April 2011 Doc ID 15060 Rev 5 1/87
1
STM32F103x4
STM32F103x6
Low-density performance line, ARM-based 32-bit MCU with 16 or
32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
Features
ARM 32-bit Cortex™-M3 CPU Core
72 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1)
performance at 0 wait state memory
access
Single-cycle multiplication and hardware
division
Memories
16 or 32 Kbytes of Flash memory
6 or 10 Kbytes of SRAM
Clock, reset and supply management
2.0 to 3.6 V application supply and I/Os
POR, PDR, and programmable voltage
detector (PVD)
4-to-16 MHz crystal oscillator
Internal 8 MHz factory-trimmed RC
Internal 40 kHz RC
PLL for CPU clock
32 kHz oscillator for RTC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC and backup registers
2 x 12-bit, 1 µs A/D converters (up to 16
channels)
Conversion range: 0 to 3.6 V
Dual-sample and hold capability
Temperature sensor
DMA
7-channel DMA controller
Peripherals supported: timers, ADC, SPIs,
I2Cs and USARTs
Up to 51 fast I/O ports
26/37/51 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
Debug mode
Serial wire debug (SWD) & JTAG interfaces
6 timers
Two 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
16-bit, motor control PWM timer with dead-
time generation and emergency stop
2 watchdog timers (Independent and
Window)
SysTick timer 24-bit downcounter
6 communication interfaces
21 x I2C interface (SMBus/PMBus)
2 × USARTs (ISO 7816 interface, LIN, IrDA
capability, modem control)
1 × SPI (18 Mbit/s)
CAN interface (2.0B Active)
USB 2.0 full-speed interface
CRC calculation unit, 96-bit unique ID
Packages are ECOPACK®
Table 1. Device summary
Reference Part number
STM32F103x4 STM32F103C4, STM32F103R4,
STM32F103T4
STM32F103x6 STM32F103C6, STM32F103R6,
STM32F103T6
LQFP64 (10 × 10 mm)
LQFP48 (7 × 7 mm)
TFBGA64 (5 × 5 mm
VFQFPN36 (6 × 6 mm)VFQFPN48 (7 × 7 mm)
www.st.com
Contents STM32F103x4, STM32F103x6
2/87 Doc ID 15060 Rev 5
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 14
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 14
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 14
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 17
2.3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.16 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.17 Universal synchronous/asynchronous receiver transmitter (USART) . . 19
2.3.18 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.21 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.22 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.23 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.24 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32F103x4, STM32F103x6 Contents
Doc ID 15060 Rev 5 3/87
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 33
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 33
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 54
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.17 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 82
Contents STM32F103x4, STM32F103x6
4/87 Doc ID 15060 Rev 5
7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
STM32F103x4, STM32F103x6 List of tables
Doc ID 15060 Rev 5 5/87
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F103xx low-density device features and peripheral counts. . . . . . . . . . . . . . . . . . . 10
Table 3. STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Low-density STM32F103xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 9. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 12. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 38
Table 16. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 39
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 21. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. HSE 4-16 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 24. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 27. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 30. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 33. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 36. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 37. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 38. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 39. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 40. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 41. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 42. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 43. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 44. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
List of tables STM32F103x4, STM32F103x6
6/87 Doc ID 15060 Rev 5
Table 45. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 46. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 47. RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 48. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 49. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 50. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 51. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 75
Table 52. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 76
Table 53. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . . 77
Table 54. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data. . . 78
Table 55. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 80
Table 56. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 57. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
STM32F103x4, STM32F103x6 List of figures
Doc ID 15060 Rev 5 7/87
List of figures
Figure 1. STM32F103xx performance line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. STM32F103xx performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4. STM32F103xx performance line TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 5. STM32F103xx performance line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 6. STM32F103xx performance line VFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. STM32F103xx performance line VFQFPN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 37
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 37
Figure 15. Typical current consumption on VBAT with RTC on versus temperature at different
VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 18. Typical current consumption in Standby mode versus temperature at
VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 19. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 21. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 24. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 25. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 26. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 27. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 29. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 30. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 31. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 32. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 33. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 34. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 72
Figure 37. Power supply and reference decoupling(VREF+ connected to VDDA) . . . . . . . . . . . . . . . . . 73
Figure 38. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 39. Recommended footprint (dimensions in mm)(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 40. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 41. Recommended footprint (dimensions in mm)(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 42. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 77
List of figures STM32F103x4, STM32F103x6
8/87 Doc ID 15060 Rev 5
Figure 43. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 44. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline . . . . . . . . . . 78
Figure 45. Recommended PCB design rules for pads (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 79
Figure 46. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 80
Figure 47. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 48. LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
STM32F103x4, STM32F103x6 Introduction
Doc ID 15060 Rev 5 9/87
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F103x4 and STM32F103x6 low-density performance line microcontrollers. For
more details on the whole STMicroelectronics STM32F103xx family, please refer to
Section 2.2: Full compatibility throughout the family.
The low-density STM32F103xx datasheet should be read in conjunction with the low-,
medium- and high-density STM32F10xxx reference manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
2 Description
The STM32F103x4 and STM32F103x6 performance line family incorporates the high-
performance ARM Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-
speed embedded memories (Flash memory up to 32 Kbytes and SRAM up to 6 Kbytes),
and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All
devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as
well as standard and advanced communication interfaces: up to two I2Cs and SPIs, three
USARTs, an USB and a CAN.
The STM32F103xx low-density performance line family operates from a 2.0 to 3.6 V power
supply. It is available in both the –40 to +85 °C temperature range and the –40 to +105 °C
extended temperature range. A comprehensive set of power-saving mode allows the design
of low-power applications.
The STM32F103xx low-density performance line family includes devices in four different
package types: from 36 pins to 64 pins. Depending on the device chosen, different sets of
peripherals are included, the description below gives an overview of the complete range of
peripherals proposed in this family.
These features make the STM32F103xx low-density performance line microcontroller family
suitable for a wide range of applications such as motor drives, application control, medical
and handheld equipment, PC and gaming peripherals, GPS platforms, industrial
applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and
HVACs.
Description STM32F103x4, STM32F103x6
10/87 Doc ID 15060 Rev 5
2.1 Device overview
Table 2. STM32F103xx low-density device features and peripheral counts
Peripheral STM32F103Tx STM32F103Cx STM32F103Rx
Flash - Kbytes 16 32 16 32 16 32
SRAM - Kbytes 610610610
Timers
General-purpose 222222
Advanced-control 111
Communication
SPI 111111
I2C111111
USART 222222
USB 111111
CAN 1 1 1 1 1 1
GPIOs 26 37 51
12-bit synchronized ADC
Number of channels
2
10 channels
2
10 channels
2
16 channels
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Ta b l e 9 )
Junction temperature: –40 to + 125 °C (see Ta b l e 9 )
Packages VFQFPN36 LQFP48, VFQFPN48 LQFP64, TFBGA64
STM32F103x4, STM32F103x6 Description
Doc ID 15060 Rev 5 11/87
Figure 1. STM32F103xx performance line block diagram
1. TA = –40 °C to +105 °C (junction temperature up to 125 °C).
2. AF = alternate function on I/O port pin.
PA[15:0]
EXTI
WWDG
12bit ADC1
16 AF
VREF+
JTDI
JTCK/SWCLK
JTMS/SWDIO
NJTRST
JTDO
NRST
V
DD
= 2 to 3.6V
51AF
PB[15:0]
PC[15:0]
AHB2
SRAM
WAKEUP
GPIOA
GPIOB
GPIOC
F
max
: 72 M
Hz
V
SS
GP DMA
TIM2
TIM3
XTAL OSC
4-16 MHz
XTAL 32 kHz
OSC_IN
OSC_OUT
OSC32_OUT
OSC32_IN
PLL &
APB1 : F
max
=24 / 36 MHz
PCLK1
HCLK CLOCK
MANAGT
PCLK2
Flash 32 KB
VOLT. REG.
3.3V TO 1.8V
POWER
Backup interf ace
as AF
BusMatrix
64 bit
10 KB
RTC
RC 8 MHz
Cortex-M3 CPU
Ibus
Dbus
pbu s
obl
Flash
interface
SRAM 512B
Trace
Controlle r
USART1
USART2
7 ch annels
Back up
reg
4 Chann els
TIM1
3 compl. channels
SCL,SDA,SMBA
I2C
as AF
Temp sensor
PD[2:0] GPIOD
AHB:Fmax=48/72 MHz
ETR and BKIN
4 Chann els
4 Chann els
FCLK
RC 40 kHz
Stand by
IWDG
@VBAT
POR / PDR
SUPPLY
@VDDA
VDDA
VSSA
@VDDA
V
BAT
RX,TX, CTS, RTS,
Smart Card as AF
RX,TX, CTS, RTS,
CK, SmartCard as AF
APB2 : F
max
=48 / 72 MHz
NVIC
SPI
MOSI,MISO,
SCK,NSS as AF
12bit ADC2
IF
IFIF
interface
@VDDA
SUPERVISION
PVD
Rst
Int
@VDD
AHB2
APB2 APB 1
AWU TAMPER-RTC
@VDD
System
ai15175c
TRACECLK
TRACED[0:3]
as AS
SW/JTAG
TPIU
Trace/trig
USBDP/CAN_TX
bxCAN
USB 2.0 FS USBDM/CAN_RX
Description STM32F103x4, STM32F103x6
12/87 Doc ID 15060 Rev 5
Figure 2. Clock tree
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is
64 MHz.
2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48
MHz.
