Ultralow Noise XFET(R) Voltage References with Current Sink and Source Capability ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 FEATURES PIN CONFIGURATIONS Low noise (0.1 Hz to 10.0 Hz): 3.5 V p-p @ 2.5 V output No external capacitor required Low temperature coefficient A Grade: 10 ppm/C maximum B Grade: 3 ppm/C maximum Load regulation: 15 ppm/mA Line regulation: 20 ppm/V Wide operating range ADR430: 4.1 V to 18 V ADR431: 4.5 V to 18 V ADR433: 5.0 V to 18 V ADR434: 6.1 V to 18 V ADR435: 7.0 V to 18 V ADR439: 6.5 V to 18 V High output source and sink current: +30 mA and -20 mA Wide temperature range: -40C to +125C TP 1 VIN 2 ADR43x 8 TP NC TOP VIEW 6 VOUT (Not to Scale) GND 4 5 TRIM 7 NOTES 1. NC = NO CONNECT 2. TP = TEST PIN (DO NOT CONNECT) 04500-0-001 NC 3 Figure 1. 8-Lead MSOP (RM-8) TP 1 VIN 2 ADR43x 8 TP NC TOP VIEW 6 VOUT (Not to Scale) GND 4 5 TRIM 7 NOTES 1. NC = NO CONNECT 2. TP = TEST PIN (DO NOT CONNECT) APPLICATIONS 04500-0-041 NC 3 Figure 2. 8-Lead SOIC_N (R-8) Precision data acquisition systems High resolution data converters Medical instruments Industrial process control systems Optical control circuits Precision instruments GENERAL DESCRIPTION The ADR43x series is a family of XFET voltage references featuring low noise, high accuracy, and low temperature drift performance. Using Analog Devices, Inc., patented temperature drift curvature correction and XFET (eXtra implanted junction FET) technology, voltage change vs. temperature nonlinearity in the ADR43x is minimized. The XFET references operate at lower current (800 A) and supply headroom (2 V) than buried Zener references. Buried Zener references require more than 5 V headroom for operations. The ADR43x XFET references are the only low noise solutions for 5 V systems. The ADR43x family has the capability to source up to 30 mA of output current and sink up to 20 mA. It also comes with a trim terminal to adjust the output voltage over a 0.5% range without compromising performance. Table 1. Selection Guide Model ADR430A ADR430B ADR431A ADR431B ADR433A ADR433B ADR434A ADR434B ADR435A ADR435B ADR439A ADR439B Output Voltage (V) 2.048 2.048 2.500 2.500 3.000 3.000 4.096 4.096 5.000 5.000 4.500 4.500 Accuracy, (mV) 3 1 3 1 4 1.5 5 1.5 6 2 5.5 2 Temperature Coefficient (ppm/C) 10 3 10 3 10 3 10 3 10 3 10 3 The ADR43x is available in 8-lead MSOP and narrow SOIC packages. All versions are specified over the extended industrial temperature range of -40C to +125C. Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved. ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 TABLE OF CONTENTS Features .............................................................................................. 1 Noise Performance ..................................................................... 15 Applications....................................................................................... 1 Turn-On Time ............................................................................ 15 Pin Configurations ........................................................................... 1 Applications..................................................................................... 16 General Description ......................................................................... 1 Output Adjustment .................................................................... 16 Revision History ............................................................................... 2 Reference for Converters in Optical Network Control Circuits......................................................................................... 16 Specifications..................................................................................... 3 ADR430 Electrical Characteristics............................................. 3 ADR431 Electrical Characteristics............................................. 4 ADR433 Electrical Characteristics............................................. 5 ADR434 Electrical Characteristics............................................. 6 ADR435 Electrical Characteristics............................................. 7 ADR439 Electrical Characteristics............................................. 8 Absolute Maximum Ratings............................................................ 9 Thermal Resistance ...................................................................... 9 ESD Caution.................................................................................. 