©2002 Teccor Electronics i http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Thyristor
Product
Catalog
Teccor Electronics
1800 Hurd Drive
Irving, Texas 75038
United States of America
Phone: +1 972-580-7777
Fax: +1 972-550-1309
Website: http://www.teccor.com
E-mail: power.techsales@teccor.com
http://www.teccor.com ii ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Teccor Electronics reserves the right to make changes at any time in order to improve designs and to supply the best products possible.
The information in this catalog has been carefully checked and is believed to be accurate and reliable; however, no liability of any type
shall be incurred by Teccor for the use of the circuits or devices described in this publication. Furthermore, no license of any patent
rights is implied or given to any purchaser.
Teccor Electronics is the proprietor of the QUADRAC® trademark. is a registered trademark of Underwriters Laborato-
ries, Inc. All other brand names may be trademarks of their respective companies. To conserve space in this catalog, the
trademark sign (®) is omitted.
©2002 Teccor Electronics iii http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Contents
Product Selection Guide
Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vi
Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii
Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - viii
Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x
Quality and Reliability Assurance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -xii
Standard Terms and Conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - xiv
Data Sheets
V-I Characteristics of Thyristor Devices - - - - - - - - - - - - - - - - - - - - - - - - E0-2
Electrical Parameter Terminology - - - - - - - - - - - - - - - - - - - - - - - - - - - - E0-3
Electrical Specifications
Sensitive Triacs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E1
Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E2
QUADRACs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E3
Alternistor Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E4
Sensitive SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E5
SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E6
Rectifiers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E7
Diacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E8
SIDAC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E9
Mechanical Specifications
Package Dimensions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M1
Lead Form Dimensions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M2
Packing Options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M3
Application Notes
Fundamental Characteristics of Thyristors - - - - - - - - - - - - - - - - - - - AN1001
Gating, Latching, and Holding of SCRs and Triacs - - - - - - - - - - - - - AN1002
Phase Control Using Thyristors- - - - - - - - - - - - - - - - - - - - - - - - - - - AN1003
Mounting and Handling of Semiconductor Devices - - - - - - - - - - - - - AN1004
Surface Mount Soldering Recommendations - - - - - - - - - - - - - - - - - AN1005
Testing Teccor Semiconductor Devices
Using Curve Tracers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AN1006
Thyristors Used As AC Static Switches and Relays - - - - - - - - - - - - AN1007
Explanation of Maximum Ratings and Characteristics for Thyristors - AN1008
Miscellaneous Design Tips and Facts - - - - - - - - - - - - - - - - - - - - - - AN1009
Thyristors for Ignition of Fluorescent Lamps - - - - - - - - - - - - - - - - - - AN1010
Appendix
Cross Reference Guide - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A1
Part Numbers Index- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A27
http://www.teccor.com iv ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
©2002 Teccor Electronics P - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Product Selection Guide
Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 2
Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 3
Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 4
Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 6
Quality and Reliability Assurance - - - - - - - - - - - - - - - - - - - - - - - - - P 8
Standard Terms and Conditions - - - - - - - - - - - - - - - - - - - - - - - - - P 10
http://www.teccor.com P - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog(972) 580-7777
Product Descriptions
Thyristors
A thyristor is any semiconductor switch with a bi-stable action
depending on p-n-p-n regenerative feedback. Thyristors are nor-
mally two- or three-terminal devices for either unidirectional or bi-
directional circuit configurations. Thyristors can have many forms,
but they have certain commonalities. All thyristors are solid state
switches that are normally open circuits (very high impedance),
capable of withstanding rated blocking/off-state voltage until trig-
gered to on state. When triggered to on state, thyristors become a
low-impedance current path until principle current either stops or
drops below a minimum holding level. After a thyristor is triggered
to on-state condition, the trigger current can be removed without
turning off the device. Thyristors are used to control the flow of
electrical currents in applications including:
Home appliances (lighting, heating, temperature control, alarm
activation, fan speed)
Electrical tools (for controlled actions such as motor speed, sta-
pling event, battery charging)
Outdoor equipment (water sprinklers, gas engine ignition, elec-
tronic displays, area lighting, sports equipment, physical fitness)
Sensitive Triacs
Teccor's sensitive gate triacs are AC bidirectional silicon
switches that provide guaranteed gate trigger current levels in
Quadrants I, II, III, and IV. Interfacing to microprocessors or other
equipment with single polarity gate triggering is made possible with
sensitive gate triacs. Gate triggering currents of 3 mA, 5 mA,
10 mA, or 20 mA may be specified.
Sensitive gate triacs are capable of controlling AC load currents
from 0.8 A to 8 A rms and can withstand operating voltages from
200 V to 600 V.
Triacs
Teccor's triac products are bidirectional AC switches, capable of
controlling loads from 0.8 A to 35 A rms with 10 mA, 25 mA, and
50 mA IGT in operating Quadrants I, II and III.
Triacs are useful in full-wave AC applications to control AC power
either through full-cycle switching or phase control of current to the
load element. These triacs are rated to block voltage in the “OFF”
condition from 200 V minimum with selected products capable of
1000 V operation. Typical applications include motor speed con-
trols, heater controls, and incandescent light controls.
Quadrac
Quadrac devices, originally developed by Teccor, are triacs and
alternistor triacs with a diac trigger mounted inside the same pack-
age. These devices save the user the expense and assembly time
of buying a discrete diac and assembling in conjunction with a
gated triac.
The Quadrac is offered in capacities from 4 A to 15 A rms and volt-
ages from 200 V ac to 600 V ac.
Alternistor Triacs
The Teccor alternistor is specifically designed for applications
required to switch highly inductive loads. The design of this special
chip effectively offers the same performance as two thyristors
(SCRs) wired inverse parallel (back-to-back).
This new chip construction provides the equivalent of two electri-
cally-separate SCR structures, providing enhanced dv/dt charac-
teristics while retaining the advantages of a single-chip device.
Teccor manufactures 6 A to 40 A alternistors with blocking voltage
rating from 200 V to 1000 V. Alternistors are offered in TO-220,
TO-218, and TO-218X packages with isolated and non-isolated
versions.
