© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 1
• • • • • •
Device Highlights
Flexible Programmable Logic
.25
µ
m, Five layer metal CMOS Process
2.5 V VCC, 2.5 V/3.3 V Drive Capable I/O
1,536 Logic Cells
320,640 Max System Gates
Up to 313 I/O Pins
Embedded Dual Port SRAM
Twenty four 2,304-bit Dual Port High
Performance SRAM Blocks
55,300 RAM Bits
RAM/ROM/FIFO Wizard for Automatic
Configuration
Configurable and Cascadable
Programmable I/O
High performance Enhanced I/O (EIO):
Less than 3 ns Tco
Programmable Slew Rate Control
Programmable I/O Standards:
LVTTL, LVCMOS, PCI, GTL+, SSTL2,
and SSTL3
Eight Independent I/O Banks
Three Register Configurations: Input,
Output, and Output Enable
Advanced Clock Network
Nine Global Clock Networks:
One Dedicated
Eight Programmable
20 Quad-Net Networks: Five per Quadrant
16 I/O Controls: Two per I/O Bank
Figure 1: Eclipse Block Diagram
Memory - Dual Port RAM
High Speed Logic Cells
321K Gates
Memory - Dual Port RAM
Combining Performance, Density, and Embedded RAM
QL6325 Eclipse Data Sheet
2www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Electrical Specifications
AC Char ac t erist i c s at VCC = 2.5 V, TA = 25° C (K = 0.74)
The AC Specifications are provided from Table 1 to Table 10. Logic Cell diagrams and
waveforms are provided from Figure 2 to Figure 15.
Figure 2: Eclipse Logic Cell
Table 1: Logic Cells
Symbol Parameter V a lue (ns)
Logic Cells Min Max
tPD
Combinatorial Delay of the longest path: time taken by the combinatorial circuit to
output - 0.257
tSU
Setup time: time the synchronous input of the flip flop must be stable before the
active clock edge 0.22 -
tHL
Hold time: time the synchronous input of the flip flop must be stable after the active
clock edge 0 -
tCO
Clock-to-out delay: the amount of time taken by the flip flop to output after the
active clock edge. - 0.255
tCWHI Clock High Time: required minimum time the clock stays high 0.46 -
tCWLO Clock Low Time: required minimum time that the clock stays low 0.46 -
tSET
Set Delay: time between when the flip flop is ”set” (high)
and when the output is consequently “set” (high) - 0.18
tRESET
Reset Delay: time between when the flip flop is ”reset” (low) and when the output
is consequently “reset” (low) - 0.09
tSW Set Width: time that the SET signal remains high/low 0.3 -
tRW Reset Width: time that the RESET signal remains high/low 0.3 -
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 3
QL6325 Eclipse Data Sheet Rev C
Figure 3: Logic Cell Flip Flop
Figure 4: Logic Cell Flip Flop Timings - First Waveform
Figure 5: Logic Cell Flip Flop Timings - Second Waveform
SET
D
CLK
RESET
Q
SET
RESET
Q
CLK
t
CWHI
(min) t
CWLO
(min)
t
RESET
t
RW
t
SET
t
SW
CLK
D
Q
tSU tHL
tCO
4www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Figure 6: Eclipse Global Clock Structure
Figure 7: Global Clock Structure Schematic
Table 2: Eclipse Clock Perfor mance
Clock Parameters Clock Performance
Global Dedicated
Logic Cells (Internal) Clock signal generated internally 1.51 ns (max) 1.59 ns (max)
I/O’s (External) Clock signal generated externally 2.06 ns (max) 1.73 ns (max)
Table 3: Eclipse Global Clock Performance
Clock Segm ent Parameter Value (ns)
Min Max
tPGCK Global clock pin delay to quad net - 1.34
tBGCK
Global clock buffer delay
(quad net to flip flop) - 0.56
Quad net
Programmable Clock
External Clock
Global Clock Buffer
Global Clock
tPGCK tBGCK
Clock
Select
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 5
QL6325 Eclipse Data Sheet Rev C
Figure 8: RAM Module
Table 4: RAM Cell Synchronous Write Timing
Symbol Parameter V a lue (ns)
RAM Cell Synchronous Write Timing Min Max
tSWA
WA setup time to WCLK: time the WRITE ADDRESS must be stable before the
active edge of the WRITE CLOCK 0.675 -
tHWA
WA hold time to WCLK: time the WRITE ADDRESS must be stable after the active
edge of the WRITE CLOCK 0 -
tSWD
WD setup time to WCLK: time the WRITE DATA must be stable before the active
edge of the WRITE CLOCK 0.654 -
tHWD
WD hold time to WCLK: time the WRITE DATA must be stable after the active edge
of the WRITE CLOCK 0 -
tSWE
WE setup time to WCLK: time the WRITE ENABLE must be stable before the active
edge of the WRITE CLOCK 0.623 -
tHWE
WE hold time to WCLK: time the WRITE ENABLE must be stable after the active
edge of the WRITE CLOCK 0 -
tWCRD
WCLK to RD (WA = RA): time between the active WRITE CLOCK edge and the
time when the data is available at RD - 4.38
WA
WD
WE
WCLK
RE
RCLK
RA
RD
RAM Module
[9:0]
[17:0]
[9:0]
[17:0]
ASYNCRD
6www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Figure 9: RAM Cell Synchronous Write Timing
Table 5: RAM Cell Synchronous & Asynchronous Read Timing
Symbol Parameter Value (n s)
RAM Cell Synchronous Read Timing Min Max
tSRA
RA setup time to RCLK: time the READ ADDRESS must be stable before the active
edge of the READ CLOCK 0.686 -
tHRA
RA hold time to RCLK: time the READ ADDRESS must be stable after the active
edge of the READ CLOCK 0 -
tSRE
RE setup time to WCLK: time the READ ENABLE must be stable before the active
edge of the READ CLOCK 0.243 -
tHRE
RE hold time to WCLK: time the READ ENABLE must be stable after the active
edge of the READ CLOCK 0 -
tRCRD
RCLK to RD: time between the active READ CLOCK edge and the time when the
data is available at RD - 4.38
RAM Cell Asynchronous Read Timi ng
rPDRD
RA to RD: time between when the READ ADDRESS is input and when the DATA
is output - 2.06
tSWA
tSWD
tSWE
tHWA
tHWD
tHWE
t
WCRD
old data new data
WCLK
WA
WD
WE
RD
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 7
QL6325 Eclipse Data Sheet Rev C
Figure 10: RAM Cell Synchronous & Asynchronous Read Timing
Figure 11: Eclipse Cell I/O
t
SRA
t
HRA
RCLK
RA
t
SRE
t
HRE
t
RCRD
old data new data
RE
RD
r
PDRD
E
R
Q
D
R
Q
E
R
Q
D
+
-
PAD
OUTPUT ENABLE
REGISTER
OUTPUT
REGISTER
INPUT
REGISTER
D
8www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Figure 12: Eclipse Input Register Cell
Table 6: Input Register Cell
Symbol Parameter V a lue (ns)
Input Register Cell Only Min Max
tISU
Input register setup time: time the synchronous input of the flip-flop must be stable
before the active clock edge 3.12 -
tIHL
Input register hold time: time the synchronous input of the flip-flop must be stable
after the active clock edge 0 -
tICO
Input register clock to out: time taken by the flip-flop to output after the active clock
edge - 1.08
tIRST
Input register reset delay: time between when the flip-flop is “reset”(low) and when
the output is consequently “reset” (low) - 0.99
tIESU
Input register clock enable setup time: time “enable” must be stable before the
active clock edge 0.37 -
tIEH
Input register clock enable hold time: time “enable” must be stable after the active
clock edge 0 -
PAD
tIN, tINI
tICLK
tISU
tSID
+
-
QE
D
R
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 9
QL6325 Eclipse Data Sheet Rev C
Figure 13: Eclipse Input Register Cell Timing
Table 7: Standard Input Delays
Symbol Parameter Value (ns)
Standard Input Delays To get the total input delay add this delay to tISU Min Max
tSID (LVTTL) LVTTL input delay: Low Voltage TTL for 3.3 V applications - 0.34
tSID (LVCMOS2) LVCMOS2 input delay: Low Voltage CMOS for 2.5 V and lower
applications - 0.42
tSID (GTL+) GTL+ input delay: Gunning Transceiver Logic - 0.68
tSID (SSTL3) SSTL3 input delay: Stub Series Terminated Logic for 3.3 V - 0.55
tSID (SSTL2) SSTL2 input delay: Stub Series Terminated Logic for 2.5 V - 0.61
R
CLK
D
Q
t
ISU tIHL
tICO
tIESU tIEH
tIRST
E
10 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Figure 14: Eclipse Ou tput Register Cell
Table 8: Eclipse Output Register Cell
Symbol Parameter Value (ns)
Output Register Cell Only Min Max
tOUTLH Output Delay low to high (90% of H) - 0.40
tOUTHL Output Delay high to low (10% of L) - 0.55
tPZH Output Delay tri-state to high (90% of H) - 2.94
tPZL Output Delay tri-state to low (10% of L) - 2.34
tPHZ Output Delay high to tri-State - 3.07
tPLZ Output Delay low to tri-State - 2.53
tCOP Clock to out delay (does not include clock tree delays) -3.15 (fast slew)
10.2 (slow slew)
PAD
OUTPUT
REGISTER
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 11
QL6325 Eclipse Data Sheet Rev C
Figure 15: Eclipse Output Register Cell Timing
Table 9: Output Slew Rates @ VCCIO = 3.3 V
Fast Sle w Slow Slew
Rising Edge 2.8 V/ns 1.0 V/ns
Falling Edge 2.86 V/ns 1.0 V/ns
Table 10: Output Slew Rates @ VCCIO = 2.5 V
Fast Sle w Slow Slew
Rising Edge 1.7 V/ns 0.6 V/ns
Falling Edge 1.9 V/ns 0.6 V/ns
L
H
L
H
tOUTLH
tOUTHL
L
H
Z
tPZH L
H
Z
tPZL
L
H
Z
tPLZ
L
H
Z
tPHZ
12 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
DC Characteristics
The DC Specifications are provided in Table 11 through Table 13.
