MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
General Description
The MAX153 high-speed, microprocessor (µP)-compatible,
8-bit analog-to-digital converter (ADC) uses a half-flash
technique to achieve a 660ns conversion time, and digitiz-
es at a rate of 1M samples per second (Msps). It operates
with single +5V or dual ±5V supplies and accepts either
unipolar or bipolar inputs. A POWERDN (power-down)
pin reduces current consumption to a typical value of 1µA
(with 5V supply). The part returns from power-down to
normal operating mode in less than 200ns, providing large
reductions in supply current in applications with burst-
mode input signals.
The MAX153 is DC and dynamically tested. Its µP interface
appears as a memory location or input/output port that
requires no external interface logic. The data outputs use
latched, three-state buffered circuitry for direct connection
to a µP data bus or system input port. The ADC’s input/
reference arrangement enables ratiometric operation.
Applications
● CellularTelephones
● PortableRadios
● Battery-PoweredSystems
● Burst-ModeDataAcquisition
● Digital-SignalProcessing
● Telecommunications
● High-SpeedServoLoops
Features
● 660nsConversionTime
● Power-Up/Power-Downin200ns
● InternalTrack/Hold
● 1MspsThroughput
● LowPower
40mW (Operating Mode)
5µW (Power-Down Mode)
● 1MHzFull-PowerBandwidth
● 20-PinNarrowDIP,SO,andSSOPPackages
● NoExternalClockRequired
● Unipolar/BipolarInputs
● Single+5VorDual±5VSupplies
● RatiometricReferenceInputs
19-4740; Rev 2; 1/12
Ordering Information appears at end of data sheet.
For related parts and recommended products to use with this part, refer
to www.maximintegrated.com/MAX153.related.
Functional Diagram
4-BIT
FLASH
ADC
4-BIT
FLASH
ADC
(4 LSB)
TIMING AND CONTROL
CIRCUITRY
MAX153
GND MODE WR/RDY CS RD INT VSS
THREE-
STATE
DRIVERS
D0–D7
DATA
OUT
PINS
2–5,
14–17
18
12
11
VREF+
VREF-
1
VIN
PWRDN
4-BIT
DAC
VREF+
16
7 6 3 7 7 19
VDD
20
10
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
2
Electrical Characteristics
(VDD = +5V ±5%, VGND=0V;UnipolarInputRange:VSS=GND,VREF+ = 5V, VREF-=GND;BipolarInputRange:VSS = -5V ±5%,
VREF+ = 2.5V, VREF-=-2.5V;100%productiontested,specificationsaregivenforRDMode(MODE=GND),TA = TMIN to TMAX,
unless otherwise noted.)
(AllvoltagesreferencedtoGND.)
VDD ..........................................................................-0.3V to +7V
VSS ..........................................................................+0.3V to -7V
Digital Input Voltage ............................... +0.3V to (VDD + 0.3V)
Digital Output Voltage.............................. -0.3V to (VDD + 0.3V)
VREF+, VREF+, VIN ........................(VSS - 0.3V) to (VDD + 0.3V)
