconnected using the MICROWIRE/PLUS arrangements.
WARNING
The SIO register should only be loaded when the SK clock is
in the idle phase. Loading the SIO register while the SK clock
is in the active phase, will result in undefined data in the SIO
register.
Setting the BUSY flag when the input SK clock is in the ac-
tive phase while in the MICROWIRE/PLUS is in the slave
mode may cause the current SK clock for the SIO shift reg-
ister to be narrow. For safety, the BUSY flag should only be
set when the input SK clock is in the idle phase.
11.1.1 MICROWIRE/PLUS Master Mode Operation
In the MICROWIRE/PLUS Master mode of operation the
shift clock (SK) is generated internally. The MICROWIRE
Master always initiates all data exchanges. The MSEL bit in
the CNTRL register must be set to enable the SO and SK
functions onto the G Port. The SO and SK pins must also be
selected as outputs by setting appropriate bits in the Port G
configuration register. In the slave mode, the shift clock
stops after 8 clock pulses.
Table 10
summarizes the bit set-
tings required for Master mode of operation.
DS012838-32
FIGURE 24. MICROWIRE/PLUS Application
www.national.com 38
11.0 MICROWIRE/PLUS (Continued)
11.1.2 MICROWIRE/PLUS Slave Mode Operation
In the MICROWIRE/PLUS Slave mode of operation the SK
clock is generated by an external source. Setting the MSEL
bit in the CNTRL register enables the SO and SK functions
onto the G Port. The SK pin must be selected as an input
and the SO pin is selected as an output pin by setting and re-
setting the appropriate bits in the Port G configuration regis-
ter.
Table 10
summarizes the settings required to enter the
Slave mode of operation.
This table assumes that the control flag MSEL is set.
TABLE 10. MICROWIRE/PLUS Mode Settings
G4 (SO) G5 (SK) G4 G5 Operation
Config. Bit Config. Bit Fun. Fun.
1 1 SO Int. MICROWIRE/PLUS
SK Master
0 1 TRI- Int. MICROWIRE/PLUS
STATE SK Master
1 0 SO Ext. MICROWIRE/PLUS
SK Slave
0 0 TRI- Ext. MICROWIRE/PLUS
STATE SK Slave
The user must set the BUSY flag immediately upon entering
the Slave mode. This ensures that all data bits sent by the
Master is shifted properly. After eight clock pulses the BUSY
flag is clear, the shift clock is stopped, and the sequence
may be repeated.
10.1.3 Alternate SK Phase Operation
and SK Idle Polarity
The device allows either the normal SK clock or an alternate
phase SK clock to shift data in and out of the SIO register. In
both the modes the SK idle polarity can be either high or low.
The polarity is selected by bit 5 of Port G data register. In the
normal mode data is shifted in on the rising edge of the SK
clock and the data is shifted out on the falling edge of the SK
clock. The SIO register is shifted on each falling edge of the
SK clock. In the alternate SK phase operation, data is shifted
in on the falling edge of the SK clock and shifted out on the
rising edge of the SK clock. Bit 6 of Port G configuration reg-
ister selects the SK edge.
A control flag, SKSEL, allows either the normal SK clock or
the alternate SK clock to be selected. Resetting SKSEL
causes the MICROWIRE/PLUS logic to be clocked from the
normal SK signal. Setting the SKSEL flag selects the alter-
nate SK clock. The SKSEL is mapped into the G6 configura-
tion bit. The SKSEL flag will power up in the reset condition,
selecting the normal SK signal.
TABLE 11. MICROWIRE/PLUS Shift Clock Polarity and Sample/Shift Phase
Port G SO Clocked Out On: SI Sampled On: SK Idle
Phase
SK Phase G6 (SKSEL) G5
Config. Bit Data Bit
Normal 0 0 SK Falling Edge SK Rising Edge Low
Alternate 1 0 SK Rising Edge SK Falling Edge Low
Alternate 0 1 SK Rising Edge SK Falling Edge High
Normal 1 1 SK Falling Edge SK Rising Edge High
DS012838-33
FIGURE 25. MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle Phase being Low
DS012838-34
FIGURE 26. MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK Idle Phase being Low
www.national.com39
11.0 MICROWIRE/PLUS (Continued)
DS012838-35
FIGURE 27. MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK Idle Phase being High
DS012838-31
FIGURE 28. MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle Phase being High
www.national.com 40
12.0 Memory Map
All RAM, ports and registers (except A and PC) are mapped into data memory address space.
RAM Address Contents
Select ADD REG
64 On-Chip RAM Bytes. 02 to 2F On-Chip RAM (48 Bytes)
(COP8SAAx) 30 to 7F Unused RAM (Reads as all ones)
128 On-Chip RAM Bytes 00 to 6F On-Chip RAM (112 Bytes)
COP8SABx/SACx 70 to 7F Unused RAM (Reads as all ones)
80 to 93 Reserved
94 Port F Data Register
95 Port F Configuration Register
96 Port F Input Pins (Read Only)
97 Reserved
A0 to C6 Reserved
C7 WATCHDOG Service Register (Reg: WDSVR)
C8 MIWU Edge Select Register (Reg: WKEDG)
C9 MIWU Enable Register (Reg: WKEN)
CA MIWU Pending Register (Reg: WKPND)
CB to CF Reserved
D0 Port L Data Register
D1 Port L Configuration Register
D2 Port L Input Pins (Read Only)
D3 Reserved
D4 Port G Data Register
D5 Port G Configuration Register
D6 Port G Input Pins (Read Only)
D7 Reserved
D8 Port C Data Register
D9 Port C Configuration Register
DA Port C Input Pins (Read Only)
DB Reserved
DC Port D
DD to DF Reserved
E0 to E5 Reserved
E6 Timer T1 Autoload Register T1RB Lower Byte
E7 Timer T1 Autoload Register T1RB Upper Byte
E8 ICNTRL Register
E9 MICROWIRE/PLUS Shift Register
EA Timer T1 Lower Byte
EB Timer T1 Upper Byte
EC Timer T1 Autoload Register T1RA Lower Byte
ED Timer T1 Autoload Register T1RA Upper Byte
EE CNTRL Control Register
EF PSW Register
F0 to FB On-Chip RAM Mapped as Registers
FC X Register
FD SP Register
FE B Register
FF Reserved (Segment Register)
Reading any undefined memory location in the address range of 0080H–00FFH will return undefined data.
www.national.com41
13.0 Instruction Set
13.1 INTRODUCTION
This section defines the instruction set of the COP8SAx
Family members. It contains information about the instruc-
tion set features, addressing modes and types.