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.
HSE OSC
4-16 MHz
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
LSE OSC
32.768 kHz
HSI RC
8 MHz
LSI RC
40 kHz
to Independent Watchdog (IWDG)
PLL
x2, x3, x4
PLLMUL
Legend:
MCO
Clock Output
Main
PLLXTPRE
/2
..., x16 AHB
Prescaler
/1, 2..512
/2 PLLCLK
HSI
HSE
APB1
Prescaler
/1, 2, 4, 8, 16
ADC
Prescaler
/2, 4, 6, 8 ADCCLK
PCLK1
HCLK
PLLCLK
to AHB bus, core,
memory and DMA
USBCLK
to USB interface
to TIM2, TIM3
USB
Prescaler
/1, 1.5
to ADC
LSE
LSI
HSI
/128
/2
HSI
HSE
peripherals
to APB1
Peripheral Clock
Enable (13 bits)
Enable (3 bits)
Peripheral Clock
APB2
Prescaler
/1, 2, 4, 8, 16
PCLK2
to TIM1
peripherals
to APB2
Peripheral Clock
Enable (11 bits)
Enable (1 bit)
Peripheral Clock
48 MHz
72 MHz max
72 MHz
72 MHz max
36 MHz max
to RTC
PLLSRC SW
MCO
CSS
to Cortex System timer
/8
Clock
Enable (3 bits)
SYSCLK
max
RTCCLK
RTCSEL[1:0]
TIM1CLK
TIMXCLK
IWDGCLK
SYSCLK
FCLK Cortex
free running clock
TIM2, TIM3
If (APB1 prescaler =1) x1
else x2
TIM1 timer
If (APB2 prescaler =1) x1
else x2
HSE = high-speed external clock signal
HSI = high-speed internal clock signal
LSI = low-speed internal clock signal
LSE = low-speed external clock signal
ai15176
STM32F103x4, STM32F103x6 Description
Doc ID 15060 Rev 5 13/87
2.2 Full compatibility throughout the family
The STM32F103xx is a complete family whose members are fully pin-to-pin, software and
feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are
identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as
medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are
referred to as high-density devices.
Low- and high-density devices are an extension of the STM32F103x8/B devices, they are
specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-
density devices feature lower Flash memory and RAM capacities, less timers and
peripherals. High-density devices have higher Flash memory and RAM capacities, and
additional peripherals like SDIO, FSMC, I2S and DAC, while remaining fully compatible with
the other members of the STM32F103xx family.
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE
are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user
to try different memory densities and providing a greater degree of freedom during the
development cycle.
Moreover, the STM32F103xx performance line family is fully compatible with all existing
STM32F101xx access line and STM32F102xx USB access line devices.
Table 3. STM32F103xx family
Pinout
Low-density devices Medium-density devices High-density devices
16 KB
Flash
32 KB
Flash(1)
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7),
the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density
devices.
64 KB
Flash
128 KB
Flash
256 KB
Flash
384 KB
Flash
512 KB
Flash
6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM
144 5 × USARTs
4 × 16-bit timers, 2 × basic timers
3 × SPIs, 2 × I2Ss, 2 × I2Cs
USB, CAN, 2 × PWM timers
3 × ADCs, 2 × DACs, 1 × SDIO
FSMC (100 and 144 pins)
100
3 × USARTs
3 × 16-bit timers
2 × SPIs, 2 × I2Cs, USB,
CAN, 1 × PWM timer
2 × ADCs
64 2 × USARTs
2 × 16-bit timers
1 × SPI, 1 × I2C, USB,
CAN, 1 × PWM timer
2 × ADCs
48
36
Description STM32F103x4, STM32F103x6
14/87 Doc ID 15060 Rev 5
2.3 Overview
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F103xx performance line family having an embedded ARM core, is therefore
compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.
2.3.2 Embedded Flash memory
16 or 32 Kbytes of embedded Flash is available for storing programs and data.
2.3.3 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
2.3.4 Embedded SRAM
Six or ten Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states.
2.3.5 Nested vectored interrupt controller (NVIC)
The STM32F103xx performance line embeds a nested vectored interrupt controller able to
handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of
Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
STM32F103x4, STM32F103x6 Description
Doc ID 15060 Rev 5 15/87
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
2.3.6 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 19 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected
to the 16 external interrupt lines.
2.3.7 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and
the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed
APB domain is 36 MHz. See Figure 2 for details on the clock tree.
2.3.8 Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1. For further details please refer to AN2606.
2.3.9 Power supply schemes
VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used).
VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 11: Power supply scheme.
2.3.10 Power supply supervisor
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
Description STM32F103x4, STM32F103x6
16/87 Doc ID 15060 Rev 5
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 11: Embedded reset and power control block characteristics for the values of
VPOR/PDR and VPVD.
2.3.11 Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop mode
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high
impedance output.
2.3.12 Low-power modes
The STM32F103xx performance line supports three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB
wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
STM32F103x4, STM32F103x6 Description
Doc ID 15060 Rev 5 17/87
2.3.13 DMA
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose and
advanced-control timers TIMx and ADC.
2.3.14 RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are ten 16-bit
registers used to store 20 bytes of user application data when VDD power is not present.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low-power RC oscillator or the high-speed external clock divided by 128. The
internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural crystal deviation. The RTC features
a 32-bit programmable counter for long-term measurement using the Compare register to
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default
configured to generate a time base of 1 second from a clock at 32.768 kHz.
2.3.15 Timers and watchdogs
The low-density STM32F101xx performance line devices include an advanced-control timer,
two general-purpose timers, two watchdog timers and a SysTick timer.
Ta bl e 4 compares the features of the advanced-control and general-purpose timers.
Table 4. Timer feature comparison
Timer Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/compare
channels
Complementary
outputs
TIM1 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Ye s 4 Ye s
TIM2,
TIM3 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Ye s 4 N o
Description STM32F103x4, STM32F103x6
18/87 Doc ID 15060 Rev 5
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The 4 independent channels can be
used for
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switch driven by these outputs.
Many features are shared with those of the general-purpose TIM timers which have the
same architecture. The advanced-control timer can therefore work together with the TIM
timers via the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are up to two synchronizable general-purpose timers embedded in the STM32F103xx
performance line devices. These timers are based on a 16-bit auto-reload up/down counter,
a 16-bit prescaler and feature 4 independent channels each for input capture/output
compare, PWM or one-pulse mode output. This gives up to 12 input captures/output
compares/PWMs on the largest packages.
The general-purpose timers can work together with the advanced-control timer via the Timer
Link feature for synchronization or event chaining. Their counter can be frozen in debug
mode. Any of the general-purpose timers can be used to generate PWM outputs. They all
have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
STM32F103x4, STM32F103x6 Description
Doc ID 15060 Rev 5 19/87
SysTick timer
This timer is dedicated for OS, but could also be used as a standard downcounter. It
features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
2.3.16 I²C bus
The I²C bus interface can operate in multimaster and slave modes. It can support standard
and fast modes.
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode.
A hardware CRC generation/verification is embedded.
It can be served by DMA and they support SM Bus 2.0/PM Bus.
2.3.17 Universal synchronous/asynchronous receiver transmitter (USART)
One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The
other available interface communicates at up to 2.25 Mbit/s. They provide hardware
management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816
compliant and have LIN Master/Slave capability.
All USART interfaces can be served by the DMA controller.
2.3.18 Serial peripheral interface (SPI)
The SPI interface is able to communicate up to 18 Mbits/s in slave and master modes in full-
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The SPI interface can be served by the DMA controller.
2.3.19 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
2.3.20 Universal serial bus (USB)
The STM32F103xx performance line embeds a USB device peripheral compatible with the
USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function
interface. It has software-configurable endpoint setting and suspend/resume support. The
dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use
a HSE crystal oscillator).
Description STM32F103x4, STM32F103x6
20/87 Doc ID 15060 Rev 5
2.3.21 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed
2.3.22 ADC (analog-to-digital converter)
Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line
devices and each ADC shares up to 16 external channels, performing conversions in single-
shot or scan modes. In scan mode, automatic conversion is performed on a selected group
of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) and the advanced-control timer
(TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA
trigger respectively, to allow the application to synchronize A/D conversion and timers.