Continuous Power Dissipation (TA = +70°C)
PDIP (derate 11.11mW/°C above + 70°C). .................889mW
SO(W)(derate10.00mW/°Cabove+70°C..................800mW
SSOP(derate8.00mW/°Cabove+70°C) ...................640mW
OperatingTemperatureRanges
MAX153C ...................................................................0 to +70°C
MAX153E ........................................................... -40°C to +85°C
StorageTemperatureRange ............................ -65°C to +150°C
LeadTemperature(soldering,10s) .................................+300°C
SolderingTemperature(reflow) ....................................... +260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Absolute Maximum Ratings
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
ACCURACY
Resolution N 8Bits
TotalUnadjustedError TUE Unipolarrange ±1 LSB
DifferentialNonlinearity DNL Nomissingcodesguaranteed ±1 LSB
Zero-CodeError Bipolarinputrange ±1 LSB
Full-ScaleError Bipolarinputrange ±1 LSB
DYNAMIC SPECIFICATIONS (Note 1)
Signal-to-NoisePlusDistortion
Noise SINAD fSAMPLE=1MHz,fIN=195.8kHz 45 dB
TotalHarmonicDistortion THD fSAMPLE=1MHz,fIN=195.8kHz -50 dB
PeakHarmonicorSpurious
Noise fSAMPLE=1MHz,fIN=195.8kHz -50 dB
ConversionTime(WR-RDMode)
(Note2) tCWR TA = +25°C, tRD < tINTL, CL=20pF 660 ns
ConversionTime(RDMode) tCRD
TA = +25°C 700 ns
TA = TMIN to TMAX 875
Full-PowerBandwidth VIN = 5VP-P 1MHz
InputSlewRate 3.14 15 V/µs
ANALOG INPUT
InputVoltageRange VIN VREF- VREF+ V
InputLeakageCurrent IIN -5V≤VIN≤+5V ±3 µA
Input Capacitance CIN 22 pF
REFERENCE INPUT
ReferenceResistance RREF 124kΩ
VREF+InputVoltageRange VREF- VDD V
VREF-InputVoltageRange VSS VREF+ V
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
3
Electrical Characteristics (continued)
(VDD = +5V ±5%, VGND=0V;UnipolarInputRange:VSS=GND,VREF+ = 5V, VREF-=GND;BipolarInputRange:VSS = -5V ±5%,
VREF+ = 2.5V, VREF-=-2.5V;100%productiontested,specificationsaregivenforRDMode(MODE=GND),TA = TMIN to TMAX,
unless otherwise noted.)
Note 1: Bipolarinputrange,VIN = ±2.5VP-P.WR-RDmode.
Note 2: SeeFigure1forloadcircuit.Parameterdefinedasthetimerequiredfortheoutputtocross+0.8Vor+2.4V.
Note 3: Guaranteed by design.
Note 4: Tested with CS, RD, PWRDNatCMOSlogiclevels.Power-downcurrentincreasestoseveralhundred)µAatTTLlevels.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
LOGIC INPUTS
InputHighVoltage VINH
CS, WR, RD, PWRDN 2.4 V
MODE 3.5
InputLowVoltage VINL
CS, WR, RD, PWRDN 0.8 V
MODE 1.5
InputHighCurrent IINH
CS, RD, PWRDN 1
µAWR 3
MODE 50 200
InputLowCurrent IINL CS, WR, RD, PWRDN ±1 µA
InputCapacitance(Note3) CIN CS, WR, RD, PWRDN,MODE 5 8 pF
LOGIC OUTPUTS
OutputLowVoltage VOL
ISINK = 1.6mA, INT, D0–D7 0.4 V
RDY,ISINK = 2.6mA 0.4