13.2 INSTRUCTION FEATURES
The strength of the instruction set is based on the follow-
ing features:
Mostly single-byte opcode instructions minimize pro-
gram size.
One instruction cycle for the majority of single-byte in-
structions to minimize program execution time.
Many single-byte, multiple function instructions such
as DRSZ.
Three memory mapped pointers: two for register indi-
rect addressing, and one for the software stack.
Sixteen memory mapped registers that allow an opti-
mized implementation of certain instructions.
Ability to set, reset, and test any individual bit in data
memory address space, including the
memory-mapped I/O ports and registers.
Register-Indirect LOAD and EXCHANGE instructions
with optional automatic post-incrementing or decre-
menting of the register pointer. This allows for greater
efficiency (both in cycle time and program code) in
loading, walking across and processing fields in data
memory.
Unique instructions to optimize program size and
throughput efficiency. Some of these instructions are
DRSZ, IFBNE, DCOR, RETSK, VIS and RRC.
12.3 ADDRESSING MODES
The instruction set offers a variety of methods for specify-
ing memory addresses. Each method is called an ad-
dressing mode. These modes are classified into two cat-
egories: operand addressing modes and
transfer-of-control addressing modes. Operand address-
ing modes are the various methods of specifying an ad-
dress for accessing (reading or writing) data.
Transfer-of-control addressing modes are used in con-
junction with jump instructions to control the execution se-
quence of the software program.
13.3.1 Operand Addressing Modes
The operand of an instruction specifies what memory lo-
cation is to be affected by that instruction. Several differ-
ent operand addressing modes are available, allowing
memory locations to be specified in a variety of ways. An
instruction can specify an address directly by supplying
the specific address, or indirectly by specifying a register
pointer. The contents of the register (or in some cases,
two registers) point to the desired memory location. In the
immediate mode, the data byte to be used is contained in
the instruction itself.
Each addressing mode has its own advantages and dis-
advantages with respect to flexibility, execution speed,
and program compactness. Not all modes are available
with all instructions. The Load (LD) instruction offers the
largest number of addressing modes.
The available addressing modes are:
Direct
Register B or X Indirect
Register B or X Indirect with Post-Incrementing/
Decrementing
Immediate
Immediate Short
Indirect from Program Memory
The addressing modes are described below. Each de-
scription includes an example of an assembly language
instruction using the described addressing mode.
Direct. The memory address is specified directly as a byte
in the instruction. In assembly language, the direct ad-
dress is written as a numerical value (or a label that has
been defined elsewhere in the program as a numerical
value).
Example: Load Accumulator Memory Direct
LD A,05
Reg/Data Contents Contents
Memory Before After
Accumulator XX Hex A6 Hex
Memory Location A6 Hex A6 Hex
0005 Hex
Register B or X Indirect. The memory address is specified
by the contents of the B Register or X register (pointer regis-
ter). In assembly language, the notation [B] or [X] specifies
which register serves as the pointer.
Example: Exchange Memory with Accumulator, B Indirect
X A,[B]
Reg/Data Contents Contents
Memory Before After
Accumulator 01 Hex 87 Hex
Memory Location 87 Hex 01 Hex
0005 Hex
B Pointer 05 Hex 05 Hex
Register B or X Indirect with Post-Incrementing/
Decrementing. The relevant memory address is specified
by the contents of the B Register or X register (pointer regis-
ter). The pointer register is automatically incremented or
decremented after execution, allowing easy manipulation of
memory blocks with software loops. In assembly language,
the notation [B+], [B−], [X+], or [X−] specifies which register
serves as the pointer, and whether the pointer is to be incre-
mented or decremented.
Example: Exchange Memory with Accumulator, B Indirect
with Post-Increment
X A,[B+]
Reg/Data Contents Contents
Memory Before After
Accumulator 03 Hex 62 Hex
Memory Location 62 Hex 03 Hex
0005 Hex
B Pointer 05 Hex 06 Hex
Intermediate. The data for the operation follows the instruc-
tion opcode in program memory. In assembly language, the
number sign character (#) indicates an immediate operand.
www.national.com 42
13.0 Instruction Set (Continued)
Example: Load Accumulator Immediate
LD A,#05
Reg/Data Contents Contents
Memory Before After
Accumulator XX Hex 05 Hex
Immediate Short. This is a special case of an immediate in-
struction. In the “Load B immediate” instruction, the 4-bit im-
mediate value in the instruction is loaded into the lower
nibble of the B register. The upper nibble of the B register is
reset to 0000 binary.
Example: Load B Register Immediate Short
LD B,#7
Reg/Data Contents Contents
Memory Before After
B Pointer 12 Hex 07 Hex
Indirect from Program Memory. This is a special case of
an indirect instruction that allows access to data tables
stored in program memory. In the “Load Accumulator Indi-
rect” (LAID) instruction, the upper and lower bytes of the Pro-
gram Counter (PCU and PCL) are used temporarily as a
pointer to program memory. For purposes of accessing pro-
gram memory, the contents of the Accumulator and PCL are
exchanged. The data pointed to by the Program Counter is
loaded into theAccumulator, and simultaneously, the original
contents of PCL are restored so that the program can re-
sume normal execution.
Example: Load Accumulator Indirect
LAID
Reg/Data Contents Contents
Memory Before After
PCU 04 Hex 04 Hex
PCL 35 Hex 36 Hex
Accumulator 1F Hex 25 Hex
Memory Location 25 Hex 25 Hex
041F Hex
13.3.2 Tranfer-of-Control Addressing Modes
Program instructions are usually executed in sequential or-
der. However, Jump instructions can be used to change the
normal execution sequence. Several transfer-of-control ad-
dressing modes are available to specify jump addresses.