2.3.23 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC12_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.3.24 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
STM32F103x4, STM32F103x6 Pinouts and pin description
Doc ID 15060 Rev 5 21/87
3 Pinouts and pin description
Figure 3. STM32F103xx performance line LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA 0 - W K U P
PA1
PA2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 1 4
VDD_2
VSS_2
PA 13
PA 12
PA 11
PA 10
PA 9
PA 8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14392
Pinouts and pin description STM32F103x4, STM32F103x6
22/87 Doc ID 15060 Rev 5
Figure 4. STM32F103xx performance line TFBGA64 ballout
AI15494
PB2
PC14-
OSC32_IN
PA7PA4
PA2
PA15
PB11
PB1PA6PA3
H
PB10
PC5PC4
D PA8
PA9
BOOT0PB8
C
PC9
PA11
PB6
PC12
VDDA
PB9
BPA12
PC10
PC15-
OSC32_OUT
PB3
PD2
A
87654321
VSS_4
OSC_IN
OSC_OUT VDD_4
G
F
E
PC2
VREF+
PC13-
TAMPER-RTC PB4 PA13PA14
PB7 PB5
VSS_3
PC7 PC8PC0NRST PC1
PB0PA5 PB14
VDD_2
VDD_3
PB13
VBAT PC11
PA10
VSS_2 VSS_1
PC6VSSA
PA1
VDD_1
PB15
PB12
PA0-WKUP
STM32F103x4, STM32F103x6 Pinouts and pin description
Doc ID 15060 Rev 5 23/87
Figure 5. STM32F103xx performance line LQFP48 pinout
Figure 6. STM32F103xx performance line VFQFPN48 pinout
44 43 42 41 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 21 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VDD_2
VSS_2
PA1 3
PA1 2
PA1 1
PA1 0
PA9
PA8
PB15
PB14
PB13
PB12
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
VSSA
VDDA
PA 0 - W K U P
PA 1
PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA1 5
PA1 4
LQFP48
ai14393b
ai18300
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
VSSA
VDDA
PA0-WKUP
PA 1
PA 2
VDD_2
VSS_2
PA13
PA12
PA11
PA10
PA 9
PA 8
PB15
PB14
PB13
PB12
48
VFQFPN48
47 46 45 44 43 42 41 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
13
14 15 16 17 18 19 20 21 22 23 24
1
2
3
4
5
6
7
8
9
10
11
12
Pinouts and pin description STM32F103x4, STM32F103x6
24/87 Doc ID 15060 Rev 5
Figure 7. STM32F103xx performance line VFQFPN36 pinout
VSS_3
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
36 35 34 33 32 31 30 29 28
VDD_3 127 VDD_2
OSC_IN/PD0 226 VSS_2
OSC_OUT/PD1 325 PA13
NRST 4
QFN36
24 PA12
VSSA 523 PA11
VDDA 622 PA10
PA0-WKUP 721 PA 9
PA 1 820 PA 8
PA 2 9 19 VDD_1
10 11 12 13 14 15 16 17 18
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
VSS_1
ai14654
STM32F103x4, STM32F103x6 Pinouts and pin description
Doc ID 15060 Rev 5 25/87
Table 5. Low-density STM32F103xx pin definitions
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP48/
VFQFPN48
LQFP64
TFBGA64
VFQFPN36
Default Remap
11B2- V
BAT SV
BAT
22A2- PC13-TAMPER-
RTC(5) I/O PC13(6) TAMPER-RTC
3 3 A1 - PC14-OSC32_IN(5) I/O PC14(6) OSC32_IN
44B1- PC15-
OSC32_OUT(5) I/O PC15(6) OSC32_OUT
5 5 C1 2 OSC_IN I OSC_IN
6 6 D1 3 OSC_OUT O OSC_OUT
7 7 E1 4 NRST I/O NRST
- 8 E3 - PC0 I/O PC0 ADC12_IN10
- 9 E2 - PC1 I/O PC1 ADC12_IN11
- 10 F2 - PC2 I/O PC2 ADC12_IN12
- 11 - - PC3 I/O PC3 ADC12_IN13
--G1- V
REF+(7) SV
REF+
812F15 V
SSA SV
SSA
913H16 V
DDA SV
DDA
10 14 G2 7 PA0-WKUP I/O PA0
WKUP/USART2_CTS/
ADC12_IN0/
TIM2_CH1_ETR(8)
11 15 H2 8 PA1 I/O PA1 USART2_RTS/
ADC12_IN1/ TIM2_CH2(8)
12 16 F3 9 PA2 I/O PA2 USART2_TX/
ADC12_IN2/ TIM2_CH3(8)
13 17 G3 10 PA3 I/O PA3 USART2_RX/
ADC12_IN3/TIM2_CH4(8)
-18C2- V
SS_4 SV
SS_4
-19D2- V
DD_4 SV
DD_4
14 20 H3 11 PA4 I/O PA4 SPI1_NSS(8)/
USART2_CK/ADC12_IN4
15 21 F4 12 PA5 I/O PA5 SPI1_SCK(8)/ ADC12_IN5
16 22 G4 13 PA6 I/O PA6 SPI1_MISO(8)/
ADC12_IN6/TIM3_CH1(8) TIM1_BKIN
17 23 H4 14 PA7 I/O PA7 SPI1_MOSI(8)/
ADC12_IN7/TIM3_CH2(8) TIM1_CH1N
- 24 H5 PC4 I/O PC4 ADC12_IN14
Pinouts and pin description STM32F103x4, STM32F103x6
26/87 Doc ID 15060 Rev 5
- 25 H6 PC5 I/O PC5 ADC12_IN15
18 26 F5 15 PB0 I/O PB0 ADC12_IN8/TIM3_CH3(8) TIM1_CH2N
19 27 G5 16 PB1 I/O PB1 ADC12_IN9/TIM3_CH4(8) TIM1_CH3N
20 28 G6 17 PB2 I/O FT PB2/BOOT1
21 29 G7 - PB10 I/O FT PB10 TIM2_CH3
22 30 H7 - PB11 I/O FT PB11 TIM2_CH4
23 31 D6 18 VSS_1 SV
SS_1
24 32 E6 19 VDD_1 SV
DD_1
25 33 H8 - PB12 I/O FT PB12 TIM1_BKIN(8)
26 34 G8 - PB13 I/O FT PB13 TIM1_CH1N (8)
27 35 F8 - PB14 I/O FT PB14 TIM1_CH2N (8)
28 36 F7 - PB15 I/O FT PB15 TIM1_CH3N(8)
- 37 F6 - PC6 I/O FT PC6 TIM3_CH1
38 E7 - PC7 I/O FT PC7 TIM3_CH2
39 E8 - PC8 I/O FT PC8 TIM3_CH3
- 40 D8 - PC9 I/O FT PC9 TIM3_CH4
29 41 D7 20 PA8 I/O FT PA8 USART1_CK/
TIM1_CH1/MCO
30 42 C7 21 PA9 I/O FT PA9 USART1_TX(8)/
TIM1_CH2(8)
31 43 C6 22 PA10 I/O FT PA10 USART1_RX(8)/ TIM1_CH3
32 44 C8 23 PA11 I/O FT PA11 USART1_CTS/ CAN_RX(8)/
TIM1_CH4 / USBDM
33 45 B8 24 PA12 I/O FT PA12 USART1_RTS/ CAN_TX(8) /
TIM1_ETR / USBDP
34 46 A8 25 PA13 I/O FT JTMS/SWDIO PA13
35 47 D5 26 VSS_2 SV
SS_2
36 48 E5 27 VDD_2 SV
DD_2
37 49 A7 28 PA14 I/O FT JTCK/SWCLK PA14
38 50 A6 29 PA15 I/O FT JTDI TIM2_CH1_ETR/
PA15 / SPI1_NSS
- 51 B7 PC10 I/O FT PC10
- 52 B6 PC11 I/O FT PC11
- 53 C5 PC12 I/O FT PC12
Table 5. Low-density STM32F103xx pin definitions (continued)
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP48/
VFQFPN48
LQFP64
TFBGA64
VFQFPN36
Default Remap
STM32F103x4, STM32F103x6 Pinouts and pin description
Doc ID 15060 Rev 5 27/87
5 5 C1 2 PD0 I/O FT OSC_IN(9)
6 6 D1 3 PD1 I/O FT OSC_OUT(9)
54 B5 - PD2 I/O FT PD2 TIM3_ETR
39 55 A5 30 PB3 I/O FT JTDO
TIM2_CH2 / PB3/
TRACESWO
SPI1_SCK
40 56 A4 31 PB4 I/O FT NJTRST TIM3_CH1 /PB4
SPI1_MISO
41 57 C4 32 PB5 I/O PB5 I2C1_SMBA TIM3_CH2 /
SPI1_MOSI
42 58 D3 33 PB6 I/O FT PB6 I2C1_SCL(8)/ USART1_TX
43 59 C3 34 PB7 I/O FT PB7 I2C1_SDA(8) USART1_RX
44 60 B4 35 BOOT0 I BOOT0
45 61 B3 - PB8 I/O FT PB8 I2C1_SCL
/CAN_RX
46 62 A3 - PB9 I/O FT PB9 I2C1_SDA /
CAN_TX
47 63 D4 36 VSS_3 SV
SS_3
48 64 E4 1 VDD_3 SV
DD_3
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower
number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1
and USART1 & USART2, respectively. Refer to Table 2 on page 10.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The VREF+ functionality is provided instead.
