
1

Implementing Cache Logic® with FPGAs

The Cache Logic Concept
Atmel Corporation has developed an
enabling technology to make adaptive
hardware possible for electronics sys-
tems. This capability, trademarked as
Cache Logic, was developed and pat-
ented by Atmel Corporation.(1)

Cache Logic is a cost-saving way of
implementing logic more efficiently. The
active functions of an application are
performed by a field programmable gate
array (FPGA) that can be reconfigured
as it operates, while inactive functions
are stored in an inexpensive configura-
tion memory – an EPROM, for example.
As new functions are required, they are
written over old ones.

A single application is made up of many
smaller macro-level operations, like
counters, multipliers, shift registers, and
multiplexers. When an application is bro-
ken down into its sub-operations, two
things become apparent. First, function-
ality overlaps. A single function may be
used a number of different times. Sec-
ond, there is a high degree of functional
latency. At any given moment, only a
small portion of an application’s opera-
tions are active; only a few functions are
used at the same time.

By consolidating functionality, eliminat-
ing redundancy, and t rack ing the
occurrence of each sub-operation, func-
tions can be organized such that a
relatively small, inexpensive logic device
is reconfigured as it operates to perform
a complex function. In a 10,000-gate
application, for example, only 2,000

gates might be active at once. By cach-
ing the extra 8,000 gates for later use, a
2,000-gate device replaces a more
expensive 10,000-gate device.

Cache Logic
Implementation
Cache Logic implementation is concep-
tually similar to cache memory. In cache
memory, the highest speed memory
(usually SRAM) is used to store active
data, while the bulk of data resides in
lower-cost storage, such as DRAM, or
EPROM, disk, etc. Cache Logic works in
a similar fashion. Only a small fraction of
the circuitry – those functions which are
loaded into the logic cache – is active in
a system at any given t ime, whi le
unused functions or variations reside in
lower-cost system memory. It is even
possible to compile variations of a
design in real time. As logic functions are
required, they can be loaded into cache
logic, replacing or complementing the
logic already present.

Figure 1 shows the block diagram for the
Atmel AT6000 FPGA, which is an ideal
medium for cache logic. The ability to
implement cache logic requires FPGAs
that are capable of being dynamically
reconfigured in-system, either com-
pletely or partially, without disrupting the
operation of the balance of logic in the
device. Another requirement is architec-
ture symmetry. This is necessary to
make possible the arbitrary placement of
generic blocks in a location that is
available at the time required. It is also

Field
Programmable
Gate Array

Application
Note

Rev. 0461C–09/99

Note: 1. The method for exploiting Cache Logic was pioneered by the University of Strath-
clyde in Scotland and is described in Lysaght, P. and Dunlop, J., “Dynamic
Reconfiguration of Field Programmable Gate Arrays”, in More FPGAs, W. Moore
and W. Luk, Eds., Abingdon EE&CS Books, England 1994.

PDF.Support

FPGA2

necessary to allow for easy modeling of device characteris-
tics for the artificial intelligence required in the partitioning
of a design. The symmetry also simplifies the creation of
arrays of devices to create a larger digital medium for the
implementation of cache logic.

Predetermined and Dynamic Cache
Logic
There are two types of cache logic which have been
defined: predetermined cache logic and dynamic cache
logic. Predetermined cache logic involves the use of pre-
defined functions and macros that are stored in external,
nonvolatile memory (EPROM, EEPROM, disk, CD-ROM,
or even memory remote from the system loaded over a
communications link). These functions have already been
placed and routed and have bit streams which have been
previously generated (Figure 2). The implementation of

these functions is controlled by a resident manager in the
logic cache, or in an external control such as a microcon-
t ro l le r /processor rout ine . New funct ions may be
downloaded to the logic cache in the background without
disrupting the operation of the cache (logic, I/O, and regis-
ter data), as shown in Figure 3. In fact, data in the registers
is not lost even in the area being overwritten.

The second type of cache logic, dynamic, is the basis for
building adaptive hardware. Dynamic caching involves the
determination of logic, placement and routing of the logic,
bit stream generation, and programming the logic cache in
real time. The major issues to be addressed in the develop-
ment of this capability include (but are not limited to) the
scheduling and allocation of functions, random-logic collec-
tion, and collision handling and avoidance within the cache.
Dynamic cache logic exists as a concept today; the physi-
cal implementation issues described above have not yet
been fully addressed.

Figure 1. AT6000 Array Figure 2. Macro Library

• Symmetrical Array
• Identical Cells
• 8-by-8 Cell Sectors
• Programmable Interconnects
• Surrounded by I/O
• No Dedicated Functions
• Reconfigurable On-the-fly
• Full
• Partial
• Without Data Loss

• Over 200 Hard Macros
• Fast
• Fully Specified
• Fixed Routing
• All Can be Softened
• Flexible Placement
• User-defined Macros
• Create Own Library
• Use on Future Designs
• Test Macros
• For Debug/System Test
• Super Macros
• Major Predefined Functions
• Specialized for Markets

FPGA

3

Cache Logic may be applied in many applications. The
concept of virtual products will be introduced, which utilizes
the flexibility of programmable logic. Virtual products do not
require cache logic programmability but, as we see, the use
of cache logic greatly reduces the amount of programma-
ble digital media needed to implement a virtual product.