Table 11: Absolute Maximum Ratings
Parameter Value Parameter Value
VCC Voltage -0.5 V to 3.6 V DC Input Current ±20 mA
VCCIO Voltage -0.5 V to 4.6 V ESD Pad Protection ±2000 V
INREF Voltage 2.7 V Leaded Pac kage
Storage Temperature -65° C to + 150° C
Input Voltage -0.5 V to VCCIO +0.5 V Laminate Pac kage (BGA)
Storage Temperature -55° C to + 125° C
Latc h-up Immu nity ±100 mA
Table 12: Oper ati ng Rang e
Symbol Parameter Military Industrial Commercial Unit
Min Max Min Max Min Max
VCC Supply Voltage 2.3 2.7 2.3 2.7 2.3 2.7 V
VCCIO I/O Input Tolerance Voltage 2.3 3.6 2.3 3.6 2.3 3.6 V
TA Ambient Temperature -55 -40 85 0 70 °C
TC Case Temperature - 125 - - - - °C
K Delay Factor
-4 Speed Grade 0.42 2.3 0.43 2.16 0.47 2.11 n/a
-5 Speed Grade 0.42 1.92 0.43 1.80 0.46 1.76 n/a
-6 Speed Grade 0.42 1.35 0.43 1.26 0.46 1.23 n/a
-7 Speed Grade 0.42 1.27 0.43 1.19 0.46 1.16 n/a
Table 13: DC Characteristics
Symbol Parameter Conditions Min Max Units
III or I/O Input Leakage Current VI = VCCIO or GND -10 10 µA
IOZ 3-State Output Leakage Current VI = VCCIO or GND -10 10 µA
CIInput Capacitancea
a. Capacitance is sample tested only. Clock pins are 12 pF maximum.
--8pF
IOS Output Short Circuit Currentb
b. Only one output at a time. Duration should not exceed 30 seconds.
Vo = GND
Vo = VCC
-15
40
-180
210
mA
mA
ICC D.C. Supply Currentc
c. For -4/-5/-6/-7 commercial grade devices only. Maximum ICC is 3 mA for -0 commercial
grade and all industrial grade devices, and 5 mA for all military grade devices.
VI,Vo = VCCIO or GND 0.50 (typ) 2 mA
ICCIO D.C. Supply Current on VCCIO - 0 2 mA
ICCIO(DIF) D.C. Supply Current on VCCIO
for Differential I/O ---mA
IREF D.C. Supply Current on INREF --10 10 µA
IPD Pad Pull-down (programmable) VCCIO = 3.6 V - 150 µA
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 13
QL6325 Eclipse Data Sheet Rev C
I/O Characteristics
Figure 16: IOL vs. VOL
Figure 17: IOH vs. VOH
IOL vs VOL
0
20
40
60
80
100
120
140
160
180
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
Supply voltage (V)
Current (mA)
Vccio = 3.6V
Vccio = 3.3V
Vccio = 3.0V
Vccio = 2.7V
Vccio = 2.5V
Vccio = 2.3V
-120
-100
-80
-60
-40
-20
0
20
0.00
0.10
0.30
0.50
0.70
0.90
1.10
1.30
1.50
1.70
1.90
2.10
2.30
2.50
2.70
2.90
3.00
3.10
3.30
3.50
3.60
Supply voltage (V)
Current (mA)
VccI/O = 2.3V
VccI/O = 2.5V
VccI/O = 2.7V
VccI/O = 3.3V
VccI/O = 3.6V
VccI/0 = 3.0V
IOH vs VOH
14 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
NOTE:
The data provided in Table 14 are JEDEC and PCI Specifications. QuickLogic® devices
either meet or exceed these requirements. See preceding Table 1 through Table 13 and
Figure 1 through Figure 17 for data specific to QuickLogic I/Os.
NOTE:
All CLK and INREF pins are clamped to the VCC rail, not the VCCIO. Therefore, these pins
can only be driven up to VCC + 0.3 V.
