FN9040 Rev 2.00 Page 1 of 15
Oct 4, 2005
FN9040
Rev 2.00
Oct 4, 2005
ISL6440
300kHz Dual, 180° Out-of-Phase, Step-Down PWM Controller
DATASHEET
The ISL6440 is a high-performance, dual-output PWM
controller optimized for converting wall adapter, battery or
network intermediate bus DC input supplies into the system
supply voltages required for a wide variety of applications.
Each output is adjustable down to 0.8V. The two PWMs are
synchronized 180o out of phase reducing the RMS input
current and ripple voltage.
The ISL6440 incorporates several protection features. An
adjustable overcurrent protection circuit monitors the output
current by sensing the voltage drop across the lower
MOSFET. Hiccup mode overcurrent operation protects the
DC/DC components from damage during output
overload/short circuit conditions. Each PWM has an
independent logic-level shutdown input (SD1 and SD2).
A single PGOOD signal is issued when soft-start is complete
on both PWM controllers and their outputs are within 10% of
the set point. Thermal shutdown circuitry turns off the device
if the junction temperature exceeds +150°C.
Pinout
ISL6440 (QSOP)
TOP VIEW
Features
Wide Input Supply Voltage Range
- 5.6V to 24V
- 4.5V to 5.6V
Two Independently Programmable Output Voltages
Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . 300kHz
Out of Phase PWM Controller Operation
- Reduces Required Input Capacitance and Power
Supply Induced Loads
No External Current Sense Resistor
- Uses Lower MOSFET’s rDS(ON)
Programmable Soft-Start
Extensive Circuit Protection Functions
- PGOOD
-UVLO
- Overcurrent
- Overtemperature
- Independent Shutdown for Both PWMs
Excellent Dynamic Response
- Voltage Feed-Forward with Current Mode Control
Pb-Free Plus Anneal Available (RoHS Compliant)
Applications
Power Supplies with Two Outputs
xDSL Modems/Routers
DSP, ASIC, and FPGA Power Supplies
Set-Top Boxes
Dual Output Supplies for DSP, Memory, Logic, P Core
and I/O
Telecom Systems
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
LGATE2
BOOT2
UGATE2
PHASE2
ISEN2
PGOOD
VCC5
SD2
SS2
OCSET2
FB2
VIN
LGATE1
UGATE1
PHASE1
ISEN1
PGND
SS1
OCSET1
FB1
BIAS
BOOT1
SD1
SGND
Ordering Information
PART
NUMBER
PART
MARKING
TEMP.
RANGE
(°C) PACKAGE
PKG.
DWG. #
ISL6440IA ISL6440IA -40 to 85 24 Ld QSOP M24.15
ISL6440IAZ
(See Note)
ISL6440IAZ -40 to 85 24 Ld QSOP
(Pb-free)
M24.15
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material
sets; molding compounds/die attach materials and 100% matte tin plate
termination finish, which are RoHS compliant and compatible with both SnPb
and Pb-free soldering operations. Intersil Pb-free products are MSL classified
at Pb-free peak reflow temperatures that meet or exceed the Pb-free
requirements of IPC/JEDEC J STD-020.
Add “-T” or “-TK” suffix for tape and reel.
ISL6440
FN9040 Rev 2.00 Page 2 of 15
Oct 4, 2005
Typical Application Schematic
+
PGOOD
+12V
UGATE2
PHASE2
ISL6440IA +
C1
R5
C10
19
22
4
24
6
14
LGATE2
Q2
13
ISEN2 R2
17
C8
BOOT2
VIN
5
D2
21
C5
R6
9
23
OCSET2
FB1
UGATE1
PHASE1
+
C9
PGND
LGATE1
ISEN1
R1
C7
BOOT1
D1
R4
BIAS
VCC5
7
R8
8
SD2
20
1
3
2
12
L2
10
SS1 SS2
11
SGND
16
C4
VOUT1
R3
Q1
FB2
VOUT2
SD1
+3.3V, 2A
C3 C6
L1
+1.8V, 2A
18
15
VCC5
R9
56µF
VCC5
10K
PGOOD
6.4µH 6.4µH
1.4K
0.1µF 0.1µF
330µF
330µF
10K
31.6K
10K
12.4K
10µF
10µF
0.1µF 0.1µF
BAT54HT1
BAT54HT1
FDS6990S
OCSET1
R7
FDS6990S
C2
4.7µF
1.4K
121K
121K
FN9040 Rev 2.00 Page 3 of 15
Oct 4, 2005
ISL6440
Block Diagram
ERROR AMP 1
FB1 180k
PWM1
+0.8V
ISEN1
SAMPLE
CURRENT
SAMPLE
CURRENT
PHASE1
VCC_5V
UGATE1
BOOT1
LGATE1
PGND
+0.8V REFERENCE
OCSET1
ERROR AMP 2
ADAPTIVE DEAD-TIME
VSEN2
18.5pF 1400k
180k
PWM2
+0.8V
ISEN2
SAMPLE
CURRENT SAMPLE
CURRENT
PHASE2
VCC
UGATE2
BOOT2
LGATE2
PGND
DIODE EMULATION
V/I SAMPLE TIMING
+
0.8V REFERENCE
OCSET2
VIN VCC
DUTY CYCLE RAMP GENERATOR
PWM CHANNEL PHASE CONTROL
OC2OC1
2 CLOCK CYCLES
SAME STATE FOR
REQUIRED TO LATCH
OVERCURRENT FAULT
2 CLOCK CYCLES
SAME STATE FOR
REQUIRED TO LATCH
OVERCURRENT FAULT
VIN
PGOOD
UV
PGOOD
18.5pF
1400k
UV
PGOOD
ADAPTIVE DEAD-TIME
DIODE EMULATION
V/I SAMPLE TIMING
OC1
POR
FAULT LATCH
BIAS SUPPLIES
REFERENCE
ENABLE
SOFT-START
SGNDSD1 SD2
SS1
SOFT2
OC2
REF
REF
16k16k
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
VCC
FB3
ISL6440
FN9040 Rev 2.00 Page 4 of 15
Oct 4, 2005
Absolute Maximum Ratings Thermal Information
Supply Voltage (VCC_5V Pin) . . . . . . . . . . . . . . . . . . . . -0.3V to +7V
Input Voltage (VIN Pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+27V
BOOT1, 2 and UGATE1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . +35V
PHASE1, 2 and ISEN1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . +27V