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
from the STMicroelectronics website: www.st.com.
9. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages and C1 and C2 in the
TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be
remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in
the STM32F10xxx reference manual.
Table 5. Low-density STM32F103xx pin definitions (continued)
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP48/
VFQFPN48
LQFP64
TFBGA64
VFQFPN36
Default Remap
Memory mapping STM32F103x4, STM32F103x6
28/87 Doc ID 15060 Rev 5
4 Memory mapping
The memory map is shown in Figure 8.
Figure 8. Memory map
reserved
0x4000 0000
0x4000 0400
0x4000 0800
0x4000 2800
0x4000 2C00
0x4000 3000
0x4000 3400
0x4000 4400
0x4000 4800
0x4001 0C00
0x4001 1000
0x4001 1400
0x4001 1800
0x4002 1400
APB memory space
DMA
0x4002 1000
TIM2
Reserved
0x4001 0800
0x4001 2400
0x4001 2800
0x4001 2C00
0x4001 3000
0x4001 3400
0x4001 3800
TIM3
RTC
WWDG
IWDG
USART2
AFIO
Port A
Port C
Port D
reserved
ADC1
reserved
USART1
reserved
0x4002 0400
0x4002 0000
0x4001 3C00
0x4000 5400
0x4000 5800
ADC2
TIM1
SPI
reserved
I2C
BKP
0x4000 6000
0x4000 5C00
PWR
Port B
reserved
bxCAN
EXTI
reserved
RCC
reserved
Flash Interface
reserved
0x4000 6400
0x4000 6800
0x4000 6C00
0x4000 7000
0x4000 7400
0x4001 0000
0x4001 0400
0x4002 2000
0x4002 2400
0x4002 3000
0x4002 3400
0xFFFF FFFF
USB Registers
CRC
0
1
2
3
4
5
6
7
0x2000 0000
0x4000 0000
0x6000 0000
0x8000 0000
0xA000 0000
0xC000 0000
0xE000 0000
0xFFFF FFFF
0x0000 0000
Peripherals
SRAM
Flash memory
reserved
reserved
0x0800 0000
0x0801 FFFF
0x1FFF F000
0x1FFF FFFF
System memory
Option Bytes
0x1FFF F800
0x1FFF F80F
Cortex-M3 Internal
Peripherals
0xE010 0000
ai15177c
shared 512 byte
USB/CAN SRAM
Aliased to Flash or system
memory depending on
BOOT pins
0x0000 0000
reserved
reserved
reserved
reserved
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 29/87
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2VVDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Electrical characteristics STM32F103x4, STM32F103x6
30/87 Doc ID 15060 Rev 5
5.1.6 Power supply scheme
Figure 11. Power supply scheme
Caution: In Figure 11, the 4.7 µF capacitor must be connected to VDD3.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
ai14142
STM32F103xx pin
VIN
ai15496
VDD
1/2/3/4/5
Analo g:
RCs, PLL,
...
Power switch
V
BAT
GP I/O s
OUT
IN
Kernel logic
(CPU,
Digital
& Memories)
Backup circuitry
(OSC32K,RTC,
Backup registers)
Wakeup logic
5 × 100 nF
+ 1 × 4.7 µF
1.8-3.6V
Regulator
VSS
1/2/3/4/5
VDDA
VSSA
ADC
Level shifter
IO
Logic
VDD
10 nF
+ 1 µF
VDD
VREF+
VREF-
10 nF
+ 1 µF
VREF
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 31/87
5.1.7 Current consumption measurement
Figure 12. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Table 6. Voltage characteristics
Symbol Ratings Min Max Unit
VDD VSS
External main supply voltage (including
VDDA and VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 7: Current characteristics for the maximum
allowed injected current values.
Input voltage on five volt tolerant pin VSS 0.3 VDD + 4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDDx| Variations between different VDD power pins 50
mV
|VSSX VSS|Variations between all the different ground
pins 50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 5.3.11: Absolute
maximum ratings (electrical
sensitivity)
Electrical characteristics STM32F103x4, STM32F103x6
32/87 Doc ID 15060 Rev 5
5.3 Operating conditions
5.3.1 General operating conditions
Table 7. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD/VDDA power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
150
mA
IVSS Total current out of VSS ground lines (sink)(1) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN)(2)
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.18: 12-bit ADC
characteristics.
Injected current on five volt tolerant pins(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage
values.
-5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage
values.
± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
Table 8. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Table 9. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency 0 72
MHzfPCLK1 Internal APB1 clock frequency 0 36
fPCLK2 Internal APB2 clock frequency 0 72
VDD Standard operating voltage 2 3.6 V
VDDA(1)
Analog operating voltage
(ADC not used) Must be the same potential
as VDD(2)
23.6
V
Analog operating voltage
(ADC used) 2.4 3.6
VBAT Backup operating voltage 1.8 3.6 V
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 33/87
5.3.2 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Table 10. Operating conditions at power-up / power-down
5.3.3 Embedded reset and power control block characteristics
The parameters given in Ta b l e 1 1 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(3)
TFBGA64 308
mW
LQFP64 444
LQFP48 363
VFQFPN36 1000
TA
Ambient temperature for 6
suffix version
Maximum power dissipation –40 85 °C
Low power dissipation(4) –40 105
Ambient temperature for 7
suffix version
Maximum power dissipation –40 105 °C
Low power dissipation(4) –40 125
TJ Junction temperature range 6 suffix version –40 105 °C
7 suffix version –40 125
1. When the ADC is used, refer to Table 46: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and operation.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal
characteristics on page 81).
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 6.2: Thermal characteristics on page 81).
Table 9. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate 0 µs/V
VDD fall time rate 20
Electrical characteristics STM32F103x4, STM32F103x6
34/87 Doc ID 15060 Rev 5
Table 11. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
VPVDhyst(2) PVD hysteresis 100 mV
VPOR/PDR
Power on/power down
reset threshold
Falling edge 1.8(1)
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(2) PDR hysteresis 40 mV
TRSTTEMPO(2)
2. Guaranteed by design, not tested in production.
Reset temporization 1 2.5 4.5 ms
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 35/87
5.3.4 Embedded reference voltage
The parameters given in Ta b l e 1 2 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
5.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Ta b l e 1 3, Ta b l e 1 4 and Ta bl e 1 5 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
Table 12. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.16 1.20 1.26 V
–40 °C < TA < +85 °C 1.16 1.20 1.24 V
TS_vrefint(1)
1. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when
reading the internal reference
voltage
5.1 17.1(2)
2. Guaranteed by design, not tested in production.
µs
VRERINT(2)
Internal reference voltage
spread over the temperature
range
VDD = 3 V ±10 mV 10 mV
TCoeff(2) Temperature coefficient 100 ppm/°C
Electrical characteristics STM32F103x4, STM32F103x6
36/87 Doc ID 15060 Rev 5
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, not tested in production.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply current in
Run mode
External clock(2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 45 46
mA
48 MHz 32 33
36 MHz 26 27
24 MHz 18 19
16 MHz 13 14
8 MHz 7 8
External clock(2), all
peripherals disabled
72 MHz 30 31
48 MHz 23 24
36 MHz 19 20
24 MHz 13 14
16 MHz 10 11
8 MHz 6 7
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, tested in production at VDD max, fHCLK max.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply
current in
Run mode
External clock(2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 41 42
mA
48 MHz 27 28
36 MHz 20 21
24 MHz 14 15
16 MHz 10 11
8 MHz 6 7
External clock(2), all
peripherals disabled
72 MHz 27 28
48 MHz 19 20
36 MHz 15 16
24 MHz 10 11
16 MHz 7 8
8 MHz 5 6
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 37/87
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled
0
5
10
15
20
25
30
35
40
45
– 45°C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption (mA)
72 MHz
36 MHz
16 MHz
8 MHz
0
5
10
15
20
25
30
– 45°C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption (mA)
72 MHz
36 MHz
16 MHz
8 MHz
Electrical characteristics STM32F103x4, STM32F103x6
38/87 Doc ID 15060 Rev 5
Table 15. Maximum current consumption in Sleep mode, code running from Flash
or RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply current in
Sleep mode
External clock(2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 26 27
mA
48 MHz 17 18
36 MHz 14 15
24 MHz 10 11
16 MHz 7 8
8 MHz 4 5
External clock(2), all
peripherals disabled
72 MHz 7.5 8
48 MHz 6 6.5
36 MHz 5 5.5
24 MHz 4.5 5
16 MHz 4 4.5
8 MHz 3 4
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 39/87
Figure 15. Typical current consumption on VBAT with RTC on versus temperature at different
VBAT values
Table 16. Typical and maximum current consumptions in Stop and Standby modes
Symbol Parameter Conditions
Typ(1) Max
Unit
VDD/VBAT
= 2.0 V
VDD/VBAT
= 2.4 V
VDD/VBAT
= 3.3 V
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Stop mode
Regulator in Run mode, low-speed
and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
- 21.3 21.7 160 200
µA
Regulator in Low Power mode, low-
speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
- 11.3 11.7 145 185
Supply current
in Standby
mode
Low-speed internal RC oscillator and
independent watchdog ON -2.753.4--
Low-speed internal RC oscillator
ON, independent watchdog OFF -2.553.2--
Low-speed internal RC oscillator and
independent watchdog OFF, low-
speed oscillator and RTC OFF
- 1.55 1.9 3.2 4.5
IDD_VBAT
Backup
domain supply
current
Low-speed oscillator and RTC ON 0.9 1.1 1.4 1.9(2) 2.2
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
0
0.5
1
1.5
2
2.5
–40 °C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption ( µA )
2 V
2.4 V
3 V
3.6 V
ai17351
Electrical characteristics STM32F103x4, STM32F103x6
40/87 Doc ID 15060 Rev 5
Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at VDD = 3.3 V and 3.6 V
Figure 17. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at VDD = 3.3 V and 3.6 V
0
20
40
60
80
100
120
–45 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
0
10
20
30
40
50
60
70
80
90
–45 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 41/87
Figure 18. Typical current consumption in Standby mode versus temperature at
VDD = 3.3 V and 3.6 V
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 48 MHz and 2 wait states above).