9 Typical Performance Characteristics ........................................... 10 Negative Precision Reference Without Precision Resistors.. 16 High Voltage Floating Current Source .................................... 17 Kelvin Connection ..................................................................... 17 Dual-Polarity References........................................................... 17 Programmable Current Source ................................................ 18 Programmable DAC Reference Voltage .................................. 18 Precision Voltage Reference for Data Converters.................. 19 Precision Boosted Output Regulator ....................................... 19 Outline Dimensions ....................................................................... 20 Ordering Guide .......................................................................... 21 Theory of Operation ...................................................................... 15 Basic Voltage Reference Connections...................................... 15 REVISION HISTORY 8/06--Rev. B to Rev. C 9/04--Rev. A to Rev. B Updated Format..................................................................Universal Changes to Table 1............................................................................ 1 Changes to Table 3............................................................................ 4 Changes to Table 4............................................................................ 5 Changes to Table 7............................................................................ 8 Changes to Figure 26...................................................................... 14 Changes to Figure 31...................................................................... 16 Updated Outline Dimensions ....................................................... 20 Changes to Ordering Guide .......................................................... 21 Added New Grade ..............................................................Universal Changes to Specifications.................................................................3 Replaced Figure 3, Figure 4, Figure 5........................................... 10 Updated Ordering Guide .............................................................. 21 6/04--Rev. 0 to Rev. A Changes to Format .............................................................Universal Changes to the Ordering Guide ................................................... 20 12/03--Revision 0: Initial Version Rev. C | Page 2 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 SPECIFICATIONS ADR430 ELECTRICAL CHARACTERISTICS VIN = 4.1 V to 18 V, IL = 0 mA, TA = 25C, unless otherwise noted. Table 2. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY A Grade Symbol VO Conditions Min Typ Max Unit 2.045 2.047 2.048 2.048 2.051 2.049 V V 3 0.15 1 0.05 mV % mV % 10 3 20 15 15 800 ppm/C ppm/C ppm/V ppm/mA ppm/mA A V p-p nV/Hz s ppm ppm dB mA 18 V V VOERR B Grade TEMPERATURE COEFFICIENT A Grade B Grade LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SUPPLY VOLTAGE OPERATING RANGE SUPPLY VOLTAGE HEADROOM 1 TCVO VO/VIN VO/IL VO/IL IIN eN p-p eN tR VO VO_HYS RRR ISC -40C < TA < +125C -40C < TA < +125C VIN = 4.1 V to 18 V, -40C < TA < +125C IL = 0 mA to 10 mA, VIN = 5.0 V, -40C < TA < +125C IL = -10 mA to 0 mA, VIN = 5.0 V, -40C < TA < +125C No load, -40C < TA < +125C 0.1 Hz to 10.0 Hz 1 kHz CIN = 0 1000 hours 2 1 5 560 3.5 60 10 40 20 -70 40 fIN = 10 kHz VIN VIN - VO 4.1 2 The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period. Rev. C | Page 3 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ADR431 ELECTRICAL CHARACTERISTICS VIN = 4.5 V to 18 V, IL = 0 mA, TA = 25C, unless otherwise noted. Table 3. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY A Grade Symbol VO Conditions Min Typ Max Unit 2.497 2.499 2.500 2.500 2.503 2.501 V V 3 0.12 1 0.04 mV % mV % 10 3 20 15 15 800 ppm/C ppm/C ppm/V ppm/mA ppm/mA A V p-p nV/Hz s ppm ppm dB mA 18 V V VOERR B Grade TEMPERATURE COEFFICIENT A Grade B Grade LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SUPPLY VOLTAGE OPERATING RANGE SUPPLY VOLTAGE HEADROOM 1 TCVO VO/VIN VO/IL VO/IL IIN eN p-p eN tR VO VO_HYS RRR ISC -40C < TA < +125C -40C < TA < +125C VIN = 4.5 V to 18 V, -40C < TA < +125C IL = 0 mA to 10 mA, VIN = 5.0 V, -40C < TA < +125C IL = -10 mA to 0 mA, VIN = 5.0 V, -40C < TA < +125C No load, -40C < TA < +125C 0.1 Hz to 10.0 Hz 1 kHz CIN = 0 1000 hours 2 1 5 580 3.5 80 10 40 20 -70 40 fIN = 10 kHz 4.5 2 VIN VIN - VO The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period. Rev. C | Page 4 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ADR433 ELECTRICAL CHARACTERISTICS VIN = 5.0 V to 18 V, IL = 0 mA, TA = 25C, unless otherwise noted. Table 4. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY A Grade Symbol VO Conditions Min Typ Max Unit 2.996 2.9985 3.000 3.000 3.004 3.0015 V V 4 0.13 1.5 0.05 mV % mV % 10 3 20 15 15 800 ppm/C ppm/C ppm/V ppm/mA ppm/mA A V p-p nV/Hz s ppm ppm dB mA 18 V V VOERR B Grade TEMPERATURE COEFFICIENT A Grade B Grade LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SUPPLY VOLTAGE OPERATING RANGE SUPPLY VOLTAGE HEADROOM 1 TCVO VO/VIN VO/IL VO/IL IIN eN p-p eN tR VO VO_HYS RRR ISC -40C < TA < +125C -40C < TA < +125C VIN = 5 V to 18 V, -40C < TA < +125C IL = 0 mA to 10 mA, VIN = 6 V, -40C < TA < +125C IL = -10 mA to 0 mA, VIN = 6 V, -40C < TA < +125C No load, -40C < TA < +125C 0.1 Hz to 10.0 Hz 1 kHz CIN = 0 1000 hours 2 1 5 590 3.75 90 10 40 20 -70 40 fIN = 10 kHz 5 2 VIN VIN - VO The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period. Rev. C | Page 5 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ADR434 ELECTRICAL CHARACTERISTICS VIN = 6.1 V to 18 V, IL = 0 mA, TA = 25C, unless otherwise noted. Table 5. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY A Grade Symbol VO Conditions Min Typ Max Unit 4.091 4.0945 4.096 4.096 4.101 4.0975 V V 5 0.12 1.5 0.04 mV % mV % 10 3 20 15 15 800 ppm/C ppm/C ppm/V ppm/mA ppm/mA A V p-p nV/Hz s ppm ppm dB mA 18 V V VOERR B Grade TEMPERATURE COEFFICIENT A Grade B Grade LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SUPPLY VOLTAGE OPERATING RANGE SUPPLY VOLTAGE HEADROOM 1 TCVO VO/VIN VO/IL VO/IL IIN eN p-p eN tR VO VO_HYS RRR ISC -40C < TA < +125C -40C < TA < +125C VIN = 6.1 V to 18 V, -40C < TA < +125C IL = 0 mA to 10 mA, VIN = 7 V, -40C < TA < +125C IL = -10 mA to 0 mA, VIN = 7 V, -40C < TA < +125C No load, -40C < TA < +125C 0.1 Hz to 10.0 Hz 1 kHz CIN = 0 1000 hours 2 1 5 595 6.25 100 10 40 20 -70 40 fIN = 10 kHz 6.1 2 VIN VIN - VO The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period. Rev. C | Page 6 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ADR435 ELECTRICAL CHARACTERISTICS VIN = 7.0 V to 18 V, IL = 0 mA, TA = 25C, unless otherwise noted. Table 6. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY A Grade Symbol VO Conditions Min Typ Max Unit 4.994 4.998 5.000 5.000 5.006 5.002 V V 6 0.12 2 0.04 mV % mV % 10 3 20 15 15 800 ppm/C ppm/C ppm/V ppm/mA ppm/mA A V p-p nV/Hz s ppm ppm dB mA V V VOERR B Grade TEMPERATURE COEFFICIENT A Grade B Grade LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SUPPLY VOLTAGE OPERATING RANGE SUPPLY VOLTAGE HEADROOM 1 TCVO VO/VIN VO/IL VO/IL IIN eN p-p eN tR VO VO_HYS RRR ISC VIN VIN - VO -40C < TA < +125C -40C < TA < +125C VIN = 7 V to 18 V, -40C < TA < +125C IL = 0 mA to 10 mA, VIN = 8 V, -40C < TA < +125C IL = -10 mA to 0 mA, VIN = 8 V, -40C < TA < +125C No load, -40C < TA < +125C 0.1 Hz to 10 Hz 1 kHz CIN = 0 1000 hours 2 1 5 620 8 115 10 40 20 -70 40 fIN = 10 kHz 7 2 18 The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period. Rev. C | Page 7 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ADR439 ELECTRICAL CHARACTERISTICS VIN = 6.5 V to 18 V, IL = 0 mV, TA = 25C, unless otherwise noted. Table 7. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY A Grade Symbol VO Conditions Min Typ Max Unit 4.4946 4.498 4.500 4.500 4.5054 4.502 V V 5.5 0.12 2 0.04 mV % mV % 10 3 20 15 15 800 ppm/C ppm/C ppm/V ppm/mA ppm/mA A V p-p nV/Hz s ppm ppm dB mA V V VOERR B Grade TEMPERATURE COEFFICIENT A Grade B Grade LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SUPPLY VOLTAGE OPERATING RANGE SUPPLY VOLTAGE HEADROOM 1 TCVO VO/VIN VO/IL VO/IL IIN eN p-p eN tR VO VO_HYS RRR ISC VIN VIN - VO -40C < TA < +125C -40C < TA < +125C VIN = 6.5 V to 18 V, -40C < TA < +125C IL = 0 mA to 10 mA, VIN = 6.5 V, -40C < TA < +125C IL = -10 mA to 0 mA, VIN = 6.5 V, -40C < TA < +125C No load, -40C < TA < +125C 0.1 Hz to 10.0 Hz 1 kHz CIN = 0 1000 hours 2 1 5 600 7.5 110 10 40 20 -70 40 fIN = 10 kHz 6.5 2 18 The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period. Rev. C | Page 8 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ABSOLUTE MAXIMUM RATINGS TA = 25C, unless otherwise noted. THERMAL RESISTANCE Table 8. JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Parameter Supply Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature, Soldering (60 sec) Rating 20 V Indefinite -65C to +125C -40C to +125C -65C to +150C 300C Table 9. Thermal Resistance Package Type 8-Lead SOIC_N (R-Suffix) 8-Lead MSOP (RM-Suffix) ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. C | Page 9 of 24 JA 130 190 JC 43 Unit C/W C/W ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 TYPICAL PERFORMANCE CHARACTERISTICS Default conditions: 5 V, CL = 5 pF, G = 2, Rg = Rf = 1 k, RL = 2 k, VO = 2 V p-p, f = 1 MHz, TA = 25C, unless otherwise noted. 