Freescale Semiconductor
Data Sheet: Technical Data Document Number: MPC5607B
Rev. 5, 08/2010
© Freescale Semiconductor, Inc., 2010. All rights reserved.
MPC5607B
100 LQFP
14 mm x 14 mm 144 LQFP
20 mm x 20 mm
176 LQFP
24 mm x 24 mm 208 MAPBGA
17 mm x 17 mm
Single issue, 32-bit CPU core complex (e200z0h)
Compliant with the Power Architecture® technology
embedded category
Enhanced instruction set allowing variable length
encoding (VLE) for code size footprint reduction. With
the optional encoding of mixed 16-bit and 32-bit
instructions, it is possible to achieve significant code
size footprint reduction.
Up to 1.5 MB on-chip code flash memory supported with
the flash memory controller
64 (4 × 16) KB on-chip data flash memory with EC C
Up to 96 KB on-chip SRAM
Memory protection unit (MPU ) with 8 region descriptors
and 32-byte region granularity on certain family members
(Refer to Table 1 for details.)
Interrupt controller (INTC) capable of handling 204
selectable-priority interrupt sources
Frequency modulated phase-locked loop (FMPLL)
Crossbar switch architecture for concurrent access to
peripherals, Flash, or RAM from multiple bus masters
16-channel eDMA controller with multiple transfer request
sources using DMA multiplexer
Boot assist module (BAM) supports internal Flash
programming via a serial link (CAN or SCI)
Timer supports I/O channel s providing a range of 16-bit
input capture, output compare, and pulse width modulation
functions (eMIOS)
2 analog-to-digital converters (ADC): one 10-bi t and one
12-bit
Cross Trigger Unit to enable synchronizatio n of ADC
conversions with a timer event from the eMIOS or PIT
Up to 6 serial peripheral interface (DSPI) modules
Up to 10 serial communication interface (LINFlex)
modules
Up to 6 enhanced full CAN (FlexCAN) modules with
configurable buffers
1 inter-integrated circuit (I2C) interface module
Up to 149 configurable general pu rpose pins supporting
input and output operations (package dependent)
Real-Time Counter (RTC)
Clock source from internal 128 kHz or 16 MHz
oscillator supporting autonomous wakeup with 1 ms
resolution with maximum timeout of 2 seconds
Optional support for RT C with clock source from
external 32 kHz crystal oscillator, supporting wakeup
with 1 sec resolution and maximum timeout of 1 hour
Up to 8 periodic interrupt timers (PIT) with 32-bit counter
resolution
Nexus development interface (NDI) per IEEE-ISTO
5001-2003 Class Two Plus
Device/board boundary scan testing supported per Joint
Test Action Group (JTAG) of IEEE (IEEE 1149.1)
On-chip voltage regulator (VREG) for regulation of input
supply for all internal levels
MPC5607B Microcontroller
Data Sheet
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor2
Table of Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Document overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .7
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3.2 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .31
4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
4.2.1 NVUSRO[PAD3V5V] field description . . . . . . . .31
4.2.2 NVUSRO[OSCILLAT OR_MARGIN] field description
32
4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .32
4.4 Recommended operating conditions . . . . . . . . . . . . . .33
4.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .36
4.5.1 External ballast resistor recommendations . . . .36
4.5.2 Package thermal characteristics . . . . . . . . . . . .36
4.5.3 Power considerations. . . . . . . . . . . . . . . . . . . . .37
4.6 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .38
4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.6.2 I/O input DC characteristics. . . . . . . . . . . . . . . .38
4.6.3 I/O output DC characteristics. . . . . . . . . . . . . . .39
4.6.4 Output pin transition times. . . . . . . . . . . . . . . . .42
4.6.5 I/O pad current specification . . . . . . . . . . . . . . .42
4.7 RESET electrical characteristics. . . . . . . . . . . . . . . . . .49
4.8 Power management electrical characteristics. . . . . . . .51
4.8.1 Voltage regulator electrical characteristics . . . .51
4.8.2 Voltage monitor electrical characteristics. . . . . .53
4.9 Low voltage domain power consumption . . . . . . . . . . .55
4.10 Flash memory electrical characteristics . . . . . . . . . . . .56
4.10.1 Program/erase characteristics. . . . . . . . . . . . . .56
4.10.2 Flash power supply DC characteristics . . . . . . .58
4.10.3 Start-up/Switch-off timings. . . . . . . . . . . . . . . . 59
4.11 Electromagnetic compatibility (EMC) characteristics. . 59
4.11.1 Designing hardened software to avoid noise
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.11.2 Electromagnetic interference (EMI) . . . . . . . . . 59
4.11.3 Absolute maximum ratings (electrical sensitivity)60
4.12 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.13 Slow external crystal oscillator (32 kHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 65
4.15 Fast internal RC oscillator (16 MHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.16 Slow internal RC oscillator (128 kHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 68
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.17.2 Input impedance and ADC accuracy . . . . . . . . 69
4.17.3 ADC electrical characteristics . . . . . . . . . . . . . 74
4.18 On-chip peripherals. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . 79
4.18.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 81
4.18.3 Nexus characteristics. . . . . . . . . . . . . . . . . . . . 87
4.18.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 88
5 Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 90
5.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 144 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.3 100 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.4 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . . 98
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7 Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Introduction
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 3
1 Introduction
1.1 Document overview
This document describes the features of the family and options available within the family members, and highlights important
electrical and physical characteristics of the device.
1.2 Description
This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application
controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body
electronics applications within the vehicle.
The advanced and cost-efficient e200z0 host processor core of this automotive controller family complies with the Power
Architecture technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing
improved code density . It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power
consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported
with software drivers, operating systems and configuration code to assist with users implementations.
Table 1. MPC5607B family comparison1
Feature MPC5605B MPC5606B MPC5607B
CPU e200z0h
Execution speed2Up to 64 MHz
Code Flash 768 KB 1 MB 1.5 MB
Data Flash 64 (4 x 16) KB
SRAM 64 KB 80 KB 96 KB
MPU 8-entry
eDMA 16 ch
10-bit ADC Ye s
dedicated37ch 15ch 29ch 15ch 29ch
shared with 12-bit ADC 19 ch
12-bit ADC Ye s
dedicated45 ch
shared with 10-bit ADC 19 ch
Total timer I/O5
eMIOS 37 ch,
16-bit 64 ch,
16-bit
Counter / OPWM / ICOC610 ch
O(I)PWM / OPWFMB /
OPWMCB / ICOC77ch
O(I)PWM / ICOC87ch 14ch
OPWM / ICOC913 ch 33 ch
SCI (LINFlex) 46868 10
SPI (DSPI) 3565 6
MPC5607B Microcontroller Data Sheet, Rev. 5
Introduction
Freescale Semiconductor4
CAN (Fle xCAN) 6
I2C1
32 kHz oscillator Yes
GPIO10 77 121 149 121 149 149
Debug JTAG N2+
Package 100
LQFP 144
LQFP 176
LQFP 144
LQFP 176
LQFP 176
LQFP 208 MAP
BGA11
1Feature set dependent on selected peripheral multiplexing; table shows example.
2Based on 105 C ambient operating temperature.
3Not shared with 12-bit ADC, but possibly shared with other alternate functions.
4Not shared with 10-bit ADC, but possibly shared with other alternate functions.
5Refer to eMIOS section of device reference manual for information on the channel configuration and functions.
6Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output
Compare.
7Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output
Compare.
8Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, P eriod and
Pulse width measurement.
9Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.
10 Maximum I/O count based on multiplexing with peripherals.
11 208 MAPBGA available only as development package for Nexus2 +.
Table 1. MPC5607B family comparison1 (continued)
Feature MPC5605B MPC5606B MPC5607B
Block diagram
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 5
2 Block diagram
Figure 1shows a top-level block di agram of the MPC5607B.
Figure 1. MPC5607B block diagram
6 x
DSPI
FMPLL
Nexus 2+
Nexus
SRAM
SIUL
Reset Control
96 KB
External
IMUX
GPIO &
JTAG
Pad Control
JTAG Port
Nexus Port e200z0h
Interrupt requests
64-bit 2 x 3 Crossbar Switch
6 x
FlexCAN
Peripheral Bridge
Interrupt
Request
Interrupt
Request
I/O
Clocks
Instructions
Data
Voltage
Regulator
NMI
SWT PIT
STM
NMI
SIUL
. . .
INTC
I
2
C
. . .
10 x
LINFlex
64 ch
29 ch 10-bit
MPU
CMU
SRAM Flash
Code Flash
1.5 MB Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
Controller
Controller
Legend:
ADC Analog-to-Digital Converter
BAM Boot Assist Module
CMU Clock Monito r Uni t
CTU Cross Triggering Unit
DSPI Deserial Serial Peripheral Interface
ECSM Error Correction Status Module
eDMA Enhanced Direct Memory Access
eMIOS Enhanced Modular Input Output System
Flash Flash memory
Flex CAN Controller Area Network
FMPLL Frequency-Modulated Phase-Locked Loop
I2C Inter-Integrated Circuit bus
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)
MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM Syst em Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit
XBAR Crossbar switch
MPU
ECSM
from peripheral
Registers
blocks
ADC eMIOS
19 ch 10-bit/12-bit
ADC
(Master)
. . .
. . .
. . .
WKPU
5 ch 12-bit
ADC
eDMA
Interrupt
request with
wakeup
functionality
MPC5607B Microcontroller Data Sheet, Rev. 5
Block diagram
Freescale Semiconductor6
Table 2 summarizes the functions of the blocks present on the MPC5607B.
Table 2. MPC5607B series block summary
Block Function
Analog-to-digital converter (ADC) Converts analog voltages to digital values
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock generation module
(MC_CGM) Provides logic and control required for the generation of system and peripheral
clocks
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU) Enables synchronization of ADC conv ersions with a timer ev ent from the eMIOS
or from the PIT
Crossbar switch (XBAR) Supports simultaneous connections between tw o master ports and three slave
ports. Th e cro ssb ar su pp o rts a 32-bit address bus width and a 64-bi t dat a bus
width.
Deserial serial peripheral interface
(DSPI) Provides a synchronous serial interface f or comm unication with e xternal devices
Enhanced Direct Memory Access
(eDMA) P erforms complex data transf ers with minimal intervention from a host processor
via “n” programmab le channels
Enhanced modular input output
system (eMIOS) Provides the functionality to generate or measure events
Error Correction Status Module
(ECSM) Provides a myriad of miscellaneous control functions for the device including
program-visible inf ormation about configuration and revision levels, a reset status
register, wakeup control for exiting sleep modes, and optional features such as
inf o rmation on memory errors reported by error-correcting codes
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area networ k ) Supports the standard CAN communications protocol
Frequency-modulated
phase-locked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency
modulation
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Inter na l multiplexer (IMUX) SIU
subblock Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (IN TC) Provides priority-based preemptive scheduling of interr upt requests
JTAG controller Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages
efficiently wi t h a mini mum of CPU load
Memory protection unit (MPU) Provides hardware access control for all memory references generated in a
device
Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and
modetransition sequences in all functional states; also manages the pow er
control unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 7
3 Package pinouts and signal descriptions
3.1 Package pinouts
The available LQFP pinouts and the ballmap are provided in the following figures. For pin signal descript ions, please see
Table 3.
Figure 2 shows the MPC5607B in the 176 LQFP package.
Non-Maskable Interrupt (NMI) Handles external events that must produce an immed iate response, such as
power do wn detection
Periodic interrupt timer (PIT) Produces per iodic interrupts and triggers
Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Real-time counter (RTC) A free running counter used for time keeping applications, the RTC can be
configured to generate an interrup t at a predefined interval independent of the
mode of operation (run mode or low-pow e r mode)
Reset generation module
(MC_RGM) Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory
(SRAM) Provides storage for program code, constants, and variables
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidirectional, general-purpose input and output signals and supports up to 32
e xternal interrupts with trigger event configuration
System status and configuration
module (SSCM) Provides system configuration and status data (such as memory size and status,
device mode and security status), device identification data, debug status port
enable and selection, and bus and peripheral abort enable/disable
System timer module (STM) Provides a set of output compare events to support AUTOSAR (AUTomotive
Open System ARchitecture) and operating system tasks
System watchdog timer (SWT) Provides protection from runaway code
WKPU (wakeup unit) The wakeup unit supports up to 18 e xternal sources that can generate interrupts
or wakeup events, of which 1 can cause non-maskable interrupt requests or
wakeup events.
Table 2. MPC5607B series block summary (continued)
Block Function
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor8
Figure 2. 176 LQFP pin configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
PI[10]
PI[9]
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PB[3]
PC[9]
PC[14]
EPC[15]
PJ[4]
VDD_HV
VSS_HV
PH[15]
PH[13]
PH[14]
PI[6]
PI[7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV
VSS_HV
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
176 LQFP
Top view
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 9
Figure 3 shows the MPC5607B in the 144 LQFP package.
Figure 3. 144 LQFP pin configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_ADC1
VSS_HV_ADC1
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
144 LQFP
Top view
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor10
Figure 4 shows the MPC5607B in the 100 LQFP package.
Figure 4. 100 LQFP pin configuration (top view)
Figure 5 shows the MPC5607B in the 208 MAPBGA package.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_ADC1
VSS_HV_ADC1
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
100 LQFP
Top view
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 11
Figure 5. 208 MAPBGA configuration
1 2345678910111213141516
APC[8] PC[13] PH[15] PJ[4] PH[8] PH[4] PC[5] PC[0] PI[0] PI[1] PC[2] PI[4] PE[15] PH[11] NC NC A
BPC[9] PB[2] PH[13] PC[12] PE[6] PH[5] PC[4] PH[9] PH[10] PI[2] PC[3] PG[11] PG[15] PG[14] PA[11] PA[10] B
CPC[14] VDD_HV PB[3] PE[7] PH[7] PE[5] PE[3] VSS_LV PC[1] PI[3] PA[5] PI[5] PE[14] PE[12] PA[9] PA[8] C
DPH[14] PI[6] PC[15] PI[7] PH[6] PE[4] PE[2] VDD_LV VDD_HV NC PA[6] PH[12] PG[10] PF[14] PE[13] PA[7] D
EPG[4] PG[5] PG[3] PG[2] PG[1] PG[0] PF[15] VDD_HV E
FPE[0] PA[2] PA[1] PE[1] PH[0] PH[1] PH[3] PH[2] F
GPE[9] PE[8] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV PI[12] PI[13] MSEO G
HVSS_HV PE[11] VDD_HV NC VSS_HV VSS_HV VSS_HV VSS_HV MDO3 MDO2 MDO0 MDO1 H
JRESET VSS_LV NC NC VSS_HV VSS_HV VSS_HV VSS_HV PI[8] PI[9] PI[10] PI[11] J
KEVTI NC VDD_BV VDD_LV VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV
_ADC1 PG[12] PA[3] PG[13] K
LPG[9] PG[8] NC EVTO PB[15] PD[15] PD[14] PB[14] L
MPG[7] PG[6] PC[10] PC[11] PB[13] PD[13] PD[12] PB[12] M
NPB[1] PF[9] PB[0] VDD_HV PJ[0] PA[4] VSS_LV EXTAL VDD_HV PF[0] PF[4] VSS_HV
_ADC1 PB[11] PD[10] PD[9] PD[11] N
PPF[8] PJ[3] PC[7] PJ[2] PJ[1] PA[14] VDD_LV XTAL PB[10] PF[1] PF[5] PD[0] PD[3] VDD_HV
_ADC0 PB[6] PB[7] P
RPF[12] PC[6] PF[10] PF[11] VDD_HV PA[15] PA[13] PI[14] XTAL32 PF[3] PF[7] PD[2] PD[4] PD[7] VSS_HV
_ADC0 PB[5] R
TNC NC NC MCKO NC PF[13] PA[12] PI[15] EXTAL
32 PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4] T
1 2345678910111213141516
NOTE: The 208 MAPBGA is available only as development package for Nexus 2+. NC = Not connected
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor12
3.2 Pin muxing
Table 3 defines the pin list and muxing for thi s device.