A change in program flow requires a non-incremental
change in the Program Counter contents. The Program
Counter consists of two bytes, designated the upper byte
(PCU) and lower byte (PCL). The most significant bit of PCU
is not used, leaving 15 bits to address the program memory.
Different addressing modes are used to specify the new ad-
dress for the Program Counter. The choice of addressing
mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to
completely specify the new Program Counter contents.
The available transfer-of-control addressing modes are:
Jump Relative
Jump Absolute
Jump Absolute Long
Jump Indirect
The transfer-of-control addressing modes are described be-
low. Each description includes an example of a Jump in-
struction using a particular addressing mode, and the effect
on the Program Counter bytes of executing that instruction.
Jump Relative. In this 1-byte instruction, six bits of the in-
struction opcode specify the distance of the jump from the
current program memory location. The distance of the jump
can range from −31 to +32.A JP+1 instruction is not allowed.
The programmer should use a NOP instead.
Example: Jump Relative
JP 0A
Reg Contents Contents
Before After
PCU 02 Hex 02 Hex
PCL 05 Hex 0F Hex
Jump Absolute. In this 2-byte instruction, 12 bits of the in-
struction opcode specify the new contents of the Program
Counter. The upper three bits of the Program Counter re-
main unchanged, restricting the new Program Counter ad-
dress to the same 4 kbyte address space as the current in-
struction.
(This restriction is relevant only in devices using more than
one 4 kbyte program memory space.)
Example: Jump Absolute
JMP 0125
Reg Contents Contents
Before After
PCU 0C Hex 01 Hex
PCL 77 Hex 25 Hex
Jump Absolute Long. In this 3-byte instruction, 15 bits of
the instruction opcode specify the new contents of the Pro-
gram Counter.
Example: Jump Absolute Long
JMP 03625
Reg/ Contents Contents
Memory Before After
PCU 42 Hex 36 Hex
PCL 36 Hex 25 Hex
www.national.com43
13.0 Instruction Set (Continued)
Jump Indirect. In this 1-byte instruction, the lower byte of
the jump address is obtained from a table stored in program
memory, with the Accumulator serving as the low order byte
of a pointer into program memory. For purposes of access-
ing program memory, the contents of the Accumulator are
written to PCL (temporarily). The data pointed to by the Pro-
gram Counter (PCH/PCL) is loaded into PCL, while PCH re-
mains unchanged.
Example: Jump Indirect
JID
Reg/ Contents Contents
Memory Before After
PCU 01 Hex 01 Hex
PCL C4 Hex 32 Hex
Accumulator 26 Hex 26 Hex
Memory
Location 32 Hex 32 Hex
0126 Hex
The VIS instruction is a special case of the Indirect Transfer
of Control addressing mode, where the double-byte vector
associated with the interrupt is transferred from adjacent ad-
dresses in program memory into the Program Counter in or-
der to jump to the associated interrupt service routine.
13.4 INSTRUCTION TYPES
The instruction set contains a wide variety of instructions.
The available instructions are listed below, organized into re-
lated groups.
Some instructions test a condition and skip the next instruc-
tion if the condition is not true. Skipped instructions are ex-
ecuted as no-operation (NOP) instructions.
13.4.1 Arithmetic Instructions
The arithmetic instructions perform binary arithmetic such as
addition and subtraction, with or without the Carry bit.
Add (ADD)
Add with Carry (ADC)
Subtract (SUB)
Subtract with Carry (SUBC)
Increment (INC)
Decrement (DEC)
Decimal Correct (DCOR)
Clear Accumulator (CLR)
Set Carry (SC)
Reset Carry (RC)
13.4.2 Transfer-of-Control Instructions
The transfer-of-control instructions change the usual se-
quential program flow by altering the contents of the Pro-
gram Counter. The Jump to Subroutine instructions save the
Program Counter contents on the stack before jumping; the
Return instructions pop the top of the stack back into the
Program Counter.
Jump Relative (JP)
Jump Absolute (JMP)
Jump Absolute Long (JMPL)
Jump Indirect (JID)
Jump to Subroutine (JSR)
Jump to Subroutine Long (JSRL)
Return from Subroutine (RET)
Return from Subroutine and Skip (RETSK)
Return from Interrupt (RETI)
Software Trap Interrupt (INTR)
Vector Interrupt Select (VIS)
13.4.3 Load and Exchange Instructions
The load and exchange instructions write byte values in reg-
isters or memory. The addressing mode determines the
source of the data.
Load (LD)
Load Accumulator Indirect (LAID)
Exchange (X)
13.4.4 Logical Instructions
The logical instructions perform the operations AND, OR,
and XOR (Exclusive OR). Other logical operations can be
performed by combining these basic operations. For ex-
ample, complementing is accomplished by exclusiveORing
the Accumulator with FF Hex.
Logical AND (AND)
Logical OR (OR)
Exclusive OR (XOR)
13.4.5 Accumulator Bit Manipulation Instructions
The Accumulator bit manipulation instructions allow the user
to shift the Accumulator bits and to swap its two nibbles.
Rotate Right Through Carry (RRC)
Rotate Left Through Carry (RLC)
Swap Nibbles of Accumulator (SWAP)
13.4.6 Stack Control Instructions
Push Data onto Stack (PUSH)
Pop Data off of Stack (POP)
13.4.7 Memory Bit Manipulation Instructions
The memory bit manipulation instructions allow the user to
set and reset individual bits in memory.
Set Bit (SBIT)
Reset Bit (RBIT)
Reset Pending Bit (RPND)
13.4.8 Conditional Instructions
The conditional instruction test a condition. If the condition is
true, the next instruction is executed in the normal manner; if
the condition is false, the next instruction is skipped.