Ambient temperature and VDD supply voltage conditions summarized in Ta b l e 9 .
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK =
fPCLK2/4
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
–45 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
Electrical characteristics STM32F103x4, STM32F103x6
42/87 Doc ID 15060 Rev 5
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Typ(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Run mode
External clock(3)
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 31.3 24.5
mA
48 MHz 21.9 17.4
36 MHz 17.2 13.8
24 MHz 11.2 8.9
16 MHz 8.1 6.6
8 MHz 5 4.2
4 MHz 3 2.6
2 MHz 2 1.8
1 MHz 1.5 1.4
500 kHz 1.2 1.2
125 kHz 1.05 1
Running on high
speed internal RC
(HSI), AHB
prescaler used to
reduce the
frequency
64 MHz 27.6 21.6
mA
48 MHz 21.2 16.7
36 MHz 16.5 13.1
24 MHz 10.5 8.2
16 MHz 7.4 5.9
8 MHz 4.3 3.6
4 MHz 2.4 2
2 MHz 1.5 1.3
1 MHz 1 0.9
500 kHz 0.7 0.65
125 kHz 0.5 0.45
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 43/87
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol Parameter Conditions fHCLK
Typ(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Sleep mode
External clock(3)
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 12.6 5.3
mA
48 MHz 8.7 3.8
36 MHz 6.7 3.1
24 MHz 4.8 2.3
16 MHz 3.4 1.8
8 MHz 2 1.2
4 MHz 1.5 1.1
2 MHz 1.25 1
1 MHz 1.1 0.98
500 kHz 1.05 0.96
125 kHz 1 0.95
Running on high
speed internal RC
(HSI), AHB prescaler
used to reduce the
frequency
64 MHz 10.6 4.2
48 MHz 8.1 3.2
36 MHz 6.1 2.5
24 MHz 4.2 1.7
16 MHz 2.8 1.2
8 MHz 1.4 0.55
4 MHz 0.9 0.5
2 MHz 0.7 0.45
1 MHz 0.55 0.42
500 kHz 0.48 0.4
125 kHz 0.4 0.38
Electrical characteristics STM32F103x4, STM32F103x6
44/87 Doc ID 15060 Rev 5
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta b l e 1 9 . The MCU is placed
under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and VDD supply voltage conditions summarized in
Ta b le 6
5.3.6 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Tab l e 2 0 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Ta b l e 9 .
Table 19. Peripheral current consumption(1)
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.
Peripheral Typical consumption at 25 °C Unit
APB1
TIM2 1.2
mA
TIM3 1.2
USART2 0.35
I2C 0.39
USB 0.65
CAN 0.72
APB2
GPIO A 0.47
mA
GPIO B 0.47
GPIO C 0.47
GPIO D 0.47
ADC1(2)
2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit
in the ADC_CR2 register is set to 1.
1.81
ADC2 1.78
TIM1 1.6
SPI 0.43
USART1 0.85
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 45/87
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 2 1 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Ta b l e 9 .
Table 20. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency(1) 1825MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD VDD V
VHSEL OSC_IN input pin low level voltage VSS 0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) 20
Cin(HSE) OSC_IN input capacitance(1) 5pF
DuCy(HSE) Duty cycle 45 55 %
ILOSC_IN Input leakage current VSS VIN VDD ±1 µA
Table 21. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
1. Guaranteed by design, not tested in production.
32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD VDD
V
VLSEL
OSC32_IN input pin low level
voltage VSS 0.3VDD
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1) 450
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) 50
Cin(LSE) OSC32_IN input capacitance(1) 5pF
DuCy(LSE) Duty cycle 30 70 %
IL
OSC32_IN Input leakage
current VSS VIN VDD ±1 µA
Electrical characteristics STM32F103x4, STM32F103x6
46/87 Doc ID 15060 Rev 5
Figure 19. High-speed external clock source AC timing diagram
Figure 20. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Ta b l e 2 2 . In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
ai14143
OSC _I N
EXTER NAL
STM32F103xx
CLOCK SOURC E
VHSEH
tf(HSE) tW(HSE)
IL
90%
10%
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
ai14144b
OSC32_IN
EXTER NAL
STM32F103xx
CLOCK SOURC E
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 47/87
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 21). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Ta b l e 2 3 . In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 22. HSE 4-16 MHz oscillator characteristics(1) (2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 8 16 MHz
RFFeedback resistor 200 kΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
RS = 30 Ω 30 pF
i2HSE driving current VDD = 3.3 V, VIN =V
SS
with 30 pF load 1mA
gmOscillator transconductance Startup 25 mA/V
tSU(HSE(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
startup time VDD is stabilized 2 ms
ai14145
OSC_OU T
OSC_IN fHSE
CL1
RF
STM32F103xx
8 MHz
resonator
REXT(1)
CL2
Resonator with
integrated capacitors
Bias
controlled
gain
Electrical characteristics STM32F103x4, STM32F103x6
48/87 Doc ID 15060 Rev 5
Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are
usually the same size. The crystal manufacturer typically specifies a load capacitance which
is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL
7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (2)
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor 5 MΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)
RS = 30 KΩ15 pF
I2LSE driving current VDD = 3.3 V
VIN = VSS
1.4 µA
gmOscillator transconductance 5 µA/V
tSU(LSE)(3) Startup time VDD is
stabilized
TA = 50 °C 1.5
s
TA = 25 °C 2.5
TA = 10 °C 4
TA = 0 °C 6
TA = -10 °C 10
TA = -20 °C 17
TA = -30 °C 32
TA = -40 °C 60
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 49/87
Figure 22. Typical application with a 32.768 kHz crystal
5.3.7 Internal clock source characteristics
The parameters given in Ta b l e 2 4 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
High-speed internal (HSI) RC oscillator
ai14146
OSC32_OU T
OSC32_IN fLSE
CL1
RF
STM32F103xx
32.768 kHz
resonator
CL2
Resonator with
integrated capacitors
Bias
controlled
gain
Table 24. HSI oscillator characteristics(1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency 8 MHz
DuCy(HSI) Duty cycle 45 55 %
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from
the ST website www.st.com.
1(3)
3. Guaranteed by design, not tested in production.
%
Factory-
calibrated(4)
4. Based on characterization, not tested in production.
TA = –40 to 105 °C –2 2.5 %
TA = –10 to 85 °C –1.5 2.2 %
TA = 0 to 70 °C –1.3 2 %
TA = 25 °C –1.1 1.8 %
tsu(HSI)(4) HSI oscillator
startup time 12µs
IDD(HSI)(4) HSI oscillator power
consumption 80 100 µA
Electrical characteristics STM32F103x4, STM32F103x6
50/87 Doc ID 15060 Rev 5
Low-speed internal (LSI) RC oscillator
Wakeup time from low-power mode
The wakeup times given in Ta b le 2 6 is measured on a wakeup phase with a 8-MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Ta b l e 9 .
Table 25. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Based on characterization, not tested in production.
Frequency 30 40 60 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time 85 µs
IDD(LSI)(3) LSI oscillator power consumption 0.65 1.2 µA
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 51/87
5.3.8 PLL characteristics
The parameters given in Ta b l e 2 7 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
5.3.9 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
Table 26. Low-power mode wakeup timings
Symbol Parameter Typ Unit
tWUSLEEP(1)
1. The wakeup times are measured from the wakeup event to the point in which the user application code
reads the first instruction.