Virtual Products
A virtual product is a combination of a “tangible asset,”
such as a data acquisition board, and a service, such as
product customization. The first thing to understand about
virtual products is what the end customer wants, and how
system developers can match their core competencies with
these needs.

There are two issues raised in the manufacture of virtual
products:

1. How to balance economy of scale achieved in vol-
ume manufacturing with special features that
customers are willing to pay for; and

2. How to create diversity while maintaining a level of
quality associated with standard high-volume
production.

Cache Logic and FPGAs help the manufacturers achieve
these two requirements of virtual products. A virtual prod-
uct line is one with characteristics which meet the needs of
a class of customers. An example would be a PC-based
data-acquisition product. Such a product has certain physi-
cal requirements consistent with a PC-bus card standard.
The board would also have a series of standard data gath-
ering features such as multiple-channel A-to-D converters,
digital I/O ports, D-to-A converters, and high-speed clock

counters. These features are typically accomplished by
highly integrated well-designed ICs readily available to all
manufactures. The complexity of such products is in the
data path and protocol which connects the PC to the stan-
dard IC products. The structure of this data path is
prejudiced by optimum system performance, cost, and cus-
tomer preference, the key item being customer preference
for a successful virtual product, or for that matter any suc-
cessful product.

The traditional approach to creating a data-acquisition
product, like most products, is to create a board with a
standard bus footprint, use industry standard A-to-D and D-
to-A circuits, and then create a custom data path. The man-
ufacturer then has to trust marketing studies and instinct to
determine the best data path approach. It is possible to
hedge the bet by adding redundancy. This redundancy has
two detrimental effects: added cost, and added complexity
for the end user. The selection of wrong data path protocol
or excessive complexity caused by redundancy results in
dissatisfied or nonexistent customers.

A virtual product does not mean that a manufacturer would
be able to offer one product which was all things to all peo-
ple. The use of programmable logic would allow a
manufacturer to create an extensive catalog of products,
but only have a small number of tangible assemblies to tool
for manufacturing. The manufacturer would use FPGAs
and cache logic FPGAs to create diversity in its product
line. The cost of diversity to the manufacturer is the cost of
service, or “personalization engineering”, required to create
a niche design on a standard assembly. The advantage for
the customer is a mass-produced product which meets
their specific needs.

Figure 3. Cache Logic Concept

FPGA4

The virtual product approach allows a manufacturer to per-
fect a single assembly. The FPGA’s ability to be configured
for self-test could even enhance the quality of the assem-
bly. Atmel has developed the IEEE1148 boundary-scan
supermacro. Utilizing the reconfigurable logic capability of
the AT6000 family, the boundary-scan function may be
loaded into the device and diagnostics performed, then the
device can be reconfigured for other logic functions. A sin-
gle Atmel device may be used for testing and logic, with no
overhead or speed penalty, as is the case for all other
FPGAs and other ASIC devices.

The result would be an inventory of nearly identical raw-
product assemblies, which through virtual design becomes
a catalog full of products when shipped to the customer.
With a solid design, most customer problems can be traced
to the virtual-design personalization process, and be
repaired in the field with FPGA configuration updates. It is
also possible to introduce new features into virtual products
as soon as they are invented and proven, rather than wait
until a new hardware product is designed, tooled, and
manufactured.

Cache Logic Benefits
There are several benefits derived from cache logic design:
• New functionality may be added to existing hardware,

without having to make modifications to the board.

• The hardware may be tailored to the application,
resulting in higher system performance across a broad
range of applications.

• The FPGA density limitations are eliminated.

• Overall system reliability is improved by reducing the
number of physical products manufactured and utilizing
boundary scan macros for manufacturing and system
testing.

Overall product life cycle costs are significantly reduced by
using reusable software and hardware:
• Lower development costs

• Lower inventory costs

• Quicker time to market

• Fewer parts on the board

• Lower power consumption

• Lower total system cost

• Reusable designs

Summary
To many people, the ideal of adaptive hardware or virtual
products is a futuristic concept. The AT6000 family is capa-
ble of implementing cache logic and virtual products today.
The Atmel FPGA and its abilities to implement cache logic
make it a foundation for adaptive hardware and virtual
products. Successful design with this new technology has
been commercially demonstrated. Today’s design method-
ology, that requires a new product for each new function,
will be replaced by adaptive hardware products that meet
the needs of both customers and suppliers with customized
products and improved quality, while reducing product
development time and overall life cycle costs.

Examples of Cache Logic Applications
Power and Space-sensitive Applications Compute Intensive Applications

Portable Computers
Battery-Operated Instrumentation

Portable Communications
Portable Medical Equipment

Computer Graphics
Image Processing
Data Compression

Speech Recognition
Pattern Recognition

Reprogrammable Hardware Application Acceleration

Test Equipment

Industrial Control
Instrumentation
Special-purpose Computers

Connectors

CAD
Database
Spreadsheet

Multimedia

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

0461C–09/99/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	The Cache Logic Concept
	Cache Logic Implementation
	Predetermined and Dynamic Cache Logic
	Virtual Products
	Cache Logic Benefits
	Summary
	Examples of Cache Logic Applications