0.8 2.5009 SUPPLY CURRENT (mA) OUTPUT VOLTAGE (V) 2.5007 2.5005 2.5003 2.5001 2.4999 0.7 +125C 0.6 +25C -40C 0.5 0.4 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) 0.3 04500-0-015 4 10 12 4.0980 700 4.0975 650 4.0970 4.0965 4.0960 600 550 500 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) 400 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) 04500-0-019 -10 04500-0-016 -25 Figure 4. ADR434 Output Voltage vs. Temperature Figure 7. ADR435 Supply Current vs. Temperature 0.60 5.0025 +125C 0.58 5.0020 SUPPLY CURRENT (mA) 0.56 5.0015 5.0010 5.0005 5.0000 0.54 0.52 +25C 0.50 0.48 0.46 -40C 0.44 4.9995 0.42 -25 -10 5 20 35 50 65 80 95 110 TEMPERATURE (C) 125 04500-0-017 OUTPUT VOLTAGE (V) 16 450 4.0955 4.9990 -40 14 Figure 6. ADR435 Supply Current vs. Input Voltage SUPPLY CURRENT (A) OUTPUT VOLTAGE (V) 8 INPUT VOLTAGE (V) Figure 3. ADR431 Output Voltage vs. Temperature 4.0950 -40 6 Figure 5. ADR435 Output Voltage vs. Temperature 0.40 6 8 10 12 14 16 INPUT VOLTAGE (V) Figure 8. ADR431 Supply Current vs. Input Voltage Rev. C | Page 10 of 24 18 04500-0-020 2.4995 -40 04500-0-018 2.4997 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 2.5 610 DIFFERENTIAL VOLTAGE (V) SUPPLY CURRENT (A) 580 550 520 490 460 2.0 -40C 1.5 +25C 1.0 +125C 0.5 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) 0 -10 04500-0-021 400 -40 -5 Figure 9. ADR431 Supply Current vs. Temperature 15 0 5 10 LOAD CURRENT (mA) 04500-0-024 430 Figure 12. ADR431 Minimum Input/Output Differential Voltage vs. Load Current 1.9 IL = 0mA to 10mA NO LOAD 12 MINIMUM HEADROOM (V) LOAD REGULATION (ppm/mA) 1.8 9 6 3 1.7 1.6 1.5 1.4 1.3 1.2 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) 1.0 -40 DIFFERENTIAL VOLTAGE (V) 6 3 5 20 35 50 65 80 95 110 TEMPERATURE (C) 125 04500-0-023 LOAD REGULATION (ppm/mA) 9 -10 20 35 50 65 80 95 110 125 2.5 IL = 0mA to 10mA -25 5 Figure 13. ADR431 Minimum Headroom vs. Temperature 12 0 -40 -10 TEMPERATURE (C) Figure 10. ADR431 Load Regulation vs. Temperature 15 -25 2.0 -40C 1.5 +25C 1.0 +125C 0.5 0 -10 -5 0 5 LOAD CURRENT (mA) Figure 14. ADR435 Minimum Input/Output Differential Voltage vs. Load Current Figure 11. ADR435 Load Regulation vs. Temperature Rev. C | Page 11 of 24 10 04500-0-026 -25 04500-0-022 0 -40 04500-0-025 1.1 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 1.9 NO LOAD CL = 0.01F NO INPUT CAPACITOR VO = 1V/DIV 1.5 1.3 1.1 VIN = 2V/DIV -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) TIME = 4s/DIV 04500-0-027 0.9 -40 Figure 15. ADR435 Minimum Headroom vs. Temperature 04500-0-031 MINIMUM HEADROOM (V) 1.7 Figure 18. ADR431 Turn-On Response, 0.01 F Load Capacitor 20 VIN = 7V TO 18V VO = 1V/DIV CIN = 0.01F NO LOAD 12 8 4 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (C) Figure 16. ADR435 Line Regulation vs. Temperature Figure 19. ADR431 Turn-Off Response CIN = 0.01F NO LOAD BYPASS CAPACITOR = 0F LINE INTERRUPTION VO = 1V/DIV VIN = 500mV/DIV VO = 50mV/DIV VIN = 2V/DIV TIME = 4s/DIV TIME = 100s/DIV Figure 17. ADR431 Turn-On Response 04500-0-033 -25 04500-0-028 -4 -40 TIME = 4s/DIV 04500-0-032 VIN = 2V/DIV 0 04500-0-030 LINE REGULATION (ppm/V) 16 Figure 20. ADR431 Line Transient Response, No Capacitors Rev. C | Page 12 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 BYPASS CAPACITOR = 0.1F LINE INTERRUPTION VIN = 500mV/DIV VO = 50mV/DIV TIME = 1s/DIV Figure 21. ADR431 Line Transient Response, 0.1 F Bypass Capacitor 04500-0-037 TIME = 100s/DIV 04500-0-034 2V/DIV Figure 24. ADR435 0.1 Hz to 10.0 Hz Voltage Noise 1V/DIV TIME = 1s/DIV Figure 22. ADR431 0.1 Hz to 10.0 Hz Voltage Noise 04500-0-038 TIME = 1s/DIV 04500-0-035 50V/DIV Figure 25. ADR435 10 Hz to 10 kHz Voltage Noise 14 NUMBER OF PARTS 12 50V/DIV 10 8 6 4 0 -110 -90 -70 -50 -30 -10 10 30 50 70 DEVIATION (PPM) Figure 26. ADR431 Typical Hysteresis Figure 23. ADR431 10 Hz to 10 kHz Voltage Noise Rev. C | Page 13 of 24 90 110 04500-0-029 TIME = 1s/DIV 04500-0-036 2 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 50 10 45 -10 RIPPLE REJECTION (dB) 35 30 ADR435 20 15 