Wakeup from Sleep mode 1.8 µs
tWUSTOP(1)
Wakeup from Stop mode (regulator in run mode) 3.6
µs
Wakeup from Stop mode (regulator in low power
mode) 5.4
tWUSTDBY(1) Wakeup from Standby mode 50 µs
Table 27. PLL characteristics
Symbol Parameter
Value
Unit
Min(1)
1. Based on characterization, not tested in production.
Typ Max(1)
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
18.0 25 MHz
PLL input clock duty cycle 40 60 %
fPLL_OUT PLL multiplier output clock 16 72 MHz
tLOCK PLL lock time 200 µs
Jitter Cycle-to-cycle jitter 300 ps
Table 28. Flash memory characteristics
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs
tERASE Page (1 KB) erase time TA = –40 to +105 °C 20 40 ms
tME Mass erase time TA = –40 to +105 °C 20 40 ms
Electrical characteristics STM32F103x4, STM32F103x6
52/87 Doc ID 15060 Rev 5
Table 29. Flash memory endurance and data retention
5.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Ta b l e 3 0 . They are based on the EMS levels and classes
defined in application note AN1709.
IDD Supply current
Read mode
fHCLK = 72 MHz with 2 wait
states, VDD = 3.3 V
20 mA
Write / Erase modes
fHCLK = 72 MHz, VDD = 3.3 V 5mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V 50 µA
Vprog Programming voltage 2 3.6 V
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Based on characterization, not tested in production.
Typ Max
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Table 28. Flash memory characteristics (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 53/87
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 30. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 72 MHz
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
4A
Table 31. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz 8/72 MHz
SEMI Peak level VDD = 3.3 V, TA = 25 °C
0.1 to 30 MHz 12 12
dBµV30 to 130 MHz 22 19
130 MHz to 1GHz 23 29
SAE EMI Level 4 4 -
Electrical characteristics STM32F103x4, STM32F103x6
54/87 Doc ID 15060 Rev 5
5.3.11 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 32. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value(1)
1. Based on characterization results, not tested in production.
Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = +25 °C
conforming to
JESD22-A114
2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C
conforming to
JESD22-C101
II 500
Table 33. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 55/87
5.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Ta ble 34
Table 34. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13 -0 +0
mA
Injected current on all FT pins -5 +0
Injected current on any other pin -5 +5
Electrical characteristics STM32F103x4, STM32F103x6
56/87 Doc ID 15060 Rev 5
5.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Ta b l e 3 5 are derived from tests
performed under the conditions summarized in Ta b l e 9 . All I/Os are CMOS and TTL
compliant.
Table 35. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Standard IO input low
level voltage –0.3 0.28*(VDD-2 V)+0.8 V V
IO FT(1) input low level
voltage –0.3 0.32*(VDD-2V)+0.75 V V
VIH
Standard IO input high
level voltage 0.41*(VDD-2 V)+1.3 V VDD+0.3 V
IO FT(1) input high level
voltage
VDD > 2 V 0.42*(VDD-2 V)+1 V 5.5 V
VDD 2 V 5.2
Vhys
Standard IO Schmitt
trigger voltage
hysteresis(2)
200 mV
IO FT Schmitt trigger
voltage hysteresis(2) 5% VDD(3) mV
Ilkg Input leakage current (4)
VSS VIN VDD
Standard I/Os ±1
µA
VIN = 5 V
I/O FT 3
RPU
Weak pull-up equivalent
resistor(5) VIN = VSS 30 40 50 kΩ
RPD
Weak pull-down
equivalent resistor(5) VIN = VDD 30 40 50 kΩ
CIO I/O pin capacitance 5 pF
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
disabled.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 57/87
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 23 and Figure 24 for standard I/Os, and
in Figure 25 and Figure 26 for 5 V tolerant I/Os.
Figure 23. Standard I/O input characteristics - CMOS port
Figure 24. Standard I/O input characteristics - TTL port
AIB
6$$6



)NPUTRANGE
NOTGUARANTEED


6)(6$$

#-/3STANDARDREQUIREMENT6)(6$$

6)(6),6
#-/3STANDARDREQUIREMENT6),6$$





 
7),MAX
7)(MIN
6
$$
6
),
AI

)NPUTRANGE
NOTGUARANTEED
6)(6),6






44,REQUIREMENTS 6)( 6
6)(6$$
6),6$$
44,REQUIREMENTS 6),
6
6$$6
7
),MAX
7
)(MIN
Electrical characteristics STM32F103x4, STM32F103x6
58/87 Doc ID 15060 Rev 5
Figure 25. 5 V tolerant I/O input characteristics - CMOS port
Figure 26. 5 V tolerant I/O input characteristics - TTL port
6$$


#-/3STANDARDREQUIREMENTS6)(6$$
#-/3STANDARDREQUIRMENT6),6$$











6)(6),6
6$$6
)NPUTRANGE
NOTGUARANTEED
AIB
6)(6$$
6),6$$



NOTGUARANTEED
)NPUTRANGE


44,REQUIREMENT6)(6
6)(6$$
6),6$$
44,REQUIREMENTS6),6
6)(6),6
6$$6
7),MAX
7)(MIN
AI
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 59/87
Output driving current
The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Ta bl e 7 ).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Ta b l e 7 ).
Output voltage levels
Unless otherwise specified, the parameters given in Ta b l e 3 6 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Ta bl e 9 . All I/Os are CMOS and TTL compliant.
Table 36. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time CMOS port(2),
IIO = +8 mA
2.7 V < VDD < 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4
VOL (1) Output low level voltage for an I/O pin
when 8 pins are sunk at same time TTL port(2)
IIO =+ 8mA
2.7 V < VDD < 3.6 V
0.4
V
VOH (3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time 2.4
VOL(1)(4)
4. Based on characterization data, not tested in production.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +20 mA
2.7 V < VDD < 3.6 V
1.3
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–1.3
VOL(1)(4) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +6 mA
2 V < VDD < 2.7 V
0.4
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4
Electrical characteristics STM32F103x4, STM32F103x6
60/87 Doc ID 15060 Rev 5
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Ta bl e 3 7 , respectively.
Unless otherwise specified, the parameters given in Ta b l e 3 7 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Ta b l e 9 .
Table 37. I/O AC characteristics(1)
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
MODEx[1:0]
bit value(1) Symbol Parameter Conditions Min Max Unit
10
fmax(IO)out Maximum frequency(2)
2. The maximum frequency is defined in Figure 27.
CL = 50 pF, VDD = 2 V to 3.6 V 2 MHz
tf(IO)out
Output high to low
level fall time CL = 50 pF, VDD = 2 V to 3.6 V
125(3)
3. Guaranteed by design, not tested in production.
ns
tr(IO)out
Output low to high
level rise time 125(3)
01
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 10 MHz
tf(IO)out
Output high to low
level fall time CL = 50 pF, VDD = 2 V to 3.6 V
25(3)
ns
tr(IO)out
Output low to high
level rise time 25(3)
11
Fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD = 2.7 V to 3.6 V 50 MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz
tf(IO)out
Output high to low
level fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
tr(IO)out
Output low to high
level rise time
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
-t
EXTIpw
Pulse width of
external signals
detected by the EXTI
controller
10 ns
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 61/87
Figure 27. I/O AC characteristics definition
5.3.14 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Ta b l e 3 5 ).
Unless otherwise specified, the parameters given in Ta b l e 3 8 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Ta b l e 9 .
ai14131
10%
90%
50%
tr(IO)out
External
Output
on 50pF
Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50 pF
T
tr(IO)out
Table 38. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design, not tested in production.
NRST Input low level voltage –0.5 0.8 V
VIH(NRST)(1) NRST Input high level voltage 2 VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis 200 mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)(1) NRST Input filtered pulse 100 ns
VNF(NRST)(1) NRST Input not filtered pulse 300 ns
Electrical characteristics STM32F103x4, STM32F103x6
62/87 Doc ID 15060 Rev 5
Figure 28. Recommended NRST pin protection
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 38. Otherwise the reset will not be taken into account by the device.
5.3.15 TIM timer characteristics
The parameters given in Ta b l e 3 9 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
ai14132d
STM32F10x
RPU
NRST
(2)
VDD
Filter
Internal reset
0.1 µF
External
reset circuit
(1)
Table 39. TIMx(1) characteristics
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
1tTIMxCLK
fTIMxCLK = 72 MHz 13.9 ns
fEXT Timer external clock
frequency on CH1 to CH4
0
fTIMxCLK/2 MHz
fTIMxCLK = 72 MHz 036MHz
ResTIM Timer resolution 16 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
fTIMxCLK = 72 MHz 0.0139 910 µs
tMAX_COUNT Maximum possible count
65536 × 65536 tTIMxCLK
fTIMxCLK = 72 MHz 59.6 s
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 63/87
5.3.16 Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Ta b l e 4 0 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Ta b l e 9 .
