SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.2.4_00
8 Seiko Instruments Inc.
Electrical Characteristics
1. S-817A series
Table 8 (Ta=25°C unless otherwise specified)
Item Symbol Conditions Min. Typ. Max. Units Test
circuits
Output voltage *1 V
OUT(E) V
IN=VOUT(S)+2 V, IOUT=10 mA VOUT(S)
× 0.98
VOUT(S) V
OUT(S)
× 1.02
V 1
Output current *2 I
OUT V
OUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V 20 − − mA 3
≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 35 − −
3.0 V
≤ VOUT(S) ≤ 3.9 V 50 − −
4.0 V
≤ VOUT(S) ≤ 4.9 V 65 − −
5.0 V
≤ VOUT(S) ≤ 6.0 V 75 − −
Dropout voltage *3 V
drop I
OUT = 10 mA 1.1 V ≤ VOUT(S) ≤ 1.4 V − 0.92 1.58 V 1
1.5 V ≤ VOUT(S) ≤ 1.9 V − 0.58 0.99
2.0 V ≤ VOUT(S) ≤ 2.4 V − 0.40 0.67
2.5 V ≤ VOUT(S) ≤ 2.9 V − 0.31 0.51
3.0 V ≤ VOUT(S) ≤ 3.4 V − 0.25 0.41
3.5 V ≤ VOUT(S) ≤ 3.9 V − 0.22 0.35
4.0 V ≤ VOUT(S) ≤ 4.4 V − 0.19 0.30
4.5 V ≤ VOUT(S) ≤ 4.9 V − 0.18 0.27
5.0 V ≤ VOUT(S) ≤ 5.4 V − 0.16 0.25
5.5 V ≤ VOUT(S) ≤ 6.0 V − 0.15 0.23
Line regulation 1 ∆ VOUT1 V
OUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 mA − 5 20 mV
Line regulation 2 ∆ VOUT2 V
OUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA − 5 20
Load regulation ∆ VOUT3 V
IN=VOUT(S)+ 2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V,
1 µA ≤ IOUT ≤ 10 mA
− 5 20
2.0 V
≤ VOUT(S) ≤ 2.9 V,
1 µA ≤ IOUT ≤ 20 mA
− 10 30
3.0 V
≤ VOUT(S) ≤ 3.9 V,
1 µA ≤ IOUT ≤ 30 mA
− 20 45
4.0 V
≤ VOUT(S) ≤ 4.9 V,
1 µA ≤ IOUT ≤ 40 mA
− 25 65
5.0 V
≤ VOUT(S) ≤ 6.0 V,
1 µA ≤ IOUT ≤ 50 mA
− 35 80
Output voltage
temperature coefficient *4
∆VOUT
∆Ta • VOUT
VIN = VOUT(S) + 1 V, IOUT = 10 mA
−40°C ≤ Ta ≤ 85°C
− ±100
− ppm
/°C
Current consumption ISS V
IN = VOUT(S) + 2 V, no load − 1.2 2.5 µA 2
Input voltage VIN − − − 10 V 1
Short current limit IOS V
IN = VOUT(S) + 2 V,
VOUT pin = 0 V
− 40 − mA 3
*1. V
OUT(S)=Specified output voltage
V
OUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. V
drop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after
gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
[] [] []
1000Cppm/
VTa
V
VVCmV/
Ta
V
OUT
OUT
OUT(S)
OUT ÷°
•∆
∆
×=°
∆
∆
Specified output voltage Output voltage temperature coefficient
Temperature change ratio for output voltage