Table 14: DC Input and Output Levels
INREF VIL VIH VOL VOH IOL IOH
VMIN VMAX VMIN VMAX VMIN VMAX VMAX VMIN mA mA
LVTTL n/a n/a -0.3 0.8 2.0 VCCIO + 0.3 0.4 2.4 2.0 -2.0
LVCMOS2 n/a n/a -0.3 0.7 1.7 VCCIO + 0.3 0.7 1.7 2.0 -2.0
GTL+ 0.88 1.12 -0.3 INREF - 0.2 INREF + 0.2 VCCIO + 0.3 0.6 n/a 40 n/a
PCI n/a n/a -0.3 0.3 x VCCIO 0.5 x VCCIO VCCIO + 0.5 0.1 x VCCIO 0.9 x VCCIO 1.5 -0.5
SSTL2 1.15 1.35 -0.3 INREF - 0.18 INREF + 0.18 VCCIO + 0.3 0.74 1.76 7.6 -7.6
SSTL3 1.3 1.7 -0.3 INREF - 0.2 INREF + 0.2 VCCIO + 0.3 1.10 1.90 8 -8
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 15
QL6325 Eclipse Data Sheet Rev C
Package Thermal Characteristics
Thermal Resistance Equations:
θJC = (TJ - TC)/P
θJA = (TJ - TA)/P
PMAX = (TJMAX - TAMAX)/ θJA
Parameter Description:
θJC: Junction-to-case thermal resistance
θJA: Junction-to-ambient thermal resistance
TJ: Junction temperature
TA: Ambient temperature
P: Power dissipated by the device while operating
PMAX: The maximum power dissipation for the device
TJMAX: Maximum junction temperature
TAMAX: Maximum ambient temperature
NOTE:
Maximum junction temperature (TJMAX) is 150º C. To calculate the maximum power
dissipation for a device package look up θJA from Table 15, pick an appropriate TAMAX and
use:
PMAX = (150º C - TAMAX)/ θJA
Table 15: Package Thermal Characteristics
Package De scription θJA (º C/W) @ various flow rates (m/sec) θJC (º C/W)
Pin Count Package Type 00.5 12
516 PBGA 20.0 19.0 17.5 16.0 7.0
484 PBGA 28.0 26.0 25.0 23.0 9.0
280 LF-PBGA 18.5 17.0 15.5 14.0 7.0
208 PQFP 26.0 24.5 23.0 22.0 11.0
16 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Kv and Kt Graphs
Figure 18: Voltage Factor vs. Supply Voltage
Figure 19: Temperature Factor vs. Operating Temperature
Voltage Factor vs. Supply Voltage
0.9200
0.9400
0.9600
0.9800
1.0000
1.0200
1.0400
1.0600
1.0800
1.1000
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75
Supply Voltage (V)
Kv
Temperature Factor vs. Operating Temperature
0.85
0.90
0.95
1.00
1.05
1.10
1.15
-60 -40 -20 0 20 40 60 80
Junction Temperature C
Kt
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 17
QL6325 Eclipse Data Sheet Rev C
Power vs. Operating Frequency
The basic power equation which best models power consumption is given below:
PTOTAL = 0.350 +
f
[0.0031 ηLC + 0.0948 ηCKBF + 0.01 ηCLBF+ 0.0263 ηCKLD+
0.543 ηRAM + 0.20 ηPLL+ 0.0035 ηINP + 0.0257 ηOUTP] (mW)
Where
ηLC is the total number of logic cells in the design
ηCKBF = # of clock buffers
ηCLBF = # of column clock buffers
ηCKLD = # of loads connected to the column clock buffers
ηRAM = # of RAM blocks
ηPLL = # of PLLs
ηINP is the number of input pins
ηOUTP is the number of output pins
Figure 20 exhibits the power consumption in an Eclipse QL6325 device. The chip was filled
with (300) 8-bit countersapproximately 76% logic cell utilization.
Figure 20: Pow er Consumption
Figure 21 illustrates the theoretical worst-case scenarios for 50%, 70%, and 90% utilizations
of the 6600-516 package. The resources of the device are divided exactly in half; meaning,
for 50% utilization, exactly 50% of the I/Os, Logic Cells, RAM blocks, clock network, etc
are utilized. These situations may never occur in a real design, but they do provide a very
rough quantitative measure of power consumption when talking in terms of 50% or 70%
utilization of an Eclipse device.
Power vs Freq. (Counter_300)
0
0.5
1
1.5
2
2.5
0 20 40 60 80 100 120 140
Frequency (Mhz)
Power (W)
18 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Figure 21: Po wer vs. Frequency (Absolute 50%, 70%, and 90% of the Available Resources on Chip)
To learn more about power consumption, please refer to application note #60 which is
located at www.quicklogic.com.
Power vs. Frequency
Frequency (Mhz)
50% 70% 90%
Power (mW)
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 19
QL6325 Eclipse Data Sheet Rev C
Power-up Sequencing
Figure 22: Power-up Requirements
The following requirements must be met when powering up a device (refer to Figure 22):
When ramping up the power supplies keep (VCCIO -VCC)MAX
500 mV. Deviation from
this recommendation can cause permanent damage to the device.
VCCIO must lead VCC when ramping the device.
The power supply must be greater than or equal to 400 µs to reach VCC. Ramping to
VCC/VCCIO before reaching 400 µs can cause the device to behave improperly.
A diode is present in-between VCC and VCCIO, as shown in Figure 23.
Figure 23: Internal Diode Between VCC and VCCIO
Voltage
V
CCIO
V
CC
(V
CCIO
-V
CC
)
MAX
400 us
V
CC
VCC VCCIO
Internal Logic
Cells, RAM
blocks, etc
IO Cells
20 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
JTAG
Figure 24: JTAG Block Diagram
Microprocessors and Application Specific Integrated Circuits (ASICs) pose many design
challenges, not in the least of which concerns the accessibility of test points. The Joint Test
Access Group (JTAG) formed in response to this challenge, resulting in IEEE standard
1149.1, the Standard Test Access Port and Boundary Scan Architecture.
The JTAG boundary scan test methodology allows complete observation and control of the
boundary pins of a JTAG-compatible device through JTAG software. A Test Access Port
(TAP) controller works in concert with the Instruction Register (IR), which allow users to run
three required tests along with several user-defined tests.
JTAG tests allow users to reduce system debug time, reuse test platforms and tools, and reuse
subsystem tests for fuller verification of higher level system elements.
TCK
TMS
TRSTB
RDI TDO
Instruction Decode
&
Control Logic
TAp Controller
State Machine
(16 States)
Instruction Register
Boundary-Scan Register
(Data Register)
Mux
Bypass
Register
Mux
Internal
Register I/O Registers
User Defined Data Register
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 21
QL6325 Eclipse Data Sheet Rev C
The 1149.1 standard requires the following three tests:
Extest Instruction. The Extest instruction performs a PCB interconnect test. This test
places a device into an external boundary test mode, selecting the boundary scan
register to be connected between the TAP's Test Data In (TDI) and Test Data Out (TDO)
pins. Boundary scan cells are preloaded with test patterns (via the Sample/Preload
Instruction), and input boundary cells capture the input data for analysis.
Sample/Preload Instruction. This instruction allows a device to remain in its
functional mode, while selecting the boundary scan register to be connected between
the TDI and TDO pins. For this test, the boundary scan register can be accessed via a
data scan operation, allowing users to sample the functional data entering and leaving
the device.
Bypass Instruction. The Bypass instruction allows data to skip a device's boundary
scan entirely, so the data passes through the bypass register. The Bypass instruction
allows users to test a device without passing through other devices. The bypass register
is connected between the TDI and TDO pins, allowing serial data to be transferred
through a device without affecting the operation of the device.
22 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Pin Descriptions
Figure 25: I/O Banks with Relevant Pins
Table 16: JTAG Pin Descriptions
Pin Function Description
TDI/RSI Test Data In for JTAG/RAM
init. Serial Data In
Hold HIGH during normal operation. Connects to serial PROM
data in for RAM initialization. Connect to VCC if unused
TRSTB/RRO Active low Reset for
JTAG/RAM init. reset out
Hold LOW during normal operation. Connects to serial PROM
reset for RAM initialization. Connect to GND if unused
TMS Test Mode Select for JTAG Hold HIGH during normal operation. Connect to VCC if not used
for JTAG
TCK Test Clock for JTAG Hold HIGH or LOW during normal operation. Connect to VCC or
ground if not used for JTAG
TDO/RCO Test data out for JTAG/RAM
init. clock out
Connect to serial PROM clock for RAM initialization. Must be left
unconnected if not used for JTAG or RAM initialization
IO BANK A IO BANK B
VCCIO(A)
INREF(A)
IOCTRL(A)
IO(A)
VCCIO (A)
INREF(A)
IOCTRL(A)
IO(A)
IO BANK C IO BANK D
VCCIO (C)
INREF(C)
IOCTRL(C)
IO(C)
VCCIO(D)
INREF(D)
IOCTRL(D)
IO(D)
IO BANK F IO BANK E
VCCIO (F)
INREF(F)
IOCTRL(F)
IO(F)
VCCIO(E)
INREF(E)
IOCTRL(E)
IO(E)
IO BANK HIO BANK G
(H)
INREF(H)
IOCTRL(H)
IO(H)
VCCIO
VCCIO
(G)
INREF(G)
IOCTRL(G)
IO(G)
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 23
QL6325 Eclipse Data Sheet Rev C
Table 17: De dicated Pin Descriptions
Pin Function Description
CLK High-drive input and/or global
clock network driver Can be configured as either input or global clock
I/O(A) Input/Output pin
The I/O pin is a bi-directional pin, configurable to either an input-
only, output-only, or bi-directional pin. The A inside the
parenthesis means that the I/O is located in Bank A. If an I/O is
not used, SpDE (QuickWorks Tool) provides the option of tying
that pin to GND, VCC, or TriState during programming.