The STM32F103xx performance line I2C interface meets the requirements of the standard
I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Ta b l e 4 0 . Refer also to Section 5.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 40. I2C characteristics
Symbol Parameter
Standard mode I2C(1)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be higher than 2 MHz to achieve standard mode I2C frequencies. It must be higher than
4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz
maximum I2C fast mode clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 1.3 µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
period of SCL signal.
0(4)
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time 1000 20 + 0.1Cb300
tf(SDA)
tf(SCL)
SDA and SCL fall time 300 300
th(STA) Start condition hold time 4.0 0.6
µs
tsu(STA)
Repeated Start condition
setup time 4.7 0.6
tsu(STO) Stop condition setup time 4.0 0.6 μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 1.3 μs
Cb
Capacitive load for each bus
line 400 400 pF
Electrical characteristics STM32F103x4, STM32F103x6
64/87 Doc ID 15060 Rev 5
Figure 29. I2C bus AC waveforms and measurement circuit
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 41. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x801E
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
ai14133d
Start
SDA
100 Ω
4.7kΩ
I²C bus
4.7kΩ
100 Ω
VDD
VDD
STM32F10x
SDA
SCL
tf(SDA) tr(SDA)
SCL
th(STA)
tw(SCLH)
tw(SCLL)
tsu(SDA)
tr(SCL) tf(SCL)
th(SDA)
Start repeated
Start
tsu(STA)
tsu(STO)
Stop tsu(STO:STA)
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 65/87
SPI interface characteristics
Unless otherwise specified, the parameters given in Ta b l e 4 2 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Ta b l e 9 .
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 42. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency Master mode 18 MHz
Slave mode 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 30 pF 8 ns
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 30 70 %
tsu(NSS)(1)
1. Based on characterization, not tested in production.
NSS setup time Slave mode 4tPCLK
ns
th(NSS)(1) NSS hold time Slave mode 2tPCLK
tw(SCKH)(1)
tw(SCKL)(1) SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 50 60
tsu(MI) (1)
tsu(SI)(1) Data input setup time Master mode 5
Slave mode 5
th(MI) (1)
Data input hold time Master mode 5
th(SI)(1) Slave mode 4
ta(SO)(1)(2)
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
Data output access
time Slave mode, fPCLK = 20 MHz 0 3tPCLK
tdis(SO)(1)(3)
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Data output disable
time Slave mode 2 10
tv(SO) (1) Data output valid time Slave mode (after enable edge) 25
tv(MO)(1) Data output valid time Master mode (after enable edge) 5
th(SO)(1)
Data output hold time Slave mode (after enable edge) 15
th(MO)(1) Master mode (after enable edge) 2
Electrical characteristics STM32F103x4, STM32F103x6
66/87 Doc ID 15060 Rev 5
Figure 30. SPI timing diagram - slave mode and CPHA = 0
Figure 31. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14134c
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT P UT
CPHA= 0
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT P UT
CPHA=1
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 67/87
Figure 32. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
USB characteristics
The USB interface is USB-IF certified (Full Speed).
Table 43. USB startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB transceiver startup time 1 µs
ai14136
SCK Input
CPHA= 0
MOSI
OUTUT
MISO
INP UT
CPHA= 0
MS BIN
M SB OUT
BI T6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
Electrical characteristics STM32F103x4, STM32F103x6
68/87 Doc ID 15060 Rev 5
Figure 33. USB timings: definition of data signal rise and fall time
5.3.17 CAN (controller area network) interface
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (CAN_TX and CAN_RX).
Table 44. USB DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input levels
VDD USB operating voltage(2)
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.
3.0(3)
3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3.6 V
VDI(4)
4. Guaranteed by design, not tested in production.
Differential input sensitivity I(USBDP, USBDM) 0.2
VVCM(4) Differential common mode range Includes VDI range 0.8 2.5
VSE(4) Single ended receiver threshold 1.3 2.0
Output levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(5)
5. RL is the load connected on the USB drivers
0.3 V
VOH Static output level high RL of 15 kΩ to VSS(5) 2.8 3.6
Table 45. USB: Full-speed electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Max Unit
Driver characteristics
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
ai14137
tf
Differen tial
data lines
VSS
V
CR S
tr
Crossover
points
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 69/87
5.3.18 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Ta b l e 4 6 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Ta b l e 9 .
Note: It is recommended to perform a calibration after each power-up.
Table 46. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply 2.4 3.6 V
VREF+(3) Positive reference voltage 2.4 VDDA V
IVREF(3) Current on the VREF input pin 160(1) 220(1) µA
fADC ADC clock frequency 0.6 14 MHz
fS(2) Sampling rate 0.05 1 MHz
fTRIG(2) External trigger frequency fADC = 14 MHz 823 kHz
17 1/fADC
VAIN(3) Conversion voltage range 0 (VSSA tied to
ground) VREF+ V
RAIN(2) External input impedance See Equation 1 and
Ta bl e 4 7 for details 50 kΩ
RADC(2) Sampling switch resistance 1 kΩ
CADC(2) Internal sample and hold
capacitor 8pF
tCAL(2) Calibration time fADC = 14 MHz 5.9 µs
83 1/fADC
tlat(2) Injection trigger conversion
latency
fADC = 14 MHz 0.214 µs
3(4) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 14 MHz 0.143 µs
2(4) 1/fADC
tS(2) Sampling time fADC = 14 MHz 0.107 17.1 µs
1.5 239.5 1/fADC
tSTAB(2) Power-up time 0 0 1 µs
tCONV(2) Total conversion time
(including sampling time)
fADC = 14 MHz 1 18 µs
14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. In devices delivered in VFQFPN and LQFP packages, VREF+ is internally connected to VDDA and VREF- is internally
connected to VSSA. Devices that come in the TFBGA64 package have a VREF+ pin but no VREF- pin (VREF- is internally
connected to VSSA), see Table 5 and Figure 4.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 46.
Electrical characteristics STM32F103x4, STM32F103x6
70/87 Doc ID 15060 Rev 5
Equation 1: RAIN max formula:
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 47. RAIN max for fADC = 14 MHz(1)
1. Based on characterization, not tested in production.
Ts (cycles) tS (µs) RAIN max (kΩ)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
Table 48. ADC accuracy - limited test conditions(1) (2)
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to
standard analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not
affect the ADC accuracy.
Symbol Parameter Test conditions Typ Max(3)
3. Based on characterization, not tested in production.
Unit
ET Total unadjusted error fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
±1.3 ±2
LSB
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
RAIN
TS
fADC CADC 2N2+
()ln××
--------------------------------------------------------------RADC
<
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 71/87
Figure 34. ADC accuracy characteristics
Table 49. ADC accuracy(1) (2) (3)
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to
standard analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not
affect the ADC accuracy.
Symbol Parameter Test conditions Typ Max(4)
4. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
EO
EG
1LSB
IDEAL
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
ai14395b
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSBIDEAL =
Electrical characteristics STM32F103x4, STM32F103x6
72/87 Doc ID 15060 Rev 5
Figure 35. Typical connection diagram using the ADC
1. Refer to Ta b l e 4 6 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown inFigure 36 or Figure 37,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. The VREF+ input is available only on the TFBGA64 package.
ai14150c
STM32F103xx
VDD
AINx
IL±1 µA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1) 12-bit
converter
CADC(1)
Sample and hold ADC
converter
62%&
SEENOTE
34-&XX
6$$!
633!
&N&
&N&
AI
STM32F103x4, STM32F103x6 Electrical characteristics
Doc ID 15060 Rev 5 73/87
Figure 37. Power supply and reference decoupling(VREF+ connected to VDDA)
1. The VREF+ input is available only on the TFBGA64 package.
5.3.19 Temperature sensor characteristics
6$$!62%&SEENOTE
34-&X
&N&
633!
AI
Table 50. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Based on characterization, not tested in production.
VSENSE linearity with temperature ±1±2°C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25(1) Voltage at 25 °C 1.34 1.43 1.52 V
tSTART(2)
2. Guaranteed by design, not tested in production.
Startup time 4 10 µs
TS_temp(3)(2)
3. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the
temperature 17.1 µs
Package characteristics STM32F103x4, STM32F103x6
74/87 Doc ID 15060 Rev 5
6 Package characteristics
6.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
STM32F103x4, STM32F103x6 Package characteristics
Doc ID 15060 Rev 5 75/87
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.
Figure 38. VFQFPN36 6 x 6 mm, 0.5 mm pitch,
package outline(1) Figure 39. Recommended footprint
(dimensions in mm)(1)(2)
Seating plane
ddd C
C
A3 A1
AA2
Pin # 1 ID
R = 0.20
ZR_ME
E2
b
19
10
18
27
28
36
19
D2
E
D
e
L
0.30
6.30
0.50
1.00
4.30
4.30
4.80
4.80
4.10
4.10
1
28
9
19
ai14870b
36
27
18
10
0.75
Table 51. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.020 0.050 0.0008 0.0020
A2 0.650 1.000 0.0256 0.0394
A3 0.250 0.0098
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 5.875 6.000 6.125 0.2313 0.2362 0.2411
D2 1.750 3.700 4.250 0.0689 0.1457 0.1673
E 5.875 6.000 6.125 0.2313 0.2362 0.2411
E2 1.750 3.700 4.250 0.0689 0.1457 0.1673
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.350 0.550 0.750 0.0138 0.0217 0.0295
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F103x4, STM32F103x6
76/87 Doc ID 15060 Rev 5
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.