ADR433 10 ADR430 5 0 100 1k 10k FREQUENCY (Hz) 100k -30 -50 -70 -90 -110 -130 -150 10 Figure 27. Output Impedance vs. Frequency 100 1k 10k 100k FREQUENCY (Hz) Figure 28. Ripple Rejection Ratio Rev. C | Page 14 of 24 1M 04500-0-040 25 04500-0-039 OUTPUT IMPEDANCE () 40 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 THEORY OF OPERATION The intrinsic reference voltage is around 0.5 V with a negative temperature coefficient of about -120 ppm/C. This slope is essentially constant to the dielectric constant of silicon and can be closely compensated by adding a correction term generated in the same fashion as the proportional-to-temperature (PTAT) term used to compensate band gap references. The primary advantage of an XFET reference is its correction term, which is some 30 times lower and requires less correction than that of a band gap reference. Because most of the noise of a band gap reference comes from the temperature compensation circuitry, the XFET results in much lower noise. The ADR43x family of references is guaranteed to deliver load currents to 10 mA with an input voltage that ranges from 4.5 V to 18 V. When these devices are used in applications at higher currents, users should use the following equation to account for the temperature effects due to the power dissipation increases. TJ = PD x JA + TA where: TJ and TA are the junction and ambient temperatures, respectively. PD is the device power dissipation. JA is the device package thermal resistance. BASIC VOLTAGE REFERENCE CONNECTIONS Voltage references, in general, require a bypass capacitor connected from VOUT to GND. The circuit in Figure 30 illustrates the basic configuration for the ADR43x family of references. Other than a 0.1 F capacitor at the output to help improve noise suppression, a large output capacitor at the output is not required for circuit stability. TP VIN Figure 29 shows the basic topology of the ADR43x series. The temperature correction term is provided by a current source with a value designed to be proportional to absolute temperature. The general equation is VOUT = G (VP - R1 x I PTAT ) (2) 10F 1 + 0.1F NC GND 8 ADR43x TP NC VOUT TOP VIEW 6 (Not to Scale) 4 5 TRIM 2 7 3 0.1F NOTES: 1. NC = NO CONNECT 2. TP = TEST PIN (DO NOT CONNECT) (1) 04500-0-003 The ADR43x series of references uses a new reference generation technique known as XFET (eXtra implanted junction FET). This technique yields a reference with low supply current, good thermal hysteresis, and exceptionally low noise. The core of the XFET reference consists of two junction field-effect transistors (JFETs), one of which has an extra channel implant to raise its pinch-off voltage. By running the two JFETs at the same drain current, the difference in pinch-off voltage can be amplified and used to form a highly stable voltage reference. Figure 30. Basic Voltage Reference Configuration where: G is the gain of the reciprocal of the divider ratio. VP is the difference in pinch-off voltage between the two JFETs. IPTAT is the positive temperature coefficient correction current. ADR43x devices are created by on-chip adjustment of R2 and R3 to achieve 2.048 V or 2.500 V, respectively, at the reference output. I1 VIN I1 ADR43x IPTAT R2 * *EXTRA CHANNEL IMPLANT VOUT = G(VP - R1 x IPTAT) R3 GND 04500-0-002 R1 The noise generated by the ADR43x family of references is typically less than 3.75 V p-p over the 0.1 Hz to 10.0 Hz band for ADR430, ADR431, and ADR433. Figure 22 shows the 0.1 Hz to 10.0 Hz noise of the ADR431, which is only 3.5 V p-p. The noise measurement is made with a band-pass filter made of a 2-pole high-pass filter with a corner frequency at 0.1 Hz and a 2-pole low-pass filter with a corner frequency at 10.0 Hz. TURN-ON TIME VOUT VP NOISE PERFORMANCE Upon application of power (cold start), the time required for the output voltage to reach its final value within a specified error band is defined as the turn-on settling time. Two components normally associated with this are the time for the active circuits to settle and the time for the thermal gradients on the chip to stabilize. Figure 17 and Figure 18 show the turn-on settling time for the ADR431. Figure 29. Simplified Schematic Device Power Dissipation Considerations Rev. C | Page 15 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 APPLICATIONS SOURCE FIBER OUTPUT ADJUSTMENT GIMBAL + SENSOR ACTIVATOR LEFT AMPL AMPL ADR431 ADR431 ADC DAC ADR431 DSP GND OUTPUT VO = 0.5% Figure 32. All-Optical Router Network R1 470k NEGATIVE