VCC Power supply pin Connect to 2.5 V supply
VCCIO(A) Input voltage tolerance pin
This pin provides the flexibility to interface the device with either a
3.3 V device or a 2.5 V device. The A inside the parenthesis
means that VCCIO is located in BANK A. Every I/O pin in Bank A
will be tolerant of VCCIO input signals and will output VCCIO level
signals. This pin must be connected to either 3.3 V or VCC.
GND Ground pin Connect to ground
PLLIN PLL clock input Clock input for PLL
DEDCLK Dedicated clock pin Low skew global clock
GNDPLL Ground pin for PLL Connect to GND
INREF(A) Differential reference voltage
The INREF is the reference voltage pin for GTL+, SSTL2, and
STTL3 standards. Follow the recommendations provided in
Table 14 for the appropriate standard. The A inside the
parenthesis means that INREF is located in BANK A. This pin
should be tied to GND if not needed.
PLLOUT PLL output pin Dedicated PLL output pin; otherwise, may be left unconnected
IOCTRL(A) Highdrive input
This pin provides fast RESET, SET, CLOCK, and ENABLE access
to the I/O cell flip-flops, providing fast clock-to-out and fast I/O
response times. This pin can also double as a high-drive pin to the
internal logic cells. The A inside the parenthesis means that
IOCTRL is located in Bank A. This pin should be tied to GND or
VCC if it is not used.
24 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Recommended Unused Pin Terminations for the Eclipse devices
All unused, general purpose I/O pins can be tied to VCC, GND, or HIZ (high impedance)
internally using the Configuration Editor. This option is given in the bottom-right corner of
the placement window. To use the Placement Editor, choose ConstraintÆFix Placement
in the Option pull-down menu of SpDE.
The rest of the pins should be terminated at the board level in the manner presented in
Table 18.
NOTE:
x -> number, y -> alphabetical character.
Ordering Information
Figure 26: Ordering Information
Table 18: Recommended Unused Pin Terminations
Signal Name Recommended Termination
PLLOUT<x>
Unused PLL output pins must be connected to either VCC or GND so that their associated
input buffer never floats. Utilized PLL output pins that route the PLL clock outside of the
chip should not be tied to either VCC or GND.
IOCTRL<y> Any unused pins of this type must be connected to either VCC or GND.
CLK/PLLIN<x> Any unused clock pins should be connected to VCC or GND.
PLLRST<x> If a PLL module is not used, then the associated PLLRST<x> must be connected to VCC,
under normal operation use it as needed.
INREF<y> If an I/O bank does not require the use of INREF signal the pin should be connected to
GND.
QL 6325 - 4 PB516 C
QuickLogic device
Eclipse device
part number
Speed Grade
4 = Quick
5 = Fast
6 = Faster
7 = Fastest
Operating Range
C = Commercial
I = Industrial
M = Military
Package Code
PT208 = 208-pin FPBGA
PT280 = 280-pin FPBGA
PS484 = 484-pin BGA (1.0 mm)
PB516 = 516-pin BGA (1.27 mm)
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 25
QL6325 Eclipse Data Sheet Rev C
208 PQFP Pinout Diagram
Eclipse
QL6325-4PQ208C
26 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
208 PQFP Pinout Table
Table 19: 208 PQFP Pinout Table
208 PQFP Function 208 PQ FP Function 208 PQFP Function 208 PQFP Function 208 PQFP Function
1PLLRST(3) 43 IO(B) 85 IO(D) 127 CLK(5),PLLIN(3) 169 IOCTRL(G)
2VCCPLL(3) 44 VCCIO(B) 86 VCC 128 CLK(6) 170 INREF(G)
3GND 45 IO(B) 87 IO(D) 129 VCC 171 IOCTRL(G)
4GND 46 VCC 88 IO(D) 130 CLK(7) 172 IO(G)
5IO(A) 47 IO(B) 89 VCC 131 VCC 173 IO(G)
6IO(A) 48 IO(B) 90 IO(D) 132 CLK(8) 174 IO(V)
7IO(A) 49 GND 91 IO(D) 133 TMS 175 VCC
8VCCIO(A) 50 TDO 92 IOCTRL(D) 134 IO(F) 176 IO(G)
9IO(A) 51 PLLOUT(1) 93 INREF(D) 135 IO(F) 177 VCCIO(G)
10 IO(A) 52 GNDPLL(2) 94 IOCTRL(D) 136 IO(F) 178 GND
11 IOCTRL(A) 53 GND 95 IO(D) 137 GND 179 IO(G)
12 VCC 54 VCCPLL(2) 96 IO(D) 138 VCCIO(F) 180 IO(G)
13 INREF(A) 55 PLLRST(2) 97 IO(D) 139 IO(F) 181 IO(G)
14 IOCTRL(A) 56 VCC 98 VCCIO(D) 140 IO(F) 182 VCC
15 IO(A) 57 IO(C) 99 IO(D) 141 IO(F) 183 TCK
16 IO(A) 58 GND 100 IO(D) 142 IO(F) 184 VCC
17 IO(A) 59 IO(C) 101 GND 143 IO(F) 185 IO(H)
18 IO(A) 60 VCCIO(C) 102 PLLOUT(0) 144 IOCTRL(F) 186 IO(H)
19 VCCIO(A) 61 IO(C) 103 GND 145 INREF(F) 187 IO(H)
20 IO(A) 62 IO(C) 104 GNDPLL(1) 146 VCC 188 GND
21 GND 63 IO(C) 105 PLLRST(1) 147 IOCTRL(F) 189 VCCIO(H)
22 IO(A) 64 IO(C) 106 VCCPLL(1) 148 IO(F) 190 IO(H)
23 TDI 65 IO(C) 107 IO(E) 149 IO(F) 191 IO(H)
24 CLK(0) 66 IO(C) 108 GND 150 VCCIO(F) 192 IOCTRL(H)