OutputHighVoltage VOH ISOURCE = 360µA, INT, D0–D7 4 V
FloatingStateCurrent ILKG D0–D7,RDY ±3 µA
FloatingCapacitance(Note3) COUT D7–D0,RDY 5 8 pF
POWER REQUIREMENTS
PositiveSupplyVoltage VDD ±5%forspeciedaccuracy 5 V
NegativeSupplyVoltage
(UnipolarOperation) VSS GND V
NegativeSupplyVoltage
(BipolarOperation) VSS ±5%forspeciedaccuracy -5 V
VDDSupplyCurrent IDD
VCS = VRD = 0V,
VPWRDN = 5V
MAX153C 8 15 mA
MAX153E 8 20
Power-Down VDD Current VCS = VRD = 5V, VPWRDN=0V(Note4) 1 100 µA
VSSSupplyCurrent ISS VCS = VRD = 0V, VPWRDN = 5V 25 100 µA
Power-Down VSS Current VCS = VRD = 5V, VPWRDN = 0V 12 100 µA
Power-SupplyRejection PSR VDD = 4.75V to 5.25V, VREF+ = 4.75V
(max), unipolar mode ±1/16 ±1/4 LSB
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
4
TIMING CHARACTERISTICS (Note 5)
(VDD = +5V ±5%, VSS=0VforUnipolarInputRange,VSS=-5V±5%forBipolarInputRange,100%productiontested,TA = +25°C,
unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CS TO RD/WRSetupTime tCSS 0 ns
CS to RD/WRHoldTime tCSH 0 ns
CS to RDYDelay(Note6) tRDY
CL=50pF 70 ns
TA = TMIN to TMAX, CL=50pF 85
Data-AccessTime(RDMode)
(Note2) tACC0
CL=20pF tCRD + 25
ns
TA = TMIN to TMAX, CL=20pF tCRD + 30
CL=100pF tCRD + 50
TA = TMIN to TMAX, CL=100pF tCRD + 65
RD to INTDelay(RDMode) tINTH
CL=50pF 50 80 ns
TA = TMIN to TMAX, CL=50pF 85
Data-HoldTime(Note7) tDH
60 ns
TA = TMIN to TMAX 70
DelayTimeBetween
Conversions (Acquisition Time) tP
160 ns
TA = TMIN to TMAX 185
Write Pulse Width tWR
0.250 10 µs
TA = TMIN to TMAX 0.280 10
DelayTimeBetweenWR
and RD Pulses tRD
250 ns
TA = TMIN to TMAX 350
RDPulseWidth(WR-RD Mode)
Determined by tACC1 tREAD1 Figure6 160 ns
TA = TMIN to TMAX,Figure6 205
Data-Access Time
(WR-RDMode(Note2)
tRD < tINL
tACC1
CL=20pF,Figure6 160
ns
TA = TMIN to TMAX, CL=20pF,Figure6 205
CL=100pF,Figure6 185
TA = TMIN to TMAX, CL=100pF,Figure6 235
RD to INT Delay tRI
150 ns
TA = TMIN to TMAX 185
WR to INT Delay tINTL
CL=50pF 380 500 ns
TA = TMIN to TMAX, CL=50pF 610
RDPulseWidth(WR-RDMode)
Determinted by tACC2
tRD > tINTL
tREAD2
Figure5 65
ns
TA = TMIN to TMAX,Figure5 75
Data-Access Time
(WR-RDMode)(Note2)
tRD > tINTL
tACC2
CL=20pF,Figure5 65
ns
TA = TMIN to TMAX, CL=20pF,Figure5 75
CL=100pF,Figure5 90
TA = TMIN to TMAX, CL=100pF,Figure5 110
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
5
TIMING CHARACTERISTICS (Note 5) (continued)
(VDD = +5V ±5%, VSS=0VforUnipolarInputRange,VSS=-5V±5%forBipolarInputRange,100%productiontested,TA = +25°C,
unless otherwise noted.)
Note 5: Input control signals are specified with tr = tt = 5ns, 10% to 90% of +5V and timed from a 1.6V voltage level.
Note 6:R
L=5.1kΩpullupresistor.
Note 7: SeeFigure2forloadcircuit.Parameterdefinedasthetimerequiredfordatalinestochange0.5V.