BOOT1, 2 with Respect to PHASE1, 2 . . . . . . . . . . . . . . . . . . +6.5V
UGATE1, 2. . . . . . . . . . . . (PHASE1, 2 - 0.3V) to (BOOT1, 2 +0.3V)
Thermal Resistance (Typical) JA (°C/W)
24 Lead QSOP (Note 1). . . . . . . . . . . . . . . . . . . . . . 85
Maximum Junction Temperature (Plastic Package) . -55°C to 150°C
Maximum Storage Temperature Range . . . . . . . . . . . -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300°C
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 85°C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operat i onal sections of this specification is not implied.
NOTE:
1. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
Electrical Specifications Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application
Schematic. VIN = 5.6V to 24V, or VCC5 = 5V ±10%, TA = -40°C to 85°C (Note 3),
Typical values are at TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
VIN SUPPLY
Input Voltage Range 5.6 12 24 V
VCC_5V SUPPLY (Note 3)
Input Voltage 4.5 5.0 5.6 V
Output Voltage VIN > 5.6V, IL = 20mA 4.5 5.0 5.5 V
Maximum Output Current VIN = 12V 60 - - mA
SUPPLY CURRENT
Shutdown Current (Note 4) SD1 = SD2 = GND - 50 375 A
Operating Current (Note 5) - 2.0 4.0 mA
REFERENCE SECTION
Nominal Reference Voltage - 0.8 - V
Reference Voltage Tolerance -1.0 - 1.0 %
POWER-ON RESET
Rising VCC_5V Threshold 4.25 4.45 4.5 V
Falling VCC_5V Threshold 3.95 4.2 4.4 V
OSCILLATOR
Total Frequency Variation 260 300 340 kHz
Peak-to-Peak Sawtooth Amplitude (Note 6) VIN = 12V - 1.6 - V
VIN = 5V - 0.667 - V
Ramp Offset (Note 7) -1.0- V
SHUTDOWN1/SHUTDOWN2
HIGH Level (Converter Enabled) Internal Pull-up (3A) 2.0 - - V
LOW Level (Converter Disabled) - - 0.8 V
PWM CONVERTERS
Output Voltage -0.8- V
FB Pin Bias Current --150nA
Maximum Duty Cycle Cout = 1000pF, TA = 25°C 93 - - %
Minimum Duty Cycle -4-%
ISL6440
FN9040 Rev 2.00 Page 5 of 15
Oct 4, 2005
PWM CONTROLLER ERROR AMPLIFIERS
DC Gain (Note 7) 80 88 - dB
Gain-Bandwidth Product (Note 7) 5.9 - - MHz
Slew Rate (Note 7) -2.0-V/s
Maximum Output Voltage (Note 7) 0.9 - - V
Minimum Output Voltage (Note 7) - - 3.6 V
PWM CONTROLLER GATE DRIVERS (Note 8)
Sink/Source Current - 400 - mA
Upper Drive Pull-Up Resistance VCC5 = 4.5V - 8 -
Upper Drive Pull-Down Resistance VCC5 = 4.5V - 3.2 -
Lower Drive Pull-Up Resistance VCC5 = 4.5V - 8 -
Lower Drive Pull-Down Resistance VCC5 = 4.5V - 1.8 -
Rise Time COUT = 1000pF - 18 - ns
Fall Time COUT = 1000pF - 18 - ns
POWER GOOD AND CONTROL FUNCTIONS
PGOOD LOW Level Voltage Pull-up = 100k-0.10.5V
PGOOD Leakage Current - - ±1.0 A
PGOOD Upper Threshold, PWM 1 and 2 Fraction of set point 105 - 120 %
PGOOD Lower Threshold, PWM 1 and 2 Fraction of set point 80 - 95 %
ISEN and CURRENT LIMIT
Full Scale Input Current (Note 9) - 32 - A
Overcurrent Threshold (Note 9) ROCSET = 110k-64-A
OCSET (Current Limit) Voltage - 1.75 - V
SOFT-START
Soft-Start Current -5-A
PROTECTION
Thermal Shutdown Rising - 150 - °C
Hysteresis - 20 - °C
NOTES:
2. Specifications at -40°C and 85°C are guaranteed by design, not production tested.
3. In normal operation, where the device is supplied with voltage on the VIN pin, the VCC_5V pin provides a 5V output capable of 60mA (min).
When the VCC_5V pin is used as a 5V supply input, the internal LDO regulator is disabled and the VIN input pin must be connected to the
VCC_5V pin. (Refer to the Pin Descriptions section for more details.)
4. This is the total shutdown current with VIN = VCC_5V = PVCC = 5V.
5. Operating current is the supply current consumed when the device is active but not switching. It does not include gate drive current.
6. The peak-to-peak sawtooth amplitude is production tested at 12V only; at 5V this parameter is guaranteed by design.
7. Guaranteed by design; not production tested.
8. Not production tested; guaranteed by characterization only.
9. Guaranteed by design. The full scale current of 32µA is recommended for optimum current sample and hold operation. See the Feedback Loop
Compensation Section below.
Electrical Specifications Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application
Schematic. VIN = 5.6V to 24V, or VCC5 = 5V ±10%, TA = -40°C to 85°C (Note 3),
Typical values are at TA = 25°C (Continued)
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
ISL6440
FN9040 Rev 2.00 Page 6 of 15
Oct 4, 2005
Typical Performance Curves
(Oscilloscope Plots Are Taken Using the ISL6440EVAL1B Evaluation Board, VIN = 12V, Unless Otherwise Noted)
FIGURE 1. PWM1 LOAD REGULATION FIGURE 2. PWM2 LOAD REGULATION
FIGURE 3. REFERENCE VOLTAGE VARIATION OVER
TEMPERATURE
FIGURE 4. SOFT-START WAVEFORMS WITH PGOOD
FIGURE 5. PWM1 WAVEFORMS FIGURE 6. PWM2 WAVEFORMS
3.3
3.32
3.33
3.35
3.38