Sensitive SCRs
Teccor's sensitive gate SCRs are silicon-controlled rectifiers repre-
senting the best in design, performance, and packaging techniques
for low- and medium-current applications.
Anode currents of 0.8 A to 10 A rms can be controlled by sensitive
gate SCRs with gate drive currents ranging from 12 µA to 500 µA.
Sensitive gate SCRs are ideally suited for interfacing to integrated
circuits or in applications where high current load requirements and
limited gate drive current capabilities exist. Examples include igni-
tion circuits, motor controls, and DC latching for alarms in smoke
detectors. Sensitive gate SCRs are available in voltage ratings to
600 V ac.
SCRs
Teccor's SCR products are half-wave, silicon-controlled rectifiers
that represent the state of the art in design and performance.
Load current capabilities range from 1 A to 70 A rms, and voltages
from 200 V to 1000 V may be specified to meet a variety of appli-
cation needs.
Because of its unidirectional switching capability, the SCR is used
in circuits where high surge currents or latching action is required.
It may also be used for half-wave-type circuits where gate-con-
trolled rectification action is required. Applications include crow-
bars in power supplies, camera flash units, smoke alarms, motor
controls, battery chargers, and engine ignition.
Surge current ratings are available from 30 A in the TO-92 packag-
ing to 950 A in the TO-218X package.
Rectifiers
Teccor manufactures 15 A to 25 A rms rectifiers with voltages
rated from 200 V to 1000 V. Due to the electrically isolated TO-220
package, these rectifiers may be used in common anode or com-
mon cathode circuits using only one part type, thereby simplifying
stock requirements.
Diacs
Diacs are trigger devices used in phase control circuits to provide
gate pulses to a triac or SCR. They are voltage-triggered bidirec-
tional silicon devices housed in DO-35 glass axial lead packages
and DO-214 surface mount packages.
Diac voltage selections from 27 V to 45 V provide trigger pulses
closely matched in symmetry at the positive and negative break-
over points to minimize DC component in the load circuit.
Some applications include gate triggers for light controls, dimmers,
power pulse circuits, voltage references in AC power circuits, and
triac triggers in motor speed controls.
Sidacs
Sidacs represent a unique set of thyristor qualities. The sidac is a
bidirectional voltage triggered switch. Some characteristics of this
device include a normal 95 V to 330 V switching point, negative
resistance range, latching characteristics at turn-on, and a low on-
state voltage drop.
One-cycle surge current capability up to 20 A makes the sidac an
ideal product for dumping charged capacitors through an inductor
in order to generate high-voltage pulses. Applications include light
controls, high-pressure sodium lamp starters, power oscillators,
and high-voltage power supplies.
©2002 Teccor Electronics P - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Circuit Requirement Diagram
BILATERAL VOLTAGE
SWITCH
RECTIFIER REVERSE BLOCKING
THYRISTOR
BIDIRECTIONAL
THYRISTOR
BILATERAL
VOLTAGE TRIGGER
SIDAC * RECTIFIER * DIAC *
GATE CONTROL
DIAC TRIGGER DIRECT
GATE CURRENT
12-500 µA 10-50 mA
SCR *SCR (Sensitive) * QUADRANT OPERATION
(See Quadrant Chart on Data Sheet)
I I I I I I I I I I I I I V
GATE CURRENT
10-100 mA
GATE CURRENT
3-20 mA
SENSITIVE TRIAC *
TRIAC *
OPTIONS
INTERNAL EXTERNAL
DIACS *
QUADRAC *
ALTERNISTOR TRIAC *
* For detailed information, see specific data sheet in product catalog.
http://www.teccor.com P - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog(972) 580-7777
Product Packages
* No center lead on TO-92 Sidacs.
Package Code
Isolated Mounting Tab
GY S C E L K J P
Product
Type
Current
(Amps) DO-15 DO-35 DO-214 Compak TO-92 * TO-220 TO-218 TO-218X
TO-3
Fastpak
Sensitive
Triac
0.8
1
4
6
8
Triac
0.8 ✔✔
1✔✔
4
6
8
10
15
25
35
Quadrac
4
6
8
10
15
Alternistor
6
8
10
12
16
25 ✔✔✔
30
35
40 ✔✔
Sensitive
SCR
0.8
1.5
4
6
8
10
SCR
1 ✔✔
6
8
10
12
15
16
20
25
35 ✔✔
40
55
65 ✔✔
70
Rectifier
15
20
25
Diac ✔✔
Sidac *
©2002 Teccor Electronics P - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Product Packages
Non-isolated Mounting Tab
Package Code
FRMWDVN
TO-202 TO-220 TO-218 TO-218X
TO-252
D-Pak
TO-251
V-Pak
TO-263
D2Pak
Current
(Amps)
Product
Type
0.8
Sensitive
Triac
1
4
6
8
0.8
Triac
1
✔✔ 4
✔✔ 6
✔✔ 8
✔✔ 10
15
25
35
4
Quadrac
6
8
10
15
✔✔✔ 6
Alternistor
✔✔✔ 8
10
12
16
25
30
35
40
0.8
Sensitive SCR
1.5
4
6
8
10
1
SCR
✔✔ 6
✔✔ ✔✔ 8
✔✔ ✔✔ 10
✔✔12
15
16
20
25
35
40
✔✔✔ 55
65
70
15
Rectifier
20
25
Diac
Sidac
http://www.teccor.com P - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog(972) 580-7777
Description of Part Numbers
Sensitive Triac
Quadrac
Sensitive SCR
Triac and Alternistor
L20 04 F5
12
Device Type
L = Sensitive Triac
Voltage Rating
20 = 200 V
40 = 400 V
60 = 600 V
Current Rating
Package Type