PRECISION REFERENCE WITHOUT PRECISION RESISTORS RP 10k TRIM GND R2 10k (ADR430) 15k (ADR431) 04500-0-004 ADR43x PREAMP CONTROL ELECTRONICS INPUT VOUT ACTIVATOR RIGHT MEMS MIRROR DAC VIN DESTINATION FIBER LASER BEAM 04500-0-005 The ADR43x trim terminal can be used to adjust the output voltage over a 0.5% range. This feature allows the system designer to trim system errors out by setting the reference to a voltage other than the nominal. This is also helpful if the part is used in a system at temperature to trim out any error. Adjustment of the output has negligible effect on the temperature performance of the device. To avoid degrading temperature coefficients, both the trimming potentiometer and the two resistors need to be low temperature coefficient types, preferably < 100 ppm/C. Figure 31. Output Trim Adjustment REFERENCE FOR CONVERTERS IN OPTICAL NETWORK CONTROL CIRCUITS In Figure 32, the high capacity, all-optical router network employs arrays of micromirrors to direct and route optical signals from fiber to fiber without first converting them to electrical form, which reduces the communication speed. The tiny micromechanical mirrors are positioned so that each is illuminated by a single wavelength that carries unique information and can be passed to any desired input and output fiber. The mirrors are tilted by the dual-axis actuators, which are controlled by precision ADCs and DACs within the system. Due to the microscopic movement of the mirrors, not only is the precision of the converters important but the noise associated with these controlling converters is also extremely critical. Total noise within the system can be multiplied by the number of converters employed. Therefore, to maintain the stability of the control loop for this application, the ADR43x, with its exceptionally low noise, is necessary. In many current-output CMOS DAC applications, where the output signal voltage must be of the same polarity as the reference voltage, it is required to reconfigure a currentswitching DAC into a voltage-switching DAC through the use of a 1.25 V reference, an operational amplifier, and a pair of resistors. Using a current-switching DAC directly requires an additional operational amplifier at the output to reinvert the signal. A negative voltage reference is desirable, because an additional operational amplifier is not required for either reinversion (current-switching mode) or amplification (voltageswitching mode) of the DAC output voltage. In general, any positive voltage reference can be converted to a negative voltage reference through the use of an operational amplifier and a pair of matched resistors in an inverting configuration. The disadvantage of this approach is that the largest single source of error in the circuit is the relative matching of the resistors used. A negative reference can easily be generated by adding a precision operational amplifier, such as the OP777 or the OP193, and configuring it as shown in Figure 33. VOUT is at virtual ground; therefore, the negative reference can be taken directly from the output of the amplifier. The operational amplifier must be dual supply and have low offset and rail-to-rail capability, if negative supply voltage is close to the reference output. Rev. C | Page 16 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 +VDD Because the amplifier senses the load voltage, the operational amplifier loop control forces the output to compensate for the wiring error and to produce the correct voltage at the load. 2 VIN VIN 6 VOUT RLW 2 ADR43x ADR43x VOUT 6 -VREF RL GND 4 04500-0-006 -VDD Figure 35. Advantage of Kelvin Connection Figure 33. Negative Reference DUAL-POLARITY REFERENCES HIGH VOLTAGE FLOATING CURRENT SOURCE The circuit in Figure 34 can be used to generate a floating current source with minimal self heating. This particular configuration can operate on high supply voltages determined by the breakdown voltage of the N-channel JFET. +VS Dual-polarity references can easily be made with an operational amplifier and a pair of resistors. In order not to defeat the accuracy obtained by ADR43x, it is imperative to match the resistance tolerance as well as the temperature coefficient of all the components. VIN SST111 VISHAY 1F 0.1F 2 VOUT 6 VIN 2 VIN U1 VOUT 6 GND 2N3904 +10V TRIM 5 V+ 4 OP1177 GND -VS -5V U2 V- R3 5k 04500-0-009 RL 2.1k 04500-0-007 4 R2 10k -10V Figure 36. +5 V and -5 V References Using ADR435 Figure 34. High Voltage Floating Current Source +2.5V KELVIN