If Equal (IFEQ)
If Not Equal (IFNE)
If Greater Than (IFGT)
If Carry (IFC)
If Not Carry (IFNC)
If Bit (IFBIT)
If B Pointer Not Equal (IFBNE)
And Skip if Zero (ANDSZ)
Decrement Register and Skip if Zero (DRSZ)
www.national.com 44
13.0 Instruction Set (Continued)
13.4.9 No-Operation Instruction
The no-operation instruction does nothing, except to occupy
space in the program memory and time in execution.
No-Operation (NOP)
Note: The VIS is a special case of the Indirect Transfer of Control addressing
mode, where the double byte vector associated with the interrupt is
transferred from adjacent addresses in the program memory into the
program counter (PC) in order to jump to the associated interrupt ser-
vice routine.
13.5 REGISTER AND SYMBOL DEFINITION
The following abbreviations represent the nomenclature
used in the instruction description and the COP8
cross-assembler.
Registers
A 8-Bit Accumulator Register
B 8-Bit Address Register
X 8-Bit Address Register
SP 8-Bit Stack Pointer Register
PC 15-Bit Program Counter Register
PU Upper 7 Bits of PC
PL Lower 8 Bits of PC
C 1 Bit of PSW Register for Carry
HC 1 Bit of PSW Register for Half Carry
GIE 1 Bit of PSW Register for Global Interrupt
Enable
VU Interrupt Vector Upper Byte
VL Interrupt Vector Lower Byte
Symbols
[B] Memory Indirectly Addressed by B Register
[X] Memory Indirectly Addressed by X Register
MD Direct Addressed Memory
Mem Direct Addressed Memory or [B]
Meml Direct Addressed Memory or [B] or
Immediate Data
Imm 8-Bit Immediate Data
Reg Register Memory: Addresses F0 to FF
(Includes B, X and SP)
Bit Bit Number (0 to 7)
Loaded with
Exchanged with
www.national.com45
13.0 Instruction Set (Continued)
13.6 INSTRUCTION SET SUMMARY
ADD A,Meml ADD AA + Meml
ADC A,Meml ADD with Carry AA+Meml+C,C
Carry,
HCHalf Carry
SUBC A,Meml Subtract with Carry AA−MemI+C,C
Carry,
HCHalf Carry
AND A,Meml Logical AND AA and Meml
ANDSZ A,Imm Logical AND Immed., Skip if Zero Skip next if (A and Imm) =0
OR A,Meml Logical OR AA or Meml
XOR A,Meml Logical EXclusive OR AA xor Meml
IFEQ MD,Imm IF EQual Compare MD and Imm, Do next if MD =Imm
IFEQ A,Meml IF EQual Compare A and Meml, Do next if A =Meml
IFNE A,Meml IF Not Equal Compare A and Meml, Do next if A Meml
IFGT A,Meml IF Greater Than Compare A and Meml, Do next if A >Meml
IFBNE #If B Not Equal Do next if lower 4 bits of B Imm
DRSZ Reg Decrement Reg., Skip if Zero RegReg 1, Skip if Reg =0
SBIT #,Mem Set BIT 1 to bit, Mem (bit =0 to 7 immediate)
RBIT #,Mem Reset BIT 0 to bit, Mem
IFBIT #,Mem IF BIT If bit #, A or Mem is true do next instruction
RPND Reset PeNDing Flag Reset Software Interrupt Pending Flag
X A,Mem EXchange A with Memory AMem
X A,[X] EXchange A with Memory [X] A[X]
LD A,Meml LoaD A with Memory AMeml
LD A,[X] LoaD A with Memory [X] A[X]
LD B,Imm LoaD B with Immed. BImm
LD Mem,Imm LoaD Memory Immed. MemImm
LD Reg,Imm LoaD Register Memory Immed. RegImm
XA,[B
±
] EXchange A with Memory [B] A[B], (BB±1)
XA,[X
±
] EXchange A with Memory [X] A[X], (XX±1)
LD A, [B±] LoaD A with Memory [B] A[B], (BB±1)
LD A, [X±] LoaD A with Memory [X] A[X], (XX±1)
LD [B±],Imm LoaD Memory [B] Immed. [B]Imm, (BB±1)
CLR A CLeaR A A0
INC A INCrement A AA+1
DEC A DECrement A AA−1
LAID Load A InDirect from ROM AROM (PU,A)
DCOR A Decimal CORrect A ABCD correction of A (follows ADC, SUBC)
RRC A Rotate A Right thru C CA7A0C
RLC A Rotate A Left thru C CA7A0C, HCA0
SWAP A SWAP nibbles of A A7…A4A3…A0
SC Set C C1, HC1
RC Reset C C0, HC0
IFC IF C IF C is true, do next instruction
IFNC IF Not C If C is not true, do next instruction
POP A POP the stack into A SPSP+1,A
[SP]
PUSH A PUSH A onto the stack [SP]A, SPSP−1
VIS Vector to Interrupt Service Routine PU[VU], PL[VL]
JMPL Addr. Jump absolute Long PCii (ii =15 bits, 0 to 32k)
JMP Addr. Jump absolute PC9…0i(i=12 bits)
JP Disp. Jump relative short PCPC+r(ris−31to+32, except 1)
www.national.com 46
13.0 Instruction Set (Continued)
JSRL Addr. Jump SubRoutine Long [SP]PL, [SP−1]PU,SP−2, PCii
JSR Addr. Jump SubRoutine [SP]PL, [SP−1]PU,SP−2, PC9…0i
JID Jump InDirect PLROM (PU,A)
RET RETurn from subroutine SP + 2, PL[SP], PU[SP−1]
RETSK RETurn and SKip SP + 2, PL[SP],PU[SP−1],
skip next instruction
RETI RETurn from Interrupt SP + 2, PL [SP],PU[SP−1],GIE1
INTR Generate an Interrupt [SP]PL, [SP−1]PU, SP−2, PC0FF
NOP No OPeration PCPC+1
13.7 INSTRUCTION EXECUTION TIME
Most instructions are single byte (with immediate addressing
mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
Skipped instructions require x number of cycles to be
skipped, where x equals the number of bytes in the skipped
instruction opcode.
See the BYTES and CYCLES per INSTRUCTION table for
details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for
each instruction in the format of byte/cycle.