Each entry of Table 3 shows all the possible configurations for each pin, via the alternate functions. The default function
assigned to each pin after reset is indicated by AF0.
Table 3. Functional port pin descriptions
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Port A
PA[0] PCR[0] AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKUP[19]4
SIUL
eMIOS_0
MC_CGM
eMIOS_0
WKUP
I/O
I/O
O
I/O
I
MTristate121624G4
PA[1] PCR[1] AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
NMI5
WKUP[2]4
SIUL
eMIOS_0
WKUP
WKUP
I/O
I/O
I
I
S Tristate 7 11 19 F3
PA[2] PCR[2] AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
MA[2]
WKUP[3]4
SIUL
eMIOS_0
ADC_0
WKUP
I/O
I/O
O
I
S Tristate 5 9 17 F2
PA[3] PCR[3] AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
LIN5TX
CS4_1
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
LINFlex_5
DSPI_1
SIUL
ADC_1
I/O
I/O
O
O
I
I
J Tristate 68 90 114 K15
PA[4] PCR[4] AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
CS0_1
LIN5RX
WKUP[9]4
SIUL
eMIOS_0
DSPI_1
LINFlex_5
WKUP
I/O
I/O
I/O
I
I
STristate294351N6
PA[5] PCR[5] AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
LIN4TX
SIUL
eMIOS_0
LINFlex_4
I/O
I/O
O
M Tristate 79 118 146 C11
PA[6] PCR[6] AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
CS1_1
EIRQ[1]
LIN4RX
SIUL
eMIOS_0
DSPI_1
SIUL
LINFlex_4
I/O
I/O
O
I
I
S Tristate 80 119 147 D11
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 13
PA[7] PCR[7] AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
LIN3TX
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
LINFlex_3
SIUL
ADC_1
I/O
I/O
O
I
I
J Tristate 71 104 128 D16
PA[8] PCR[8] AF0
AF1
AF2
AF3
N/A6
GPIO[8]
E0UC[8]
E0UC[14]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
eMIOS_0
SIUL
BAM
LINFlex_3
I/O
I/O
I/O
I
I
I
S Input,
weak
pull-up
72 105 129 C16
PA[9] PCR[9] AF0
AF1
AF2
AF3
N/A6
GPIO[9]
E0UC[9]
CS2_1
FAB
SIUL
eMIOS_0
DSPI_1
BAM
I/O
I/O
O
I
SPull-
down 73 106 130 C15
PA[10] PCR[10] AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
LIN2TX
ADC1_S[2]
SIUL
eMIOS_0
I2C_0
LINFlex_2
ADC_1
I/O
I/O
I/O
O
I
J Tristate 74 107 131 B16
PA[11] PCR[11] AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
EIRQ[16]
LIN2RX
ADC1_S[3]
SIUL
eMIOS_0
I2C_0
SIUL
LINFlex_2
ADC_1
I/O
I/O
I
I
I
J Tristate 75 108 132 B15
PA[12] PCR[12] AF0
AF1
AF2
AF3
GPIO[12]
E0UC[28]
CS3_1
EIRQ[17]
SIN_0
SIUL
eMIOS_0
DSPI_1
SIUL
DSPI_0
I/O
I/O
O
I
I
STristate314553T7
PA[13] PCR[13] AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
E0UC[29]
SIUL
DSPI_0
eMIOS_0
I/O
O
I/O
MTristate304452R7
PA[14] PCR[14] AF0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
MTristate284250P6
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor14
PA[15] PCR[15] AF0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKUP[10]4
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKUP
I/O
I/O
I/O
I/O
I
MTristate274048R6
Port B
PB[0] PCR[16] AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
E0UC[30]
LIN0TX
SIUL
FlexCAN_0
eMIOS_0
LINFlex_0
I/O
O
I/O
O
MTristate233139N3
PB[1] PCR[17] AF0
AF1
AF2
AF3
GPIO[17]
E0UC[31]
WKUP[4]4
CAN0RX
LIN0RX
SIUL
eMIOS_0
WKUP
FlexCAN_0
LINFlex_0
I/O
I/O
I
I
I
STristate243240N1
PB[2] PCR[18] AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
E0UC[30]
SIUL
LINFlex_0
I2C_0
eMIOS_0
I/O
O
I/O
I/O
M Tristate 100 144 176 B2
PB[3] PCR[19] AF0
AF1
AF2
AF3
GPIO[19]
E0UC[31]
SCL
WKUP[11]4
LIN0RX
SIUL
eMIOS_0
I2C_0
WKUP
LINFlex_0
I/O
I/O
I/O
I
I
STristate111C3
PB[4] PCR[20] AF0
AF1
AF2
AF3
ADC0_P[0]
ADC1_P[0]
GPIO[20]
ADC_0
ADC_1
SIUL
I
I
I
ITristate507288T16
PB[5] PCR[21] AF0
AF1
AF2
AF3
ADC0_P[1]
ADC1_P[1]
GPIO[21]
ADC_0
ADC_1
SIUL
I
I
I
ITristate537591R16
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 15
PB[6] PCR[22] AF0
AF1
AF2
AF3
ADC0_P[2]
ADC1_P[2]
GPIO[22]
ADC_0
ADC_1
SIUL
I
I
I
ITristate547692P15
PB[7] PCR[23] AF0
AF1
AF2
AF3
ADC0_P[3]
ADC1_P[3]
GPIO[23]
ADC_0
ADC_1
SIUL
I
I
I
ITristate557793P16
PB[8] PCR[24] AF0
AF1
AF2
AF3
GPIO[24]
OSC32K_XTAL7
WKUP[25]
ADC0_S[0]
ADC1_S[4]
SIUL
OSC32K
WKUP
ADC_0
ADC_1
I
I
I
I
I 39 53 61 R9
PB[9] PCR[25] AF0
AF1
AF2
AF3
GPIO[25]
OSC32K_EXTAL7
WKUP[26]
ADC0_S[1]
ADC1_S[5]
SIUL
OSC32K
WKUP
ADC_0
ADC_1
I
I
I
I
I 38 52 60 T9
PB[10] PCR[26] AF0
AF1
AF2
AF3
GPIO[26]
WKUP[8]4
ADC0_S[2]
ADC1_S[6]
SIUL
WKUP
ADC_0
ADC_1
I/O
I
I
I
JTristate405462P9
PB[11] PCR[27] AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ADC0_S[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
I/O
I
JTristate 97 N13
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor16
PB[12] PCR[28] AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ADC0_X[0]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 61 83 101 M16
PB[13] PCR[29] AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ADC0_X[1]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 63 85 103 M13
PB[14] PCR[30] AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ADC0_X[2]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 65 87 105 L16
PB[15] PCR[31] AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ADC0_X[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
J Tristate 67 89 107 L13
Port C
PC[0]8PCR[32] AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
M Input,
weak
pull-up
87 126 154 A8
PC[1]8PCR[33] AF0
AF1
AF2
AF3
GPIO[33]
TDO
SIUL
JTAGC
I/O
O
F9Tristate 82 121 149 C9
PC[2] PCR[34] AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
CAN4TX
DEBUG[0]
EIRQ[5]
SIUL
DSPI_1
FlexCAN_4
SSCM
SIUL
I/O
I/O
O
O
I
M Tristate 78 117 145 A11
PC[3] PCR[35] AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
DEBUG[1]
EIRQ[6]
CAN1RX
CAN4RX
SIUL
DSPI_1
ADC_0
SSCM
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
O
O
I
I
I
S Tristate 77 116 144 B11
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 17
PC[4] PCR[36] AF0
AF1
AF2
AF3
GPIO[36]
E1UC[31]
DEBUG[2]
EIRQ[18]
SIN_1
CAN3RX
SIUL
eMIOS_1
SSCM
SIUL
DSPI_1
FlexCAN_3
I/O
I/O
O
I
I
I
M Tristate 92 131 159 B7
PC[5] PCR[37] AF0
AF1
AF2
AF3
GPIO[37]
SOUT_1
CAN3TX
DEBUG[3]
EIRQ[7]
SIUL
DSPI_1
FlexCAN_3
SSCM
SIUL
I/O
O
O
O
I
M Tristate 91 130 158 A7
PC[6] PCR[38] AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
E1UC[28]
DEBUG[4]
SIUL
LINFlex_1
eMIOS_1
SSCM
I/O
O
I/O
O
STristate253644R2
PC[7] PCR[39] AF0
AF1
AF2
AF3
GPIO[39]
E1UC[29]
DEBUG[5]
LIN1RX
WKUP[12]4
SIUL
eMIOS_1
SSCM
LINFlex_1
WKUP
I/O
I/O
O
I
I
STristate263745P3
PC[8] PCR[40] AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
DEBUG[6]
SIUL
LINFlex_2
eMIOS_0
SSCM
I/O
O
I/O
O
S Tristate 99 143 175 A1
PC[9] PCR[41] AF0
AF1
AF2
AF3
GPIO[41]
E0UC[7]
DEBUG[7]
WKUP[13]4
LIN2RX
SIUL
eMIOS_0
SSCM
WKUP
LINFlex_2
I/O
I/O
O
I
I
STristate222B1
PC[10] PCR[42] AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC_0
I/O
O
O
O
MTristate222836M3
PC[11] PCR[43] AF0
AF1
AF2
AF3
GPIO[43]
MA[2]
WKUP[5]4
CAN1RX
CAN4RX
SIUL
ADC_0
WKUP
FlexCAN_1
FlexCAN_4
I/O
O
I
I
I
STristate212735M4
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor18
PC[12] PCR[44] AF0
AF1
AF2
AF3
GPIO[44]
E0UC[12]
EIRQ[19]
SIN_2
SIUL
eMIOS_0
SIUL
DSPI_2
I/O
I/O
I
I
M Tristate 97 141 173 B4
PC[13] PCR[45] AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
O
S Tristate 98 142 174 A2
PC[14] PCR[46] AF0
AF1
AF2
AF3
GPIO[46]
E0UC[14]
SCK_2
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
STristate333C1
PC[15] PCR[47] AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
CS0_2
EIRQ[20]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
MTristate444D3
Port D
PD[0] PCR[48] AF0
AF1
AF2
AF3
GPIO[48]
WKUP[27]
ADC0_P[4]
ADC1_P[4]
SIUL
WKUP
ADC_0
ADC_1
I
I
I
I
ITristate416377P12
PD[1] PCR[49] AF0
AF1
AF2
AF3
GPIO[49]
WKUP[28]
ADC0_P[5]
ADC1_P[5]
SIUL
WKUP
ADC_0
ADC_1
I
I
I
I
ITristate426478T12
PD[2] PCR[50] AF0
AF1
AF2
AF3
GPIO[50]
ADC0_P[6]
ADC1_P[6]
SIUL
ADC_0
ADC_1
I
I
I
ITristate436579R12
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 19
PD[3] PCR[51] AF0
AF1
AF2
AF3
GPIO[51]
ADC0_P[7]
ADC1_P[7]
SIUL
ADC_0
ADC_1
I
I
I
ITristate446680P13
PD[4] PCR[52] AF0
AF1
AF2
AF3
GPIO[52]
ADC0_P[8]
ADC1_P[8]
SIUL
ADC_0
ADC_1
I
I
I
ITristate456781R13
PD[5] PCR[53] AF0
AF1
AF2
AF3
GPIO[53]
ADC0_P[9]
ADC1_P[9]
SIUL
ADC_0
ADC_1
I
I
I
ITristate466882T13
PD[6] PCR[54] AF0
AF1
AF2
AF3
GPIO[54]
ADC0_P[10]
ADC1_P[10]
SIUL
ADC_0
ADC_1
I
I
I
ITristate476983T14
PD[7] PCR[55] AF0
AF1
AF2
AF3
GPIO[55]
ADC0_P[11]
ADC1_P[11]
SIUL
ADC_0
ADC_1
I
I
I
ITristate487084R14
PD[8] PCR[56] AF0
AF1
AF2
AF3
GPIO[56]
ADC0_P[12]
ADC1_P[12]
SIUL
ADC_0
ADC_1
I
I
I
ITristate497187T15
PD[9] PCR[57] AF0
AF1
AF2
AF3
GPIO[57]
ADC0_P[13]
ADC1_P[13]
SIUL
ADC_0
ADC_1
I
I
I
ITristate567894N15
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor20
PD[10] PCR[58] AF0
AF1
AF2
AF3
GPIO[58]
ADC0_P[14]
ADC1_P[14]
SIUL
ADC_0
ADC_1
I
I
I
ITristate577995N14
PD[11] PCR[59] AF0
AF1
AF2
AF3
GPIO[59]
ADC0_P[15]
ADC1_P[15]
SIUL
ADC_0
ADC_1
I
I
I
ITristate588096N16
PD[12] PCR[60] AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ADC0_S[4]
SIUL
DSPI_0
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 100 M15
PD[13] PCR[61] AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ADC0_S[5]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
I/O
I
J Tristate 62 84 102 M14
PD[14] PCR[62] AF0
AF1
AF2
AF3
GPIO[62]
CS1_1
E0UC[26]
ADC0_S[6]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 64 86 104 L15
PD[15] PCR[63] AF0
AF1
AF2
AF3
GPIO[63]
CS2_1
E0UC[27]
ADC0_S[7]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
O
I/O
I
J Tristate 66 88 106 L14
Port E
PE[0] PCR[64] AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
WKUP[6]4
CAN5RX
SIUL
eMIOS_0
WKUP
FlexCAN_5
I/O
I/O
I
I
S Tristate 6 10 18 F1
PE[1] PCR[65] AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX
SIUL
eMIOS_0
FlexCAN_5
I/O
I/O
O
M Tristate 8 12 20 F4
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 21
PE[2] PCR[66] AF0
AF1
AF2
AF3
GPIO[66]
E0UC[18]
EIRQ[21]
SIN_1
SIUL
eMIOS_0
SIUL
DSPI_1
I/O
I/O
I
I
M Tristate 89 128 156 D7
PE[3] PCR[67] AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
SIUL
eMIOS_0
DSPI_1
I/O
I/O
O
M Tristate 90 129 157 C7
PE[4] PCR[68] AF0
AF1
AF2
AF3
GPIO[68]
E0UC[20]
SCK_1
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
I/O
I/O
I
M Tristate 93 132 160 D6
PE[5] PCR[69] AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
I/O
O
M Tristate 94 133 161 C6
PE[6] PCR[70] AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M Tristate 95 139 167 B5
PE[7] PCR[71] AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M Tristate 96 140 168 C4
PE[8] PCR[72] AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX
E0UC[22]
CAN3TX
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
I/O
O
I/O
O
M Tristate 9 13 21 G2
PE[9] PCR[73] AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKUP[7]4
CAN2RX
CAN3RX
SIUL
eMIOS_0
WKUP
FlexCAN_2
FlexCAN_3
I/O
I/O
I
I
I
STristate101422G1
PE[10] PCR[74] AF0
AF1
AF2
AF3
GPIO[74]
LIN3TX
CS3_1
E1UC[30]
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
eMIOS_1
SIUL
I/O
O
O
I/O
I
STristate111523G3
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor22