25 CLK(1) 67 IOCTRL(C) 109 IO(E) 151 IO(F) 193 IO(H)
26 VCC 68 INREF(C) 110 IO(E) 152 IO(F) 194 INREF(H)
27 CLK(2),PLLIN(2) 69 IOCTRL(C) 111 VCCIO(E) 153 GND 195 VCC
28 CLK(3),PLLIN(1) 70 IO(C) 112 IO(E) 154 IO(F) 196 IOCTRL(H)
29 VCC 71 IO(C) 113 VCC 155 PLLOUT(3) 197 IO(H)
30 CLK(4),
DEDCLK,PLLIN(0) 72 VCCIO(C) 114 IO(E) 156 GNDPLL(0) 198 IO(H)
31 IO(B) 73 IO(C) 115 IO(E) 157 GND 199 IO(H)
32 IO(B) 74 IO(C) 116 IO(E) 158 VCCPLL(0) 200 IO(H)
33 GND 75 GND 117 IOCTRL(E) 159 PLLRST(0) 201 IO(H)
34 VCCIO(B) 76 VCC 118 INREF(E) 160 GND 202 IO(H)
35 IO(B) 77 IO(C) 119 IOCTRL(E) 161 IO(G) 203 VCCIO(H)
36 IO(B) 78 TRSTB 120 IO(E) 162 VCCIO(G) 204 GND
37 IO(B) 79 VCC 121 IO(E) 163 IO(G) 205 IO(H)
38 IO(B) 80 IO(D) 122 VCCIO(E) 164 IO(G) 206 PLLOUT(2)
39 IOCTRL(B) 81 IO(D) 123 GND 165 VCC 207 GND
40 INREF(B) 82 IO(D) 124 IO(E) 166 IO(G) 208 GNDPLL(3)
41 IOCTRL(B) 83 GND 125 IO(E) 167 IO(G)
42 IO(B) 84 VCCIO(D) 126 IO(E) 168 IO(G)
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 27
QL6325 Eclipse Data Sheet Rev C
280 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6325-4PT280C
Pin A1
Corner
28 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
280 PBGA Pinout Table Table 20: 280 PBGA Pinout Table
280 PBGA Function 280 PBGA Function 280 PBGA Function 280 PBGA Function 280 PBGA Function 280 PB GA Function
A1 PLLOUT<3> C10 CLK<5>
/PLLIN<3> E19 IOCTRL<D> K16 I/O<C> R4 I/O<H> U13 I/O<B>
A2 GNDPLL<0> C11 VCCIO<E> F1 INREF<G> K17 I/O<D> R5 GND U14 IOCTRL<B>
A3 I/O<F> C12 I/O<E> F2 IOCTRL<G> K18 I/O<C> R6 GND U15 VCCIO<B>
A4 I/O<F> C13 I/O<E> F3 I/O<G> K19 TRSTB R7 VCC U16 I/O<B>
A5 I/O<F> C14 I/O<E> F4 I/O<G> L1 I/O<H> R8 VCC U17 TDO
A6 IOCTRL<F> C15 VCCIO<E> F5 GND L2 I/O<H> R9 GND U18 PLLRST<2>
A7 I/O<F> C16 I/O<E> F15 VCC L3 VCCIO<H> R10 GND U19 I/O<B>
A8 I/O<F> C17 I/O<E> F16 IOCTRL<D> L4 I/O<H> R11 VCC V1 PLLOUT<2>
A9 I/O<F> C18 I/O<E> F17 I/O<D> L5 VCC R12 VCC V2 GNDPLL<3>
A10 CLK<7> C19 I/O<E> F18 I/O<D> L15 GND R13 VCC V3 GND
A11 I/O<E> D1 I/O<G> F19 I/O<D> L16 I/O<C> R14 VCC V4 I/O<A>
A12 I/O<E> D2 I/O<G> G1 I/O<G> L17 VCCIO<C> R15 GND V5 I/O<A>
A13 I/O<E> D3 I/O<F> G2 I/O<G> L18 I/O<C> R16 I/O<C> V6 IOCTRL<A>
A14 IOCTRL<E> D4 I/O<F> G3 IOCTRL<G> L19 I/O<C> R17 VCCIO<C> V7 I/O<A>
A15 I/O<E> D5 I/O<F> G4 I/O<G> M1 I/O<H> R18 I/O<C> V8 I/O<A>
A16 I/O<E> D6 I/O<F> G5 VCC M2 I/O<H> R19 I/O<C> V9 I/O<A>
A17 I/O<E> D7 I/O<F> G15 VCC M3 I/O<H> T1 I/O<H> V10 CLK<1>
A18 PLLRST<1> D8 I/O<F> G16 I/O<D> M4 I/O<H> T2 I/O<H> V11 CLK<4>
DEDCLK/PLLIN<0>
A19 GND D9 CLK<8> G17 I/O<D> M5 VCC T3 I/O<A> V12 I/O<B>
B1 PLLRST<0> D10 I/O<E> G18 I/O<D> M15 VCC T4 I/O<A> V13 I/O<B>
B2 GND D11 I/O<E> G19 I/O<D> M16 INREF<C> T5 I/O<A> V14 INREF<B>
B3 I/O<F> D12 I/O<E> H1 I/O<G> M17 I/O<C> T6 IOCTRL<A> V15 I/O<B>
B4 I/O<F> D13 INREF<E> H2 I/O<G> M18 I/O<C> T7 I/O<A> V16 I/O<B>
B5 I/O<F> D14 I/O<E> H3 I/O<G> M19 I/O<C> T8 I/O<A> V17 I/O<B>
B6 INREF<F> D15 I/O<E> H4 I/O<G> N1 IOCTRL<H> T9 I/O<A> V18 GNDPLL<2>
B7 I/O<F> D16 I/O<D> H5 VCC N2 I/O<H> T10 I/O<A> V19 GND
B8 I/O<F> D17 I/O<D> H15 VCC N3 I/O<H> T11 CLK<3>
/PLLIN<1> W1 GND
B9 TMS D18 I/O<D> H16 VCC N4 I/O<H> T12 I/O<B> W2 PLLRST<3>
B10 CLK<6> D19 I/O<D> H17 I/O<D> N5 VCC T13 I/O<B> W3 I/O<A>
B11 I/O<E> E1 I/O<G> H18 I/O<D> N15 VCC T14 I/O<B> W4 I/O<A>
B12 I/O<E> E2 I/O<G> H19 I/O<D> N16 I/O<C> T15 I/O<B> W5 I/O<A>
B13 IOCTRL<E> E3 VCCIO<G> J1 I/O<G> N17 I/O<C> T16 I/O<B> W6 I/O<A>
B14 I/O<E> E4 I/O<F> J2 I/O<G> N18 IOCTRL<C> T17 VCCPLL<2> W7 I/O<A>
B15 I/O<E> E5 GND J3 VCCIO<G> N19 IOCTRL<C> T18 I/O<B> W8 I/O<A>
B16 I/O<E> E6 VCC J4 I/O<G> P1 I/O<H> T19 I/O<B> W9 TDI
B17 VCCPLL<1> E7 VCC J5 GND P2 I/O<H> U1 I/O<A> W10 CLK<2>
/PLLIN<2>
B18 GNDPLL<1> E8 VCC J15 VCC P3 IOCTRL<H> U2 I/O<A> W11 I/O<B>
B19 PLLOUT<0> E9 VCC J16 I/O<C> P4 INREF<H> U3 VCCPLL<3> W12 I/O<B>
C1 I/O<F> E10 GND J17 VCCIO<D> P5 VCC U4 I/O<A> W13 I/O<B>
C2 VCCPLL<0> E11 GND J18 I/O<D> P15 GND U5 VCCIO<A> W14 IOCTRL<B>
C3 I/O<F> E12 VCC J19 I/O<D> P16 I/O<C> U6 INREF<A> W15 I/O<B>
C4 I/O<F> E13 VCC K1 VCC P17 I/O<C> U7 I/O<A> W16 I/O<B>
C5 VCCIO<F> E14 GND K2 TCK P18 I/O<C> U8 I/O<A> W17 I/O<B>
C6 IOCTRL<F> E15 GND K3 I/O<G> P19 I/O<C> U9 VCCIO<A> W18 I/O<B>
C7 I/O<F> E16 I/O<D> K4 I/O<G> R1 I/O<H> U10 CLK<0> W19 PLLOUT<1>
C8 I/O<F> E17 VCCIO<D> K5 GND R2 I/O<H> U11 VCCIO<B>
C9 VCCIO<F> E18 INREF<D> K15 GND R3 VCCIO<H> U12 I/O<B>
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 29
QL6325 Eclipse Data Sheet Rev C
280 PBGA Packaging Drawing
Figure 27: 280 PBGA Packaging Drawing
30 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