Arithmetic and Logic Instructions
[B] Direct Immed.
ADD 1/1 3/4 2/2
ADC 1/1 3/4 2/2
SUBC 1/1 3/4 2/2
AND 1/1 3/4 2/2
OR 1/1 3/4 2/2
XOR 1/1 3/4 2/2
IFEQ 1/1 3/4 2/2
IFGT 1/1 3/4 2/2
IFBNE 1/1
DRSZ 1/3
SBIT 1/1 3/4
RBIT 1/1 3/4
IFBIT 1/1 3/4
RPND 1/1
Instructions Using A & C
CLRA 1/1
INCA 1/1
DECA 1/1
LAID 1/3
DCORA 1/1
RRCA 1/1
RLCA 1/1
SWAPA 1/1
SC 1/1
RC 1/1
IFC 1/1
IFNC 1/1
PUSHA 1/3
POPA 1/3
ANDSZ 2/2
Transfer of Control Instructions
JMPL 3/4
JMP 2/3
JP 1/3
JSRL 3/5
JSR 2/5
JID 1/3
VIS 1/5
RET 1/5
RETSK 1/5
RETI 1/5
INTR 1/7
NOP 1/1
www.national.com47
13.0 Instruction Set (Continued)
Memory Transfer Instructions
Register Direct Immed. Register Indirect
Indirect Auto Incr. & Decr.
[B] [X] [B+, B−] [X+, X−]
X A, (Note 21) 1/1 1/3 2/3 1/2 1/3
LD A, (Note 21) 1/1 1/3 2/3 2/2 1/2 1/3
LD B, Imm 1/1 (If B <16)
LD B, Imm 2/2 (If B >15)
LD Mem, Imm 2/2 3/3 2/2
LD Reg, Imm 2/3
IFEQ MD, Imm 3/3
Note 21: =>Memory location addressed by B or X or directly.
www.national.com 48
13.8 OPCODE TABLE
Upper Nibble
F E D C BA9 876 5 4 3 2 10
Lower Nibble
JP−15 JP−31 LD 0F0, #i DRSZ
0F0 RRCA RC ADC
A,#i ADC
A,[B] IFBIT
0,[B] ANDSZ
A, #i LD
B,#0F IFBNE 0 JSR
x000–x0FF JMP
x000–x0FF JP+17 INTR 0
JP−14 JP−30 LD 0F1, #i DRSZ
0F1 * SC SUBC
A, #i SUBC
A,[B] IFBIT
1,[B] *LD
B,#0E IFBNE 1 JSR
x100–x1FF JMP
x100–x1FF JP+18 JP+2 1
JP−13 JP−29 LD 0F2, #i DRSZ
0F2 X
A,[X+] X
A,[B+] IFEQ
A,#i IFEQ
A,[B] IFBIT
2,[B] *LD
B,#0D IFBNE 2 JSR
x200–x2FF JMP
x200–x2FF JP+19 JP+3 2
JP−12 JP−28 LD 0F3, #i DRSZ
0F3 X
A,[X−] X
A,[B−] IFGT
A,#i IFGT
A,[B] IFBIT
3,[B] *LD
B,#0C IFBNE 3 JSR
x300–x3FF JMP
x300–x3FF JP+20 JP+4 3
JP−11 JP−27 LD 0F4, #i DRSZ
0F4 VIS LAID ADD
A,#i ADD
A,[B] IFBIT
4,[B] CLRA LD
B,#0B IFBNE 4 JSR
x400–x4FF JMP
x400–x4FF JP+21 JP+5 4
JP−10 JP−26 LD 0F5, #i DRSZ
0F5 RPND JID AND
A,#i AND
A,[B] IFBIT
5,[B] SWAPA LD
B,#0A IFBNE 5 JSR
x500–x5FF JMP
x500–x5FF JP+22 JP+6 5
JP−9 JP−25 LD 0F6, #i DRSZ
0F6 X A,[X] X
A,[B] XOR
A,#i XOR
A,[B] IFBIT
6,[B] DCORA LD
B,#09 IFBNE 6 JSR
x600–x6FF JMP
x600–x6FF JP+23 JP+7 6
JP−8 JP−24 LD 0F7, #i DRSZ
0F7 * * OR A,#i OR
A,[B] IFBIT
7,[B] PUSHA LD
B,#08 IFBNE 7 JSR
x700–x7FF JMP
x700–x7FF JP+24 JP+8 7
JP−7 JP−23 LD 0F8, #i DRSZ
0F8 NOP RLCA LD A,#i IFC SBIT
0,[B] RBIT
0,[B] LD
B,#07 IFBNE 8 JSR
x800–x8FF JMP
x800–x8FF JP+25 JP+9 8
JP−6 JP−22 LD 0F9, #i DRSZ
0F9 IFNE
A,[B] IFEQ
Md,#i IFNE
A,#i IFNC SBIT
1,[B] RBIT
1,[B] LD
B,#06 IFBNE 9 JSR
x900–x9FF JMP
x900–x9FF JP+26 JP+10 9
JP−5 JP−21 LD 0FA, #i DRSZ
0FA LD
A,[X+] LD
A,[B+] LD
[B+],#i INCA SBIT
2,[B] RBIT
2,[B] LD
B,#05 IFBNE 0A JSR
xA00–xAFF JMP
xA00–xAFF JP+27 JP+11 A
JP−4 JP−20 LD 0FB, #i DRSZ
0FB LD
A,[X−] LD
A,[B−] LD
[B−],#i DECA SBIT
3,[B] RBIT
3,[B] LD
B,#04 IFBNE 0B JSR
xB00–xBFF JMP
xB00–xBFF JP+28 JP+12 B
JP−3 JP−19 LD 0FC, #i DRSZ
0FC LD
Md,#i JMPL X A,Md POPA SBIT
4,[B] RBIT
4,[B] LD
B,#03 IFBNE 0C JSR
xC00–xCFF JMP
xC00–xCFF JP+29 JP+13 C
JP−2 JP−18 LD 0FD, #i DRSZ
0FD DIR JSRL LD
A,Md RETSK SBIT
5,[B] RBIT
5,[B] LD
B,#02 IFBNE 0D JSR
xD00–xDFF JMP
xD00–xDFF JP+30 JP+14 D
JP−1 JP−17 LD 0FE, #i DRSZ
0FE LD
A,[X] LD
A,[B] LD
[B],#i RET SBIT
6,[B] RBIT
6,[B] LD
B,#01 IFBNE 0E JSR
xE00–xEFF JMP
xE00–xEFF JP+31 JP+15 E
JP−0 JP−16 LD 0FF, #i DRSZ
0FF * * LD B,#i RETI SBIT
7,[B] RBIT
7,[B] LD
B,#00 IFBNE 0F JSR
xF00–xFFF JMP
xF00–xFFF JP+32 JP+16 F
Where,
i is the immediate data
Md is a directly addressed memory location
* is an unused opcode
The opcode 60 Hex is also the opcode for IFBIT #i,A
www.national.com49
14.0 Mask Options
For mask options invormation on COP8SAx5 devices,
please refer to Section 6.4 ECON (CONFIGURATION) REG-
ISTER.