PE[11] PCR[75] AF0
AF1
AF2
AF3
GPIO[75]
E0UC[24]
CS4_1
LIN3RX
WKUP[14]4
SIUL
eMIOS_0
DSPI_1
LINFlex_3
WKUP
I/O
I/O
O
I
I
STristate131725H2
PE[12] PCR[76] AF0
AF1
AF2
AF3
GPIO[76]
E1UC[19]10
EIRQ[11]
SIN_2
ADC1_S[7]
SIUL
eMIOS_1
SIUL
DSPI_2
ADC_1
I/O
I/O
I
I
I
J Tristate 76 109 133 C14
PE[13] PCR[77] AF0
AF1
AF2
AF3
GPIO[77]
SOUT_2
E1UC[20]
SIUL
DSPI_2
eMIOS_1
I/O
O
I/O
S Tristate 103 127 D15
PE[14] PCR[78] AF0
AF1
AF2
AF3
GPIO[78]
SCK_2
E1UC[21]
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
SIUL
I/O
I/O
I/O
I
S Tristate 112 136 C13
PE[15] PCR[79] AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SIUL
DSPI_2
eMIOS_1
I/O
I/O
I/O
M Tristate 113 137 A13
Port F
PF[0] PCR[80] AF0
AF1
AF2
AF3
GPIO[80]
E0UC[10]
CS3_1
ADC0_S[8]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 55 63 N10
PF[1] PCR[81] AF0
AF1
AF2
AF3
GPIO[81]
E0UC[11]
CS4_1
ADC0_S[9]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 56 64 P10
PF[2] PCR[82] AF0
AF1
AF2
AF3
GPIO[82]
E0UC[12]
CS0_2
ADC0_S[10]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 57 65 T10
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 23
PF[3] PCR[83] AF0
AF1
AF2
AF3
GPIO[83]
E0UC[13]
CS1_2
ADC0_S[11]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 58 66 R10
PF[4] PCR[84] AF0
AF1
AF2
AF3
GPIO[84]
E0UC[14]
CS2_2
ADC0_S[12]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 59 67 N11
PF[5] PCR[85] AF0
AF1
AF2
AF3
GPIO[85]
E0UC[22]
CS3_2
ADC0_S[13]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
J Tristate 60 68 P11
PF[6] PCR[86] AF0
AF1
AF2
AF3
GPIO[86]
E0UC[23]
CS1_1
ADC0_S[14]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
J Tristate 61 69 T11
PF[7] PCR[87] AF0
AF1
AF2
AF3
GPIO[87]
CS2_1
ADC0_S[15]
SIUL
DSPI_1
ADC_0
I/O
O
I
JTristate 62 70 R11
PF[8] PCR[88] AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX
CS4_0
CAN2TX
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
M Tristate 34 42 P1
PF[9] PCR[89] AF0
AF1
AF2
AF3
GPIO[89]
E1UC[1]
CS5_0
WKUP[22]4
CAN2RX
CAN3RX
SIUL
eMIOS_1
DSPI_0
WKUP
FlexCAN_2
FlexCAN_3
I/O
I/O
O
I
I
I
S Tristate 33 41 N2
PF[10] PCR[90] AF0
AF1
AF2
AF3
GPIO[90]
CS1_0
LIN4TX
E1UC[2]
SIUL
DSPI_0
LINFlex_4
eMIOS_1
I/O
O
O
I/O
M Tristate 38 46 R3
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor24
PF[11] PCR[91] AF0
AF1
AF2
AF3
GPIO[91]
CS2_0
E1UC[3]
WKUP[15]4
LIN4RX
SIUL
DSPI_0
eMIOS_1
WKUP
LINFlex_4
I/O
O
I/O
I
I
S Tristate 39 47 R4
PF[12] PCR[92] AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
LIN5TX
SIUL
eMIOS_1
LINFlex_5
I/O
I/O
O
M Tristate 35 43 R1
PF[13] PCR[93] AF0
AF1
AF2
AF3
GPIO[93]
E1UC[26]
WKUP[16]4
LIN5RX
SIUL
eMIOS_1
WKUP
LINFlex_5
I/O
I/O
I
I
S Tristate 41 49 T6
PF[14] PCR[94] AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX
E1UC[27]
CAN1TX
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_1
I/O
O
I/O
O
M Tristate 102 126 D14
PF[15] PCR[95] AF0
AF1
AF2
AF3
GPIO[95]
E1UC[4]
EIRQ[13]
CAN1RX
CAN4RX
SIUL
eMIOS_1
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
I
I
I
S Tristate 101 125 E15
Port G
PG[0] PCR[96] AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX
E1UC[23]
SIUL
FlexCAN_5
eMIOS_1
I/O
O
I/O
M Tristate 98 122 E14
PG[1] PCR[97] AF0
AF1
AF2
AF3
GPIO[97]
E1UC[24]
EIRQ[14]
CAN5RX
SIUL
eMIOS_1
SIUL
FlexCAN_5
I/O
I/O
I
I
S Tristate 97 121 E13
PG[2] PCR[98] AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SOUT_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
O
M Tristate 8 16 E4
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 25
PG[3] PCR[99] AF0
AF1
AF2
AF3
GPIO[99]
E1UC[12]
CS0_3
WKUP[17]4
SIUL
eMIOS_1
DSPI_3
WKUP
I/O
I/O
O
I
S Tristate 7 15 E3
PG[4] PCR[100] AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SCK_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
I/O
M Tristate 6 14 E1
PG[5] PCR[101] AF0
AF1
AF2
AF3
GPIO[101]
E1UC[14]
WKUP[18]4
SIN_3
SIUL
eMIOS_1
WKUP
DSPI_3
I/O
I/O
I
I
S Tristate 5 13 E2
PG[6] PCR[102] AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
LIN6TX
SIUL
eMIOS_1
LINFlex_6
I/O
I/O
O
M Tristate 30 38 M2
PG[7] PCR[103] AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
E1UC[30]
WKUP[20]4
LIN6RX
SIUL
eMIOS_1
eMIOS_1
WKUP
LINFlex_6
I/O
I/O
I/O
I
I
S Tristate 29 37 M1
PG[8] PCR[104] AF0
AF1
AF2
AF3
GPIO[104]
E1UC[17]
LIN7TX
CS0_2
EIRQ[15]
SIUL
eMIOS_1
LINFlex_7
DSPI_2
SIUL
I/O
I/O
O
I/O
I
S Tristate 26 34 L2
PG[9] PCR[105] AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
SCK_2
WKUP[21]4
LIN7RX
SIUL
eMIOS_1
DSPI_2
WKUP
LINFlex_7
I/O
I/O
I/O
I
I
S Tristate 25 33 L1
PG[10] PCR[106] AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
E1UC[31]
SIN_4
SIUL
eMIOS_0
eMIOS_1
DSPI_4
I/O
I/O
I/O
I
S Tristate 114 138 D13
PG[11] PCR[107] AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
CS0_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
O
M Tristate 115 139 B12
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor26
PG[12] PCR[108] AF0
AF1
AF2
AF3
GPIO[108]
E0UC[26]
SOUT_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
O
M Tristate 92 116 K14
PG[13] PCR[109] AF0
AF1
AF2
AF3
GPIO[109]
E0UC[27]
SCK_4
SIUL
eMIOS_0
DSPI_4
I/O
I/O
I/O
M Tristate 91 115 K16
PG[14] PCR[110] AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
LIN8TX
SIUL
eMIOS_1
LINFlex_8
I/O
I/O
O
S Tristate 110 134 B14
PG[15] PCR[111] AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
LIN8RX
SIUL
eMIOS_1
LINFlex_8
I/O
I/O
I
M Tristate 111 135 B13
Port H
PH[0] PCR[112] AF0
AF1
AF2
AF3
GPIO[112]
E1UC[2]
SIN_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I
M Tristate 93 117 F13
PH[1] PCR[113] AF0
AF1
AF2
AF3
GPIO[113]
E1UC[3]
SOUT_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
O
M Tristate 94 118 F14
PH[2] PCR[114] AF0
AF1
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 95 119 F16
PH[3] PCR[115] AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 96 120 F15
PH[4] PCR[116] AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SIUL
eMIOS_1
I/O
I/O
M Tristate 134 162 A6
PH[5] PCR[117] AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
SIUL
eMIOS_1
I/O
I/O
S Tristate 135 163 B6
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 27
PH[6] PCR[118] AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
MA[2]
SIUL
eMIOS_1
ADC_0
I/O
I/O
O
M Tristate 136 164 D5
PH[7] PCR[119] AF0
AF1
AF2
AF3
GPIO[119]
E1UC[9]
CS3_2
MA[1]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M Tristate 137 165 C5
PH[8] PCR[120] AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M Tristate 138 166 A5
PH[9]8PCR[121] AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
S Input,
weak
pull-up
88 127 155 B8
PH[10]8PCR[122] AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
M Input,
weak
pull-up
81 120 148 B9
PH[11] PCR[123] AF0
AF1
AF2
AF3
GPIO[123]
SOUT_3
CS0_4
E1UC[5]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
O
I/O
M Tristate 140 A14
PH[12] PCR[124] AF0
AF1
AF2
AF3
GPIO[124]
SCK_3
CS1_4
E1UC[25]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
I/O
I/O
M Tristate 141 D12
PH[13] PCR[125] AF0
AF1
AF2
AF3
GPIO[125]
SOUT_4
CS0_3
E1UC[26]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
O
I/O
MTristate 9 B3
PH[14] PCR[126] AF0
AF1
AF2
AF3
GPIO[126]
SCK_4
CS1_3
E1UC[27]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
I/O
I/O
M Tristate 10 D1
PH[15] PCR[127] AF0
AF1
AF2
AF3
GPIO[127]
SOUT_5
E1UC[17]
SIUL
DSPI_5
eMIOS_1
I/O
O
MTristate 8 A3
Port I
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor28
PI[0] PCR[128] AF0
AF1
AF2
AF3
GPIO[128]
E0UC[28]
LIN8TX
SIUL
eMIOS_0
LINFlex_8
I/O
I/O
O
S Tristate 172 A9
PI[1] PCR[129] AF0
AF1
AF2
AF3
GPIO[129]
E0UC[29]
WKUP[24]4
LIN8RX
SIUL
eMIOS_0
WKUP
LINFlex_8
I/O
I/O
I
I
S Tristate 171 A10
PI[2] PCR[130] AF0
AF1
AF2
AF3
GPIO[130]
E0UC[30]
LIN9TX
SIUL
eMIOS_0
LINFlex_9
I/O
I/O
O
S Tristate 170 B10
PI[3] PCR[131] AF0
AF1
AF2
AF3
GPIO[131]
E0UC[31]
WKUP[23]4
LIN9RX
SIUL
eMIOS_0
WKUP
LINFlex_9
I/O
I/O
I
I
S Tristate 169 C10
PI[4] PCR[132] AF0
AF1
AF2
AF3
GPIO[132]
E1UC[28]
SOUT_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
O
S Tristate 143 A12
PI[5] PCR[133] AF0
AF1
AF2
AF3
GPIO[133]
E1UC[29]
SCK_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
S Tristate 142 C12
PI[6] PCR[134] AF0
AF1
AF2
AF3
GPIO[134]
E1UC[30]
CS0_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
S Tristate 11 D2
PI[7] PCR[135] AF0
AF1
AF2
AF3
GPIO[135]
E1UC[31]
CS1_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
I/O
S Tristate 12 D3
PI[8] PCR[136] AF0
AF1
AF2
AF3
GPIO[136]
ADC0_S[16]
SIUL
ADC_0
I/O
I
J Tristate 108 J13
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Package pinouts and signal descriptions
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 29
PI[9] PCR[137] AF0
AF1
AF2
AF3
GPIO[137]
ADC0_S[17]
SIUL
ADC_0
I/O
I
J Tristate 109 J14
PI[10] PCR[138] AF0
AF1
AF2
AF3
GPIO[138]
ADC0_S[18]
SIUL
ADC_0
I/O
I
J Tristate 110 J15
PI[11] PCR[139] AF0
AF1
AF2
AF3
GPIO[139]
ADC0_S[19]
SIN_3
SIUL
ADC_0
DSPI_3
I/O
I
I
J Tristate 111 J16
PI[12] PCR[140] AF0
AF1
AF2
AF3
GPIO[140]
CS0_3
ADC0_S[20]
SIUL
DSPI_3
ADC_0
I/O
I/O
I
J Tristate 112 G14
PI[13] PCR[141] AF0
AF1
AF2
AF3
GPIO[141]
CS1_3
ADC0_S[21]
SIUL
DSPI_3
ADC_0
I/O
I/O
I
J Tristate 113 G15
PI[14] PCR[142] AF0
AF1
AF2
AF3
GPIO[142]
ADC0_S[22]
SIN_4
SIUL
ADC_0
DSPI_4
I/O
I
I
J Tristate 76 R8
PI[15] PCR[143] AF0
AF1
AF2
AF3
GPIO[143]
CS0_4
ADC0_S[23]
SIUL
DSPI_4
ADC_0
I/O
I/O
I
J Tristate 75 T8
Port J
PJ[0] PCR[144] AF0
AF1
AF2
AF3
GPIO[144]
CS1_4
ADC0_S[24]
SIUL
DSPI_4
ADC_0
I/O
I/O
I
J Tristate 74 N5
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
MPC5607B Microcontroller Data Sheet, Rev. 5
Package pinouts and signal descri pti on s
Freescale Semiconductor30
PJ[1] PCR[145] AF0
AF1
AF2
AF3
GPIO[145]
ADC0_S[25]
SIN_5
SIUL
——
ADC_0
DSPI_5
I/O
I
I
J Tristate 73 P5
PJ[2] PCR[146] AF0
AF1
AF2
AF3
GPIO[146]
CS0_5
ADC0_S[26]
SIUL
DSPI_5
ADC_0
I/O
I/O
I
J Tristate 72 P4
PJ[3] PCR[147] AF0
AF1
AF2
AF3
GPIO[147]
CS1_5
ADC0_S[27]
SIUL
DSPI_5
ADC_0
I/O
I/O
I
J Tristate 71 P2
PJ[4] PCR[148] AF0
AF1
AF2
AF3
GPIO[148]
SCK_5
E1UC[18]
SIUL
DSPI_5
eMIOS_1
I/O
I/O
MTristate 5 A4
1Alter nate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select the
output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values
selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only functi on is reported as “—”.
2The RESET configuration applies during and after reset.
3208 MAPBGA available only as development package for Nexus2+
4All WKUP pins also support external interrupt capability. See the WKPU chapter of th e MPC5607B Microcontroller
Reference Manual for further details.
5NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6“Not applicable” because these functions are available only while the device is booting. See the BAM chapter of the
MPC5607B Microcontroller Reference Manual for details.
7Value of PCR.IBE bit must be 0
8Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are av a i la ble as JTA G pi n s ( TD I an d TDO resp e cti vely).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.