3.39
3.4
01 2.53.5
LOAD CURRENT (A)
PWM1 OUTPUT VOLTAGE (V)
4.50.5 1.5 2 3 4
3.37
3.36
3.34
3.31
3.3
3.32
3.33
3.35
3.38
3.39
3.4
01 2.53.5
LOAD CURRENT (A)
PWM2 OUTPUT VOLTAGE (V)
4.50.5 1.5 2 3 4
3.37
3.36
3.34
3.31
-40 -20 20 40 80
0.75
0.81
0.85
TEMPERATURE (°C)
REFERENCE VOLTAGE (V)
0.78
0.83
0.8
0.77
060
0.84
0.82
0.79
0.76
PGOOD 5V/DIV
VOUT3 2V/DIV
VOUT2 2V/DIV
VOUT1 2V/DIV
VOUT1 20mV/DIV, AC COUPLED
IL1 0.5A/DIV, AC COUPLED
PHASE1 10V/DIV
VOUT2 20mV/DIV, AC COUPLED
IL2 0.5A/DIV, AC COUPLED
PHASE2 10V/DIV
ISL6440
FN9040 Rev 2.00 Page 7 of 15
Oct 4, 2005
FIGURE 7. LOAD TRANSIENT RESPONSE VOUT1 (3.3V) FIGURE 8. LOAD TRANSIENT RESPONSE VOUT2 (3.3V)
FIGURE 9. PWM SOFT-START WAVEFORM FIGURE 10. OVERCURRENT HICCUP MODE OPERATION
FIGURE 11. PWM1 EFFICIENCY vs LOAD (3.3V), VIN = 12V FIGURE 12. PWM2 EFFICIENCY vs LOAD (3.3V), VIN = 12V
Typical Performance Curves (Continued)
(Oscilloscope Plots Are Taken Using the ISL6440EVAL1B Evaluation Board, VIN = 12V, Unless Otherwise Noted)
VOUT1 200mV/DIV
IOUT1 1A/DIV
AC COUPLED
VOUT2 200mV/DIV
AC COUPLED
IOUT2 1A/DIV
VCC_5V 1V/DIV
VOUT1 1V/DIV
VOUT1 2V/DIV
IL1 2A/DIV
SS1 2V/DIV
60
70
80
90
100
01
LOAD CURRENT (A)
PWM1 EFFICIENCY (%)
234
60
70
80
90
100
01
LOAD CURRENT (A)
PWM2 EFFICIENCY (%)
234
ISL6440
FN9040 Rev 2.00 Page 8 of 15
Oct 4, 2005
Pin Descriptions
BOOT2, BOOT1 - These pins power the upper MOSFET
drivers of each PWM converter. Connect this pin to the
junction of the bootstrap capacitor and the cathode of the
bootstrap diode. The anode of the bootstrap diode is
connected to the VCC_5V pin.
UGATE2, UGATE1 - These pins provide the gate drive for
the upper MOSFETs.
PHASE2, PHASE1 - These pins are connected to the junction
of the upper MOSFETs source, output filter inductor and lower
MOSFETs drain.
LGATE2, LGATE1 - These pins provide the gate drive for
the lower MOSFETs.
PGND - This pin provides the power ground connection for
the lower gate drivers for both PWM1 and PWM2. This pin
should be connected to the sources of the lower MOSFETs
and the (-) terminals of the external input capacitors.
FB2, FB1 - These pins are connected to the feedback
resistor divider and provide the voltage feedback signals for
the respective controller. They set the output voltage of the
converter. In addition, the PGOOD circuit uses these inputs
to monitor the output voltage status.
ISEN2, ISEN1 - These pins are used to monitor the voltage
drop across the lower MOSFET for current loop feedback
and overcurrent protection.
PGOOD - This is an open drain logic output used to indicate
the status of the output voltages. This pin is pulled low when
either of the two PWM outputs is not within 10% of the
respective nominal voltage.
SGND - This is the small-signal ground, common to both
controllers, and must be routed separately from the high
current ground (PGND). All voltage levels are measured with
respect to this pin. Connect the additional SGND pins to this
pin.
VIN - Use this pin to power the device with an external
supply voltage with a range of 5.6V to 24V. For 5V ±10%
operation, connect this pin to VCC5.
VCC5 - This pin is the output of the internal +5V linear
regulator. This output supplies the bias for the IC, the low
side gate drivers, and the external boot circuitry for the high
side gate drivers. The IC may be powered directly from a
single 5V (±10%) supply at this pin. When used as a 5V
supply input, this pin must be externally connected to VIN.
The VCC5 pin must be always decoupled to power ground
with a recommended minimum of 4.7F ceramic capacitor,
placed very close to the pin.
BIAS - This pin must be connected directly to VCC5.
SS1, SS2 - These pins provide a soft-start function for their
respective PWM controllers. When the chip is enabled, the
regulated 5A pull-up current source charges the capacitor
connected from this pin to ground. The error amplifier
reference voltage ramps from 0 to 0.8V while the voltage on
the soft-start pin ramps from 0 to 0.8V.
SD1, SD2 - These pins provide an enable/disable function
for their respective PWM output. The output is enabled when
this pin is floating or pulled HIGH, and disabled when the pin
is pulled LOW.
OCSET2, OCSET1 - A resistor from this pin to ground sets
the overcurrent threshold for the respective PWM.
Functional Description
General Description
The ISL6440 integrates control circuits for two synchronous
buck converters. The two synchronous bucks operate 180
degrees out of phase to substantially reduce the input ripple
and thus reduce the input filter requirements. The chip has
four control lines (SS1, SD1, SS2, and SD2), which provide
independent control for each of the synchronous buck