CONNECTION +10V In many portable instrumentation applications, where PC board cost and area go hand in hand, circuit interconnects are very often of dimensionally minimum width. These narrow lines can cause large voltage drops if the voltage reference is required to provide load currents to various functions. In fact, circuit interconnects can exhibit a typical line resistance of 0.45 m/square (1 oz. Cu, for example). Force and sense connections, also referred to as Kelvin connections, offer a convenient method of eliminating the effects of voltage drops in circuit wires. Load currents flowing through wiring resistance produce an error (VERROR = R x IL) at the load. However, the Kelvin connection of Figure 35 overcomes the problem by including the wiring resistance within the forcing loop of the operational amplifier. Rev. C | Page 17 of 24 2 VIN VOUT 6 ADR435 U1 GND 4 R1 5.6k TRIM 5 R2 5.6k V+ OP1177 -2.5V U2 V- 04500-0-010 ADR43x +5V R1 10k ADR435 OP90 VOUT FORCE 04500-0-008 A1 RLW A1 OP191 + GND 4 VOUT SENSE VIN -10V Figure 37. +2.5 V and -2.5 V References Using ADR435 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 PROGRAMMABLE CURRENT SOURCE PROGRAMMABLE DAC REFERENCE VOLTAGE Together with a digital potentiometer and a Howland current pump, ADR435 forms the reference source for a programmable current as By employing a multichannel DAC, such as a quad, 12-bit voltage output DAC (AD7398), one of its internal DACs and an ADR43x voltage reference can be used as a common programmable VREFX for the rest of the DACs. The circuit configuration is shown in Figure 39. x VW (3) VREFA and (4) VREFB VREFC In addition, R1' and R2' must be equal to R1 and (R2A + R2B), respectively. In theory, R2B can be made as small as needed to achieve the necessary current within the A2 output current driving capability. In this example, OP2177 can deliver a maximum output current of 10 mA. Because the current pump employs both positive and negative feedback, C1 and C2 capacitors are needed to ensure that the negative feedback prevails and, therefore, avoids oscillation. This circuit also allows bidirectional current flow if the VA and VB inputs of the digital potentiometer are supplied with the dual-polarity references, as shown in Figure 38. R1' 50k 2 VREFD ADR435 VOUT 6 VDD 4 V+ B W OP2177 VSS VREFX R1 50k VSS A2 V- R2B 10 IL IL Figure 38. Programmable Current Source R2 VREF x 1 + R1 = 1 + D x R2 2N R1 (5) D is the decimal equivalent of the input code. N is the number of bits. VREF is the applied external reference. VREFX is the reference voltage for DAC A to DAC D. R2A 1k + VL - VOD = VREFX (DD) where: OP2177 A1 V- VOC = VREFX (DC) The relationship of VREFX to VREF depends on the digital code and the ratio of R1 and R2, given by R2' 1k C2 10pF A VOB = VREFX (DB) Figure 39. Programmable DAC Reference V+ U2 AD5232 ADR43x AD7398 04500-0-011 U1 VOUTD DAC D VDD TRIM 5 VOUTC DAC C C1 10pF VDD VOUTB DAC B D is the decimal equivalent of the input code. N is the number of bits. R2 0.1% VREF VIN where: GND R1 0.1% DAC A D VW = N xVREF 2 VIN VOUTA 04500-0-012 R2A + R2 B R1 IL = R2 B Table 10. VREFX vs. R1 and R2 R1, R2 R1 = R2 R1 = R2 R1 = R2 R1 = 3R2 R1 = 3R2 R1 = 3R2 Rev. C | Page 18 of 24 Digital Code 0000 0000 0000 1000 0000 0000 1111 1111 1111 0000 0000 0000 1000 0000 0000 1111 1111 1111 VREF 2 VREF 1.3 VREF VREF 4 VREF 1.6 VREF VREF ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 PRECISION BOOSTED OUTPUT REGULATOR PRECISION VOLTAGE REFERENCE FOR DATA CONVERTERS The ADR43x family has a number of features that make it ideal for use with ADCs and DACs. The exceptional low noise, tight temperature coefficient, and high accuracy characteristics make the ADR43x ideal for low noise applications such as cellular base station applications. Another example of an ADC for which the ADR431 is well suited is the AD7701. Figure 40 shows the ADR431 used as the precision reference for this converter. The AD7701 is a 16-bit ADC with on-chip digital filtering intended for the measurement of wide dynamic range and low frequency signals, such as those representing chemical, physical, or biological processes. It contains a charge-balancing (sigma-delta) ADC, a calibration microcontroller with on-chip static RAM, a clock oscillator, and a serial communications port. +5V ANALOG SUPPLY 0.1F N1 VIN 2 U1 VOUT 6 U2 V+ AD8601 TRIM 5 - V- VREF CS GND 4 BP/UP CAL CALIBRATE ANALOG INPUT ANALOG GROUND AIN AGND 04500-0-014 Figure 41. Precision Boosted Output Regulator 0.1F MODE