Blank =
Compak
(Surface Mount)
D = TO-252 (Surface Mount)
E = TO-92 (Isolated)
F = TO-202 (Non-islolated)
L = TO-220 (Isolated)
V = TO-251 (Non-islolated)
Gate Variations
3 = 3 mA (Q I, II, III, IV)
5 = 5 mA (Q I, II, III, IV)
6 = 5 mA (Q I, II, III)
6 = 10 mA (Q IV)
8 = 10 mA (Q I, II, III)
8 = 20 mA (Q IV)
Lead Form Dimensions
TO-202
TO-220
TO-92
X
Special Options
V = 4000 V Isolation
(TO-220 Package Only)
X8 = 0.8 A
N = 1 A
01 = 1 A
04 = 4 A
06 = 6 A
08 = 8 A
Q2004 L T 52
Device Type
Q =
Quadrac
Voltage Rating
20 = 200 V
40 = 400 V
60 = 600 V
Current Rating
04 = 4 A
06 = 6 A
08 = 8 A
10 = 10 A
15 = 15 A
Package Type
L = TO-220 (Isolated)
Gate Variation
T = Internal Diac Trigger
Lead Form Dimensions
TO-220
X
Special Options
V = 4000 V Isolation
(TO-220 Package Only)
H
Alternistor
Q20 04 F31
Device Type
Q = Triac or Alternistor
Voltage Rating
20 = 200 V
40 = 400 V
60 = 600 V
80 = 800 V
K0 = 1000 V
Current Rating
X8 = 0.8 A
01 = 1 A
04 = 4 A
06 = 6 A
08 = 8 A
10 = 10 A
12 = 12 A
15 = 15 A
25 = 25 A
30 = 30 A
35 = 35 A
40 = 40 A
Gate Variation
DH3 and VH3 = 10mA (Q I, II, III)
3 = 10 mA (Q I, II, III)
H3 = 20mA (Q I, II, III)
4 = 25 mA (Q I, II, III)
H4 = 35 mA (Q I, II, III) *
5 = 50 mA (Q I, II, III)
H5 = 50 mA (Q I, II, III) *
6 = 80 mA (Q I, II, III) *
7 = 100 mA (Q I, II, III) *
Lead Form Dimensions
TO-202
TO-220
TO-92
TO-218X
TO-218
X
Special Options
V = 4000 V Isolation
(TO-220 Package Only)
Package Type
D = TO-252 (Surface Mount)
E = TO-92 (Isolated)
F = TO-202 (Non-isolated)
J = TO-218X (Isolated)
K = TO-218 (Isolated)
L = TO-220 (Isolated)
N = TO-263 (Surface Mount)
P =
Fastpak
(Isolated)
R = TO-220 (Non-isolated)
V = TO-251 (Non-isolated)
W = TO-218X (Non-isolated)
* NOTE:
Alternistor device; no Quadrant IV operation
S20 06 FS2
21
Device Type
S = Sensitive SCR
Voltage Rating
20 = 200 V
40 = 400 V
60 = 600 V
Current Rating
X8 = 0.8 A
N = 1 A
06 = 6 A
08 = 8 A
10 = 10 A
Package Type
Blank = Compak (Surface Mount)
D = TO-252 (Surface Mount)
F = TO-202 (Non-islolated)
L = TO-220 (Isolated)
V = TO-251 (Non-islolated)
Gate Variations
S1 = 50 µA
S2 = 200 µA
S3 = 500 µA
Lead Form Dimensions
TO-202
TO-220
X
Special Options
V = 4000 V Isolated
(TO-220 Package Only)
EC 103 D175
Device Type
TCR = TO-92 (Isolated)
EC = TO-92 (Isolated)
T = TO-202 (Non-isolated)
2N = JEDEC (Isolated)
Voltage Rating for TCR
-4 = 200 V
-6 = 400 V
-8 = 600 V
Current Rating for TCR
22 = 1.5 A
Lead Form Dimensions
TO-92
TO-202
Current Rating for EC
103 = 0.8 A
Current Rating for T
106 = 4 A (I
GT
= 200 µA)
107 = 4 A (I
GT
= 500 µA)
Current Rating for 2N
5xxx = 0.8 A
Gate Current (for EC series only)
None = 200 µA
1 = 12 µA
2 = 50 µA
3 = 500 µA
Voltage Rating for EC and T
B = 200 V
D = 400 V
M = 600 V
Voltage Rating for 2N
5064 = 200 V
6565 = 400 V
©2002 Teccor Electronics P - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Description of Part Numbers
SCR
Rectifier
Diac
Sidac
S20 08 F12
Device Type
S = Non-sensitive SCR
Voltage Rating
20 = 200 V
40 = 400 V
60 = 600 V
80 = 800 V
K0 = 1000 V
Current Rating
01 = 1 A
06 = 6 A
08 = 8 A
10 = 10 A
12 = 12 A
15 = 15 A
16 = 16 A
20 = 20 A
25 = 25 A
35 = 35 A
55 = 55 A
65 = 65 A
70 = 70 A
Package Type
D = TO
-
252 (Surface Mount)
E = TO
-
92 (Isolated)
F = TO-202 (Non-isolated)
J = TO-218X (Isolated)
K = TO-218 (Isolated)
L = TO-220 (Isolated)
M = TO-218 (Non-isolated)
N = TO-263 (Surface Mount)
R = TO-220 (Non-isolated)
V = TO
-
251 (Non-isolated)
W = TO-218X (Non-isolated)
Lead Form Dimensions
TO
-
202
TO
-
220
TO
-
92
TO
-
218X
TO
-
218
X
Special Options
V = 4000 V Isolation
(TO-220 Package Only)
D20 15 L55
Device Type
D = Rectifier
Voltage Rating
20 = 200 V
40 = 400 V
60 = 600 V
80 = 800 V
K0 = 1000 V
Current Rating
15 = 15 A
20 = 20 A
25 = 25 A
Package Type
L = TO-220 (Isolated)
Lead Form Dimensions
TO-220
V
Special Options
V = 4000 V Isolation
HT 32 91
Device Type
HT = Diac Trigger in DO-35
ST = Diac Trigger in DO-214
Lead Form Dimensions
DO-35
Voltage Rating
32 = 27 V to 37 V
35 = 30 V to 40 V
40 = 35 V to 45 V
32A / 5761 = 28 V to 36 V
32B / 5761A = 30 V to 34 V
34B = 32 V to 36 V
36A / 5762 = 32 V to 40 V
36B = 34 V to 38 V
K105 0E70
Device Type
K = Sidac
Voltage Rating
105 = 95 V to 113 V
110 = 104 V to 118 V
120 = 110 V to 125 V
130 = 120 V to 138 V
140 = 130 V to 146 V
150 = 140 V to 170 V
200 = 190 V to 215 V
220 = 205 V to 230 V
240 = 220 V to 250 V
250 = 240 V to 280 V
300 = 270 V to 330 V
Current Rating
0 = 1 A
Package Type
E = TO-92 (Isolated)
F = TO-202 (Non-islolated)
G = DO-15X (Isolated)
S = DO-214 (Surface Mount)
Lead Form Dimensions
TO-202
TO-92
http://www.teccor.com P - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog(972) 580-7777
Quality and Reliability
It is Teccor’s policy to ship quality products on time. We accom-
plish this through Total Quality Management based on the funda-
mentals of customer focus, continuous improvement, and people
involvement.