9PC[1] is a fast/medium pad but is in medium configuration by def ault. This pad is in Alternate Function 2 mode after reset
which has TDO functionality. The reset v alue of PCR.OBE is ‘1’, but this setting has no impact as long as this pad stays
in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buff er is enabled as reset value of PCR.OBE = 1.
10 Not available in 100 LQFP package
Table 3. Functional port pin descriptions (continued)
Port
pin PCR
register Alternate
function1Function
Peripheral
I/O
direction
Pad type
RESET
config.2
Pin No.
LQFP
100
LQFP
LQFP
144
LQFP
LQFP
176
LQFP
208
MAP
BGA3
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 31
4 Electrical characteristics
This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take
precautions to avoid application of any vo ltage higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by
the internal pull-up and pull-d own, whi ch is prov ided by the product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller
Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol
“SR” for System Requirement is included in the Symbol column.
4.1 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 4 are used and the parameters are tagge d accordingly in the tables where
appropriate.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
4.2 NVUSRO register
Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are
controlled via bit values in the Non-Volatile User Opt ion s Register (NVUSRO) register.
For a detailed descri pt ion of the NVUSRO register, please refer to the MPC560 7B Microcontroller Reference Manual.
4.2.1 NVUSR O[PAD3V5V] field description
Table 5 shows how NVUSRO[PAD3V5V] controls the device configuration.
Table 4. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during prod uction testing on each individual device.
C Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T Those parameters are achiev ed b y design characterization on a small sample size from typical
de vices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D Those parameters are derived mainly from simulations.
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor32
The DC electrical characteristics are dependent on the PAD3V5V bit value.
4.2.2 NVUSRO[OSCILLATOR_MARGIN] field description
Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.
4.3 Absolute maximum ratings
Table 5. PAD3V5V field description1
1See the device reference manual fo r more information on the NVUSRO register.
Value2
2'1' is delivery value. It is part of shadow Flash, thus programmable by customer.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 6. OSCILLATOR_MARGIN field description1
1See the device reference manual fo r more information on the NVUSRO register.
Value2
2'1' is delivery value. It is part of shadow Flash, thus programmable by customer.
Description
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
Table 7. Absolute maximum ratings
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD SR Voltage on VDD_HV pins with respect to
ground (VSS)—–0.36.0V
VSS_LV SR V oltage on VSS_LV (low v oltage digital supply)
pins with respect to ground (VSS)—V
SS –0.1 V
SS +0.1 V
VDD_BV SR V oltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)—–0.36.0V
Relative to VDD –0.3 VDD +0.3
VSS_ADC SR Vo ltage on VSS_HV_ADC0, VSS_HV_ADC1
(ADC reference) pin with respect to ground
(VSS)
—V
SS –0.1 V
SS +0.1 V
VDD_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1
(ADC reference) with respect to ground (VSS)—–0.36.0V
Relative to VDD VDD 0.3 VDD +0.3
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)—–0.36.0V
Relative to VDD —V
DD +0.3
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 33
NOTE
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions fo r
extended periods may affect device reliability. During overload conditions (VIN >V
DD or
VIN <V
SS), the voltage on pins with respect to ground (VSS) must not exceed the
recommended values.
4.4 Recommended operating conditions
IINJPAD SR Injected input current on any pin during
overload condition –10 10 mA
IINJSUM SR Absolute sum of all injected input currents
during overload condition –50 50
IAVGSEG SR Sum of all the static I/O current within a supply
segment VDD = 5.0 V ± 10%,
PAD3V5V = 0 —70mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 —64
TSTORAGE SR Storage temperature –55 150 °C
Table 8. Recommended operating conditions (3.3 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD1SR Voltage on VDD_HV pins with respect
to ground (VSS)—3.03.6V
VSS_LV2SR V oltage on VSS_LV (low voltage digital
supply) pins with respect to ground
(VSS)
—V
SS 0.1 VSS +0.1 V
VDD_BV3SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)—3.03.6V
Relative to VDD VDD 0.1 VDD +0.1
VSS_ADC SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC reference) pin
with respect to ground (VSS)
—V
SS 0.1 VSS +0.1 V
VDD_ADC4SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC ref erence) with
respect to ground (VSS)
—3.0
53.6 V
Relative to VDD VDD 0.1 VDD +0.1
VIN SR Voltage on any GPIO pin with respect
to ground (VSS)—V
SS 0.1 V
Relative to VDD —V
DD +0.1
Table 7. Absolute maximum ratings (continued)
Symbol Parameter Conditions Value Unit
Min Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor34
IINJPAD SR Injected input current on any pin during
overload condition 55mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition 50 50
TVDD SR VDD slope to ensure correct power up6 0.25 V/µs
TA C-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 85 °C
TJ C-Grade
Part
SR Junction temperature under bias 40 110
TA V-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 105
TJ V-Grade
Part
SR Junction temperature under bias 40 130
TA M-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 125
TJ M-Grade
Part
SR Junction temperature under bias 40 150
1100 nF capacitance needs to be provided between each VDD/VSS pair.
2330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3470 nF capacitance need s to be provided between VDD_BV and the nearest VSS_LV (higher value ma y be needed
depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal
to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.
4100 nF capacitance need s to be provided between VDD_ADC/VSS_ADC pair.
5Full electrical specification cannot be guaranteed when v oltage drops below 3.0 V. In particular , ADC electrical
characteristics and I/Os DC electrical specification ma y not be guaranteed. When voltage drops below VLVDHVL,
device is reset.
6Guaranteed by device validation
7This frequency includes the 4% frequency modulation guardband.
Table 9. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD1SR Voltage on VDD_HV pins with respect to ground
(VSS)—4.55.5V
Voltage drop23.0 5.5
VSS_LV3SR V oltage on VSS_L V (low voltage digital supply) pins
with respect to ground (VSS)—V
SS 0.1 VSS +0.1 V
Table 8. Recommended operating conditio ns (3.3 V) (continued)
Symbol Parameter Conditions Value Unit
Min Max
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 35
VDD_BV4SR Voltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)—4.55.5V
Voltage drop23.0 5.5
Relative to VDD 3.0 VDD +0.1
VSS_ADC SR V oltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC
reference) pin with respect to ground (VSS)—V
SS 0.1 VSS +0.1 V
VDD_ADC5SR V oltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC
reference) with respect to ground (VSS)—4.55.5V
Voltage drop23.0 5.5
Relative to VDD VDD 0.1 VDD +0.1
VIN SR Vo ltage on any GPIO pin with respect to ground
(VSS)—V
SS 0.1 V
Relative to VDD —V
DD +0.1
IINJPAD SR Injected input current on any pin dur ing overload
condition 55mA
IINJSUM SR Absolute sum of all injected input currents during
overload condition 50 50
TVDD SR VDD slope to ensure correct power up6 0.25 V/µs
TA C-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 85 °C
TJ C-Grade
Part
SR Junction temperature under bias 40 110
TA V-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 105
TJ V-Grade
Part
SR Junction temperature under bias 40 130
TA M-Grade
Part
SR Ambient temperature under bias fCPU < 64 MHz740 125
TJ M-Grade
Part
SR Junction temperature under bias 40 150
1100 nF capacitance needs to be provided between each VDD/VSS pair.
2Full device operation is guaranteed by design when the voltage drops below 4.5V down to 3.6V. However, certain
analog electrica l characteristics will not be guaranteed to stay within the stated limits.
3330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4470 nF capacitance need s to be provided between VDD_BV and the nearest VSS_LV (higher value ma y be needed
depending on external regulator characteristics). While the supply voltage ramps up, the slope on VDD_BV should
be less than 0.9V DD_HV in order to ensure the device does not ente r regulator bypass mode.
5100 nF capacitance need s to be provided between VDD_ADC/VSS_ADC pair.
6Guaranteed by device validation. Please refer to Section 4.5.1, “External ballast resistor recommendations for
minimum VDD slope to be guaranteed to ensure correct power up in case of exter nal resistor usage.
7This frequency includes the 4% frequency modulation guardband.
Table 9. Recommended operating conditio ns (5.0 V) (continued)
Symbol Parameter Conditions Value Unit
Min Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor36
NOTE
RAM data retention is guaranteed with VDD_LV not below 1.08 V.
4.5 Thermal characteristics
4.5.1 External ballast resistor recommendations
External ballast resistor on VDD_BV pin helps in reducing the overall power dissipation inside the device. This resist or is
required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.
As stated in Table 10 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient
temperature TA = 125 °C, the junction temperature Tj will cross 150 °C if the total power dissipation is greater than
(150 125)/48.3 = 51 7 mW. Therefore, the total device current IDDMAX at 125 °C/5.5 V must not exceed 94.1 mA (i.e.,
PD/VDD). Assuming an average IDD(VDD_HV) of 15–20 mA consumption typically during device RUN mode, the LV domain
consumption IDD(VDD_BV) is thus limited to IDDMAX –I
DD(VDD_HV), i.e., 80 mA.
Therefore, respecting the maximum power allowed as explained in Section 4.5.2, “Package thermal characteristics, it is
recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:
•If I
DD(VDD_BV) < 80 mA, then no resistor is required.
•If 80 mA < I
DD(VDD_BV) < 90 mA, then 4 resistor can be used.
•If I
DD(VDD_BV) > 90 mA, then 8 resistor can be used.
Using resistance in the range of 4–8 , the gain will be around 10–20% of total consumption on VDD_BV. For example, if 8
resistor is used, then power consumption when IDD(VDD_BV) is 110 mA is equivalent to pow er consum ption when
IDD(VDD_BV) is 90 mA (approximately) when resistor not used.
In order to ensure correct power up, the minimum VDD_BV to be guaranteed is 30 ms/V. If the supply ramp is slower than this
value, then LVDHV3B m onitoring ballast supply VDD_BV pin gets trig gered leading to device reset. Until the supply reaches
certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the
maximum IDD(VDD_BV) possible across the external resistor.
4.5.2 Package thermal characteristics
Table 10. LQFP thermal characteristics1
Symbol C Parameter Conditions2Pin count Value Unit
Min Typ Max
RJA CC D Thermal resistance,
junction-to-ambient natural
convection3
Single-layer board — 1s 100 64 °C/W
144 64
176 64
Four-layer board — 2s2p 100 49.7
144 48.3
176 47.3
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 37
4.5.3 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1:
TJ = TA + (PD x RJA)Eqn. 1
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power.
PI/O represents the power dissipation on input and output pins; user determ ined.
Most of the time for the applications, PI/O< PINT and may be neglected. On the other hand, PI/O may be significant, if the device
is configured to continuously drive external modules and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
RJB CC Thermal resistance,
junction-to-board4Single-la yer board — 1s 100 36 °C/W
144 38
176 38
Four-layer board — 2s2p 100 33.6
144 33.4
176 33.4
RJC CC Thermal resistance,
junction-to-case5Single-layer board — 1s 100 23 °C/W
144 23
176 23
Four-layer board — 2s2p 100 19.8
144 19.2
176 18.8
1Thermal characteristics are targets based on simulation.
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C.
3Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA
and RthJMA.
4Junction-to-board thermal resistance de termined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB.
5Junction-to-case at the top of the package determin ed using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface
layer. When Greek letters are not available, the symbols are typed as RthJC.
Table 10. LQFP thermal characteristics1 (continued)
Symbol C Parameter Conditions2Pin count Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor38
PD = K / (TJ + 273 °C) Eqn. 2
Therefore, solving equations 1 and 2:
K = PD x (TA + 273 °C) + RJA x PD2Eqn. 3
Where:
K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations 1 and 2
iteratively for any value of TA.
4.6 I/O pad electrical characteristics
4.6.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate functions:
Slow pads - are the most common pads, providing a good compromise between transition time and low
electromagnetic emission.
Medium pads - provide transition fast enough for the serial communication channels with controlled current to reduce
electromagnetic emission.
Fast pads - provide maximum speed. These are used for improved Nexus debugging capability.
Input only pads - are associated with ADC channels and 32 kHz low power external crystal oscillator providing low
input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.
4.6.2 I/O input DC characteristics
Table 11 provides input DC electrical characteristics as described in Figure 6.
Figure 6. I/O input DC electrical cha racteristics definition
VIL
VIN
VIH
PDIx = ‘1
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 39
4.6.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 12 provides weak pull figures. Both pull- up and pull-down resistances are supported.
Table 13 provides output driver characteristics for I/O pads when in SLOW configuration.
Table 14 provides output driver characteristics for I/O pads when in MEDIUM configuration.
Table 15 provides output driver characteristics for I/O pads when in FAST configuration.
Table 11. I/O input DC electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VIH SR P Input high level CMOS (Schmitt
Trigger) 0.65VDD —V
DD +0.4 V
VIL SR P Input low level CMOS (Schmitt
Trigger) 0.4 0.35VDD
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger) —0.1V
DD ——
ILKG CC P Digital input leakage No injection
on adjacent
pin
TA=40 °C 2 nA
PT
A= 25 °C 2
DT
A= 105 °C 12 500
PT
A= 125 °C 70 1000
WFI2
2In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating te mperature and
voltage.
SR P Wakeup input filtered pulse 40 ns
WNFI2SR P Wakeup input not filtered pulse 1000 ns
Table 12. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value Unit
Min Typ Max
|IWPU| CC P Weak pull-up current
absolute value VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO ) are configured in input or in high impedance state.
10 250
PV
IN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD| CC P Weak pull-down current
absolute value VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 1 10 250
PV
IN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor40
Table 13. SLOW configuration output buffer ele ctrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VOH CC P Output high lev el
SLO W configuration Push Pull IOH = 2mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.8VDD ——V
CI
OH = 2mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transi ent configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
0.8VDD ——
CI
OH = 1mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
VDD 0.8
VOL CC P Output low level
SLO W configuration Push Pull IOL = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.1VDD V
CI
OL = 2 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
0.1VDD
CI
OL = 1 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
——0.5
Table 14. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VOH CC C Output high level
MEDIUM configuration Push Pull IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD —— V
PI
OH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
CI
OH = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 120.8VDD ——
CI
OH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD 0.8
CI
OH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 41
VOL CC C Output low level
MEDIUM configuration Push Pull IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.2VDD V
PI
OL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
CI
OL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12 0.1VDD
CI
OL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
CI
OH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.1VDD
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transi ent configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 15. FAST configuration output buffer electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VOH CC P Output high level
FAST configuration Push Pull IOH = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.8VDD ——V
CI
OH = 7mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
0.8VDD ——
CI
OH = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
VDD 0.8
VOL CC P Output low level
FAST configuration Push Pull IOL = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
(recommended)
0.1VDD V
CI
OL = 7 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 12
0.1VDD
CI
OL = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
(recommended)
——0.5
Table 14. MEDIUM configuration output buffer electrical chara cteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor42
4.6.4 Output pin transition times
4.6.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as
described in Table 17.
Table 18 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG
maximum value.
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 16. Output pin transition times
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
Ttr CC D Output transition time output pin2
SLO W configuration
2CL includes device and package capacitances (CPKG < 5 pF).