Figure 1. Load Circuits for Data-Access Time Test Figure 2. Load Circuits for Data-Hold Time Test
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
WR to INT Delay
(Pipelined Mode) tIHWR
CL=50pF 80 ns
TA = TMIN to TMAX, CL=50pF 100
Data-Access Time After
INT(Note2) tID
CL=20pF 30
ns
TA = TMIN to TMAX, CL=20pF 35
CL=100pF 45
TA = TMIN to TMAX, CL=100pF 60
CL
3kΩ
DGND
DN
A
. HIGH-Z TO VOH B. HIGH-Z TO VOL
CL
3kΩ
DGND
DN
+5V
10pF3kΩ
DGND
DN
A
. VOH TO HIGH-Z B. VOL TO HIGH-Z
10pF
3kΩ
DGND
DN
+5V
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
Maxim Integrated
6
www.maximintegrated.com
Typical Operating Characteristics
CONVERSION TIME
vs. AMBIENT TEMPERATURE
MAX153 toc01
TEMPERATURE (°C)
tCRD (NORMALIZED TO VALUE AT +25°C)
12010060 80-20 0 20 40-40
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
0.6
-60 140
VDD = +5.25V
VDD = +4.75V
VDD = +5V
SIGNAL-TO-NOISE RATIO
MAX153 toc03
-100
0 500400300200100
-80
0
-20
-40
-60
FREQUENCY (kHz)
TA = +25°C
INPUT FREQUENCY
= 195.8ksps (±2.5V)
SAMPLE FREQUENCY
= 1MHz
SNR = 49.1dB
RATIO (dB)
EFFECTIVE BITS vs. INPUT
FREQUENCY, WR-RD MODE
MAX153 toc02
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
FREQUENCY (kHz)
1k10010
EFFECTIVE BITS
ROOM
COLD -55°C
ISAMPLE = 1MHz
VIN = ±2.5V
HOT +125°C
INTERMODULATION DISTORTION
MAX153 toc04
-100
0 25020015010050
-80
0
-20
-40
-60
FREQUENCY (kHz)
TA = +25°C INPUT FREQUENCY
= 94.97kHz
= 84.72kHz (±2.5V)
SAMPLE FREQUENCY
= 500kHz
IMD: 2ND-ORDER TERMS
= -66.2dB
3RD-OREDER TERMS
= -60.0dB
RATIO (dB)
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
7
Pin Description
Pin Conguration
*See the Digital Interface section.
PIN NAME FUNCTION
1 VIN AnalogInput.RangeisVREF- > VIN < VREF+.
2 D0 Three-StateDataOutput(LSB)
3–5 D1–D3 Three-StateDataOutputs
6WR/RDY WRITEControlInput/READYStatusOutput*
7MODE MODESelectionInput.Internallypulledlowwitha50µAcurrentsource.
MODE=0activatesreadmode.
MODE=1activeswrite-readmode*
8RD READ Input. Must be low to access data*.
9INT INTERRUPT Output goes low to indicate end of conversion*.
10 GND Ground
11 VREF- LowerLimitofReferenceSpan.Setsthezero-codevoltage.RangeisVSS < VREF-< VREF+.
12 VREF+ UpperLimittoReferenceSpan.Setsthefull-scaleinputvoltage.RangeisVREF-< VREF+< VDD.
13 CS CHIP SELECT Input. Must be low for the device to recognize WR or RD inputs.
14–16 D4–D6 Three-StateDataOutputs
17 D7 Three-StateDataOutput(MSB)
18 PWRDN POWERDOWNInput.Reducessupplycurrentwhenlow.CS must be high during power-down.
19 VSS NegativeSupply.Unipolar:VSS=0V,Bipolar:VSS= -5V.
20 VDD PositiveSupply,+5V
20
19
18
17
16
15
13
1
2
3
4
5
6
8
VDD
VSS
PWRDN
D7 (MSB)
D2
D1
D0 (LSB)
VIN
TOP VIEW
MAX153
D6
D5
CS
RD
WR/RDY
14
7D4
MODE
11
10 VREF-
GND
12
9VREF+
INT
D3
PDIP/SO(W)/SSOP
+
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
8
Detailed Description
Converter Operation
The MAX153 uses a half-flash conversion technique (see
the Functional Diagram) in which two 4-bit flash ADC
sectionsachievean8-bitresult. Using 15 comparators,
theflashADCcomparestheunknowninputvoltagetothe
reference ladder and provides the upper 4 data bits.
An internal digital-to-analog converter (DAC) uses the 4
mostsignificantbits(MSBs)togeneratetheanalogresult
from the first flash conversion and a residue voltage that
isthedifferencebetweentheunknowninputandtheDAC
voltage. The residue is then compared again with the
flashcomparatorstoobtainthelower4databits(LSBs).
Power-Down Mode
In burst-mode or low sample-rate applications, the
MAX153 can be shut down between conversions, reduc-
ingsupplycurrenttomicroamplevels.ATTL/CMOSlog-
ic-low on the PWRDN pin shuts the device down, reduc-
ing supply current to typically 1µA when powered from a
single 5V supply. CS must be high when power- down is
used. A logic-high on PWRDNwakesuptheMAX153.A
new conversion can be started (WR asserted low) within
360ns of the PWRDN pin being driven high 200ns to
powerupplus160nsfortrack/holdacquisition).Ifpower-
down mode is not required, connect PWRDN to VDD.
