MC74LVX14 Hex Schmitt Inverter With 5 V-Tolerant Inputs The MC74LVX14 is an advanced high speed CMOS Schmitt inverter. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems. The MC74LVX14 is pin and functionally compatible to the MC74LVX04, but the inputs have hysteresis and, with its Schmitt trigger function, can be used as a line receiver which will receive slow input signals. Features * * * * * * * * * * High Speed: tPD = 6.8 ns (Typ) at VCC = 3.3 V Low Power Dissipation: ICC = 2 mA (Max) at TA = 25C Powerdown Protection Provided on Inputs Balanced Propagation Delays Low Noise: VOLP = 0.5 V (Max) Pin and Function Compatible with Other Standard Logic Families Latchup Performance Exceeds 300 mA ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable These Devices are Pb-Free and are RoHS Compliant A0 A1 A2 A3 1 2 3 4 5 6 9 8 11 10 13 12 http://onsemi.com SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G PIN ASSIGNMENT VCC 14 A5 13 O5 12 A4 11 O4 10 1 2 3 4 5 A0 O0 A1 O1 A2 A3 9 O3 8 6 7 O2 GND 14-Lead (Top View) MARKING DIAGRAMS 14 O0 LVX14G AWLYWW O1 1 O2 SOIC-14 NB O3 14 A4 A5 LVX 14 ALYWG G O4 O5 1 Figure 1. Logic Diagram TSSOP-14 PIN NAMES Pins Function An On Data Inputs Data Outputs LVX14 A WL, L Y WW, W G or G FUNCTION TABLE (Note: Microdot may be in either location) An On L H H L (c) Semiconductor Components Industries, LLC, 2014 August, 2014 - Rev. 7 = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. 1 Publication Order Number: MC74LVX14/D MC74LVX14 MAXIMUM RATINGS Symbol Parameter Value Unit VCC DC Supply Voltage -0.5 to +7.0 V Vin DC Input Voltage -0.5 to +7.0 V Vout DC Output Voltage -0.5 to VCC +0.5 V IIK Input Diode Current -20 mA IOK Output Diode Current 20 mA Iout DC Output Current, per Pin 25 mA ICC DC Supply Current, VCC and GND Pins 50 mA PD Power Dissipation 180 mW Tstg Storage Temperature -65 to +150 C Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. RECOMMENDED OPERATING CONDITIONS Symbol Parameter VCC DC Supply Voltage Vin DC Input Voltage Vout DC Output Voltage TA Operating Temperature, All Package Types Min Max Unit 2.0 3.6 V 0 5.5 V 0 VCC V -40 +85 C Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Conditions VCC V TA = 25C Min VT+ Positive Threshold Voltage (Figure 4) 3.0 VT- Negative Threshold Voltage (Figure 4) 3.0 0.90 VH Hysteresis Voltage (Figure 4) 3.0 0.30 1.9 2.9 2.58 VOH High-Level Output Voltage (Vin = VIH or VIL) IOH = -50 mA IOH = -50 mA IOH = -4 mA 2.0 3.0 3.0 VOL Low-Level Output Voltage (Vin = VIH or VIL) IOL = 50 mA IOL = 50 mA IOL = 4 mA 2.0 3.0 3.0 Iin Input Leakage Current Vin = 5.5 V or GND ICC Quiescent Supply Current Vin = VCC or GND Typ TA = -40 to 85C Max Min 2.20 Max Unit 2.20 V 0.90 1.20 2.0 3.0 0.0 0.0 0.30 V 1.20 1.9 2.9 2.48 V V 0.1 0.1 0.36 0.1 0.1 0.44 V 3.6 0.1 1.0 mA 3.6 2.0 20.0 mA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIII IIIIII IIIIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns) TA = 25C Symbol Parameter tPLH, tPHL Propagation Delay, Input-to-Output tOSHL tOSLH Output-to-Output Skew (Note 1) Typ Max Min Max Unit VCC = 2.7 V CL = 15 pF CL = 50 pF 8.7 11.2 16.3 19.8 1.0 1.0 19.5 23.0 ns VCC = 3.3 0.3 V CL = 15 pF CL = 50 pF 6.8 9.3 10.6 14.1 1.0 1.0 12.5 16.0 VCC = 2.7 V VCC = 3.3 0.3 V CL = 50 pF CL = 50 pF Test Conditions Min TA = -40 to 85C 1.5 1.5 1.5 1.5 ns 1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design. http://onsemi.com 2 MC74LVX14 CAPACITIVE CHARACTERISTICS TA = 25C Typ Max Cin Input Capacitance 4 10 CPD Power Dissipation Capacitance (Note 2) 21 Symbol Min TA = -40 to 85C Parameter Min Max Unit 10 pF pF 2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 6 (per buffer). CPD is used to determine the no-load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. NOISE CHARACTERISTICS (Input tr = tf = 3.0 ns, CL = 50 pF, VCC = 3.3 V, Measured in SOIC Package) TA = 25C Symbol Characteristic Typ Max Unit VOLP Quiet Output Maximum Dynamic VOL 0.3 0.5 V VOLV Quiet Output Minimum Dynamic VOL -0.3 -0.5 V VIHD Minimum High Level Dynamic Input Voltage 2.0 V VILD Maximum Low Level Dynamic Input Voltage 0.9 V TEST POINT VCC A OUTPUT 50% DEVICE UNDER TEST GND tPLH O tPHL CL* 50% VCC *Includes all probe and jig capacitance Figure 2. Switching Waveforms Figure 3. Test Circuit ORDERING INFORMATION Package Shipping SOIC-14 NB (Pb-Free) 2500 Tape & Reel MC74LVX14DTR2G TSSOP-14 (Pb-Free) 2500 Tape & Reel NLV74LVX14DTR2G* TSSOP-14 (Pb-Free) 2500 Tape & Reel Device MC74LVX14DR2G For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. http://onsemi.com 3 VT , TYPICAL INPUT THRESHOLD VOLTAGE (VOLTS) MC74LVX14 4 3 (VT+) 2 VHtyp (VT-) 1 2.5 2 3.5 3 3.6 VCC, POWER SUPPLY VOLTAGE (VOLTS) VHtyp = (VT+ typ) - (VT- typ) Figure 4. Typical Input Threshold, VT+, VT- versus Power Supply Voltage VCC VH VT+ VT- Vin GND VOH Vout VOL (a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times VCC VH VT+ VT- Vin GND VOH Vout VOL (b) A Schmitt-Trigger Offers Maximum Noise Immunity Figure 5. Typical Schmitt-Trigger Applications http://onsemi.com 4 MC74LVX14 PACKAGE DIMENSIONS TSSOP-14 CASE 948G ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B -U- L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E CCC EEE CCC EEE CCC K A -V- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. K1 J J1 SECTION N-N -W- C 0.10 (0.004) -T- SEATING PLANE D H G DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 --- 1.20 --- 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 5 MC74LVX14 PACKAGE DIMENSIONS D SOIC-14 NB CASE 751A-03 ISSUE K A B 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 8 A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S e DETAIL A h A X 45 _ M A1 C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74LVX14/D