In support of this commitment, Teccor applies the following princi-
ples:
Employees shall be respected, involved, informed, and qualified
for their job with appropriate education, training, and experience.
Customer expectations shall be met or exceeded by consistently
shipping products that meet the agreed specifications, quality
levels, quantities, schedules, and test and reliability parameters.
Suppliers shall be selected by considering quality, service, deliv-
ery, and cost of ownership.
Design of products and processes will be driven by customer
needs, reliability, and manufacturability.
It is the responsibility of management to incorporate these
principles into policies and systems.
It is the responsibility of those in leadership roles to coach their
people and to reinforce these principles.
It is the responsibility of each individual employee to follow the
spirit of this statement to ensure that we meet the primary policy
— to ship quality products on time.
Quality Assurance
Incoming Material Quality
Teccor “Vendor Analysis” programs provide stringent require-
ments before components are delivered to Teccor. In addition,
purchased materials are tested rigidly at incoming inspection for
specification compliance prior to acceptance for use.
Process Controls
From silicon slice input through final testing, we use statistical
methods to control all critical processes. Process audits and lot
inspections are performed routinely at all stages of the manufac-
turing cycle.
Parametric Testing
All devices are 100% computer tested for specific electrical char-
acteristics at critical processing points.
Final Inspection
Each completed manufacturing lot is sampled and tested for
compliance with electrical and mechanical requirements.
Reliability Testing
Random samples are taken from various product families for
ongoing reliability testing.
Finished Goods Inspection
Product assurance inspection is performed immediately prior to
shipping.
Design Assurance
The design and production of Teccor devices is a demanding and
challenging task. Disciplined skills coupled with advanced com-
puter-aided design, production techniques, and test equipment
are essential elements in Teccor's ability to meet your demands
for the very highest levels of quality.
All products must first undergo rigid quality design reviews and
pass extensive environmental life testing. Teccor uses Statistical
Process Control (SPC) with associated control charts throughout
to monitor the manufacturing processes.
Only those products which pass tests designed to assure Tec-
cor's high quality and reliability standards, while economically
satisfying customer requirements, are approved for shipment. All
new products and materials must receive approval of QRA prior
to being released to production.
The combination of reliability testing, process controls, and lot
tracking assures the quality and reliability of Teccor's devices.
Since even the best control systems cannot overcome measure-
ment limitations, Teccor designs and manufactures its own com-
puterized test equipment.
Teccor's Reliability Engineering Group conducts ongoing product
reliability testing to further confirm the design and manufacturing
parameters.
©2002 Teccor Electronics P - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Quality and Reliability
Reliability Stress Tests
The following table contains brief descriptions of the reliability tests commonly used in evaluating Teccor product reliability on a peri-
odic basis. These tests are applied across product lines depending on product availability and test equipment capacities. Other tests
may be performed when appropriate.
Flammability Test
For the UL 94V0 flammability test, all expoxies used in Teccor encapsulated devices are recognized by Underwriters Laboratories
Test Type Typical Conditions Test Description Standards
High Temperature
AC Blocking
TA = 100 °C to 150 °C, Bias @
100%
Rated VDRM, t = 24 hrs to 1000 hrs
Evaluation of the reliability of
product under bias conditions
and elevated temperature
MIL-STD-750, M-1040
High Temperature
Storage Life
TA = 150 °C, t = 250 to 1000 hrs Evaluation of the effects on
devices after long periods of
storage at high temperature
MIL-STD-750, M-1031
Temperature and Humidity
Bias Life
TA = 85 °C to 95 °C, rh = 85% to
95%
Bias @ 80% Rated VDRM
(320 VDC max)
t = 168 to 1008 hrs
Evaluation of the reliability of non-
hermetic packaged devices in
humid environments
EIA / JEDEC, JESD22-A101
Temperature Cycle
[Air to Air]
TA = -6C to 15C,
cycles = 10 to 500
Evaluation of the device’s ability
to withstand the exposure to
extreme temperatures and the
forces of TCE during transitions
between temperatures
MIL-STD-750, M-1051,
EIA / JEDEC, JESD22-A104
Thermal Shock
[Liquid to Liquid]
TA = 0 °C to 100 °C, ttxfr = 10 s,
cycled = 10 to 20
Evaluation of the device’s ability
to withstand the sudden changes
in temperature and exposure to
extreme temperatures
MIL-STD-750, M-1056
Autoclave TA = 121 °C, rh = 100%, P = 15 psig,
t = 24 hrs to 168 hrs
Accelerated environmental test to
evaluate the moisture resistance
of plastic packages
EIA / JEDEC, JESD22-A102
Resistance to
Solder Heat
TA = 260 °C, t = 10 s Evaluation of the device’s ability
to withstand the temperatures as
seen in wave soldering
operations
MIL-STD-750, M-2031
Solderability Steam aging = 1 hr to 8 hrs,
Tsolder = 245 °C, Flux = R
Evaluation of the solderability of
device terminals after an
extended period
MIL-STD-750, M-2026,
ANSI-J-STD-002
http://www.teccor.com P - 10 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog(972) 580-7777
Standard Terms and Conditions
Supplier shall not be bound by any term proposed by Buyer in the
absence of written agreement to such term signed by an autho-
rized officer of Supplier.