outputs.
The PWM controllers employ a free-running frequency of
300kHz. The current mode control scheme with an input
voltage feed-forward ramp input to the modulator provides
excellent rejection of input voltage variations and provides
simplified loop compensation.
Internal 5V Linear Regulator (VCC5)
All ISL6440 functions are internally powered from an on-
chip, low dropout, +5V regulator. The maximum regulator
input voltage is 24V. Bypass the regulator’s output (VCC5)
with a 4.7µF capacitor to ground. The dropout voltage for
this LDO is typically 600mV, so when VIN is greater then
5.6V, VCC5V is +5V. The ISL6440 also employs an
undervoltage lockout circuit that disables both regulators
when VCC5 falls below 4.4V.
The internal LDO can source over 60mA to supply the IC,
power the low side gate drivers, charge the external boot
capacitor and supply small external loads. When driving
large FETs, little or no regulator current may be available for
external loads.
For example, a single large FET with 30nC total gate charge
requires 30nC x 300kHz = 9mA. Thus four total FETs would
require 36mA. With 3mA for the internal bias would leave
approximately 20mA for an external +5V supply. Also, at
higher input voltages with larger FETs, the power dissipation
across the internal 5V will increase. Excessive dissipation
across this regulator must be avoided to prevent junction
temperature rise. Larger FETs can be used with 5V ±10%
input applications. The thermal overload protection circuit
will be triggered if the VCC5 output is short circuited.
Connect VCC5 to VIN for 5V ±10% input applications.
ISL6440
FN9040 Rev 2.00 Page 9 of 15
Oct 4, 2005
Soft-Start Operation
When soft-start is initiated, the voltage on the SS pin of the
enabled PWM channels starts to ramp gradually, due to the
5A current sourced into the external capacitor. The output
voltage follows the soft-start voltage.
When the SS pin voltage reaches 0.8V, the output voltage of
the enabled PWM channel reaches the regulation point, and
the soft-start pin voltage continues to rise. At this point the
PGOOD and fault circuitry is enabled. This completes the
soft-start sequence. Any further rise of SS pin voltage does
not affect the output voltage. By varying the values of the
soft-start capacitors, it is possible to provide sequencing of the
main outputs at start-up. The soft-start time can be obtained
from the following equation:
The soft-start capacitors can be chosen to provide startup
tracking for the two PWM outputs. This can be achieved by
choosing the soft-start capacitors such that the soft-start
capacitor ration equals the respective PWM output voltage
ratio. For example, if I use PWM1 = 1.2V and PWM2 = 3.3V
then the soft-start capacitor ration should be, CSS1/CSS1 =
1.2/3.3 = 0.364. Figure 14 shows that soft-start waveform
with CSS1 = 0.01µF and CSS2 = 0.027µF.
Output Voltage Programming
A resistive divider from the output to ground sets the output
voltage of either PWM channel. The center point of the
divider shall be connected to FBx pin. The output voltage
value is determined by the following equation.
where R1 is the top resistor of the feedback divider network
and R2 is the resistor connected from FB1 or FB2 to ground.
Out-of-Phase Operation
The two PWM controllers in the ISL6440 operate 180o out-
of-phase to reduce input ripple current. This reduces the
input capacitor ripple current requirements, reduces power
supply-induced noise, and improves EMI. This effectively
helps to lower component cost, save board space and
reduce EMI.
Dual PWMs typically operate in-phase and turn on both
upper FETs at the same time. The input capacitor must then
support the instantaneous current requirements of both
controllers simultaneously, resulting in increased ripple
voltage and current. The higher RMS ripple current lowers
the efficiency due to the power loss associated with the ESR
of the input capacitor. This typically requires more low-ESR
capacitors in parallel to minimize the input voltage ripple and
ESR-related losses, or to meet the required ripple current
rating.
With dual synchronized out-of-phase operation, the high-
side MOSFETs of the ISL6440 turn on 180o out-of-phase.
The instantaneous input current peaks of both regulators no
longer overlap, resulting in reduced RMS ripple current and
input voltage ripple. This reduces the required input
capacitor ripple current rating, allowing fewer or less
expensive capacitors, and reducing the shielding
requirements for EMI. The typical operating curves show the
synchronized 180 degree out-of-phase operation.
TSOFT 0.8V
CSS
5A
-----------