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 50 ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——50
TC
L = 50 pF 100
DC
L = 100 pF 125
Ttr CC D Output transition time output pin2
MEDIUM configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
10 ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
Ttr CC D Output transition time output pin2
FAST configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 —— 4 ns
CL = 50 pF 6
CL = 100 pF 12
CL = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1 —— 4
CL = 50 pF 7
CL = 100 pF 12
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 43
Table 17. I/O supply segments
Package Supply segment
12345678
208
MAPBGA1
1208 MAPBGA available only as development package for Nexus2+
Equivalent to 176 LQFP segment pad distribution MCKO MDOn
/MSEO
176 LQFP pin7 –
pin27 pin28 –
pin57 pin59 –
pin85 pin86 –
pin123 pin124 –
pin150 pin151
pin6
144 LQFP pin20 –
pin49 pin51 –
pin99 pin100 –
pin122 pin 123
pin19
100 LQFP pin16 –
pin35 pin37 –
pin69 pin70 –
pin83 pin84 –
pin15
Table 18. I/O consumption
Symbol C Parameter Conditions1Value Unit
Min Typ Max
ISWTSLW,2 CC D Dynamic I/O current fo r
SLOW configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——20mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——16
ISWTMED2CC D Dynamic I/O current for
MEDIUM configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——29mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——17
ISWTFST2CC D Dynamic I/O current for
FAST configuratio n CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——110mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——50
IRMSSLW CC D Root medium square I/O
current for SLOW
configuration
CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——2.3mA
CL = 25 pF, 4 MHz 3.2
CL = 100 pF, 2 MHz 6.6
CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——1.6
CL = 25 pF, 4 MHz 2.3
CL = 100 pF, 2 MHz 4.7
IRMSMED CC D Root medium square I/O
current for MEDIUM
configuration
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——6.6mA
CL = 25 pF, 40 MHz 13.4
CL = 100 pF, 13 MHz 18.3
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 —— 5
CL = 25 pF, 40 MHz 8.5
CL = 100 pF, 13 MHz 11
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor44
Table 19 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain
below the 100%.
IRMSFST CC D Root medium square I/O
current for FAST
configuration
CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——22mA
CL = 25 pF, 64 MHz 33
CL = 100 pF, 40 MHz 56
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——14
CL = 25 pF, 64 MHz 20
CL = 100 pF, 40 MHz 35
IAVGSEG SR D Sum of all the static I/O
current within a supply
segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 65
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2Stated maximum values represent peak co nsumption that lasts only a few ns during I/O transition.
Table 19. I/O weight1
PAD
176 LQFP 144/100 LQFP
Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1 Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1
PB[3] 5% 6% 13% 15%
PC[9] 4% 5% 13% 15%
PC[14] 4% 4% 13% 15%
PC[15] 3% 4% 4% 4% 12% 18% 15% 16%
PJ[4] 3% 4% 3% 3% 12% 18% 15% 16%
PH[15] 2% 3% 3% 3% 11% 16% 13% 14%
PH[13] 3% 4% 3% 4% 11% 15% 13% 14%
PH[14] 3% 4% 4% 4% 11% 15% 13% 13%
PI[6] 4% 4% 10% 12%
PI[7] 4% 4% 10% 12%
PG[5] 4% 5% 10% 12%
PG[4] 4% 6% 5% 5% 9% 13% 11% 12%
PG[3]4%— 5% 9%—11%
PG[2] 4% 6% 5% 5% 9% 12% 10% 11%
PA[2]4%— 5% 8%—10%
PE[0] 4% 5% 8% 9%
Table 18. I/O consumption (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 45
PA[1]4%— 5% 8%— 9%
PE[1] 4% 6% 5% 6% 7% 10% 9% 9%
PE[8] 4% 6% 5% 6% 7% 10% 8% 9%
PE[9] 4% 5% 6% 8%
PE[10] 4% 5% 6% 7%
PA[0]4%6%5% 5%6%8%7% 7%
PE[11] 4% 5% 5% 6%
PG[9] 9% 10% 9% 10%
PG[8] 9% 11% 9% 11%
PC[11] 9% 11% 9% 11%
PC[10] 9% 13% 11% 12% 9% 13% 11% 12%
PG[7] 9% 11% 9% 11%
PG[6] 10% 14% 11% 12% 10% 14% 11% 12%
PB[0] 10% 14% 12% 12% 10% 14% 12% 12%
PB[1] 10% 12% 10% 12%
PF[9] 10% 12% 10% 12%
PF[8] 10% 14% 12% 13% 10% 14% 12% 13%
PF[12] 10% 15% 12% 13% 10% 15% 12% 13%
PC[6] 10% 12% 10% 12%
PC[7] 10% 12% 10% 12%
PF[10] 10% 14% 11% 12% 10% 14% 11% 12%
PF[11] 9% 11% 9% 11%
PA[15] 8% 12% 10% 10% 8% 12% 10% 10%
PF[13] 8% 10% 8% 10%
PA[14] 8% 11% 9% 10% 8% 11% 9% 10%
PA[4]7%— 9% 7%— 9%
PA[13] 7% 10% 8% 9% 7% 10% 8% 9%
PA[12] 7% 8% 7% 8%
PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 5% 6% 6% 7%
PF[0]5%— 6% 6%— 8%
PF[1]5%— 6% 7%— 8%
Table 19. I/O weight1 (conti nued)
PAD
176 LQFP 144/100 LQFP
Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1 Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor46
PF[2]6%— 7% 7%— 9%
PF[3]6%— 7% 8%— 9%
PF[4]6%— 7% 8%—10%
PF[5]6%— 7% 9%—10%
PF[6]6%— 7% 9%—11%
PF[7]6%— 7% 9%—11%
PJ[3] 6% 7% 10% 12%
PJ[2] 6% 7% 10% 12%
PJ[1] 6% 7% 11% 13%
PJ[0] 6% 7% 11% 13%
PI[15] 6% 7% 12% 14%
PI[14] 6% 7% 12% 14%
PD[0]1%— 1% 1%— 1%
PD[1]1%— 1% 1%— 1%
PD[2]1%— 1% 1%— 1%
PD[3]1%— 1% 1%— 1%
PD[4]1%— 1% 1%— 1%
PD[5]1%— 1% 1%— 1%
PD[6]1%— 1% 1%— 2%
PD[7]1%— 1% 1%— 2%
PD[8]1%— 1% 1%— 2%
PB[4] 1% 1% 1% 2%
PB[5] 1% 1% 1% 2%
PB[6] 1% 1% 1% 2%
PB[7] 1% 1% 1% 2%
PD[9]1%— 1% 1%— 2%
PD[10] 1% 1% 1% 2%
PD[11] 1% 1% 1% 2%
PB[11] 1% 1% 1% 2%
PD[12] 11% 13% 15% 18%
PB[12] 11% 13% 15% 17%
PD[13] 11% 13% 14% 17%
PB[13] 11% 13% 14% 17%
Table 19. I/O weight1 (conti nued)
PAD
176 LQFP 144/100 LQFP
Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1 Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 47
PD[14] 11% 13% 14% 17%
PB[14] 11% 13% 14% 16%
PD[15] 11% 13% 13% 16%
PB[15] 11% 13% 13% 15%
PI[8] 10% 12% 12% 15%
PI[9] 10% 12% 12% 15%
PI[10] 10% 12% 12% 14%
PI[11] 10% 12% 12% 14%
PI[12] 10% 12% 11% 13%
PI[13] 10% 11% 11% 13%
PA[3] 9% 11% 11% 13%
PG[13] 9% 13% 11% 11% 10% 14% 12% 13%
PG[12] 9% 13% 10% 11% 10% 14% 12% 12%
PH[0]6%8%7% 7%6%9%7% 8%
PH[1]6%8%7% 7%6%8%7% 7%
PH[2]5%7%6% 6%5%7%6% 7%
PH[3]5%7%5% 6%5%7%6% 6%
PG[1]4%— 5% 4%— 5%
PG[0]4%5%4% 5%4%5%4% 5%
PF[15] 4% 4% 4% 4%
PF[14] 4% 6% 5% 5% 4% 6% 5% 5%
PE[13] 4% 5% 4% 5%
PA[7]5%— 6% 5%— 6%
PA[8]5%— 6% 5%— 6%
PA[9]6%— 7% 6%— 7%
PA[10] 6% 8% 6% 8%
PA[11] 8% 9% 8% 9%
PE[12] 8% 9% 8% 9%
PG[14] 8% 9% 8% 9%
PG[15] 8% 11% 9% 10% 8% 11% 9% 10%
PE[14] 8% 9% 8% 9%
PE[15] 8% 11% 9% 10% 8% 11% 9% 10%
PG[10] 8% 9% 8% 9%
Table 19. I/O weight1 (conti nued)
PAD
176 LQFP 144/100 LQFP
Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1 Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor48
PG[11] 7% 11% 9% 9% 7% 11% 9% 9%
PH[11] 7% 10% 9% 9% 7% 10% 9% 9%
PH[12] 7% 10% 8% 9% 7% 10% 8% 9%
PI[5]7%— 8% 7%— 8%
PI[4]7%— 8% 7%— 8%
PC[3]6%— 8% 6%— 8%
PC[2]6%8%7% 7%6%8%7% 7%
PA[5]6%8%7% 7%6%8%7% 7%
PA[6]5%— 6% 5%— 6%
PH[10] 5% 7% 6% 6% 5% 7% 6% 6%
PC[1] 5% 19% 5% 13% 5% 19% 5% 13%
PC[0] 6% 9% 7% 8% 7% 10% 8% 8%
PH[9]7%— 8% 7%— 9%
PE[2] 7% 10% 8% 9% 8% 11% 9% 10%
PE[3] 7% 10% 9% 9% 8% 12% 10% 10%
PC[5] 7% 11% 9% 9% 8% 12% 10% 11%
PC[4] 8% 11% 9% 10% 9% 13% 10% 11%
PE[4] 8% 11% 9% 10% 9% 13% 11% 12%
PE[5] 8% 11% 10% 10% 9% 14% 11% 12%
PH[4] 8% 12% 10% 10% 10% 14% 12% 12%
PH[5] 8% 10% 10% 12%
PH[6] 8% 12% 10% 11% 10% 15% 12% 13%
PH[7] 9% 12% 10% 11% 11% 15% 13% 13%
PH[8] 9% 12% 10% 11% 11% 16% 13% 14%
PE[6] 9% 12% 10% 11% 11% 16% 13% 14%
PE[7] 9% 12% 10% 11% 11% 16% 14% 14%
PI[3] 9% 10% 12% 14%
PI[2] 9% 10% 12% 14%
PI[1] 9% 10% 12% 15%
PI[0] 9% 10% 12% 15%
Table 19. I/O weight1 (conti nued)
PAD
176 LQFP 144/100 LQFP
Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1 Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 49
4.7 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 7. Start-up reset requirements
PC[12] 8% 12% 10% 11% 12% 18% 15% 16%
PC[13] 8% 10% 13% 15%
PC[8] 8% 10% 13% 15%
PB[2] 8% 11% 9% 10% 13% 18% 15% 16%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Table 19. I/O weight1 (conti nued)
PAD
176 LQFP 144/100 LQFP
Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1 Weight 5V
SRE = 0 Weight 5V
SRE = 1 Weight 3.3V
SRE = 0 Weight 3.3V
SRE = 1
VIL
VDD
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor50
Figure 8. Noise filtering on reset signal
Table 20. Reset electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VIH SR P Input High Level CMOS
(Schmitt Trigger) —0.65V
DD —V
DD +0.4 V
VIL SR P Input low Level CMOS
(Schmitt Trigger) 0.4 0.35VDD V
VHYS CC C Input hysteresis CMOS
(Schmitt Trigger) —0.1V
DD —— V
VOL CC P Output low level Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD V
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12 0.1VDD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
VRESET
VIL
VIH
VDD
filtered by
hysteresis filtered by
lowpass filter
WFRST WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 51
4.8 Power management electrical characteristics
4.8.1 Voltage regulator electrical characteristics
The device implements an internal volt age regulator to generate the low volt age core supply VDD_LV from the high voltage
ballast supply VDD_BV. The regulator itself is supplied by the comm on I/O suppl y V DD. The followi ng supp lies are involved:
HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD
power pin.
BV : High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV
power pin. Voltage values should be aligned with VDD.
LV: Low voltage internal power suppl y for core, FMPLL and Flash digital logic. This is generated by the intern al
voltage regulator but provided outside to connect stability capacitor . It is further split into four main domains to ensure
noise isolation between critical LV m odul es within the device:
LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
LV_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to
LV_COR through dou ble bonding.
Ttr CC D Output transition time output
pin3 MEDIUM configuration CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 10 ns
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 —— 40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 —— 40
WFRST SR P RESET input filtered pulse 40 ns
WNFRST SR P RESET input not filtered pulse 1000 ns
|IWPU| CC P Weak pull-up current absolute
value VDD = 3.3 V ± 10%, PAD3V5V = 1 10 150 µA
VDD = 5.0 V ± 10%, PAD3V5V = 0 10 150
VDD = 5.0 V ± 10%, PAD3V5V = 1410 250
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of
the device reference manual).
3CL includes device and package capacitance (CPKG <5pF).
4The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up . All pads but RESET
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 20. Reset electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor52
LV_DFLA: Low voltage supply for data Flash module. It is suppl ied wit h dedicat ed ballast and shorted to
LV_COR through dou ble bonding.
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.
Figure 9. Voltage regulator capacitance connect ion
The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.
Care should also be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see
Section 4.4, “Recommended operating conditions).
Table 21. Voltage regulator electri cal characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
CREGn SR Internal voltage regulator external
capacitance 200 500 nF
RREG SR Stability capacitor equivalent serial
resistance ——0.2
CDEC1 SR Decoupling capacitance2 ballast VDD_BV/VSS_LV pair:
VDD_BV = 4.5 V to
5.5 V
10034704—nF
VDD_BV/VSS_LV pair:
VDD_BV = 3V to 3.6V 400
CREG1 (LV_COR/LV_DFLA)
DEVICE
VSS_LV
VDD_BV
VDD_LV
CDEC1 (Ballast decoupling)
VSS_LV VDD_LV VDD
VSS_LV VDD_LV
CREG2 (LV_COR/LV_CFLA)
CREG3 (LV_COR/LV_PLL) CDEC2 (supply/IO decoupling)
DEVICE
VDD_BV
I
VDD_LVn
VREF
VDD
Voltage Regulator
VSS
VSS_LVn
GND
GND GND
GND
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 53
4.8.2 Voltage monitor electrical characteristics
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors
to monitor the VDD and the VDD_LV voltage while device is supplied:
CDEC2 SR Decoupling capacitance regulator
supply VDD/VSS pair 10 100 nF
VMREG CC PMain regulator output voltage Before exting from
reset 1.32 V
After trimming 1.15 1.28 1.32
IMREG SR Main regulator current provided to
VDD_LV domain ——150 mA
IMREGINT CC DMain regulator module current
consumption IMREG = 200 mA 2mA
IMREG = 0 mA 1
VLPREG CC PLo w power regu l a to r out p ut voltage After trimming 1.15 1.23 1.32 V
ILPREG SR Low power regulator current provided
to VDD_LV domain ——15 mA
ILPREGINT CC DLow power regulator module current
consumption ILPREG = 15 mA;
TA = 55 °C ——
600 µA
ILPREG = 0 mA;
TA = 55 °C 5—
VULPREG CC PUltra low power regulator output
voltage After trimming 1.15 1.23 1.32 V
IULPREG SR Ultra low power regulator current
provided to VDD_LV domain ——5mA
IULPREGINT CC DUltra low power regulator module
current consumption IULPREG = 5 mA;
TA = 55 °C ——100 µA
IULPREG = 0 mA;
TA = 55 °C 2—
IDD_BV CC DIn-rush curren t on VDD_BV during
power-up5——4006mA
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.