(1) PRICE:
(A) Supplier reserves the right to change product prices at
any time but, whenever practicable, Supplier will give
Buyer at least thirty (30) days written notice before the
effective date of any price change. Unless Supplier has
specifically agreed in writing, signed by an authorized
officer of Supplier, that a quoted price shall not be sub-
ject to change for a certain time, all products shipped on
or after the effective date of a price change may be
billed at the new price level.
(B) Whenever Supplier agrees to a modification of Buyer's
order (which modification must be in writing and signed
by an authorized officer of Supplier), Supplier reserves
the right to alter its price, whether or not such price was
quoted as “firm.”
(C) Prices do not include federal, state or local taxes, now or
hereafter enacted, applicable to the goods sold. Taxes
will be added by Supplier to the sales prices whenever
Supplier has legal obligation to collect them and will be
paid by Buyer as invoiced unless Buyer provides Sup-
plier with a proper tax exemption certificate.
(2) PRODUCTION: Supplier may, at its sole discretion and at
any time, withdraw any catalog item from further production
without notice or liability to Buyer.
(3) INTEREST:
(A) All late payments shall bear interest thirty (30) days after
the due date stated on the invoice until paid at the lower
of one and one-half percent per month or the maximum
rate permitted by law. All interest becoming due shall, if
not paid when due, be added to principal and bear inter-
est from the due date. At Supplier's option, any payment
shall be applied first to interest and then to principal.
(B) It is the intention of the parties to comply with the laws of
the jurisdiction governing any agreement between the
parties relating to interest. If any construction of the
agreement between the parties indicates a different
right given to Supplier to demand or receive any sum
greater than that permissible by law as interest, such as
a mistake in calculation or wording, this paragraph shall
override. In any contingency which will cause the inter-
est paid or agreed to be paid to exceed the maximum
rate permitted by law, such excess will be applied to the
reduction of any principal amount due, or if there is no
principal amount due, shall be refunded.
(4) TITLE AND DELIVERY: Title to goods ordered by Buyer and
risk of loss or damage in transit or thereafter shall pass to
Buyer upon Supplier's delivery of the goods at Supplier's
plant or to a common carrier for shipment to Buyer.
(5) CONTINGENCIES: Supplier shall not be responsible for any
failure to perform due to causes reasonably beyond its con-
trol. These causes shall include, but not be restricted to, fire,
storm, flood, earthquake, explosion, accident, acts of public
enemy, war rebellion, insurrection, sabotage, epidemic,
quarantine restrictions, labor disputes, labor shortages, labor
slow downs and sit downs, transportation embargoes, failure
or delays in transportation, inability to secure raw materials
or machinery for the manufacture of its devices, acts of God,
acts of the Federal Government or any agency thereof, acts
of any state or local government or agency thereof, and judi-
cial action. Similar causes shall excuse Buyer for failure to
take goods ordered by Buyer, from the time Supplier
receives written notice from Buyer and for as long as the dis-
abling cause continues, other than for goods already in tran-
sit or specially fabricated and not readily saleable to other
buyers.
Supplier assumes no responsibility for any tools, dies, and
other equipment furnished Supplier by Buyer.
(6) LIMITED WARRANTY AND EXCLUSIVE REMEDY: Supplier
warrants all catalog products to be free from defects in mate-
rials and workmanship under normal and proper use and
application for a period of twelve (12) months from the date
code on the product in question (or if none, from the date of
delivery to Buyer.) With respect to products assembled, pre-
pared, or manufactured to Buyer's specifications, Supplier
warrants only that such products will meet Buyer's specifica-
tions upon delivery. As the party responsible for the specifi-
cations, Buyer shall be responsible for testing and inspecting
the products for adherence to specifications, and Supplier
shall have no liability in the absence of such testing and
inspection or if the product passes such testing or inspec-
tion. THE ABOVE WARRANTY IS THE ONLY WARRANTY
EXTENDED BY SUPPLIER, AND IS IN LIEU OF AND
EXCLUDES ALL OTHER WARRANTIES AND CONDI-
TIONS, EXPRESSED OR IMPLIED (EXCEPT AS PRO-
VIDED HEREIN AS TO TITLE), ON ANY GOODS OR
SERVICES SOLD OR RENDERED BY SUPPLIER, INCLUD-
ING ANY IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THIS
WARRANTY WILL NOT CREATE WARRANTY COVERAGE
FOR ANY ITEM INTO WHICH ANY PRODUCT SOLD BY
SUPPLIER MAY HAVE BEEN INCORPORATED OR
ADDED.
©2002 Teccor Electronics P - 11 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Standard Terms and Conditions
SUPPLIER'S ENTIRE LIABILITY AND BUYER'S EXCLU-
SIVE REMEDY UNDER THIS WARRANTY SHALL BE, AT
SUPPLIER'S OPTION, EITHER THE REPLACEMENT OF,
REPAIR OF, OR ISSUANCE OF CREDIT TO BUYER'S
ACCOUNT WITH SUPPLIER FOR ANY PRODUCTS
WHICH ARE PROPERLY RETURNED BY BUYER DURING
THE WARRANTY PERIOD. All returns must comply with the
following conditions:
(A) Supplier is to be promptly notified in writing upon discov-
ery of defects by Buyer.
(B) Buyer must obtain a Return Material Authorization
(RMA) number from the Supplier prior to returning prod-
uct.
(C) The defective product is returned to Supplier, transporta-
tion charges prepaid by Buyer.
(D) Supplier's examination of such product discloses, to its
satisfaction, that such defects have not been caused by
misuse, neglect, improper installation, repair, alteration,
or accident.
(E) The product is returned in the form it was delivered with
any necessary disassembly carried out by Buyer at
Buyer's expense.