Once the MAX153 is in power-down mode, lowest sup-
plycurrentis drawnwithMODE low(RDmode)dueto
an internal 50µA pulldown resistor at this pin. CS must
remain high during shutdown because the MAX153 may
attempt to start a conversion that it cannot complete. In
addition, for minimum current consumption, other digital
inputs should remain stable in power-down. RDY, an
open-drainoutput(inRDmode),willthenfallandremain
low throughout. Power-down, sinking additional supply
current unless CSremainshigh.SeetheReference sec-
tion for information on reducing reference current during
power-down.
Digital Interface
The MAX153 has two basic interface modes set by the
statusof the MODEinput pin. When MODE is low, the
converter is in the RD mode; when MODE is high, the
converterissetupfortheWR-RDmode.
Read Mode (MODE = 0)
InRDmode,conversioncontrolanddataaccessarecon-
trolled by the RDinput(Figure3).Thecomparatorinputs
track the analog input voltage for the duration of tP. A
minimum of 160ns is required for the input to be acquired.
A conversion is initiated by driving RD low. With µPs that
can be forced into a wait state, hold RD low until output
data appears. The µP starts the conversion, waits, and
then reads data with a single read instruction.
WR/RDY is configured as a status output (RDY) in RD
mode, where it can drive the ready or wait input of a µP.
RDYisanopen-collectoroutput(withnointernalpullup)
that goes low after the falling edge of CS and goes high
at the end of the conversion. If not used, the WR/RDYpin
can be left unconnected. The INT output goes low at the
end of the conversion and returns high on the rising edge
of CS or RD.
Write-Read Mode (MODE = 1)
Figures 4 and 5 show the operating sequence for the
write-read(WR-RD)mode.Thecomparatorinputstrack
the analog input voltage for the duration of tP. A minimum
of 160ns is required for the input voltage to be acquired.
The conversion is initiated by a falling edge of WR. When
WRreturnshigh,the4MSBsflashresultislatchedinto
theoutputbuffersandthe4LSBsconversionbegins.INT
goes low about 380ns later, indicating conversion end,
and the lower 4 data bits are latched into the output buf-
fers.Thedataisthenaccessible65nsto130nsafterRD
goes low (see the Timing Characteristics).
If an externally controlled conversion time is required,
drive RD low 250ns after WR goes high. This latches
the lower 4 data bits and outputs the conversion result
on D0–07. A minimum 160ns delay is required from INT
going low to the start of another conversion (WR going
low).
Options for reading data from the converter include the
following:
Using Internal Delay
The µP waits for the INT output to go low before reading
thedata(Figure4).INT typically goes low 380ns after the
rising edge of WR, indicating the conversion is complete,
and the result is available in the output latch. With CS low,
data outputs D0–D7 can be accessed by pulling RD low.
INT is then reset by the rising edge of CS or RD.
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
9
Fastest Conversion: Reading Before Delay
An external method of controlling the conversion time is
shown in Figure 5. The internally generated delay tINTL
varies slightly with temperature and supply voltage, and can
be overridden with RD to achieve the fastest conversion
time. INT is ignored, and RD is brought low typically 250ns
after the rising edge of WR. This completes the conversion
and enables the output buffers (D0–D7) that contain the
conversion result. INT also goes low after the falling edge
of RD and is reset on the rising edge of RD or CS. The total
conversiontimeistherefore:
tCWR = tWR(250ns) + tCSH (0ns) to tRD (250ns) + tACC1
(160ns) = 660ns.
Pipelined Operation
Besides the two standard WR-RD mode options, pipe-
lined operation can be achieved by connecting WR and
RDtogether(Figure6).WithCS low, driving WR and RD
low initiates a conversion and reads the result of the previ-
ous conversion concurrently.