=
FIGURE 13. SOFT-START OPERATION
VCC5 1V/DIV
SS1 1V/DIV
VOUT1 1V/DIV
FIGURE 14. PWM1 AND PWM2 OUTPUT TRACKING DURING
STARTUP
VOUT1 1V/DIV
VOUT2 1V/DIV
VOUTx 0.8V R1 R2+
R2
----------------------


=
ISL6440
FN9040 Rev 2.00 Page 10 of 15
Oct 4, 2005
Input Voltage Range
The ISL6440 is designed to operate from input supplies
ranging from 4.5V to 24V. However, the input voltage range
can be effectively limited by the available maximum duty
cycle (DMAX = 93%).
where,
Vd1 = Sum of the parasitic voltage drops in the inductor
discharge path, including the lower FET, inductor and PC
board.
Vd2 = Sum of the voltage drops in the charging path,
including the upper FET, inductor and PC board resistances.
The maximum input voltage and minimum output voltage is
limited by the minimum on-time (tON(min)).
where, tON(min) = 30ns
Gate Control Logic
The gate control logic translates generated PWM signals
into gate drive signals providing amplification, level shifting
and shoot-through protection. The gate drivers have some
circuitry that helps optimize the ICs performance over a wide
range of operational conditions. As MOSFET switching
times can vary dramatically from type to type and with input
voltage, the gate control logic provides adaptive dead time
by monitoring real gate waveforms of both the upper and the
lower MOSFETs. Shoot-through control logic provides a
20ns deadtime to ensure that both the upper and lower
MOSFETs will not turn on simultaneously and cause a shoot-
through condition.
Gate Drivers
The low-side gate driver is supplied from VCC5 and provides
a peak sink/source current of 400mA. The high-side gate
driver is also capable of 400mA current. Gate-drive voltages
for the upper N-Channel MOSFET are generated by the
flying capacitor boot circuit. A boot capacitor connected from
the BOOT pin to the PHASE node provides power to the
high side MOSFET driver. To limit the peak current in the IC,
an external resistor may be placed between the UGATE pin
and the gate of the external MOSFET. This small series
resistor also damps any oscillations caused by the resonant
tank of the parasitic inductances in the traces of the board
and the FET’s gate to drain capacitance.
At start-up the low-side MOSFET turns on and forces
PHASE to ground in order to charge the BOOT capacitor to
5V. After the low-side MOSFET turns off, the high-side
MOSFET is turned on by closing an internal switch between
BOOT and UGATE. This provides the necessary gate-to-
source voltage to turn on the upper MOSFET, an action that
boosts the 5V gate drive signal above VIN. The current
required to drive the upper MOSFET is drawn from the
internal 5V regulator.
Protection Circuits
The converter output is monitored and protected against
overload, short circuit and undervoltage conditions. A
sustained overload on the output sets the PGOOD low and
initiates hiccup mode.
Both PWM controllers use the lower MOSFET’s on-
resistance, rDS(ON), to monitor the current in the converter.
The sensed voltage drop is compared with a threshold set by
a resistor connected from the OCSETx pin to ground.
where, IOC is the desired overcurrent protection threshold,
and RCS is a value of the current sense resistor connected
to the ISENx pin. If the lower MOSFET current exceeds the
overcurrent threshold, an overcurrent condition is detected.
If overcurrent is detected for 2 consecutive clock cycles then
the IC enters a hiccup mode by turning off the gate drivers
and entering into soft-start. The IC will cycle 2 times through
soft-start before trying to restart. The IC will continue to cycle
through soft-start until the overcurrent condition is removed.
Because of the nature of this current sensing technique, and
to accommodate a wide range of rDS(ON) variations, the
value of the overcurrent threshold should represent an
overload current about 150% to 180% of the maximum
operating current. If more accurate current protection is
desired place a current sense resistor in series with the
lower MOSFET source.
VIN min
VOUT Vd1
+
0.93
--------------------------------