IN NO EVENT SHALL SUPPLIER, OR ANYONE ELSE
ASSOCIATED IN THE CREATION OF ANY OF SUPPLIER'S
PRODUCTS OR SERVICES, BE LIABLE TO BUYER FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY
NATURE INCLUDING LOSS OF PROFITS, LOSS OF USE,
BUSINESS INTERUPTION, AND THE LIKE. BUYER
ACKNOWLEDGES THAT THE ABOVE WARRANTIES AND
LIMITATIONS THEREON ARE APPROPRIATE AND REA-
SONABLE IN EFFECTUATING SUPPLIER'S AND BUYER'S
MUTUAL INTENTION TO CONDUCT AN EFFICIENT
TRANSACTION AT PRICES MORE ADVANTAGEOUS TO
BUYER THAN WOULD BE AVAILABLE IN THE PRESENCE
OF OTHER WARRANTIES AND ASSURANCES.
(7) PATENTS: Buyer shall notify Supplier in writing of any claim
that any product or any part of use thereof furnished under
this agreement constitutes an infringement of any U.S.
patent, copyright, trade secret, or other proprietary rights of a
third party. Notice shall be given within a reasonable period
of time which should in most cases be within ten (10) days of
receipt by Buyer of any letter, summons, or complaint per-
taining to such a claim. At its option, Supplier may defend at
its expense any action brought against Buyer to the extent
that it is based on such a claim. Should Supplier choose to
defend any such claim, Supplier may fully participate in the
defense, settlement, or appeal of any action based on such
claim.
Should any product become, or in Supplier's opinion be likely
to become, the subject of an action based on any such claim,
Supplier may, at its option, as the Buyer's exclusive remedy,
either procure for the Buyer the right to continue using the
product, replace the product or modify the product to make it
noninfringing. IN NO EVENT SHALL SUPPLIER BE LIABLE
FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES
BASED ON ANY CLAIM OF INFRINGEMENT.
Supplier shall have no liability for any claim based on modifi-
cations of a product made by any person or entity other than
Supplier, or based on use of a product in conjunction with
any other item, unless expressly approved by Supplier. Sup-
plier does not warrant goods against claims of infringement
which are assembled, prepared, or manufactured to Buyer's
specifications.
(8) NON-WAIVER OF DEFAULT: Each shipment made under
any order shall be treated as a separate transaction, but in
the event of any default by Buyer, Supplier may decline to
make further shipments without in any way affecting its rights
under such order. If, despite any default by Buyer, Supplier
elects to continue to make shipments, its action shall not
constitute a waiver of that or any default by Buyer or in any
way affect Supplier's legal remedies for any such default. At
any time, Supplier's failure to exercise any right to remedy
available to it shall not constitute a waiver of that right or
remedy.
(9) TERMINATION: If the products to be furnished under this
order are to be used in the performance of a Government
contract or subcontract, and the Government terminates
such contract in whole or part, this order may be canceled to
the extent it was to be used in the canceled portion of said
Government contract and the liability of Buyer for termination
allowances shall be determined by the then applicable regu-
lations of the Government regarding termination of contracts.
Supplier may cancel any unfilled orders unless Buyer shall,
upon written notice, immediately pay for all goods delivered
or shall pay in advance for all goods ordered but not deliv-
ered, or both, at Supplier's option.
(10) LAW: The validity, performance and construction of these
terms and conditions and any sale made hereunder shall be
governed by the laws of the state of Texas.
(11) ASSIGNS: This agreement shall not be assignable by
either Supplier or Buyer. However, should either Supplier or
Buyer be sold or transferred in its entirety and as an ongoing
business, or should Supplier or Buyer sell or transfer in its
entirety and as an ongoing concern, any division, depart-
ment, or subsidiary responsible in whole or in part for the
performance of this Agreement, this Agreement shall be
binding upon and inure to the benefit of those successors
and assigns of Supplier, Buyer, or such division, department,
or subsidiary.
(12) MODIFICATION OF STANDARD TERMS AND CONDI-
TIONS: No attempted or suggested modification of or addi-
tion to any of the provisions upon the face or reverse of this
form, whether contained or arising in correspondence and/or
documents passing between Supplier and Buyer, in any
course of dealing between Supplier or Buyer, or in any cus-
tomary usage prevalent among businesses comparable to
those of Supplier and/or Buyer, shall be binding upon Sup-
plier unless made and agreed to in writing and signed by an
officer of Supplier.
(13) QUANTITIES: Any variation in quantities of electronic com-
ponents, or other goods shipped over or under the quantities
ordered (not to exceed 5%) shall constitute compliance with
Buyer's order and the unit price will continue to apply.