15.0 Development Tools Support
15.1 OVERVIEW
National is engaged with an international community of inde-
pendent 3rd party vendors who provide hardware and soft-
ware development tool support. Through National’s interac-
tion and guidance, these tools cooperate to form a choice of
solutions that fits each developer’s needs.
This section provides a summary of the tool and develop-
ment kits currently available. Up-to-date information, selec-
tion guides, free tools, demos, updates, and purchase infor-
mation can be obtained at our web site at:
www.national.com/cop8.
15.2 SUMMARY OF TOOLS
COP8 Evaluation Tools
COP8–NSEVAL: Free Software Evaluation package for
Windows. A fully integrated evaluation environment for
COP8, including versions of WCOP8 IDE (Integrated De-
velopment Environment), COP8-NSASM, COP8-MLSIM,
COP8C, DriveWayCOP8, Manuals, and other COP8
information.
COP8–MLSIM: Free Instruction Level Simulator tool for
Windows. For testing and debugging software instruc-
tions only (No I/O or interrupt support).
COP8–EPU: Very Low cost COP8 Evaluation & Pro-
gramming Unit. Windows based evaluation and
hardware-simulation tool, with COP8 device programmer
and erasable samples. Includes COP8-NSDEV, Drive-
way COP8 Demo, MetaLink Debugger, I/O cables and
power supply.
COP8–EVAL-HIxx: Low cost target application evalua-
tion and development board for COP8Sx Families, from
Hilton Inc. Real-time environment with integrated A/D,
Temp Sensor, and Peripheral I/O.
COP8–EVAL-ICUxx: Very Low cost evaluation and de-
sign test board for COP8ACC and COP8SGx Families,
from ICU. Real-time environment with add-on A/D, D/A,
and EEPROM. Includes software routines and reference
designs.
Manuals,Applications Notes, Literature: Available free
from our web site at: www.national.com/cop8.
COP8 Integrated Software/Hardware Design Develop-
ment Kits
COP8-EPU: Very Low cost Evaluation & Programming
Unit. Windows based development and hardware-
simulation tool for COPSx/xG families, with COP8 device
programmer and samples. Includes COP8-NSDEV,
Driveway COP8 Demo, MetaLink Debugger, cables and
power supply.
COP8-DM: Moderate cost Debug Module from MetaLink.
A Windows based, real-time in-circuit emulation tool with
COP8 device programmer. Includes COP8-NSDEV,
DriveWay COP8 Demo, MetaLink Debugger, power sup-
ply, emulation cables and adapters.
COP8 Development Languages and Environments
COP8-NSASM: Free COP8 Assembler v5 for Win32.
Macro assembler, linker, and librarian for COP8 software
development. Supports all COP8 devices. (DOS/Win16
v4.10.2 available with limited support). (Compatible with
WCOP8 IDE, COP8C, and DriveWay COP8).
COP8-NSDEV: Very low cost Software Development
Package for Windows. An integrated development envi-
ronment for COP8, including WCOP8 IDE, COP8C (lim-
ited version), COP8-NSASM, COP8-MLSIM.
COP8C: Moderately priced C Cross-Compiler and Code
Development System from Byte Craft (no code limit). In-
cludes BCLIDE (Byte Craft Limited Integrated Develop-
ment Environment) for Win32, editor, optimizing C Cross-
Compiler, macro cross assembler, BC-Linker, and
MetaLink tools support. (DOS/SUN versions available;
Compiler is installable under WCOP8 IDE; Compatible
with DriveWay COP8).
EWCOP8-KS: Very Low cost ANSI C-Compiler and Em-
bedded Workbench from IAR (Kickstart version:
COP8Sx/Fx only with 2k code limit; No FP). A fully inte-
grated Win32 IDE, ANSI C-Compiler, macro assembler,
editor, linker, Liberian, C-Spy simulator/debugger, PLUS
MetaLink EPU/DM emulator support.
EWCOP8-AS: Moderately priced COP8 Assembler and
Embedded Workbench from IAR (no code limit).Afully in-
tegrated Win32 IDE, macro assembler, editor, linker, li-
brarian, and C-Spy high-level simulator/debugger with
I/O and interrupts support. (Upgradeable with optional
C-Compiler and/or MetaLink Debugger/Emulator sup-
port).
EWCOP8-BL: Moderately priced ANSI C-Compiler and
Embedded Workbench from IAR (Baseline version: All
COP8 devices; 4k code limit; no FP). A fully integrated
Win32 IDE, ANSI C-Compiler, macro assembler, editor,
linker, librarian, and C-Spy high-level simulator/debugger.
(Upgradeable; CWCOP8-M MetaLink tools interface sup-
port optional).
EWCOP8: Full featured ANSI C-Compiler and Embed-
ded Workbench for Windows from IAR (no code limit). A
fully integrated Win32 IDE, ANSI C-Compiler, macro as-
sembler, editor, linker, librarian, and C-Spy high-level
simulator/debugger. (CWCOP8-M MetaLink tools inter-
face support optional).