Vd2 Vd1
+=
VIN max
VOUT
tON min
300kHz
----------------------------------------------------
BOOT
UGATE
PHASE
VCC5 VIN
ISL6440
FIGURE 15.
ROCSET
7RCS

IOC
RDS on

-------------------------------------------=
ISL6440
FN9040 Rev 2.00 Page 11 of 15
Oct 4, 2005
Over-Temperature Protection
The IC incorporates an over-temperature protection circuit
that shuts the IC down when a die temperature of 150°C is
reached. Normal operation resumes when the die
temperatures drops below 130°C through the initiation of a
full soft-start cycle.
Feedback Loop Compensation
To reduce the number of external components and to
simplify the process of determining compensation
components, both PWM controllers have internally
compensated error amplifiers. To make internal
compensation possible several design measures were
taken.
First, the ramp signal applied to the PWM comparator is
proportional to the input voltage provided via the VIN pin.
This keeps the modulator gain constant with variation in the
input voltage. Second, the load current proportional signal is
derived from the voltage drop across the lower MOSFET
during the PWM time interval and is subtracted from the
amplified error signal on the comparator input. This creates
an internal current control loop. The resistor connected to
the ISEN pin sets the gain in the current feedback loop. The
following expression estimates the required value of the
current sense resistor depending on the maximum operating
load current and the value of the MOSFET’s rDS(ON).
Choosing RCS to provide 32µA of current to the current
sample and hold circuitry is recommended at typical max
load levels, but values down to 2µA and up to 100µA can be
used.
Due to the current loop feedback, the modulator has a single
pole response with -20dB slope at a frequency determined
by the load.
where RO is load resistance and CO is load capacitance. For
this type of modulator, a Type 2 compensation circuit is
usually sufficient.
Figure 16 shows a Type 2 amplifier and its response along
with the responses of the current mode modulator and the
converter. The Type 2 amplifier, in addition to the pole at
origin, has a zero-pole pair that causes a flat gain region at
frequencies in between the zero and the pole.
The zero frequency, the amplifier high-frequency gain, and
the modulator gain are chosen to satisfy most typical
applications. The crossover frequency will appear at the
point where the modulator attenuation equals the amplifier
high frequency gain. The only task that the system designer
has to complete is to specify the output filter capacitors to
position the load main pole somewhere within one decade
lower than the amplifier zero frequency. With this type of
compensation plenty of phase margin is easily achieved due
to zero-pole pair phase ‘boost’.
Conditional stability may occur only when the main load pole
is positioned too much to the left side on the frequency axis
due to excessive output filter capacitance. In this case, the
ESR zero placed within the 1.2kHz to 30kHz range gives
some additional phase ‘boost’. Some phase boost can also
be achieved by connecting capacitor CZ in parallel with the
upper resistor R1 of the divider that sets the output voltage
value. Please refer to the output inductor and capacitor
selection sections for further details.
Layout Guidelines
Careful attention to layout requirements is necessary for
successful implementation of a ISL6440 based DC/DC
converter. The ISL6440 switches at a very high frequency
and therefore the switching times are very short. At these
switching frequencies, even the shortest trace has
significant impedance. Also the peak gate drive current rises
significantly in extremely short time. Transition speed of the
current from one device to another causes voltage spikes
across the interconnecting impedances and parasitic circuit
elements. These voltage spikes can degrade efficiency,
generate EMI, increase device overvoltage stress and
RCS
IMAX
RDSon