Analog Considerations
Reference
Figures7a–7cshowsomereferenceconnections.VREF+
and VREF- inputs set the full-scale and zero-input voltages
of the ADC. The voltage at VREF- defines the input that
produces an output code of all zeros, and the voltage at
VREF+ defines the input that produces an output code of
all ones.
Figure 3. RD Mode Timing (MODE = 0) Figure 5. WR-RD Mode Timing (tRD > tINTL), Fastest Operating
Mode (MODE = 1)
Figure 4. WR-RD Mode Timing (tRD > tINTL) (MODE = 1) Figure 6. Pipelined Mode Timing (WR = RD) (MODE = 1)
tP
tINTH
tCSH
tDH
tCRD
tACC0
WITH EXTERNAL PULLUP
tCSS
tRDY
CS
RD
INT
D0–D
7V
ALID DATA
RDY
VALID DATA
tACC2 tDH
tINTH
tCSH
tWR
tCSS
CS
WR
INT
D0–D7
RD
tRD
tP
tREAD2
tINTL
tCWR
tCSH
tP
tRD
tCSS
tRI
tREAD1
tACC1 tDH
tINTH
tWR
DATA VALID
CS
WR
RD
INT
D0–D7
tIHWR
tID
tWR
tP
NEW DATAOLD DATA
RD, WR
INT
D0–D7
tINTL
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
10
The internal resistances from VREF+ and VREF- may be
aslowas1kΩ.Sincecurrentisstilldrawnbythereference
inputs during power-down, reference supply current can
be reduced during shutdown by using the circuit shown
inFigure7d.Alogic-leveln-channelMOSFET,connected
between VREF- and ground, disconnects the reference
load when the ADC enters power-down. (PWRDN = low).
TheFETshouldhavenomorethan0.5Ωofon-resistance
to maintain accuracy.
Bypassing
A 4.7µF electrolytic in parallel with a 0.1µF ceramic
capacitor should be used to bypass VDDtoGND.These
capacitors should have minimal lead length.
The reference inputs should be bypassed with 0.1µF
capacitors,asshowninFigures7a–7c.
Input Current
Figure 8 shows the equivalent circuit of the converter
input. When the conversion starts and WR is low, VIN is
connectedto160.6pFcapacitors.Duringthisacquisition
phase, the input capacitors charge to the input voltage
through the resistance of the internal analog switches
(about 2kΩ). In addition, about 12pF of stray capaci-
tance must be charged. The input can be modeled as an
equivalentRCnetwork(Figure9).Assourceimpedance
increases,thecapacitorstakelongertocharge.
Thetypical22pFinputcapacitanceallowssourceresis-
tanceashighas2.2kΩwithoutsetupproblems.Forlarger
resistances, the acquisition time (tP) must be increased
Figure 7a. Power Supply as Reference
Figure 7b. External Reference, +2.5V Full Scale
Figure 7c. Input Not Referenced to GND
Figure 7d. An n-Channel MOSFET Switches Off the Reference
Load During Power-Down
GNDVIN-
10
VIN
VIN+
1
VDD
VREF+
VREF-
20
12
4.7µF0.1µF
+5V
11
MAX153
0.1µF
+2.5V
20
4.7µF0.1µF
+5V
GNDVIN-
10
VIN
VIN+
1
VDD
VREF+
VREF-
12
11
MAX153
MAX584
+2.5V
VIN
VIN+
VIN-
1
GND
VDD
VREF+
VREF-
10
20
12
4.7µF0.1µF
0.1µF
+5V
11
MAX153
0.1µF
*
*CURRENT PATH MUST STILL
EXIST FROM VIN- TO GND
MAX584
VDD
VIN+
PWRDN
20
VREF+
VREF-
PWRDN
12
11
0.1µF
0.1µF
18
MAX153
0.1µF
N-FET
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
11
Conversion Rate
The maximum sampling rate (fMAX) for the MAX153 is
achievedintheWR-RDmode(tRD < tINTL) and is calcu-
latedasfollows:
MAX WR RD RI P
MAX
MAX
1
ft t tt
1
f250ns 250ns 150ns 165ns
f 1.23MHz
=+ ++
=+++
=
where tWR = Write pulse width
tRD = Delay between WR and RD pulses
tRI = RD to INT delay
tP = Delay time between conversions
Signal-to-Noise Ratio and Effective
Number of Bits
Signal-to-noiseratio(SNR)istheratiooftheRMSampli-
tude of the fundamental input frequency to the RMS
amplitude of all other analog-to-digital output values. The
output band is limited to one-half the A/D sample (conver-
sion) rate. This ratio usually includes distortion as well as
noisecomponents.Forthisreason,theratioissometimes
referred to as signal-to-noise plus distortion.