484 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6325-4PS484C
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
E
D
F
G
H
K
J
L
M
N
R
P
T
U
V
Y
W
22 21
AB
AA
Pin A1
Corner
Pin A1
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 31
QL6325 Eclipse Data Sheet Rev C
484 PBGA Pinout Table Table 21: 484 PBGA Pinout Table
484 PBGA Function 484 PBGA Function 484 PBGA Function 484 PBGA Function 484 PBGA Function 484 PBGA Function
A1 I/O<A> C1 I/O<A> E1 IOCTRL<A> G1 I/O<A> J1 I/O<A> L1 CLK<4>
DEDCLK/PLLIN<0>
A2 PLLRST<3> C2 I/O<A> E2 I/O<A> G2 I/O<A> J2 I/O<A> L2 CLK<0>
A3 I/O<A> C3 VCCPLL<3> E3 I/O<A> G3 I/O<A> J3 I/O<A> L3 CLK<2>/PLLIN<2>
A4 I/O<A> C4 PLLOUT<2> E4 I/O<A> G4 I/O<A> J4 I/O<A> L4 I/O<A>
A5 I/O<A> C5 I/O<A> E5 I/O<A> G5 I/O<A> J5 I/O<A> L5 I/O<A>
A6 I/O<H> C6 I/O<H> E6 I/O<H> G6 I/O<A> J6 I/O<A> L6 I/O<A>
A7 I/O<H> C7 I/O<H> E7 N/C G7 GND J7 I/O<A> L7 GND
A8 IOCTRL<H> C8 I/O<H> E8 I/O<H> G8 I/O<H> J8 VCC L8 GND
A9 I/O<H> C9 IOCTRL<H> E9 I/O<H> G9 I/O<H> J9 GND L9 GND
A10 N/C C10 I/O<H> E10 I/O<H> G10 I/O<H> J10 VCC L10 GND
A11 N/C C11 I/O<H> E11 VCC G11 I/O<G> J11 VCC L11 GND
A12 TCK C12 I/O<H> E12 I/O<G> G12 GND J12 GND L12 GND
A13 I/O<G> C13 I/O<G> E13 I/O<G> G13 I/O<G> J13 VCC L13 GND
A14 I/O<G> C14 I/O<G> E14 I/O<G> G14 I/O<G> J14 GND L14 VCC
A15 I/O<G> C15 I/O<G> E15 IOCTRL<G> G15 I/O<G> J15 VCC L15 VCC
A16 I/O<G> C16 I/O<G> E16 I/O<G> G16 GND J16 I/O<F> L16 CLK<6>
A17 I/O<G> C17 I/O<G> E17 INREF<G> G17 VCCIO<F> J17 VCCIO<F> L17 VCCIO<F>
A18 I/O<G> C18 I/O<G> E18 I/O<G> G18 I/O<F> J18 I/O<F> L18 I/O<F>
A19 I/O<F> C19 I/O<F> E19 I/O<F> G19 I/O<F> J19 I/O<F> L19 CLK<8>
A20 GND C20 GNDPLL<0> E20 I/O<F> G20 I/O<F> J20 I/O<F> L20 I/O<F>
A21 PLLOUT<3> C21 I/O<F> E21 I/O<F> G21 INREF<F> J21 I/O<F> L21 I/O<F>
A22 I/O<F> C22 I/O<F> E22 I/O<F> G22 I/O<F> J22 I/O<F> L22 I/O<F>
B1 I/O<A> D1 I/O<A> F1 I/O<A> H1 I/O<A> K1 TDI M1 I/O<B>
B2 GND D2 I/O<A> F2 INREF<A> H2 I/O<A> K2 I/O<A> M2 I/O<B>
B3 GNDPLL<3> D3 I/O<A> F3 I/O<A> H3 I/O<A> K3 I/O<A> M3 I/O<B>
B4 GND D4 I/O<A> F4 I/O<A> H4 I/O<A> K4 I/O<A> M4 CLK<3>/PLLIN<1>
B5 I/O<A> D5 I/O<A> F5 I/O<A> H5 IOCTRL<A> K5 I/O<A> M5 I/O<B>
B6 I/O<H> D6 I/O<H> F6 VCCIO<A> H6 VCCIO<A> K6 VCCIO<A> M6 VCCIO<B>
B7 I/O<H> D7 I/O<H> F7 VCCIO<H> H7 I/O<H> K7 I/O<A> M7 CLK<1>
B8 INREF<H> D8 I/O<H> F8 I/O<H> H8 GND K8 VCC M8 VCC
B9 I/O<H> D9 I/O<H> F9 VCCIO<H> H9 VCC K9 VCC M9 VCC
B10 I/O<H> D10 I/O<H> F10 I/O<H> H10 VCC K10 GND M10 GND
B11 I/O<H> D11 I/O<H> F11 VCCIO<H> H11 VCC K11 GND M11 GND
B12 N/C D12 I/O<G> F12 VCCIO<G> H12 GND K12 GND M12 GND
B13 N/C D13 I/O<G> F13 I/O<G> H13 VCC K13 GND M13 GND
B14 N/C D14 I/O<G> F14 VCCIO<G> H14 VCC K14 VCC M14 GND
B15 I/O<G> D15 IOCTRL<G> F15 N/C H15 GND K15 VCC M15 GND
B16 I/O<G> D16 I/O<G> F16 VCCIO<G> H16 I/O<F> K16 I/O<F> M16 GND
B17 I/O<G> D17 I/O<G> F17 N/C H17 I/O<F> K17 I/O<F> M17 I/O<E>
B18 I/O<G> D18 I/O<F> F18 I/O<F> H18 I/O<F> K18 I/O<F> M18 I/O<E>
B19 PLLRST<0> D19 VCCPLL<0> F19 I/O<F> H19 I/O<F> K19 I/O<F> M19 I/O<E>
B20 I/O<F> D20 I/O<F> F20 IOCTRL<F> H20 I/O<F> K20 I/O<F> M20 CLK<7>
B21 I/O<F> D21 I/O<F> F21 I/O<F> H21 I/O<F> K21 I/O<F> M21 CLK<5>/PLLIN<3>
B22 I/O<F> D22 I/O<F> F22 IOCTRL<F> H22 I/O<F> K22 I/O<F> M22 TMS
(Sheet 1 of 2)
32 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
N1 I/O<B> P16 I/O<E> T9 N/C V2 I/O<B> W17 I/O<D> AA10 I/O<C>
N2 I/O<B> P17 I/O<E> T10 TRSTB V3 I/O<B> W18 I/O<E> AA11 I/O<C>
N3 I/O<B> P18 I/O<E> T11 GND V4 I/O<B> W19 I/O<E> AA12 I/O<D>
N4 I/O<B> P19 I/O<E> T12 N/C V5 I/O<B> W20 I/O<E> AA13 I/O<D>
N5 I/O<B> P20 I/O<E> T13 I/O<D> V6 I/O<C> W21 I/O<E> AA14 I/O<D>
N6 I/O<B> P21 I/O<E> T14 N/C V7 I/O<C> W22 I/O<E> AA15 I/O<D>
N7 I/O<B> P22 I/O<E> T15 I/O<D> V8 I/O<C> Y1 I/O<B> AA16 I/O<D>
N8 VCC R1 I/O<B> T16 GND V9 N/C Y2 I/O<B> AA17 I/O<D>
N9 VCC R2 INREF<B> T17 I/O<E> V10 I/O<C> Y3 VCCPLL<2> AA18 I/O<D>
N10 GND R3 I/O<B> T18 I/O<E> V11 I/O<C> Y4 I/O<C> AA19 I/O<E>
N11 GND R4 I/O<B> T19 I/O<E> V12 VCC Y5 I/O<C> AA20 GNDPLL<1>
N12 GND R5 I/O<B> T20 I/O<E> V13 N/C Y6 I/O<C> AA21 I/O<E>
N13 GND R6 I/O<B> T21 IOCTRL<E> V14 I/O<D> Y7 I/O<C> AA22 I/O<E>
N14 VCC R7 I/O<B> T22 I/O<E> V15 I/O<D> Y8 IOCTRL<C> AB1 I/O<B>
N15 VCC R8 GND U1 IOCTRL<B> V16 INREF<D> Y9 I/O<C> AB2 GNDPLL<2>
N16 I/O<E> R9 VCC U2 I/O<B> V17 I/O<D> Y10 I/O<C> AB3 PLLRST<2>
N17 VCCIO<E> R10 VCC U3 IOCTRL<B> V18 I/O<E> Y11 I/O<D> AB4 I/O<B>
N18 I/O<E> R11 GND U4 I/O<B> V19 I/O<E> Y12 I/O<D> AB5 I/O<B>
N19 I/O<E> R12 VCC U5 I/O<B> V20 I/O<E> Y13 I/O<D> AB6 I/O<C>