Notes
©2002 Teccor Electronics http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets
E0
V-I Characteristics of Thyristor Devices - - - - - - - - - - - - - - - - - - - - - E0-2
Electrical Parameter Terminology - - - - - - - - - - - - - - - - - - - - - - - - - E0-3
Sensitive Triacs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E1
Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E2
QUADRACs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E3
Alternistor Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E4
Sensitive SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E5
SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E6
Rectifiers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E7
Diacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E8
SIDAC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E9
http://www.teccor.com E0 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
V-I Characteristics of Thyristor Devices
V-I Characteristics of Triac Device
V-I Characteristics of SCR Device
V-I Characteristics of Sidac Device with Negative Resistance
V-I Characteristics of Bilateral Trigger Diac
Breakover
Voltage
Specified Minimum
Off-state
Blocking
Voltage (V
DRM
)
+I
-I
+V
-V
Minimum Holding
Current (I
H
)
Voltage Drop (V
T
) at
Specified Current (i
T
)Latching Current (I
L
)
Off-state Leakage
Current – (I
DRM)
at
Specified V
DRM
Reverse
Breakdown
Voltage
Forward
Breakover
Voltage
Specified Minimum
Off - State
Blocking
Voltage (V
DRM
)
+I
-I
+V
-V
Minimum Holding
Current (I
H
)
Voltage Drop (V
T
) at
Specified Current (i
T
)
Latching Current (I
L
)
Off - State Leakage
Current - (I
DRM
) at
Specified V
DRM
Specified Minimum
Reverse Blocking
Voltage (V
RRM
)
Reverse Leakage
Current - (I
RRM
) at
Specified V
RRM
-V
+I
V
DRM
+V
V
S
I
S
I
H
R
S
I
DRM
I
BO
V
BO
V
T
I
T
(I
S
- I
BO
)
(V
BO
- V
S
)
R
S =
-I
+I
-I
10 mA
+V-V
Breakover
Current
IBO
Breakover
Voltage
VBO
V
©2002 Teccor Electronics E0 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Electrical Parameter Terminology
Thyristor
di/dt (Critical Rate-of-rise of On-state Current) – Maximum
value of the rate-of-rise of on-state current which a thyristor can
withstand without deleterious effect
dv/dt (Critical Rate-of-rise of Off-state Voltage or Static
dv/dt) – Minimum value of the rate-of-rise of principal voltage
which will cause switching from the off state to the on state
dv/dt(c) Critical Rate-of-rise of Commutation Voltage of a
Triac (Commutating dv/dt) – Minimum value of the rate-of-rise
of principal voltage which will cause switching from the off state
to the on state immediately following on-state current conduction
in the opposite quadrant
I2t (RMS Surge (Non-repetitive) On-state Fusing Current) –
Measure of let-through energy in terms of current and time for
fusing purposes
IBO (Breakover Current) Principal current at the breakover
point
IDRM (Repetitive Peak Off-state Current) – Maximum leakage
current that may occur under the conditions of VDRM
IGT (Gate Trigger Current) Minimum gate current required to
switch a thyristor from the off state to the on state
IH (Holding Current) Minimum principal current required to
maintain the thyristor in the on state
IPP (Peak Pulse Current) – Peak pulse current at a short time
duration and specified waveshape
IRRM (Repetitive Peak Reverse Current) – Maximum leakage
current that may occur under the conditions of VRRM
IS (Switching Current) – Current at VS when a sidac switches
from the clamping state to on state
IT(RMS) (On-state Current) – Anode cathode principal current
that may be allowed under stated conditions, usually the full-
cycle RMS current
ITSM (Surge (Non-repetitive) On-state Current) – Peak single
cycle AC current pulse allowed
PG(AV) (Average Gate Power Dissipation) – Value of gate
power which may be dissipated between the gate and main ter-
minal 1 (or cathode) average over a full cycle
PGM (Peak Gate Power Dissipation) – Maximum power which
may be dissipated between the gate and main terminal 1 (or
cathode) for a specified time duration
RθJA (Thermal Resistance, Junction-to-ambient) – Tempera-
ture difference between the thyristor junction and ambient divided
by the power dissipation causing the temperature difference
under conditions of thermal equilibrium
Note: Ambient is defined as the point where temperature does
not change as a result of the dissipation.
RθJC (Thermal Resistance, Junction-to-case) – Temperature
difference between the thyristor junction and the thyristor case
divided by the power dissipation causing the temperature differ-
ence under conditions of thermal equilibrium
tgt (Gate-controlled Turn-on Time) – Time interval between
the 10% rise of the gate pulse and the 90% rise of the principal
current pulse during switching of a thyristor from the off state to
the on state
tq (Circuit-commutated Turn-off Time) – Time interval
between the instant when the principal current has decreased to
zero after external switching of the principal voltage circuit and
the instant when the SCR is capable of supporting a specified
principal voltage without turning on
VBO (Breakover Voltage) – Principal voltage at the breakover
point
VDRM (Repetitive Peak Off-state Voltage) – Maximum allow-
able instantaneous value of repetitive off-state voltage that may
be applied across a bidirectional thyristor (forward or reverse
direction) or SCR (forward direction only)
VGT (Gate Trigger Voltage) – Minimum gate voltage required to
produce the gate trigger current
VRRM (Repetitive Peak Reverse Voltage) Maximum allow-
able instantaneous value of a repetitive reverse voltage that may
be applied across an SCR without causing reverse current ava-
lanche
VS (Switching Voltage) – Voltage point after VBO when a sidac
switches from a clamping state to on state
VT (On-state Voltage) – Principal voltage when the thyristor is in
the on state
Diode Rectifiers
IF(AV) (Average Forward Current) – Average forward conduc-
tion current
IFM (Maximum (Peak) Reverse Current) – Maximum reverse
leakage current that may occur at rated VRRM
IF(RMS) (RMS Forward Current) – RMS forward conduction cur-
rent
IFSM (Maximum (Peak) Forward (Non-repetitive) Surge
Current) – Maximum (peak) forward single cycle AC surge cur-
rent allowed for specified duration
VFM (Maximum (Peak) Forward Voltage Drop) Maximum
(peak) forward voltage drop from the anode to cathode at stated
conditions
VR (Reverse Blocking Voltage) – Maximum allowable DC
reverse blocking voltage that may be applied to the rectifier
VRRM (Maximum (Peak) Repetitive Reverse Voltage) Maxi-
mum peak allowable value of a repetitive reverse voltage that
may be applied to the rectifier
Notes
©2002 Teccor Electronics E1 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Selected Packages*
U.L. RECOGNIZED
File #E71639
MT2 MT1
G
Sensitive Triacs
(0.8 A to 8 A)
E1
General Description
Teccor's line of sensitive gate triacs includes devices with current
capabilities through 8 A. Voltage ranges are available from 200 V
to 600 V. This line features devices with guaranteed gate control
in Quadrants II and IV as well as control in the commonly used
Quadrants I and III. Four-quadrant control devices require
sensitive gate triacs. They can be controlled by digital circuitry
where positive-only or negative-only pulses must control AC
current in both directions through the device. Note that triacs with
low IGT values in Quadrants II and IV will have lower dv/dt
characteristics.
The sensitive gate triac is a bidirectional AC switch and is gate
controlled for either polarity of main terminal voltage. It is used
primarily for AC switching and phase control applications such as
motor speed controls, temperature modulation controls, and
lighting controls.