The theoretical minimum A/D noise is caused by quanti-
zationerrorandresultsdirectlyfromtheADC’sresolution:
SNR=(6.02N+1.76)dB,whereNisthenumberofbits
of resolution. Therefore, a perfect 8-bit ADC can do no
betterthan50dB.
The FFT plot (Typical Operating Characteristics) shows
theresultofsamplingapure200kHzsinusoidata1MHz
rate.ThisFFTplotoftheoutputshowstheoutputlevelin
various spectral bands.
The effective resolution, or effective number of bits, the
ADC provides can be measured by transposing the
equation that converts resolution to SNR: N = (SNR -
1.76)/6.02.
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS
sum of all harmonics of the input signal (in the frequency
band above DC and below one-half the sample rate) to
thefundamentalitself.Thisisexpressedas:
2 22 2
2 34 N
1
(V + V +V + ... +V )
THD 20log V


=



where V1isthefundamentalRMSamplitude,andV2 to
VNaretheamplitudesofthe2ndthroughNthharmonics.
Peak Harmonic or Spurious Noise
Peakharmonicorspuriousnoiseistheratioofthefunda-
mentalRMSamplitudetotheamplitudeofthenextlargest
spectral component (in the frequency band above DC and
belowone-halfthesamplerate).Usuallythispeakoccurs
at some harmonic of the input frequency, but if the ADC is
exceptionallylinear,itmayoccuronlyatarandompeak
in the ADC’s noise floor.
Intermodulation Distortion
AnFFTplotofintermodulationdistortion(IMD)isgener-
ated by sampling an analog input applied to the ADC. This
input consists of very low distortion sine waves at two
frequencies. A 2048 point plot for IMD of the MAX153 is
shown in the Typical Operating Characteristics.
Figure 8. Equivalent Input Circuit Figure 9. RC Network Equivalent Input Model
VIN VIN
RON
RIN 1
C
MAX153
VIN VIN 2kΩR 1
12pF
MAX153
10pF
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
www.maximintegrated.com Maxim Integrated
12
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages.Note
thata“+”,“#”,or“-”inthepackagecodeindicatesRoHSstatus
only.Packagedrawingsmayshowadifferentsuffixcharacter,but
thedrawingpertainstothepackageregardlessofRoHSstatus.
Chip Information
PROCESS:BiCMOS
+Denotes a lead(Pb)-free/RoHS-compliant package.
*Contact factory for dice specifications.
**Contact factory for availability of SSOP packages
Ordering Information
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND PATTERN
NO.
20 PDIP P20+3 21-0043
20SO(W) W20+2 21-0042 90-0108
20SSOP A20+1 21-0056 90-0094
PART TEMP RANGE PIN-PACKAGE
MAX153CAP+ 0°C to +70°C 20SSOP**
MAX153CPP+ 0°C to +70°C 20 PDIP
MAX153CWP+ 0°C to +70°C 20SO(W)
MAX153C/D 0°C to +70°C Dice*
MAX153EAP+ -40°C to +85°C 20SSOP**
MAX153EPP+ -40°C to +85°C 20 PDIP
MAX153EWP+ -40°C to +85°C 20WideSO
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
MAX153 1Msps, µP-Compatible,
8-Bit ADC with 1µA Power-Down
© 2012 Maxim Integrated Products, Inc.
13
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
0 7/92 Initial release
1 10/93 Corrected die topography 11
2 1/12 Removedmilitarypackages 1–5
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.