N20 I/O<E> R13 VCC U6 I/O<C> V21 I/O<E> Y14 I/O<D> AB7 I/O<C>
N21 I/O<E> R14 VCC U7 VCCIO<C> V22 I/O<E> Y15 IOCTRL<D> AB8 IOCTRL<C>
N22 I/O<E> R15 GND U8 N/C W1 I/O<B> Y16 I/O<D> AB9 I/O<C>
P1 I/O<B> R16 I/O<D> U9 VCCIO<C> W2 I/O<B> Y17 I/O<D> AB10 I/O<C>
P2 I/O<B> R17 VCCIO<E> U10 I/O<C> W3 I/O<B> Y18 I/O<E> AB11 I/O<C>
P3 I/O<B> R18 I/O<E> U11 VCCIO<C> W4 I/O<B> Y19 PLLOUT<0> AB12 I/O<D>
P4 I/O<B> R19 I/O<E> U12 VCCIO<D> W5 I/O<B> Y20 PLLRST<1> AB13 I/O<D>
P5 I/O<B> R20 I/O<E> U13 I/O<D> W6 I/O<C> Y21 I/O<E> AB14 I/O<D>
P6 VCCIO<B> R21 I/O<E> U14 VCCIO<D> W7 N/C Y22 I/O<E> AB15 I/O<D>
P7 I/O<B> R22 I/O<E> U15 N/C W8 I/O<C> AA1 TDO AB16 IOCTRL<D>
P8 VCC T1 I/O<B> U16 VCCIO<D> W9 I/O<C> AA2 PLLOUT<1> AB17 I/O<D>
P9 GND T2 I/O<B> U17 VCCIO<E> W10 I/O<C> AA3 GND AB18 I/O<D>
P10 VCC T3 I/O<B> U18 I/O<E> W11 I/O<C> AA4 I/O<B> AB19 I/O<E>
P11 GND T4 I/O<B> U19 I/O<E> W12 I/O<D> AA5 I/O<C> AB20 GND
P12 VCC T5 I/O<B> U20 IOCTRL<E> W13 I/O<D> AA6 I/O<C> AB21 VCCPLL<1>
P13 VCC T6 VCCIO<B> U21 I/O<E> W14 I/O<D> AA7 I/O<C> AB22 I/O<E>
P14 GND T7 GND U22 INREF<E> W15 I/O<D> AA8 INREF<C>
P15 VCC T8 I/O<C> V1 I/O<B> W16 N/C AA9 I/O<C>
Table 21: 484 PBGA Pinout Table (Continued)
484 PBGA Function 484 PBGA Function 484 PBGA Function 484 PBGA Function 484 PBGA Function 484 PBGA Function
(Sheet 2 of 2)
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 33
QL6325 Eclipse Data Sheet Rev C
484 PBGA Packaging Drawing
Figure 28: 484 PBGA Packaging Drawing
34 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
516 PBGA Pinout Diagram
Top
Bottom
Eclipse
QL6325-4PB516C
PIN A1
CORNER
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 35
QL6325 Eclipse Data Sheet Rev C
516 PBGA Pinout Table Table 22: 516 PBGA Pinout Table
516 PBGA Function 516 PBGA Function 516 PBGA Function 516 PBGA Function 516 PBGA Function 516 PBGA Function
A1 GND C1 I/O<F> E1 I/O<G> G1 I/O<G> L5 VCC P3 I/O<H>
A2 I/O<F> C2 N/C E2 I/O<G> G2 INREF<G> L6 VCC P4 VCC
A3 I/O<F> C3 I/O<F> E3 N/C G3 I/O<G> L11 GND P5 I/O<H>
A4 I/O<F> C4 PLLOUT<3> E4 VCCPLL<0> G4 I/O<G> L12 GND P6 VCCIO<H>
A5 I/O<F> C5 I/O<F> E5 I/O<F> G5 I/O<G> L13 GND P11 GND
A6 I/O<F> C6 I/O<F> E6 I/O<F> G6 VCCIO<G> L14 GND P12 GND
A7 IOCTRL<F> C7 I/O<F> E7 I/O<F> G21 VCCIO<D> L15 GND P13 GND
A8 I/O<F> C8 INREF<F> E8 VCC G22 I/O<D> L16 GND P14 GND
A9 I/O<F> C9 I/O<F> E9 I/O<F> G23 I/O<D> L21 VCC P15 GND
A10 I/O<F> C10 I/O<F> E10 I/O<F> G24 I/O<D> L22 I/O<D> P16 GND
A11 I/O<F> C11 I/O<F> E11 I/O<F> G25 I/O<D> L23 I/O<D> P21 VCCIO<C>
A12 I/O<F> C12 I/O<F> E12 VCC G26 INREF<D> L24 I/O<D> P22 I/O<C>
A13 I/O<E> C13 CLK<7> E13 I/O<F> H1 I/O<G> L25 I/O<D> P23 VCC
A14 N/C C14 I/O<E> E14 I/O<F> H2 I/O<G> L26 I/O<D> P24 N/C
A15 I/O<E> C15 I/O<E> E15 I/O<E> H3 IOCTRL<G> M1 N/C P25 N/C
A16 I/O<E> C16 I/O<E> E16 VCC H4 I/O<G> M2 N/C P26 TRSTB
A17 I/O<E> C17 I/O<E> E17 CLK<6> H5 I/O<G> M3 I/O<G> R1 I/O<H>
A18 IOCTRL<E> C18 I/O<E> E18 I/O<E> H6 VCC M4 I/O<G> R2 I/O<H>
A19 IOCTRL<E> C19 I/O<E> E19 I/O<E> H21 VCC M5 I/O<G> R3 I/O<H>
A20 I/O<E> C20 I/O<E> E20 I/O<E> H22 VCC M6 VCCIO<G> R4 I/O<H>
A21 I/O<E> C21 I/O<E> E21 I/O<E> H23 I/O<D> M11 GND R5 VCC
A22 I/O<E> C22 I/O<E> E22 I/O<E> H24 IOCTRL<D> M12 GND R6 VCC
A23 I/O<E> C23 I/O<E> E23 GNDPLL<1> H25 IOCTRL<D> M13 GND R11 GND
A24 I/O<E> C24 I/O<E> E24 I/O<E> H26 I/O<D> M14 GND R12 GND
A25 PLLRST<1> C25 I/O<E> E25 I/O<D> J1 N/C M15 GND R13 GND
A26 GND C26 I/O<E> E26 I/O<D> J2 I/O<G> M16 GND R14 GND
B1 I/O<F> D1 I/O<G> F1 IOCTRL<G> J3 I/O<G> M21 VCCIO<D> R15 GND
B2 PLLRST<0> D2 I/O<G> F2 N/C J4 I/O<G> M22 VCC R16 GND
B3 I/O<F> D3 I/O<F> F3 I/O<G> J5 I/O<G> M23 N/C R21 VCC
B4 I/O<F> D4 I/O<F> F4 I/O<G> J6 VCCIO<G> M24 I/O<D> R22 I/O<C>
B5 I/O<F> D5 GNDPLL<0> F5 I/O<F> J21 VCCIO<D> M25 I/O<D> R23 I/O<C>
B6 I/O<F> D6 I/O<F> F6 GND J22 I/O<D> M26 I/O<D> R24 I/O<C>
B7 IOCTRL<F> D7 I/O<F> F7 VCCIO<F> J23 I/O<D> N1 TCK R25 I/O<C>
B8 I/O<F> D8 N/C F8 VCC J24 N/C N2 N/C R26 I/O<C>
B9 I/O<F> D9 I/O<F> F9 VCCIO<F> J25 I/O<D> N3 I/O<G> T1 N/C
B10 I/O<F> D10 I/O<F> F10 GND J26 I/O<D> N4 I/O<G> T2 I/O<H>
B11 I/O<F> D11 I/O<F> F11 VCC K1 I/O<G> N5 I/O<G> T3 I/O<H>
B12 I/O<F> D12 I/O<F> F12 VCCIO<F> K2 I/O<G> N6 GND T4 I/O<H>
B13 CLK<5>
/PLLIN<3> D13 TMS F13 GND K3 I/O<G> N11 GND T5 I/O<H>
B14 I/O<E> D14 I/O<E> F14 VCCIO<E> K4 I/O<G> N12 GND T6 VCC
B15 I/O<E> D15 I/O<E> F15 VCC K5 N/C N13 GND T11 GND
B16 I/O<E> D16 N/C F16 VCC K6 GND N14 GND T12 GND
B17 I/O<E> D17 I/O<E> F17 GND K21 GND N15 GND T13 GND
B18 INREF<E> D18 I/O<F> F18 VCCIO<E> K22 I/O<D> N16 GND T14 GND
B19 I/O<E> D19 CLK<8> F19 VCC K23 I/O<D> N21 GND T15 GND