EWCOP8-M: Full featuredANSI C-Compiler and Embed-
ded Workbench for Windows from IAR (no code limit). A
fully integrated Win32 IDE, ANSI C-Compiler, macro as-
sembler, editor, linker, librarian, C-Spy high-level
simulator/debugger, PLUS MetaLink debugger/hardware
interface (CWCOP8-M).
COP8 Productivity Enhancement Tools
WCOP8 IDE: Very Low cost IDE (Integrated Develop-
ment Environment) from KKD. Supports COP8C, COP8-
NSASM, COP8-MLSIM, DriveWay COP8, and MetaLink
debugger under a common Windows Project Manage-
ment environment. Code development, debug, and emu-
lation tools can be launched from the project window
framework.
DriveWay-COP8: Low cost COP8 Peripherals Code
Generation tool from Aisys Corporation. Automatically
generates tested and documented C or Assembly source
code modules containing I/O drivers and interrupt han-
dlers for each on-chip peripheral. Application specific
code can be inserted for customization using the inte-
grated editor. (Compatible with COP8-NSASM, COP8C,
and WCOP8 IDE.)
www.national.com 50
15.0 Development Tools Support
(Continued)
COP8-UTILS: Free set of COP8 assembly code ex-
amples, device drivers, and utilities to speed up code de-
velopment.
COP8-MLSIM: Free Instruction Level Simulator tool for
Windows. For testing and debugging software instruc-
tions only (No I/O or interrupt support).
COP8 Real-Time Emulation Tools
COP8-DM: MetaLink Debug Module. A moderately
priced real-time in-circuit emulation tool, with COP8 de-
vice programmer. Includes MetaLink Debugger, power
supply, emulation cables and adapters.
IM-COP8: MetaLink iceMASTER®. A full featured, real-
time in-circuit emulator for COP8 devices. Includes
COP8-NSDEV, Driveway COP8 Demo, MetaLink Win-
dows Debugger, and power supply. Package-specific
probes and surface mount adaptors are ordered sepa-
rately.
COP8 Device Programmer Support
MetaLink’s EPU and Debug Module include development
device programming capability for COP8 devices.
Third-party programmers and automatic handling equip-
ment cover needs from engineering prototype and pilot
production, to full production environments.
Factory programming available for high-volume require-
ments.
15.3 TOOLS ORDERING NUMBERS FOR THE COP8SAx FAMILY DEVICES
Note: The following order numbers apply to the COP8 devices in this datasheet only.
Vendor Tools Order Number Cost Notes
National COP8-NSEVAL COP8-NSEVAL Free Web site download
COP8-NSASM COP8-NSASM Free Included in EPU and DM. Web site download
COP8-MLSIM COP8-MLSIM Free Included in EPU and DM. Web site download
COP8-NSDEV COP8-NSDEV VL Included in EPU and DM. Order CD from website
COP8-EPU COP8SA-EPU (-1 or -2) VL -1 = 110V, -2 = 220V; Included p/s, 40 pin DIP target
cable, manuals, software, 16/20/28/40 DIP OTP
programming socket; add DM target adapter or OTP
adapter (if needed)
COP8-DM COP8SA-DM (10 MHz) M Included p/s, 20/28/40 pin DIP target cables, 28 SOIC
converter, manuals, software, 16/20/28/40 DIP/SO and
44 PLCC programming socket; add OTP adapter or
target adapter (if needed)
DM Target
Adapters DM-COP8/20D-SO VL 20 pin DIP to SO converter
DM-COP8/20D-16D VL 20 pin DIP to 16 pin DIP converter
DM-COP8/44P VL 44 pin PLCC target cable
DM-COP8/28D-28CSP L 28 pin DIP to 28 pin CSP converter
DM-COP8/44P-44Q L 44 pin PLCC to 44 QFP converter
Development
Devices COP8SAx7 VL 4k Eraseable or OTP devices
OTP
Programming
Adapters
COP8SA-PGMA L For programming 16/20/28 SOIC and 44 PLCC on the
EPU
COP8-PGMA-44QFP L For programming 44 QFP on any programmer
COP8-PGMA-28CSP L For programming 28 CSP on any programmer
COP8-PGMA-28SO VL For programming 16/20/28 SOIC on any programmer
IM-COP8 Call MetaLink
www.national.com51
15.0 Development Tools Support (Continued)
MetaLink COP8-EPU EPU-COP8SA VL 1 = 110V, 2 = 220V; included p/s, 40 pin DIP target
cable, manuals, software, 16/20/28/40 DIP OTP
programming socket; add DM target adapter or OTP
adapter (if needed)
COP8-DM DM4-COP8-SAx (10
MHz), plus PS-10, plus
DM-COP8/xxx (ie. 28D)
M Included p/s (PS-10), target cable of choice (DIP or
PLCC; i.e. DM-COP8/28D), 16/20/28/40 DIP/SO and
44 PLCC programming sockets. Add OTP adapter (if
needed) and target adapter (if needed)
DM Target
Adapters MHW-CNVxx (xx = 33, 34
etc.) L DM target converters for
16DIP/20SO/28SO/44QFP/28CSP; (i.e. MHW-CNV38
for 20 pin DIP to SO package converter)
OTP
Programming
Adapters
MHW-COP8-PGMA-DS L For programming 16/20/28 SOIC and 44 PLCC on the
EPU
MHW-COP8-PGMA-44QFP L For programming 44 QFP on any programmer
MHW-COP8-PGMA-28CSP L For programming 28 CSP on any programmer
IM-COP8 IM-COP8-AD-464 (-220)
(10 MHz maximum) H Base unit 10 MHz; -220 = 220V; add probe card
(required) and target adapter (if needed); included
software and manuals
IM Probe Card PC-COP8SA28DW-AD-10 M 10 MHz 28 DIP probe card; 2.5V to 6.0V
PC-COP8SA40DW-AD-10 M 10 MHz 40 DIP probe card; 2.5V to 6.0V
IM Probe Target
Adapters MHW-SOICxx (xx = 16,
20, 28) L 16 or 20 or 28 pin SOIC adapter for probe card
MHW-CSPxx (xx = 20,
28) M 20 or 28 pin CSP adapter for probe card
MHW-CONV33 L 44 pin QFP adapter for 44 PLCC probe card
ICU COP8-EVAL-ICUxx Not available for this device
KKD WCOP8-IDE WCOP8-IDE VL Included in EPU and DM
IAR EWCOP8-xx See summary above L - H Included all software and manuals
Byte
Craft COP8C COP8C M Included all software and manuals
Aisys DriveWay COP8 DriveWay COP8 L Included all software and manuals
OTP Programmers Contact vendors L - H For approved programmer listings and vendor
information go to our OTP Support page at:
www.national.com/cop8
Cost: Free; VL =<$100; L = $100 - $300; M = $300 - $1k; H = $1k - $3k; VH = $3k - $5k
www.national.com 52
15.0 Development Tools Support (Continued)
15.4 WHERE TO GET TOOLS
Tools are ordered directly from the following vendors. Please go to the vendor’s web site for current listings of distributors.