32A
---------------------------------------------
FPO
1
2ROCO

--------------------------------- ,=
FZ
1
2R2C1

-------------------------------6kHz==
FP
1
2R1C2

-------------------------------600kHz==
FIGURE 16. FEEDBACK LOOP COMPENSATION
R1
R2 C1
C2
FPO
FZFP
FC
MODULATOR
EA
CONVERTER
TYPE 2 EA
GEA = 18dB
GM = 17.5dB
ISL6440
FN9040 Rev 2.00 Page 12 of 15
Oct 4, 2005
ringing. Careful component selection and proper PC board
layout minimizes the magnitude of these voltage spikes.
There are two sets of critical components in a DC/DC
converter using the ISL6440. The switching power
components and the small signal components. The
switching power components are the most critical from a
layout point of view because they switch a large amount of
energy so they tend to generate a large amount of noise.
The critical small signal components are those connected to
sensitive nodes or those supplying critical bias currents. A
multi-layer printed circuit board is recommended.
Layout Considerations
1. The Input capacitors, Upper FET, Lower FET, Inductor
and Output capacitor should be placed first. Isolate these
power components on the topside of the board with their
ground terminals adjacent to one another. Place the input
high frequency decoupling ceramic capacitor very close
to the MOSFETs. Making the gate traces as short and
thick as possible will limit the parasitic inductance and
reduce the level of dv/dt seen at the gate of the lower
FETs when the upper FET turns on.
2. Use separate ground planes for power ground and small
signal ground. Connect the SGND and PGND together
close of the IC. Do not connect them together anywhere
else.
3. The loop formed by Input capacitor, the top FET and the
bottom FET must be kept as small as possible.
4. Insure the current paths from the input capacitor to the
MOSFET; to the output inductor and output capacitor are
as short as possible with maximum allowable trace
widths.
5. Place The PWM controller IC close to lower FET. The
LGATE connection should be short and wide. The IC can
be best placed over a quiet ground area. Avoid switching
ground loop current in this area.
6. Place VCC5 bypass capacitor very close to VCC5 pin of
the IC and connect its ground to the PGND plane.
7. Place the gate drive components BOOT diode and BOOT
capacitors together near controller IC.
8. The output capacitors should be placed as close to the
load as possible. Use short wide copper regions to
connect output capacitors to load to avoid inductance and
resistances.
9. Use copper filled polygons or wide but short trace to
connect junction of upper FET. Lower FET and output
inductor. Also keep the PHASE node connection to the IC
short. Do not unnecessary oversize the copper islands for
PHASE node. Since the phase nodes are subjected to
very high dv/dt voltages, the stray capacitor formed
between these islands and the surrounding circuitry will
tend to couple switching noise.
10. Route all high speed switching nodes away from the
control circuitry.
11. Create separate small analog ground plane near the IC.
Connect SGND pin to this plane. All small signal
grounding paths including feedback resistors, current
limit setting resistors, SDx pull down resistors should be
connected to this SGND plane.
12. Ensure the feedback connection to output capacitor is
short and direct.
Component Selection Guidelines
MOSFET Considerations
The logic level MOSFETs are chosen for optimum efficiency
given the potentially wide input voltage range and output
power requirements. Two N-Channel MOSFETs are used in
each of the synchronous-rectified buck converters for the
PWM1 and PWM2 outputs. These MOSFETs should be
selected based upon rDS(ON), gate supply requirements,
and thermal management considerations.
The power dissipation includes two loss components;
conduction loss and switching loss. These losses are
distributed between the upper and lower MOSFETs
according to duty cycle (see the following equations). The
conduction losses are the main component of power
dissipation for the lower MOSFETs. Only the upper MOSFET
has significant switching losses, since the lower device turns
on and off into near zero voltage. The equations assume
linear voltage-current transitions and do not model power
loss due to the reverse-recovery of the lower MOSFET’s
body diode.
A large gate-charge increases the switching time, tSW,
which increases the upper MOSFET switching losses.
Ensure that both MOSFETs are within their maximum
junction temperature at high ambient temperature by
calculating the temperature rise according to package
thermal-resistance specifications.
Output Capacitor Selection
The output capacitors for each output have unique
requirements. In general, the output capacitors should be
selected to meet the dynamic regulation requirements
including ripple voltage and load transients. Selection of
output capacitors is also dependent on the output inductor,
so some inductor analysis is required to select the output
capacitors.
One of the parameters limiting the converter’s response to a
load transient is the time required for the inductor current to
slew to it’s new level. The ISL6440 will provide either 0% or
71% duty cycle in response to a load transient.
PUPPER
IO
2
rDS ON
VOUT