B20 I/O<E> D20 I/O<E> F20 VCCIO<E> K24 N/C N22 I/O<D> T16 GND
B21 I/O<E> D21 I/O<E> F21 GND K25 I/O<D> N23 I/O<D> T21 VCC
B22 I/O<E> D22 I/O<E> F22 N/C K26 I/O<D> N24 N/C T22 VCC
B23 I/O<E> D23 VCCPLL<1> F23 N/C L1 I/O<G> N25 I/O<D> T23 N/C
B24 I/O<E> D24 I/O<E> F24 I/O<D> L2 N/C N26 I/O<D> T24 I/O<C>
B25 I/O<E> D25 I/O<E> F25 N/C L3 I/O<G> P1 N/C T25 N/C
B26 PLLOUT<0> D26 I/O<D> F26 I/O<D> L4 I/O<G> P2 I/O<H> T26 I/O<C>
(Sheet 1 of 2)
36 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
U1 I/O<H> W25 INREF<C> AA21 GND AC3 I/O<A> AD11 I/O<A> AE19 I/O<B>
U2 I/O<H> W26 I/O<C> AA22 VCCPLL<2> AC4 I/O<A> AD12 TDI AE20 I/O<B>
U3 I/O<H> Y1 I/O<H> AA23 I/O<C> AC5 I/O<A> AD13 CLK<4>
DEDCLK/PLLIN<0> AE21 I/O<B>
U4 I/O<H> Y2 I/O<H> AA24 I/O<C> AC6 I/O<A> AD14 I/O<A> AE22 I/O<B>
U5 I/O<H> Y3 I/O<H> AA25 I/O<C> AC7 I/O<A> AD15 I/O<B> AE23 I/O<B>
U6 GND Y4 I/O<H> AA26 I/O<C> AC8 I/O<A> AD16 I/O<B> AE24 I/O<B>
U21 GND Y5 I/O<H> AB1 I/O<H> AC9 I/O<A> AD17 I/O<B> AE25 PLLRST<2>
U22 N/C Y6 VCCIO<H> AB2 N/C AC10 I/O<A> AD18 INREF<B> AE26 I/O<B>
U23 I/O<C> Y21 VCCIO<C> AB3 I/O<A> AC11 I/O<A> AD19 I/O<B> AF1 I/O<A>
U24 I/O<C> Y22 N/C AB4 GNDPLL<3> AC12 I/O<A> AD20 I/O<B> AF2 I/O<A>
U25 I/O<C> Y23 I/O<C> AB5 VCCPLL<3> AC13 N/C AD21 I/O<B> AF3 I/O<A>
U26 I/O<C> Y24 I/O<C> AB6 I/O<A> AC14 CLK<1> AD22 I/O<B> AF4 I/O<A>
V1 I/O<H> Y25 I/O<C> AB7 I/O<A> AC15 I/O<B> AD23 I/O<B> AF5 I/O<A>
V2 IOCTRL<H> Y26 IOCTRL<C> AB8 I/O<A> AC16 I/O<B> AD24 GND AF6 IOCTRL<A>
V3 IOCTRL<H> AA1 I/O<H> AB9 I/O<A> AC17 I/O<B> AD25 I/O<B> AF7 I/O<A>
V4 I/O<H> AA2 I/O<H> AB10 I/O<A> AC18 I/O<B> AD26 I/O<B> AF8 I/O<A>
V5 N/C AA3 I/O<H> AB11 VCC AC19 I/O<B> AE1 GND AF9 I/O<A>
V6 VCCIO<H> AA4 I/O<A> AB12 I/O<A> AC20 I/O<B> AE2 GND AF10 I/O<A>
V21 VCCIO<C> AA5 I/O<A> AB13 I/O<A> AC21 I/O<B> AE3 I/O<A> AF11 I/O<A>
V22 I/O<C> AA6 GND AB14 CLK<3>/PLLIN<1> AC22 TDO AE4 I/O<A> AF12 CLK<2>
/PLLIN<2>
V23 I/O<C> AA7 VCCIO<A> AB15 VCC AC23 PLLOUT<1> AE5 I/O<A> AF13 N/C
V24 IOCTRL<C> AA8 VCC AB16 I/O<B> AC24 I/O<B> AE6 I/O<A> AF14 I/O<B>
V25 I/O<C> AA9 VCCIO<A> AB17 I/O<B> AC25 N/C AE7 INREF<A> AF15 I/O<B>
V26 I/O<C> AA10 GND AB18 I/O<B> AC26 I/O<C> AE8 I/O<A> AF16 I/O<B>
W1 INREF<H> AA11 VCC AB19 VCC AD1 I/O<A> AE9 I/O<A> AF17 I/O<B>
W2 I/O<H> AA12 VCCIO<A> AB20 I/O<B> AD2 PLLOUT<2> AE10 I/O<A> AF18 I/O<B>
W3 I/O<H> AA13 GND AB21 I/O<B> AD3 PLLRST<3> AE11 I/O<A> AF19 IOCTRL<B>
W4 I/O<H> AA14 VCCIO<B> AB22 GNDPLL<2> AD4 I/O<A> AE12 CLK<0> AF20 IOCTRL<B>
W5 VCC AA15 VCC AB23 I/O<B> AD5 I/O<A> AE13 I/O<B> AF21 I/O<B>
W6 VCC AA16 VCC AB24 I/O<C> AD6 I/O<A> AE14 I/O<B> AF22 I/O<B>
W21 VCC AA17 GND AB25 I/O<C> AD7 I/O<A> AE15 I/O<B> AF23 I/O<B>
W22 N/C AA18 VCCIO<B> AB26 I/O<C> AD8 IOCTRL<A> AE16 I/O<B> AF24 I/O<B>
W23 I/O<C> AA19 VCC AC1 N/C AD9 I/O<A> AE17 I/O<B> AF25 I/O<B>
W24 I/O<C> AA20 VCCIO<B> AC2 I/O<A> AD10 I/O<A> AE18 I/O<B> AF26 I/O<B>
Table 22: 516 PBGA Pinout Table (Continued)
516 PBGA Function 516 PBGA Function 516 PBGA Function 516 PBGA Function 516 PBGA Function 516 PBGA Function
(Sheet 2 of 2)
© 2002 QuickLogic Corp ora ti on
www.quicklogic.com 37
QL6325 Eclipse Data Sheet Rev C
516 PBGA Packaging Drawing
Figure 29: 516 PBGA Packaging Drawing
38 www.quicklogic.com
© 2002 QuickLogic Corporation
QL6325 Eclipse Data Sheet Rev C
Contact Information
Telephone: 408 990 4000 (US)
416 497 8884 (Canada)
44 1932 57 9011 (Europe)
49 89 930 86 170 (Germany)
852 8106 9091 (Asia)
81 45 470 5525 (Japan)
E-mail: info@quicklogic.com
Support: support@quicklogic.com
Web site: http://www.quicklogic.com/
Revision History
Copyright Information
Copyright © 2002 QuickLogic Corporation.
All Rights Reserved.
The information contained in this product brief, and the accompanying software programs
are protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic
Corporation reserves the right to make periodic modifications of this product without
obligation to notify any person or entity of such revision. Copying, duplicating, selling, or
otherwise distributing any part of this product without the prior written consent of an
authorized representative of QuickLogic is prohibited.
QuickLogic, QuickWorks, pASIC, and ViaLink are registered trademarks of QuickLogic
Corporation.
All trademarks and registered trademarks are the property of their respective owners.
Table 23: Revision History
Revision Date Comments
A April 2001 First release.
BJan 2002 Re-evaluation of AC/DC Specs and reformat
C June 2002 Added Kfactor, Power-up, JTAG and mechanical
drawing information.