Vendor Home Office Electronic Sites Other Main Offices
Aisys U.S.A.: Santa Clara, CA www.aisysinc.com Distributors
1-408-327-8820 info@aisysinc.com
fax: 1-408-327-8830
Byte Craft U.S.A. www.bytecraft.com Distributors
1-519-888-6911 info@bytecraft.com
fax: 1-519-746-6751
IAR Sweden: Uppsala www.iar.se U.S.A.: San Francisco
+46 18 16 78 00 info@iar.se 1-415-765-5500
fax: +46 18 16 78 38 info@iar.com fax: 1-415-765-5503
info@iarsys.co.uk U.K.: London
info@iar.de +44 171 924 33 34
fax: +44 171 924 53 41
Germany: Munich
+49 89 470 6022
fax: +49 89 470 956
ICU Sweden: Polygonvaegen www.icu.se Switzeland: Hoehe
+46 8 630 11 20 support@icu.se +41 34 497 28 20
fax: +46 8 630 11 70 support@icu.ch fax: +41 34 497 28 21
KKD Denmark: www.kkd.dk
MetaLink U.S.A.: Chandler, AZ www.metaice.com Germany: Kirchseeon
1-800-638-2423 sales@metaice.com 80-91-5696-0
fax: 1-602-926-1198 support@metaice.com fax: 80-91-2386
bbs: 1-602-962-0013 islanger@metalink.de
www.metalink.de Distributors Worldwide
National U.S.A.: Santa Clara, CA www.national.com/cop8 Europe: +49 (0) 180 530 8585
1-800-272-9959 support@nsc.com fax: +49 (0) 180 530 8586
fax: 1-800-737-7018 europe.support@nsc.com Distributors Worldwide
The following companies have approved COP8 program-
mers in a variety of configurations. Contact your local office
or distributor. You can link to their web sites and get the lat-
est listing of approved programmers from National’s COP8
OTP Support page at: www.national.com/cop8.
Advantech; Advin; BP Microsystems; Data I/O; Hi-Lo Sys-
tems; ICE Technology; Lloyd Research; Logical Devices;
MQP; Needhams; Phyton; SMS; Stag Programmers; Sys-
tem General; Tribal Microsystems; Xeltek.
15.5 CUSTOMER SUPPORT
Complete product information and technical support is avail-
able from National’s customer response centers, and from
our on-line COP8 customer support sites.
www.national.com53
Physical Dimensions inches (millimeters) unless otherwise noted
20-Lead Hermetic Dual-In-Line Package, EPROM (D)
Order Number COP8SAC720Q3
NS Package Number D20CQ
www.national.com 54
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
Molded Small Outline Package (WM)
Order Number COP8SAA716M8 or COP8SAA716M9
NS Package Number M16B
Molded Dual-In-Line Package (N)
Order Number COP8SAA716N8 or COP8SAA716N9
NS Package Number N16A
www.national.com55
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
Molded SO Wide Body Package (WM)
Order Number COP8SAA720M9, COP8SAB720M9, COP8SAC720M9
COP8SAA720M8, COP8SAB720M8 or COP8SAC720M8
NS Package Number M20B
Molded Dual-In-Line Package (N)
Order Number COP8SAA720N9, COP8SAB720N9, COP8SAC720N9,
COP8SAA720N8, COP8SAB720N8 or COP8SAC720N8
NS Package Number N20A
www.national.com 56
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
28-Lead Hermetic Dual-In-Line Package EPROM (D)
Order Number COP8SAC728Q3
NS Package Number D28JQ
www.national.com57
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
Molded SO Wide Body Package (WM)
Order Number COP8SAA728M9, COP8SAB728M9, COP8SAC728M9,
COP8SAA728M8, COP8SAB728M8 or COP8SAC728M8
NS Package Number M28B
Molded Dual-In-Line Package (N),
Order Number COP8SAA728N9, COP8SAB728N9, COP8SAC728N9,
COP8SAA728N8, COP8SAB728N8 or COP8SAC728N8
NS Package Number N28B
www.national.com 58
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
28 Lead Chip Scale Package (SLB)
Order Number COP8SAA7SLB8, COP8SAB7SLB8 or COP8SAC7SLB8
NS Package Number 28CSP
www.national.com59
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
40-Lead Hermetic DIP EPROM (D)
Order Number COP8SAC740Q3
NS Package Number D40KQ
Molded Dual-In-Line Package (N)
Order Number COP8SAC740N9 or COP8SAC740N8
NS Package Number N40A
www.national.com 60
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
44-Lead EPROM Leaded Chip Carrier (EL)
Order Number COP8SAC744Q3
NS Package Number EL44C
www.national.com61
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N)
Order Number COP8SAC744V9 or COP8SAC744V8
NS Package Number V44A
SLB package
www.national.com 62
Notes
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
National Semiconductor
Europe Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80
National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com
National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
www.national.com
COP8SAx Family, 8-Bit CMOS ROM Based and One-Time Programmable (OTP) Microcontroller
with 1k to 4k Memory, Power On Reset, and Very Small Packaging
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.