Figure 40. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package
outline(1) Figure 41. Recommended footprint
(dimensions in mm)(1)(2)
Seating
Plane
C
A3
A1
A2
A
ddd C
Pin no. 1 ID
R = 0.20
Bottom View
1
48
e
E
L
L
12
13
D2
b
24
25
b
E2
36
37
e
D
V0_ME
0.50
7.30
0.75
5.80
5.80
6.20
6.20
5.60
5.60
13
1
24
37
ai15799
12
48
36
25
0.55
0.30
0.20
Table 52. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.020 0.050 0.0008 0.0020
A2 0.650 1.000 0.0256 0.0394
A3 0.250 0.0098
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D2 2.250 4.700 5.250 0.0886 0.1850 0.2067
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E2 2.250 4.700 5.250 0.0886 0.1850 0.2067
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
STM32F103x4, STM32F103x6 Package characteristics
Doc ID 15060 Rev 5 77/87
Figure 42. LQFP64, 10 x 10 mm, 64-pin low-profile quad
flat package outline(1) Figure 43. Recommended
footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
A
A2
A1
c
L1
L
EE1
D
D1
e
b
ai14398b
48
3249
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Table 53. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.60 0.0630
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.20 0.0035 0.0079
D 12.00 0.4724
D1 10.00 0.3937
E 12.00 0.4724
E1 10.00 0.3937
e 0.50 0.0197
θ 3.5° 0° 3.5°
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 0.0394
NNumber of pins
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F103x4, STM32F103x6
78/87 Doc ID 15060 Rev 5
Figure 44. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline
1. Drawing is not to scale.
Table 54. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 1.200 0.0472
A1 0.150 0.0059
A2 0.785 0.0309
A3 0.200 0.0079
A4 0.600 0.0236
b 0.250 0.300 0.350 0.0098 0.0118 0.0138
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 3.500 0.1378
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 3.500 0.1378
e 0.500 0.0197
F 0.750 0.0295
ddd 0.080 0.0031
eee 0.150 0.0059
fff 0.050 0.0020
A3
A4
A2
A1
A
Seating
plane
B
A
D
D1
eF
F
E1 E
e
H
G
F
E
D
C
B
A
12345678
A1 ball pad corner Øb (64 balls)
Bottom view
C
ME_R8
STM32F103x4, STM32F103x6 Package characteristics
Doc ID 15060 Rev 5 79/87
Figure 45. Recommended PCB design rules for pads (0.5 mm pitch BGA)
1. Non solder mask defined (NSMD) pads are recommended
2. 4 to 6 mils solder paste screen printing process
Pitch 0.5 mm
D pad 0.27 mm
Dsm 0.35 mm typ (depends on
the soldermask registration
tolerance)
Solder paste 0.27 mm aperture diameter
Dpad
Dsm
ai15495
Package characteristics STM32F103x4, STM32F103x6
80/87 Doc ID 15060 Rev 5
Figure 46. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat
package outline(1) Figure 47. Recommended
footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
D
D1
D3 A1
L1
L
k
c
b
ccc C
A1
A2A
C
Seating plane
0.25 mm
Gage plane
E3 E1 E
12
13
24
25
48
1
36
37
Pin 1
identification
5B_ME
9.70 5.80 7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911b
1348
Table 55. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.500 0.2165
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.500 0.2165
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0°3.5°7° 0°3.5°7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
STM32F103x4, STM32F103x6 Package characteristics
Doc ID 15060 Rev 5 81/87
6.2 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 9: General operating conditions on page 32.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
6.2.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 56. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
TFBGA64 - 5 × 5 mm / 0.5 mm pitch 65
°C/W
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 45
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm / 0.5 mm pitch 55
Thermal resistance junction-ambient
VFQFPN 48 -7 × 7 mm / 0.5 mm pitch 16
Thermal resistance junction-ambient
VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch 18
Package characteristics STM32F103x4, STM32F103x6
82/87 Doc ID 15060 Rev 5
6.2.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 57: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful
to calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Ta bl e 5 6 TJmax is calculated as follows:
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 57: Ordering information scheme).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
STM32F103x4, STM32F103x6 Package characteristics
Doc ID 15060 Rev 5 83/87
Using the values obtained in Ta bl e 5 6 TJmax is calculated as follows:
For LQFP64, 45 °C/W
TJmax = 115 °C + (45 °C/W × 134 mW) = 115 °C + 6.03 °C = 121.03 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 57: Ordering information scheme).
Figure 48. LQFP64 PD max vs. TA
0
100
200
300
400
500
600
700
65 75 85 95 105 115 125 135
TA (°C)
PD (mW)
Suffix 6
Suffix 7
Ordering information scheme STM32F103x4, STM32F103x6
84/87 Doc ID 15060 Rev 5
7 Ordering information scheme
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 57. Ordering information scheme
Example: STM32 F 103 C 4 T 7 A xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
103 = performance line
Pin count
T = 36 pins
C = 48 pins
R = 64 pins
Flash memory size
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
Package
H = BGA
T = LQFP
U = VFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Internal code
“A” or blank(1)
1. For STM32F103x6 devices with a blank Internal code, please refer to the STM32F103x8/B datasheet
available from the ST website: www.st.com.
Options
xxx = programmed parts
TR = tape and real
STM32F103x4, STM32F103x6 Revision history
Doc ID 15060 Rev 5 85/87
8 Revision history
Table 58. Document revision history
Date Revision Changes
22-Sep-2008 1 Initial release.
30-Mar-2009 2
“96-bit unique ID” feature added and I/O information clarified on page 1.
Timers specified on page 1 (Motor control capability mentioned).
Table 4: Timer feature comparison added.
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default
column to Remap column, plus small additional changes in Ta ble 5 :
Low-density STM32F103xx pin definitions.
Figure 8: Memory map modified.
References to VREF- removed:
Figure 1: STM32F103xx performance line block diagram modified,
Figure 11: Power supply scheme modified
Figure 34: ADC accuracy characteristics modified
Note modified in Table 49: ADC accuracy.
Table 20: High-speed external user clock characteristics and Ta bl e 2 1:
Low-speed external user clock characteristics modified.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 15:
Maximum current consumption in Sleep mode, code running from
Flash or RAM.
Figure 17 shows a typical curve (title modified). ACCHSI max values
modified in Table 24: HSI oscillator characteristics.
TFBGA64 package added (see Ta bl e 5 4 and Ta b le 4 4 ).
Small text changes.
Revision history STM32F103x4, STM32F103x6
86/87 Doc ID 15060 Rev 5
24-Sep-2009 3
Note 5 updated and Note 4 added in Table 5: Low-density
STM32F103xx pin definitions.
VRERINT and TCoeff added to Table 12: Embedded internal reference
voltage. Typical IDD_VBAT value added in Table 16: Typical and
maximum current consumptions in Stop and Standby modes.
Figure 15: Typical current consumption on VBAT with RTC on versus
temperature at different VBAT values added.
fHSE_ext min modified in Table 20: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 22: HSE 4-16 MHz oscillator
characteristics and Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables. Ta ble 2 4 : H S I
oscillator characteristics modified. Conditions removed from Tabl e 2 6:
Low-power mode wakeup timings.
Note 1 modified below Figure 21: Typical application with an 8 MHz
crystal.
Figure 28: Recommended NRST pin protection modified.
Jitter added to Table 27: PLL characteristics on page 51.
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to
IEC 61967-2 in Section 5.3.10: EMC characteristics on page 52.
CADC and RAIN parameters modified in Table 46: ADC characteristics.
RAIN max values modified in Table 47: RAIN max for fADC = 14 MHz.
Small text changes.
20-May-2010 4
Added VFQFPN48 package.
Updated note 2 below Table 40: I2C characteristics
Updated Figure 29: I2C bus AC waveforms and measurement circuit
Updated Figure 28: Recommended NRST pin protection
Updated Section 5.3.12: I/O current injection characteristics
19-Apr-2011 5
Updated footnotes below Table 6: Voltage characteristics on page 31
and Table 7: Current characteristics on page 32
Updated tw min in Table 20: High-speed external user clock
characteristics on page 45
Updated startup time in Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz) on page 48
Added Section 5.3.12: I/O current injection characteristics
Updated Section 5.3.13: I/O port characteristics
Table 58. Document revision history (continued)
Date Revision Changes
STM32F103x4, STM32F103x6
Doc ID 15060 Rev 5 87/87
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com