A typical value is in the range of 470 nF.
3This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV
in operating range.
5In-rush current is seen only for short time during power-up and on standb y exit (max 20µs, depending on external
capacitances to be load).
6The duration of the in-rush current depen ds on the capacitance placed on LV pins. BV decaps must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
Table 21. Voltage regulator electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor54
POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state
LVDHV3 monitors VDD to ensure device reset below minimum function al supply
LVDHV3B monitors VDD_BV to ensure device reset below minim um functi onal supply
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range
LVDLVCOR monitors power domain No. 1
LVDLVBKP monitors power domain No. 0
NOTE
When enabled, power domain No. 2 is monitored through LVDLVBKP.
Figure 10. Low voltage monitor vs reset
Table 22. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
VPORUP SR P Supply for functional POR module TA = 25 °C,
after trimming 1.0 5.5 V
VPORH CC P Power-on reset threshold 1.5 2.6
VLVDHV3H CC T LVDHV3 low voltage detector high threshold 2.95
VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.7 2.9
VLVDHV3BH CC P LVDHV3B low voltage detector high threshold 2.95
VLVDHV3BL CC P LVDHV3BL low voltage detector low threshold 2.7 2.9
VLVDHV5H CC T LVDHV5 low voltage detector high threshold 4 .5
VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 4.4
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold 1.08
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 1.14
VDD
VLVDHVxH
RESET
VLVDHVxL
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 55
4.9 Low voltage domain power consumption
Table 23 provides DC electrical characteristics for significant application modes. These values are indicative values; actual
consumption depends on the application.
Table 23. Low voltage power domain electrical characteristics1
1Except for IDDMAX, all consumptions in this table apply to VDD_BV only and do not include VDD_HV.
Symbol C Parameter Conditions2
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
IDDMAX3
3Running consumption is given on voltage regu lator supply (VDDREG). IDDMAX is composed of three components:
IDDMAX = IDD(VDD_BV) + IDD(VDD_HV) + IDD(VDD_HV_ADC). It does not include a fourth component linked to I/Os
toggling which is highly dependent on the application. The given value is thought to be a wo rst case value with
all peripherals running, and code fetched from code flash while modify operation on-going on data flash. Note that
this value can be significantly reduced by the application: switch off not used peripherals (default), reduce peripheral
frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
CC D RUN mode maximum average
current 115 1404
4Higher current may be sunk by de vice during power-up and standby e xit. Please refer to in-rush current in Table 21.
mA
IDDRUN5CC T RUN mode typical average
current6fCPU = 8 MHz 12 mA
Tf
CPU = 16 MHz 27
Tf
CPU = 32 MHz 43
Pf
CPU = 48 MHz 56
Pf
CPU = 64 MHz 70
IDDHALT CC C HALT mode current7Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 10 18 mA
PT
A= 125 °C 17 28
IDDSTOP CC P ST OP mode curr ent8Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 350 900 µA
DT
A=5C 750
DT
A=8C 2 mA
DT
A= 105 °C 4
PT
A= 125 °C 7 14
IDDSTDBY2 CC P STANDBY2 mode current9Slow interna l RC
oscillator (128 kHz)
running
TA= 25 °C 30 100 µA
DT
A=5C 75
DT
A=8C 180
DT
A= 105 °C 315
PT
A= 125 °C 560 1700
IDDSTDBY1 CC T STANDBY1 mode current10 Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 20 60 µA
DT
A=5C 45
DT
A=8C 100
DT
A= 105 °C 165
DT
A= 125 °C 280 900
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor56
4.10 Flash memory electrical characteristics
4.10.1 Program/erase characteristics
Table 24 shows the program and erase characteristics.
5RUN current measured with typical application with accesses on both Flash and RAM.
6Only for the “P” classification: Data and Code Flash in Normal P ower . Code f etched from RAM: Serial IPs CAN and
LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and
running at max frequency, periodic SW/WDG timer reset enabled.
7Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock.
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFle x:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 cloc ks gated. eMIOS: instance:
0 ON (16 channels on PA[0]–PA [11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI:
instance: 0 (clocked b ut no communication), instance: 1 to 5 cloc ks gated. R TC/ API ON. PIT ON. STM ON. A DC1
OFF. ADC0 ON but no conversion except two analog watchdogs.
8Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off,
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
9Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum
consumption, all possible modules s witched off.
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules
switched off.
Table 24. Program and erase specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ1
1Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device characterization.
Initial
max2
2Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
Max3
3The maximum program and erase times occur after the specified number of program/erase cycles. These maximum
values are characterized but not guaranteed.
Tdwprogram CC C Double word (64 bits) program time4
4Actual hardware programming times. This does not include software overhead.
Code Flash 18 50 500 µs
Data Flash 22
T16Kpperase 16 KB block preprogram and erase time Code Flash 200 500 5000 ms
Data Flash 300
T32Kpperase 32 KB block preprogram and erase time Code Flash 300 600 5000 ms
Data Flash 400
T128Kpperase 128 KB block preprogram and erase time Code Flash 600 1300 7500 ms
Data Flash 800
Teslat D Erase Suspend Latency 30 30 µs
TESRT C Erase Suspend Request Rate Code Flash 20 ms
Data Flash 10
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 57
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units
will experience single bit corrections throughout the life of the product with no imp act to product reliability.
Table 27 shows the FLASH_BIU settings versus frequency of operation. Re fer to the device reference manual for definitions
of these bit fields.
Table 25. Flash module life
Symbol C Parameter Conditions Value Unit
Min Typ Max
P/E CC C Number of program/erase
cycles per block for 16 KB
blocks over the operating
temperature range (TJ)
100000 cycles
P/E CC C Number of program/erase
cycles per block for 32 KB
blocks over the operating
temperature range (TJ)
10000 100000 cycles
P/E CC C Number of program/erase
cycles per block for 128 KB
blocks over the operating
temperature range (TJ)
1000 100000 cycles
Retention CC C Minimum data retention at 85
°C av erage ambient
temperature1
1Ambient temperature averaged over duration of application, not to exceed recommended product operating
temperature range.
Blocks with
0–1,000 P/E cycles 20 years
Blocks wit h
1,001–10,000 P/E
cycles
10 years
Blocks wit h
10,001–100,000 P/E
cycles
5—years
Table 26. Flash read access t iming
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Max Unit
fREAD CC P Maximum frequency for Flash reading 2 wait states 64 MHz
C 1 wait state 40
C 0 wait states 20
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor58
4.10.2 Flash power supply DC characteristics
Table 28 shows the power supply DC characteristics on external supply.
Table 27. FLASH_BIU settings vs. frequency of operation
Maximum frequency
(MHz) APC RWSC WWSC DPFEN IPFEN PFLIM BFEN
Up to and including
82 MHz TBD TBD TBD TBD TBD TBD TBD
Up to and including
102 MHz TBD TBD TBD TBD TBD TBD TBD
Up to and including
132 MHz TBD TBD TBD TBD TBD TBD TBD
Def ault setting after
reset TBD TBD TBD TBD TBD TBD TBD
Table 28. Flash power supply DC electrical characteristics
Symbol Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
ICFREAD CC Sum of the current consumption on
VDDHV and VDDBV on read access Flash module read
fCPU = 64 MHz2
2fCPU 64 MHz can be achieved only at up to 105 °C
Code Flash 33 mA
IDFREAD Data Flash 33
ICFMOD CC Sum of the current consumption on
VDDHV and VDDBV on matrix
modification (program/erase)
Program
/Erase on-going while
reading Flash registers
fCPU = 64 MHz2
Code Flash 52 mA
IDFMOD Data Flash 33
ICFLPW CC Sum of the current consumption on
VDDHV and VDDBV during Flash low
powe r mode
Code Flash 1.1 mA
IDFLPW Data Fla s h 900 µA
ICFPWD CC Sum of the current consumption on
VDDHV and VDDBV during Flash power
down mode
Code Flash 150 µA
IDFPWD Data Flash 150
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 59
4.10.3 Start-up/Switch-off timings
4.11 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.11.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in
particular.
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC
level requested for the application.
Software recommendations The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials Most of th e common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the
software can be hardened to prevent unrecoverable errors occurring.
4.11.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1
standard, which specifies the general conditions for EMI measurements.
Table 29. Star t- u p time/Switch-off time
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
TFLARSTEXIT CC T Delay for Flash module to exit reset mode 125 µs
TFLALPEXIT CC T Delay for Flash module to exit low-power mode 0.5
TFLAPDEXIT CC T Delay for Flash module to exit power-down
mode ——30
TFLALPENTRY CC T Delay for Flash module to enter low-power
mode ——0.5
TFLAPDENTRY CC T Delay for Flash module to enter power-down
mode ——1.5
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor60
4.11.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine
its performance in terms of electrical sensitivity.
4.11.3.1 Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts(n + 1) supply pin). This
test conforms to the AEC-Q100-002/-003/-011 standard.
4.11.3.2 Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performa nce:
Table 30. EMI radiated emission measurement1,2
1EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2F or information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your
local marketing representative.
Symbol C Parameter Conditions Value Unit
Min Typ Max
SR Scan range 0.150 1000 MHz
fCPU SR Operating frequency 64 MHz
VDD_LV SR LV operating voltages 1.28 V
SEMI CC T Peak level VDD = 5V, T
A=2C,
LQFP144 package
Test co nf orming to IEC
61967-2,
fOSC = 8 MHz/fCPU =
64 MHz
No PLL frequency
modulation 18 dBµV
± 2% PLL frequency
modulation 14 dBµV
Ta ble 31. ESD absolute maxi mum ratings1,2
1All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
2A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Symbol Ratings Conditions Class Max value3
3Data based on characteri zation results, not tested in production
Unit
VESD(HBM) Electrostatic discharge voltage
(Human Body Model) TA = 25 °C
conforming to AEC-Q100-002 H1C 2000 V
VESD(MM) Electrostatic di scharge voltage
(Machine Model) TA = 25 °C
conforming to AEC-Q100-003 M2 200
VESD(CDM) Electrostatic di scharge voltage
(Charged Device Model) TA = 25 °C
conforming to AEC-Q100-011 C3A 500
750 (corners)
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 61
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
4.12 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 11 describes a simple model of th e internal oscillator driver and
provides an example of a connection for an oscillator or a resonator.
Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulatio ns.
Figure 11. Crystal oscillator an d resonator connection scheme
NOTE
XTAL/EXTAL must not be directly used to drive external circuits.
Table 32. Latch-up results
Symbol Parameter Conditions Class
LU Static latch-up class TA = 125 °C
conforming to JESD 78 II level A
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE XTAL
EXTAL
I
R
VDD
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor62
Figure 12. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Table 33. Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)1
1The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
Shunt
capacitance
between
xtalout
and xtalin
C02 (pF)
2The value of C0 specified here includes 2 pF addition al capacitance for parasitics (to be seen with bond-pad s,
package, etc.).
4 NX8045GB 300 2.68 591.0 21 2.93
8 NX5032GA 300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
fFXOSC SR Fast external crystal
oscillator frequency —4.016.0MHz
VMXOSCOP
TMXOSCSU
VXTAL
VMXOSC
valid internal clock
90%
10%
1/fMXOSC
S_MTRANS bit (ME_GS register)
1
0
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 63
4.13 Slow e xternal crystal oscillator (32 kHz) electrical characteristics
The device provides a low power oscillator/resonator driver.
gmFXOSC CC C Fast external crystal
oscillator
transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2 8.2 mA/V
CC P VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0 7.4
CC C VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7 9.7
CC C VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5 9.2
VFXOSC CC T Oscillation amplitude at
EXTAL fOSC =4MHz,
OSCILLATOR_MARGIN = 0 1.3 V
fOSC =16MHz,
OSCILLATOR_MARGIN = 1 1.3
VFXOSCOP CC P Oscillation operating point 0.95 V
IFXOSC2CC T Fast exter nal crystal
oscillator consumption ——23mA
TFXOSCSU CC T Fast external crystal
oscillator start-up time fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0 —— 6ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1 ——1.8
VIH SR P Input high level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.65VDD —V
DD +0.4 V
VIL SR P Input low level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.4 0.35VDD V
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2Stated values take into account only analog module consumption but not the digital contributor (clock tree and
enabled peripherals).
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor64
Figure 13. Crystal oscillator an d resonator connection scheme
NOTE
OSC32K_XTAL/OSC32K_EXTAL must not be dir ectly used to drive external circuits.
l
Figure 14. Equivalent circuit of a quartz crystal
Table 35. Crystal motional characteristics1
Symbol Parameter Conditions Value Unit
Min Typ Max
LmMotional inductance 11.796 KH
CmMotional capacitance 2 fF
C1/C2 Load capacitance at OSC32K_XTAL and
OSC32K_EXTAL with respect to ground2—1828pF
Rm3Motional resistance AC coupled at C0 = 2.85 pF4——65k
AC coupled at C0 = 4.9 pF4——50
AC coupled at C0 = 7.0 pF4——35
AC coupled at C0 = 9.0 pF4——30
OSC32K_XTAL
OSC32K_EXTAL
DEVICE
C2
C1
Crystal
OSC32K_XTAL
OSC32K_EXTAL
R
P
Resonator
DEVICE
C0
C2C1 C2
Rm
C1
Lm
Cm
Crystal
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 65
Figure 15. Slow e xternal crystal oscillator (32 kHz) electrical characteristics
4.14 FMPLL electrical characteristics
The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the main
oscillator driver.
1The cr ystal used is Epson Toyocom MC306.
2This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to
ground. It includes all the parasitics due to board traces, crystal and package.
3Maximum ESR (Rm) of the crystal is 50 k
4C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.
Table 36. Slow external crystal oscillator (32 kHz) electrical characteri stics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
fSXOSC SR Slow external crystal oscillator
frequency 32 32.768 40 kHz
VSXOSC CC T Oscillation amplitude 2.1 V
ISXOSCBIAS CC T Oscillation bias current 2.5 µA
ISXOSC CC T Slow external crystal oscillator
consumption ——8µA
TSXOSCSU CC T Slow e xternal crystal oscillator
start-up time ——2
2
2Start-up time has been measured with EPSON T O Y OCOM MC306 crystal. V ariation ma y be seen with other crystal.
s
OSCON bit (OSC_CTL register)
TLPXOSC32KSU
1
VOSC32K_XTAL
VLPXOSC32K
valid internal clock
90%
10%
1/fLPXOSC32K
0
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor66
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.
Table 37. FMPLL electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value Unit
Min Typ Max
fPLLIN SR FMPLL ref erence clock2
2PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
—464MHz
PLLIN SR FMPLL reference clock duty
cycle2—4060%
fPLLOUT CC P FMPLL output clock frequency 16 64 MHz
fVCO3
3Frequency modulation is considered ± 4%.
CC P VCO frequency without
frequency modu l a ti on 256 512 MHz
P VCO frequency with frequency
modulation 245.76 532.48
fCPU SR System clock frequency 644
4fCPU 64 MHz can be achieved only at up to 105 °C .
MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs
tSTJIT CC FMPLL short term jitter5
5Short term jitter is measured on the clock rising edge at cycle n and n+4.
fsys maximum –4 4 %
tLTJIT CC FMPLL long term jitter fPLLCLK at 64 MHz, 4000 cycles 10 ns
IPLL CC C FMPLL consumption TA = 25 °C 4 mA
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
fFIRC CC P Fast internal RC oscillator high
frequency TA = 25 °C, trimmed 16 MHz
SR 12 20
IFIRCRUN2, CC T Fast internal RC oscillator high
frequency current in run ning
mode
TA = 25 °C, trimmed 200 µA
IFIRCPWD CC D Fast internal RC oscillator high
frequency current in power
down mode
TA = 25 °C 10 µA
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 67
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.
IFIRCSTOP CC T Fast in ternal RC oscillator high
frequency and system cloc k
current in stop mode
TA = 25 °C sysclk = off 500 µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
TFIRCSU CC C Fast internal RC oscillato r
start-up time VDD = 5.0 V ± 10% 1.1 2.0 µs
FIRCPRE CC C Fast internal RC oscillator
precision after software
trimmin g of fFIRC
TA = 25 °C 1— 1%
FIRCTRIM CC C Fast internal RC oscillator
trimming step TA = 25 °C 1.6 %
FIRCVAR CC C Fast internal RC oscillator
variation over temperature and
supply with respect to fFIRC at
TA= 25 °C in high-frequency
configuration
5— 5%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This does not include consumption link ed to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol C Parameter Conditions1Value Unit
Min Typ Max
fSIRC CC P S low internal RC oscillator low
frequency TA = 25 °C , trimme d 128 kHz
SR 100 150
ISIRC2, CC C Slow internal RC oscillator low
frequency current TA = 25 °C, trimme d 5 µA
TSIRCSU CC P S low internal RC oscillator start-up
time TA = 25 °C , VDD = 5.0 V ± 10% 8 12 µs
SIRCPRE CC C Slow internal RC oscillator precision
after software trimming of fSIRC
TA = 25 °C 2— 2%
SIRCTRIM CC C Slow internal RC oscillator trimming
step ——2.7
Table 38. Fast internal RC oscillator (16 MHz) el ectrical characteristics (cont inued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor68
4.17 ADC electrical characteristics
4.17.1 Introduction
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).
SIRCVAR CC C Slow internal RC oscillator v ariation
in temperature and supply with
respect to fSIRC at TA= 55 °C in high
frequency configuration
High frequency configuration 10 10 %
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This does not include consumption link ed to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 39. Slow internal RC oscill ator (128 kHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 69
Figure 16. ADC_0 characteristic and error definitions
4.17.2 Input im pedance and ADC accuracy
In the following analysis, th e input circuit corresponding to the precise channels is considered.
T o preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor
with good high frequency characteristics at the input pin of the devi ce can be effective: the capacitor should be as large as
possible, ideally infinite. This capacitor cont ributes to attenuating the noise present on the input pin; furthermore, it sources
charge during the sampling phase, when the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal
(bandwidth) and the equivalen t input impedance of the ADC itself.
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual tr ansfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
code out
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
1 LSB ideal = VDD_ADC / 1024
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor70
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path
to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 k is obtained (REQ
= 1 / (fc*CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit
must be designed to respect the Equation 4:
Eqn. 4
Equation 4 generates a constraint for external network design, in particular on re si st ive path. Internal switch resistances (RSW
and RAD) can be neglected with respect to external resistances.
Figure 17. Input equivalent circuit (precise channels)
VA
RSRFRLRSW RAD
+++ +
REQ
---------------------------------------------------------------------------
1
2
---LSB
R
F
C
F
R
S
R
L
R
SW1
C
P2
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 71
Figure 18. Input equivalent circuit (extended channels)
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are
initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 17): A charge sharing phenomenon
is installed when the sampling phase is started (A/D switch close).
Figure 19. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be
faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in s eries,
and the time constant is
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Selection Switch Impedance (two contributions RSW1 and RSW2)
RAD Sampling Switch Impedance
CP Pin Capacitance (three contributions, CP1, CP2 and CP3)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
VA
VA1
VA2
t
TS
VCS Voltage Transient on CS
V <0.5 LSB
12
1 < (RSW + RAD) CS << TS
2
= R
L
(C
S
+ C
P1
+ C
P2
)
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor72
Eqn. 5
Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is
faster , but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS
is always much longer than the internal time constant:
Eqn. 6
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance
according to Equation 7:
Eqn. 7
2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance
RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality
would be faster), the time constant is:
Eqn. 8
In this case, the time constant depends on the external circuit: in particular imposing that th e transient is completed
well before the end of sampling time TS, a constraints on RL sizing is obtained:
Eqn. 9
Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source
impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2
(at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge
balance assuming now CS already charged at VA1):
Eqn. 10
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to
provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of
the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as antialiasing.
1RSW RAD
+=CPCS
CPCS
+
---------------------
1RSW RAD
+CSTS
«
VA1 CSCP1 CP2
++VACP1 CP2
+=
2RL
CSCP1 CP2
++
10 2
10 RLCSCP1 CP2
++=T
S
VA2 CSCP1 CP2 CF
+++VACF
VA1
+C
P1 CP2
+C
S
+=
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 73
Figure 20. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter , fF), according
to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constan t time o f the filter is greater than or
at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which
is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific
channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time
TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is
closed.
The considerations above lead to impose new cons traints on the external circuit, to reduce the accuracy error due to the voltage
drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled
voltage on CS:
Eqn. 11
From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of
half a count, a constraint is evident on CF value:
ADC_0 (10-bit) Eqn. 12
ADC_1 (12-bit) Eqn. 13
f0f
Analog source bandwidth (VA)
f0f
Sampled signal spectrum (fC = Conversion rate)
fC
f
Anti-aliasing filter (fF = RC filter pole)
fF
2 f0<fC (Nyquist)
fF = f0 (Anti-aliasing filtering condition)
TC<2 RFCF (Conversion rate vs. filter pole)
Noise
VA
VA2
------------CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor74
4.17.3 ADC electrical characteristics
Table 40. ADC input leakage current
Symbol C Parameter Conditions Value Unit
Min Typ Max
ILKG CC C Input leakage current TA=40 °C No current injection on adjacent pin 1 nA
CT
A= 25 °C 1
CT
A= 105 °C 8 200
PT
A= 125 °C 45 400
Table 41. ADC_0 conversion characteristics (10-bit ADC_0)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VSS_ADC0 SR Voltage on VSS_HV_ADC0
(ADC_0 reference) pin with
respect to ground (VSS)2
0.1 0.1 V
VDD_ADC0 SR Voltage on VDD_HV_ADC pin
(ADC reference) with respect
to ground (VSS)
—V
DD 0.1 VDD +0.1 V
VAINx SR Analog input voltage3—V
SS_ADC0
0.1 —V
DD_ADC0
+0.1 V
IADC0pwd SR ADC_0 consumption in power
down mode ——50µA
IADC0run SR ADC_0 consumption in
running mode ——40mA
fADC0 SR ADC_0 analog frequency 6—32 + 4% MHz
ADC0_SYS SR ADC_0 digital clock duty cycle
(ipg_clk) ADCLKSEL = 1445 55 %
tADC0_PU SR ADC_0 power up del ay ——1.5 µs
tADC0_S CC T Sample time5fADC = 32 MHz,
ADC0_conf_sample_input = 17 0.5 µs
fADC = 6 MHz,
INPSAMP = 255 ——42
tADC0_C CC P Conversion time6fADC = 32 MHz,
ADC_conf_comp = 2 0.625 µs
CSCC DADC_0 input sampling
capacitance ——3pF
CP1 CC DADC_0 input pin capacitance 1 3pF
CP2 CC DADC_0 input pin capacitance 2 ——1pF
CP3 CC DADC_0 input pin capacitance 3 1pF
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 75
RSW1 CC DInternal resistance of analog
source ——3 k
RSW2 CC DInternal resistance of analog
source 2 k
RAD CC DInternal resistance of analog
source ——2 k
IINJ SR Input current Injection Current injection
on one ADC_0
input, different
from the
converted one
VDD =
3.3 V ± 10% 5—5mA
VDD =
5.0 V ± 10% 5 5
| INL | CC TAbsolute va lue for integral
nonlinearity No overload 0.5 1.5 LSB
| DNL | CC TAbsolute differential
nonlinearity No overload 0.5 1.0 LSB
| OFS | CC TAbsolute offset error 0.5 LSB
| GNE | CC TAbsolute gain error ——0.6 LSB
TUEP CC PTotal unadjusted error7 fo r
precise channels, input only
pins
Without current injection 20.6 2LSB
TWith current injection 3 3
TUEX CC TTotal unadjusted error7 fo r
extended channel Without current injection 3 1 3 LSB
TWith current injection 4 4
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2Analog and digita l VSS must be common (to be tied together externally).
3VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
4Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured
by internal divider by 2.
5During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the
end of the sample time tADC0_S, changes of the analog input v oltage have no eff ect on the conversion result. V alues
for the sample clock tADC0_S depend on programming.
6This parameter does not include the sample time tADC0_S, but only the time f or determining the digital result and the
time to load the result’s register with the conversion result.
7Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 41. ADC_0 conversion characteristics (continued)(10-bit ADC_0)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor76
Figure 21. ADC_1 characteristic and error definitions
Table 42. ADC_1 conversion characteristics (12-bit ADC_1)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VSS_ADC1 SR Voltage on VSS_HV_ADC1
(ADC_1 reference) pin with
respect to ground (VSS)2
—–0.10.1V
VDD_ADC1 SR V oltage on VDD_HV_ADC1 pin
(ADC_1 ref e rence) with
respect to ground (VSS)
—V
DD –0.1 V
DD +0.1 V
(2)
(1)
(3)
(4)
(5)
Offset Erro r OS E
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (L SBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Diff erential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
code out
4095
4094
4093
4092
4091
4090
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095
1 LSB ideal = AVDD / 4096
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 77
VAINx SR Analog input voltage3—V
SS_ADC1
–0.1 —V
DD_ADC1
+0.1 V
IADC1pwd SR ADC_1 consumption in power
down mode ——50µA
IADC1run SR ADC_1 consumption in running
mode ——6mA
fADC1 SR ADC_1 analog frequency VDD = 3.3 V 3.33 20 + 4% MHz
VDD = 5 V 3.33 32 + 4%
tADC1_PU SR ADC_1 power up de l ay ——1.5 µs
tADC1_S CC T Sample time4
VDD = 3.3 V fADC1 = 20 MHz,
ADC1_conf_sample_input = 12 600 ns
Sample time4
VDD = 5.0 V fADC1= 32 MHz,
ADC1_conf_sample_input = 17 500
Sample time4
VDD = 3.3 V fADC1= 3.33 MHz,
ADC1_conf_sample_input = 255 76.2 µs
Sample time4
VDD = 5.0 V fADC1= 3.33 MHz,
ADC1_conf_sample_input = 255 ——76.2
tADC1_C CC P Conv ersion time5
VDD = 3 .3 V fADC1 = 20MHz,
ADC1_conf_comp = 0 2.4 µs
Conversion time5
VDD = 5.0 V fADC 1 = 32 MHz,
ADC1_conf_comp = 0 1.5 µs
Conversion time5
VDD = 3.3 V fADC 1 = 13.33 MHz,
ADC1_conf_comp = 0 ——3.6µs
Conversion time5
VDD = 5.0 V fADC1 = 13.33 MHz,
ADC1_conf_comp = 0 ——3.6µs
ADC1_SYS SR ADC_1 digital clock duty cycle ADCLKSEL = 1645 —55 %
CSCC DADC_1 input sampling
capacitance —5pF
CP1 CC DADC_1 input pin capacitance 1 —3pF
CP2 CC DADC_1 input pin capacitance 2 —1pF
CP3 CC DADC_1 input pin capacitance 3 —1.5pF
RSW1 CC DInternal resistance of analog
source ——1k
RSW2 CC DInternal resistance of analog
source ——2k
RAD CC DInternal resistance of analog
source ——0.3k
Table 42. ADC_1 conversio n characteristi cs (12-bit ADC_1) (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor78
IINJ SR Input current Injection Current
injection on
one ADC_1
input, different
from the
converted one
VDD = 3.3 V ± 10% –5 5 mA
VDD = 5.0 V ± 10% –5 5
INLP CC TAbsolute Integral
non-linearity-Precise channels No overload 1 3 LSB
INLX CC TAbsolute Integral
non-linearity-Extended
channels
No overload 1.5 5 LSB
DNL CC TAbsolute Differential
non-linearity No overload 0.5 1 LSB
OFS CC TAbsolute Offset error ——2LSB
GNE CC TAbsolute Gain error ——2LSB
TUEP7CC PTotal Unadjusted Error for
precise channels, input only
pins
Without current injection –6 6 LSB
TWith current injection –8 8
TUEX7CC TTotal Unadjusted Error for
extended channel Without current injection –10 10 LSB
TWith current injection –12 12
1VDD = 3.3 V ± 10% / 5.0 V ± 10% , TA = –40 to 125 °C, unless otherwise specified
2Analog and digital VSS must be common (to be tied together externally).
3VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0xFFF.
4During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final v oltage le v el within tADC1_S. After th e end
of the sample time tADC1_S, changes of the analog input voltage hav e no eff ect on the con version result. Values for the
sample clock tADC1_S depend on programming.
5This parameter does not include the sample time tADC1_S, but only the time for determining the digital resu lt and the
time to load the result’s register with the conversion result.
6Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by
internal divider by 2.
7Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 42. ADC_1 conversio n characteristi cs (12-bit ADC_1) (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 79
4.18 On-chip peripherals
4.18.1 Current consumption
Table 43. On-chip peripherals current consumption1
Symbol C Parameter Conditions Value Unit
Typ
IDD_BV(CAN) CC T CAN
(Fle xCAN)
supply current
on VDD_BV
Bitrate =
500 Kbps Total (static + dynamic)
consumption:
F lexCAN in loop-back
mode
XTAL at 8 MHz used as
CAN engine clock
source
Message sending
period is 580 µs
8 * fperiph + 85 µA
Bitrate =
125 Kbps 8 * fperiph + 27
IDD_BV(eMIOS) CC T eMIOS supply
current on
VDD_BV
Static consumption:
eMIOS chan nel OFF
Global prescaler enabled
29 * fperiph
Dynamic consumption:
It does not change varying the
frequency (0.003 mA)
3
IDD_BV(SCI) CC T SCI (LINFlex)
supply current
on VDD_BV
Total (static + dynamic) consumption:
LIN mode
Baudrate: 20 Kbps
5 * fperiph + 31
IDD_BV(SPI) CC T SPI (DSPI)
supply current
on VDD_BV
Ballast static consumption (only
clocked) 1
Ballast dynamic consumption
(continuous communication):
B audrate: 2 Mbit
Trasmission every 8 µs
Frame: 16 bits
16 * fperiph
IDD_BV
(ADC_0/ADC_1)
CC T ADC_0/ADC_1
supply current
on VDD_BV
VDD = 5.5 V Ballast static consumption
(no conversion) 41 * fperiph µA
VDD = 5.5 V Ballast dynamic
consumption (continuous
conversion)
46 * fperiph
IDD_HV_ADC0 CC T ADC_0 supply
current on
VDD_HV_ADC0
VDD = 5.5 V Analog static consumption
(no conversion) 200
VDD = 5.5 V Analog dynamic
consumption (continuous
conversion)
3mA
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor80
IDD_HV_ADC1 CC T ADC_1 supply
current on
VDD_HV_ADC1
VDD = 5.5 V Analog static consumption
(no conversion) 300 * fperiph µA
VDD = 5.5 V Analog dynamic
consumption (continuous
conversion)
4mA
IDD_HV(FLASH) CC T CFlash +
DFlash supply
current on
VDD_HV
VDD = 5.5 V 12 mA
IDD_BV(PLL) CC T P LL supply
current on
VDD_BV
VDD = 5.5 V 2.5 mA
1Operating conditions: TA = 25 °C , f periph = 8 MHz to 64 MHz
Table 43. On-chip peripherals current consumption1 (continued)
Symbol C Parameter Conditions Value Unit
Typ
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 81
4.18.2 DSPI characteristics
Table 44. DSPI characteristics1
No. Symbol C Parameter DSPI0/DSPI1/DSPI5/DSPI6 DSPI2/DSPI4 Unit
Min Typ Max Min Typ Max
1t
SCK SR D SCK cycle time Master mode
(MTFE = 0) 125 333 ns
DSlave mode
(MTFE = 0) 125 333
D Master mode
(MTFE = 1) 83 125
DSlave mode
(MTFE = 1) 83 125
—f
DSPI SR D DSPI digital controller frequency fCPU ——f
CPU MHz
tCSC CC D Internal delay between pad
associated to SCK and pad
associated to CSn in
master mode for CSn1->0
Master mode 1302—— 15
3ns
tASC CC D Internal delay between pad
associated to SCK and pad
associated to CSn in
master mode for CSn1->1
Master mode 1303 1303ns
2t
CSCext4SR D CS to SCK delay Slave mode 32 32 ns
3t
ASCext5SR D After SCK delay Slave mode 1/fDSPI + 5 1/fDSPI + 5 ns
4t
SDC CC D SCK duty cycle Master mode tSCK/2 tSCK/2 ns
SR D Slave mode tSCK/2 tSCK/2
5t
ASR D Slave access time Slave mode 1/fDSPI + 70 1/fDSPI + 130 n s
6t
DI SR D Slave SOUT disable time Slave mode 7 7 ns
9t
SUI SR D Data setup time for inputs Master mode 43 145 ns
Slave mode 5 5
10 tHI SR D Data hold time fo r inputs Master mode 0 0 ns
Slave mode 26—— 2
6——
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristic s
Freescale Semiconductor82
11 tSUO7CC D Data valid after SCK edge Master mode 32 50 ns
Slave mode 52 160
12 tHO7CC D Data hold time for outputs Master mode 0 0 ns
Slave mode 8 13
1Operating conditions: Cout = 10 to 50 pF, SlewIN = 3.5 to 15 ns
2Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK
starts before CSn is asserted. DSPI2 has only SLOW SCK available.
3Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLO W. A positive v alue means that CSn is
deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
4The tCSC dela y value is configurable through a register . When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay
between internal CS and intern al SCK must be higher than tCSC to ensu re positive tCSCext.
5The tASC delay v alue is configurab le through a register . When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between
internal CS and internal SCK must be highe r than tASC to ensure positive tASCext.
6This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.
7SCK and SOUT are configured as MEDIUM pad.
Table 44. DSPI characteristics1 (continued)
No. Symbol C Parameter DSPI0/DSPI1/DSPI5/DSPI6 DSPI2/DSPI4 Unit
Min Typ Max Min Typ Max
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 83
Figure 22. DSPI classic SPI timing — master, CPHA = 0
Figure 23. DSPI classic SPI timing — master, CPHA = 1
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Table 43.
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 43.
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor84
Figure 24. DSPI classic SPI timing — slave, CPHA = 0
Figure 25. DSPI classic SPI timing — slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 43.
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers sho wn reference Table 43.
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 85
Figure 26. DSPI modified transfer format timing — master, CPHA = 0
Figure 27. DSPI modified transfer format timing — master, CPHA = 1
PCSx
3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 43.
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 43.
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor86
Figure 28. DSPI modified transfer format timing — slave, CPHA = 0
Figure 29. DSPI modified transfer format timing — slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Table 43.
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 43.
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 87
Figure 30. DSPI PCS strobe (PCSS) timing
4.18.3 Nexus characteristics
Table 45. Nexus characteristics
No. Symbol C Parameter Value Unit
Min Typ Max
1t
TCYC CC D TCK cycle time 64 ns
2t
MCYC CC D MCKO cycle time 32 ns
3t
MDOV CC D MCKO low to MDO data valid 8 ns
4t
MSEOV CC D MCKO low to MSEO_b data v alid 8 ns
5t
EVTOV CC D MCKO low to EVTO data valid 8 ns
6t
NTDIS CC D TDI data setup time 15 ns
tNTMSS CC D TMS data setup time 15 ns
7t
NTDIH CC D TDI data hold time 5 ns
tNTMSH CC D TMS data hold time 5 ns
8t
TDOV CC D TCK low to TDO data valid 35 ns
9t
TDOI CC D TCK low to TDO data invalid 6 ns
PCSx
78
PCSS
Note: Numbers shown reference Table 43.
MPC5607B Microcontroller Data Sheet, Rev. 5
Electrical characteristics
Freescale Semiconductor88
Figure 31. Nexus TDI, TMS, TDO timing
4.18.4 JTAG characteristics
Table 46. JTAG characteristics
No. Symbol C Parameter Value Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 64 ns
2t
TDIS CC D TDI setup time 15 ns
3t
TDIH CC D TDI hold time 5 ns
4t
TMSS CC D TMS setup time 15 ns
5t
TMSH CC D TMS hold time 5 ns
6t
TDOV CC D TCK low to TDO valid 33 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
10
TCK
TMS, TDI
TDO
11
12
Note: Numbers shown reference Table 45.
Electrical characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 89
Figure 32. Timing diagram — JTAG boundary scan
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Table 46.
3/5
2/4
7
6
MPC5607B Microcontroller Data Sheet, Rev. 5
Package characteristics
Freescale Semiconductor90
5 Package characteristics
5.1 Package mechanical data
5.1.1 176 LQFP
Figure 33. 176 LQFP package mechanical drawing (Par t 1 of 3)
Package characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 91
Figure 34. 176 LQFP package mechanical drawing (Par t 2 of 3)
MPC5607B Microcontroller Data Sheet, Rev. 5
Package characteristics
Freescale Semiconductor92
Figure 35. 176 LQFP package mechanical drawing (Par t 3 of 3)
Package characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 93
5.1.2 144 LQFP
Figure 36. 144 LQFP package mechanical drawing (Par t 1 of 2)
MPC5607B Microcontroller Data Sheet, Rev. 5
Package characteristics
Freescale Semiconductor94
Figure 37. 144 LQFP package mechanical drawing (Par t 2 of 2)
Package characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 95
5.1.3 100 LQFP
Figure 38. 100 LQFP package mechanical drawing (Par t 1 of 3)
MPC5607B Microcontroller Data Sheet, Rev. 5
Package characteristics
Freescale Semiconductor96
Figure 39. 100 LQFP package mechanical drawing (Par t 2 of 3)
Package characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 97
Figure 40. 100 LQFP package mechanical drawing (Par t 3 of 3)
MPC5607B Microcontroller Data Sheet, Rev. 5
Package characteristics
Freescale Semiconductor98
5.1.4 208 MAPBGA
Figure 41. 208 MAPBGA package mechanical drawing (Part 1 of 2)
Package characteristics
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 99
Figure 42. 208 MAPBGA package mechanical drawing (Part 2 of 2)
MPC5607B Microcontroller Data Sheet, Rev. 5
Ordering information
Freescale Semiconductor100
6 Ordering information
Figure 43. Commercial product code structure
1208 MAPBGA is available only as development package for Nexus2+.
Qualification Status
Power Architecture Core
Automotive Platfor m
Core Version
Flash Size (core dependent)
Product
Temperature spec.
MPC56 B MLL6
Examp le co de: 07
Package Code
Frequency
Qualification Status
M = general market qualified
S = Automotive qualified
P = Engineering samples
Automotive Plat form
56 = PPC in 90nm
Core Version
0 = e200z0
Flash Size (for z0 core)
5 = 768 KB
6 = 1024 KB
7 = 1.5 MB
Product
B = Body
Fab and Mask Indicator
F = ATMC Fab
0 = Version of the maskset
A = Mask set in dicato r (Blank = 1s t
production maskset, A = 2nd,
B = 3rd, etc)
R = Tape & Reel (blank if Tray)
R
Temperature spec.
C = -40 to 85 ° C
V = -40 to 105 °C
M = -40 to 125 °C
Package Code
LL = 100 LQFP
LQ = 144 LQFP
LU = 176 LQFP
MG = 208 MAPBGA1
Frequency
4 = Up to 48 MHz
6 = Up to 64 MHz
Fab and Mask Indicator
F1A
Abbreviations
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 101
Appendix A Abbreviations
Table 47 lists abbreviations used but not defined elsewh ere in this document.
Table 47. Abbreviations
Abbreviation Meaning
CMOS Complementary metal oxide semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip select
EVTO Event out
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing f ormat enable
SCK Serial communications clock
SOUT Serial data out
TBD To be defined
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
MPC5607B Microcontroller Data Sheet, Rev. 5
Revision history
Freescale Semiconductor102
7 Re vision history
Table 48 summarizes revisions to this document.
Table 48. Revision history
Revision Date Substantive changes
1 12-Jan-2009 Initial release
2 09 Nov-2009 Updated Features
Replaced 27 IRQs in place of 23
ADC features
External Ballast resistor support conditions
Updated device summary-added 208 BGA details
Updated block diagram to include WKUP
Updated block diagram to include 5 ch ADC 12 -bit
Updated Block summary table
Updated LQFP 144, 176 and 100 pinouts. Applied new naming convention for ADC
signals as ADCx_P[x] and ADCx_S[x]
Section 1, “General description
Updated device comparison table
Updated block diagram-aligned with 512k
Updated block summary-aligned with 512k
Section 2, “P ackage pinouts
Updated 100,144,176,208 packages according to cut2.0 changes
Added Section 3.5.1, “External ball ast resistor recommendations
Added NVUSRO [WATCHDOG_EN] field description
Updated Absolute maximum ratings
Updated LQFP thermal characteristics
Updated I/O supply segments
Updated Voltage regulator capacitance conne ction
Updated Low voltage monitor electrical characteristics
Updated Low voltage power domain electrical characteristics
Updated DC electrical characteristics
Updated Program/Erase specifications
Updated Conv ersion characteristics (10 bit ADC)
Updated FMPLL electrical characteristic s
Updated Fast RC oscillator electrical characteristics-aligned with MPC5604B
Updated On-chip peripherals current consumption
Updated ADC characteristics and error definitions diagram
Updated ADC conversion characteristics (10 bit and 12 bit)
Added ADC characteristics and error definitions diagram for 12 bit ADC
3 25 Jan-2010 Updated Features
Updated block diagram to connect peripherals to pad I/O
Updated block summary to include ADC 12-bit
Updated 144, 176 and 100 pinouts to ad just format issues
Table 26 Flash module life-retention value changed from 1-5 to 5 yrs
Minor editing changes
Revision history
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 103
4 24 Aug 2010 Editorial changes and improvements.
Updated “Features“ section
Table 1: updated footnote concerning 208 MAPBGA
In the block diagram:
Added “5ch 12-bit ADC“ block.
Updated Legend.
Added “Interrupt request with wakeup functionality” as an input to the WKPU block.
Figure 2: removed alternate functions
Figure 3: removed alternate functions
Figure 4: removed alternate functions
Table 3: added contents concerning the follo wing b loc ks: CMU, eDMA, ECSM, MC_ME,
MC_PCU, NMI, SSCM, SWT and WKPU
Added Section 3.2, “Pin muxing
Section 4, “Electrical characteristics: removed “Caution” note
Section 4.2, “NVUSRO register: remo ve d “NVUSRO[W ATCHDOG_EN] field description“
section
Table 7: VIN: removed min value in “relative to VDD row
Table 8
•T
A C-Gr ade Part, TJ C-Grade Part, TA V -Grade P art, TJ V -Grade P art, TA M-Grade Part, TJ M-Grade Part:
added new rows
•TV
DD: contents merged into one row
•V
DD_BV: changed min value in “relative to VDD” row
Section 4.5, “Thermal characteristics
Se ction 4.5.1, “Extern al ballast resistor recommendations: added new paragraph
about power supply
Table 10: added R
JB and R
JC rows
Removed “208 MAPBGA thermal characteristics” table
Table 11: rewrote parameter description of WFI and WNFI
Section 4.6.5, “I/O pad current specification
Removed I DYNSEG information
Updated “I/O supply segments” table
Table 18: removed IDYNSEG row
Added Table 19
Table 21
Updated all values
Removed I VREGREF and IVREDLVD12 rows
Added the footnote “The duration of the in-rush current depends on the capacitance
placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for
minimum amount of current to be provided in cc.” to the IDD_BV specification.
Table 22
Updated VPORH min/max value
Updated VLVDLVCORL min value
Updated Table 23
Table 24
•T
dwprogram: added initial max value
Inserted Teslat row
Table 25: removed the “To be confirmed” footnote
In the “Cr ystal oscillator and resonator connection scheme” figure, removed RP
.
Table 36
Removed gmSXOSC row
•I
SXOSCBIAS: added min/typ/max value
Table 48. Revision history (continued)
Revision Date Substantive changes
MPC5607B Microcontroller Data Sheet, Rev. 5
Revision history
Freescale Semiconductor104
4
(cont.) 24 Aug 2010
(cont.) Table 37:
A dded fVCO row
Added tSTJIT row
Table 38
•I
FIRCPWD: removed ro w for TA = 55 °C
Updated TFIRCSU row
Table 41: Added two rows: IADC0pwd and IADC0run
Table 42
Added two rows: IADC1pwd and IADC1run
Updated values of fADC_1 and tADC1_PU
Updated tADC1_C row
Updated Table 43
Updated Table 44
Updated Figure 43
Section 6, “Ordering inf ormation: deleted “Orderable part number summary“ table
5 27 Aug 2010 Removed “Preliminary—Sub ject to Change Without Notice” marking. This data sheet
contains specifications based on characterization data.
Table 48. Revision history (continued)
Revision Date Substantive changes
MPC5607B Microcontroller Data Sheet, Rev. 5
Freescale Semiconductor 105
THIS PAGE INTENTIONALLY BLANK
Document Number : MPC5607B
Rev. 5
08/2010
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Info rmation in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate an y integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
F reescale Semiconductor assume any liability arising out of the application or use of an y
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freesca le Semiconductor data sheets and/or sp ecifications can and do v ary
in different applications and actu al performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application b y
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, int ended, or authorized for use as components in systems intended for
surgical implant into the body, or other applicat ions intended to support or sustain life,
or f or any oth er application in which the failure of the Fre escale Semiconductor prod uct
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized appli cation, Buyer shall indemnify and hold Freescale Semi conductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs , damages, and expenses, and reasonable attorney f ees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauth orized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
F or information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The P owe r Architecture and P ow er .org word marks and the P ow er and P ower.org logos
and related marks are trademarks and service marks licensed by Power.org
© Freescale Semiconductor, Inc. 2010. All rights reserved.