DRDY ADR431 RANGES SELECT DVDD SLEEP DATA READY READ (TRANSMIT) SCLK SERIAL CLOCK SDATA SERIAL CLOCK CLKIN CLKOUT SC1 SC2 DGND 0.1F 0.1F AVSS DVSS 10F 04500-0-013 VOUT 6 0.1F + AD7701 2 VIN Figure 40. Voltage Reference for the AD7701 16-Bit ADC Rev. C | Page 19 of 24 VO 2N7002 ADR431 4 10F 0.1F RL 25 5V VIN GND AVDD -5V ANALOG SUPPLY A precision voltage output with boosted current capability can be realized with the circuit shown in Figure 41. In this circuit, U2 forces VO to be equal to VREF by regulating the turn-on of N1. Therefore, the load current is furnished by VIN. In this configuration, a 50 mA load is achievable at VIN of 5 V. Moderate heat is generated on the MOSFET, and higher current can be achieved with a replacement of the larger device. In addition, for a heavy capacitive load with step input, a buffer may be added at the output to enhance the transient response. ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 OUTLINE DIMENSIONS 3.00 BSC 8 5 4.90 BSC 3.00 BSC 4 PIN 1 0.65 BSC 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.80 0.60 0.40 8 0 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187AA Figure 42. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2440) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 43. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. C | Page 20 of 24 060506-A 4.00 (0.1574) 3.80 (0.1497) ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 ORDERING GUIDE Model Output Voltage (V) ADR430AR ADR430AR-REEL7 ADR430ARZ1 ADR430ARZ-REEL71 ADR430ARM ADR430ARM-REEL7 ADR430ARMZ1 ADR430ARMZ-REEL71 ADR430BR ADR430BR-REEL7 ADR430BRZ1 ADR430BRZ-REEL71 ADR431AR ADR431AR-REEL7 ADR431ARZ1 ADR431ARZ-REEL71 ADR431ARM ADR431ARM-REEL7 ADR431ARMZ1 ADR431ARMZ-REEL71 ADR431BR ADR431BR-REEL7 ADR431BRZ1 ADR431BRZ-REEL71 ADR433AR ADR433AR-REEL7 ADR433ARZ1 ADR433ARZ-REEL71 ADR433ARM ADR433ARM-REEL7 ADR433ARMZ1 ADR433ARMZ-REEL71 ADR433BR ADR433BR-REEL7 ADR433BRZ1 ADR433BRZ-REEL71 ADR434AR ADR434AR-REEL7 ADR434ARZ1 ADR434ARZ-REEL71 ADR434ARM ADR434ARM-REEL7 ADR434ARMZ1 ADR434ARMZ-REEL71 ADR434BR ADR434BR-REEL7 ADR434BRZ1 ADR434BRZ-REEL71 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 4.096 Initial Accuracy, (mV) 3 3 3 3 3 3 3 3 1 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 4 4 4 4 4 4 4 4 1.5 1.5 1.5 1.5 5 5 5 5 5 5 5 5 1.5 1.5 1.5 1.5 (%) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.04 0.04 0.04 0.04 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.05 0.05 0.05 0.05 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.04 0.04 0.04 0.04 Temperature Coefficient Package (ppm/C) 10 10 10 10 10 10 10 10 3 3 3 3 10 10 10 10 10 10 10 10 3 3 3 3 10 10 10 10 10 10 10 10 3 3 3 3 10 10 10 10 10 10 10 10 3 3 3 3 Package Description Ordering Quantity 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 98 1,000 98 1,000 50 1,000 50 1,000 98 1,000 98 1,000 98 1,000 98 1,000 50 1,000 50 1,000 98 1,000 98 1,000 98 1,000 98 1,000 50 1,000 50 1,000 98 1,000 98 1,000 98 1,000 98 1,000 50 1,000 50 1,000 98 1,000 98 1,000 Rev. C | Page 21 of 24 Branding RHA RHA R10 R10 RJA RJA R12 R12 RKA RKA R14 R14 RLA RLA R16 R16 Temperature Range Package Option -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 Model Output Voltage (V) ADR435AR ADR435AR-REEL7 ADR435ARZ 1 ADR435ARZ-REEL71 ADR435ARM ADR435ARM-REEL7 ADR435ARMZ1 ADR435ARMZ-REEL71 ADR435BR ADR435BR-REEL7 ADR435BRZ1 ADR435BRZ-REEL71 ADR439AR ADR439AR-REEL7 ADR439ARZ1 ADR439ARZ-REEL71 ADR439ARM ADR439ARM-REEL7 ADR439ARMZ1 ADR439ARMZ-REEL71 ADR439BR ADR439BR-REEL7 ADR439BRZ1 ADR439BRZ-REEL71 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 1 Initial Accuracy, (mV) 6 6 6 6 6 6 6 6 2 2 2 2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 2 2 2 2 (%) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.04 0.04 0.04 0.04 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.04 0.04 0.04 0.04 Temperature Coefficient Package (ppm/C) 10 10 10 10 10 10 10 10 3 3 3 3 10 10 10 10 10 10 10 10 3 3 3 3 Package Description Ordering Quantity 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 98 1,000 98 1,000 50 1,000 50 1,000 98 1,000 98 1,000 98 1,000 98 1,000 50 1,000 50 1,000 98 1,000 98 1,000 Z = Pb-free part. Rev. C | Page 22 of 24 Branding RMA RMA R18 R18 RNA RNA R1C R1C Temperature Range Package Option -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 NOTES Rev. C | Page 23 of 24 ADR430/ADR431/ADR433/ADR434/ADR435/ADR439 NOTES (c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04500-0-8/06(C) Rev. C | Page 24 of 24