VIN
--------------------------------------------------------------- IO
VIN
tSW
FSW

2
------------------------------------------------------------+=
PLOWER
IO
2
rDS ON
VIN VOUT

VIN
-------------------------------------------------------------------------------=
ISL6440
FN9040 Rev 2.00 Page 13 of 15
Oct 4, 2005
The response time is the time interval required to slew the
inductor current from an initial current value to the load
current level. During this interval the difference between the
inductor current and the transient current level must be
supplied by the output capacitor(s). Minimizing the response
time can minimize the output capacitance required. Also, if
the load transient rise time is slower than the inductor
response time, as in a hard drive or CD drive, it reduces the
requirement on the output capacitor.
The maximum capacitor value required to provide the full,
rising step, transient load current during the response time of
the inductor is:
where, COUT is the output capacitor(s) required, LO is the
output inductor, ITRAN is the transient load current step, VIN
is the input voltage, VO is output voltage, and DVOUT is the
drop in output voltage allowed during the load transient.
High frequency capacitors initially supply the transient
current and slow the load rate-of-change seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (Equivalent Series Resistance) and
voltage rating requirements as well as actual capacitance
requirements.
The output voltage ripple is due to the inductor ripple current
and the ESR of the output capacitors as defined by:
where, IL is calculated in the Inductor Sele ction section.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load
circuitry for specific decoupling requirements.
Use only specialized low-ESR capacitors intended for
switching-regulator applications at 300kHz for the bulk
capacitors. In most cases, multiple small-case electrolytic
capacitors perform better than a single large-case capacitor.
The stability requirement on the selection of the output
capacitor is that the ‘ESR zero’, fZ, be between 1.2kHz and
30kHz. This range is set by an internal, single compensation
zero at 6kHz. The ESR zero can be a factor of five on either
side of the internal zero and still contribute to increased
phase margin of the control loop. Therefore,
In conclusion, the output capacitors must meet three criteria:
1. They must have sufficient bulk capacitance to sustain the
output voltage during a load transient while the output
inductor current is slewing to the value of the load
transient,
2. The ESR must be sufficiently low to meet the desired
output voltage ripple due to the output inductor current,
and
3. The ESR zero should be placed, in a rather large range,
to provide additional phase margin.
The recommended output capacitor value for the ISL6440 is
between 150F to 680F, to ensure stability when using the
components in the typical application schematic. Use of
aluminum electrolytic, POSCAP, or tantalum type capacitors
is recommended. Use of low ESR ceramic capacitors is
possible but would take more rigorous loop analysis to
ensure stability.
Output Inductor Selection
The PWM converters require output inductors. The output
inductor is selected to meet the output voltage ripple
requirements. The inductor value determines the converter’s
ripple current and the ripple voltage is a function of the ripple
current and output capacitor(s) ESR. The ripple voltage
expression is given in the capacitor selection section and the
ripple current is approximated by the following equation:
For the ISL6440, use Inductor values between 4.7H to
10H when using the component values in the Typical
Application Schematic for optimal compensation. Other
inductor values can be used but with a more rigorous design
for compensation.
Input Capacitor Selection
The important parameters for the bulk input capacitor(s) are
the voltage rating and the RMS current rating. For reliable
operation, select bulk input capacitors with voltage and
current ratings above the maximum input voltage and largest
RMS current required by the circuit. The capacitor voltage
rating should be at least 1.25 times greater than the
maximum input voltage and 1.5 times is a conservative
guideline. The AC RMS Input current varies with the load.
The total RMS current supplied by the input capacitance is:
where,
DC is duty cycle of the respective PWM.
Depending on the specifics of the input power and its
impedance, most (or all) of this current is supplied by the
input capacitor(s). Figure 17 shows the advantage of having
the PWM converters operating out of phase. If the
converters were operating in phase, the combined RMS
current would be the algebraic sum, which is a much larger
VRIPPLE ILESR=
COUT
1
2ESRfZ

-------------------------------------=
IL
VIN VOUT
VOUT

fS
LVIN

----------------------------------------------------------=
IRMS IRMS1
2IRMS2
2
+=
IRMSx DC DC2
=
FN9040 Rev 2.00 Page 14 of 15
Oct 4, 2005
ISL6440
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
For additional products, see www.intersil.com/en/products.html
© Copyright Intersil Americas LLC 2005. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.
value as shown. The combined out-of-phase current is the
square root of the sum of the square of the individual
reflected currents and is significantly less than the combined
in-phase current.
Use a mix of input bypass capacitors to control the voltage
ripple across the MOSFETs. Use ceramic capacitors for the
high frequency decoupling and bulk capacitors to supply the
RMS current. Small ceramic capacitors can be placed very
close to the upper MOSFET to suppress the voltage induced
in the parasitic circuit impedances.
For board designs that allow through-hole components, the
Sanyo OS-CON® series offer low ESR and good
temperature performance. For surface mount designs, solid
tantalum capacitors can be used, but caution must be
exercised with regard to the capacitor surge current rating.
These capacitors must be capable of handling the surge-
current at power-up. The TPS series available from AVX is
surge current tested.
FIGURE 17. INPUT RMS CURRENT vs LOAD
12345
3.3V AND 5V LOAD CURRENT
INPUT RMS CURRENT
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
IN PHASE
OUT OF PHASE
5V
3.3V
ISL6440
FN9040 Rev 2.00 Page 15 of 15
Oct 4, 2005
Shrink Small Outline Plastic Packages (SSOP)
Quarter Size Outline Plastic Packages (QSOP)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Inter-
lead flash and protrusions shall not exceed 0.25mm (0.010 inch)
per side.
5. The chamfer on the body is optional. If it is not present, a visual in-
dex feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dam-
bar protrusion shall be 0.10mm (0.004 inch) total in excess of “B”
dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions
are not necessarily exact.
INDEX
AREA
E
D
N
123
-B-
0.17(0.007) C AMBS
e
-A-
B
M
-C-
A1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H0.25(0.010) BM M
L
0.25
0.010
GAUGE
PLANE
A2
M24.15
24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
(0.150” WIDE BODY)
SYMBOL
INCHES MILLIMETERS
NOTESMIN MAX MIN MAX
A 0.053 0.069 1.35 1.75 -
A1 0.004 0.010 0.10 0.25 -
A2 - 0.061 - 1.54 -
B 0.008 0.012 0.20 0.30 9
C 0.007 0.010 0.18 0.25 -
D 0.337 0.344 8.55 8.74 3
E 0.150 0.157 3.81 3.98 4
e 0.025 BSC 0.635 BSC -
H 0.228 0.244 5.80 6.19 -
h 0.0099 0.0196 0.26 0.49 5
L 0.016 0.050 0.41 1.27 6
N24 247
-
Rev. 2 6/04
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Intersil:
ISL6440IAZ-T7