The epoxy TO-92 and TO-220 configurations feature Teccor's
electrically-isolated construction where the case or mounting tab
is internally isolated from the semiconductor chip and lead
attachments. Non-isolated epoxy TO-202 packages are available
as well as TO-251 and surface mount TO-252 (D-Pak). Tape-
and-reel capability and tube packing also are available. See
“Packing Options” section of this catalog.
All Teccor triacs have glass-passivated junctions. This glassing
process prevents migration of contaminants and ensures long-
term device reliability with parameter stability.
Variations of devices covered in this data sheet are available for
custom design applications. Consult factory for more information.
Features
Electrically-isolated packages
Glass-passivated junctions ensure long device
reliability and parameter stability
Voltage capability — up to 600 V
Surge capability — up to 80 A
Four-quadrant gating guaranteed
Compak Sensitive Gate Triac
Surface mount package — 0.8 A and 1 A series
New small profile three-leaded Compak package
Packaged in embossed carrier tape with 2,500
devices per reel
Can replace SOT-223
TO-202
TO-92
3-lead
Compak
*TO-220
Isolated
E1
TO-252
D-Pak
TO-251
V-Pak
Sensitive Triacs Data Sheets
http://www.teccor.com E1 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
See “General Notes” on page E1 - 4 and “Electrical Specification Notes” on page E1 - 5.
IT(RMS)
Part No.
VDRM IGT IDRM
Isolated Non-isolated
(11)
TO-92 Compak TO-220
TO-252
D-Pak TO-202
TO-251
V-Pak
(1)
Volts
(3) (6) (9)
mAmps
(1) (14)
mAmps
QI QII QIII QIV
TC =
25 °C
TC =
110 °C
MAX See “Package Dimensions” section for variations. (12) MIN MAX MAX
0.8 A
L2X8E3 L2X3 200 33330.01 0.1
L4X8E3 L4X3 400 33330.01 0.1
L6X8E3 L6X3 600 33330.01 0.1
L2X8E5 L2X5 200 55550.01 0.1
L4X8E5 L4X5 400 55550.01 0.1
L6X8E5 L6X5 600 55550.01 0.1
L2X8E6 200 55510 0.01 0.1
L4X8E6 400 55510 0.01 0.1
L6X8E6 600 55510 0.01 0.1
L2X8E8 200 10 10 10 20 0.01 0.1
L4X8E8 400 10 10 10 20 0.01 0.1
L6X8E8 600 10 10 10 20 0.01 0.1
1A
L201E3 L2N3 200 33330.010.1
L401E3 L4N3 400 33330.010.1
L601E3 L6N3 600 33330.010.1
L201E5 L2N5 200 55550.010.1
L401E5 L4N5 400 55550.010.1
L601E5 L6N5 600 55550.010.1
L201E6 200 5 5 5 10 0.01 0.1
L401E6 400 5 5 5 10 0.01 0.1
L601E6 600 5 5 5 10 0.01 0.1
L201E8 200 10101020 0.01 0.1
L401E8 400 10101020 0.01 0.1
L601E8 600 10101020 0.01 0.1
4A
L2004L3 L2004D3 L2004F31 L2004V3 200 33330.01 0.2
L4004L3 L4004D3 L4004F31 L4004V3 400 33330.01 0.2
L6004L3 L6004D3 L6004F31 L6004V3 600 33330.01 0.2
L2004L5 L2004D5 L2004F51 L2004V5 200 55550.01 0.2
L4004L5 L4004D5 L4004F51 L4004V5 400 55550.01 0.2
L6004L5 L6004D5 L6004F51 L6004V5 600 55550.01 0.2
L2004L6 L2004D6 L2004F61 L2004V6 200 55510 0.01 0.2
L4004L6 L4004D6 L4004F61 L4004V6 400 55510 0.01 0.2
L6004L6 L6004D6 L6004F61 L6004V6 600 55510 0.01 0.2
L2004L8 L2004D8 L2004F81 L2004V8 200 10 10 10 20 0.01 0.2
L4004L8 L4004D8 L4004F81 L4004V8 400 10 10 10 20 0.01 0.2
L6004L8 L6004D8 L6004F81 L6004V8 600 10 10 10 20 0.01 0.2
MT1
G
MT2
MT2
MT1
G
MT1 MT2
G
MT2
MT2
MT1
G
MT1 G
MT2
MT2
MT2
MT2
G
MT1
Data Sheets Sensitive Triacs
©2002 Teccor Electronics E1 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
See “General Notes” on page E1 - 4 and “Electrical Specification Notes” on page E1 - 5.
VTM VGT IHIGTM PGM PG(AV) ITSM dv/dt(c) dv/dt tgt I2tdi/dt
(1) (4)
Volts
(2) (5) (15)
Volts
(1) (7)
mAmps
(13)
Amps
(13)
Watts Watts
(8) (10)
Amps
(1) (10)
Volts/µSec
(1)
Volts/µSec
(9)
µSec Amps2Sec Amps/µSec
TC =
25 °C
TC =
25 °C60/50Hz
TC =
100 °C
MAX MAX MAX TYP TYP TYP
1.6 25110 0.2 10/8.3 0.5 20 2.8 0.41 20
1.6 25110 0.2 10/8.3 0.5 15 2.8 0.41 20
1.6 25110 0.2 10/8.3 0.5 10 2.8 0.41 20
1.6 210 110 0.2 10/8.3 120 30.41 20
1.6 210 110 0.2 10/8.3 115 30.41 20
1.6 210 110 0.2 10/8.3 110 30.41 20
1.6 210 110 0.2 10/8.3 130 30.41 20
1.6 210 110 0.2 10/8.3 125 30.41 20
1.6 210 110 0.2 10/8.3 120 30.41 20
1.6 215 110 0.2 10/8.3 235 3.2 0.41 20
1.6 215 110 0.2 10/8.3 230 3.2 0.41 20
1.6 215 110 0.2 10/8.3 225 3.2 0.41 20
1.625110 0.220/16.70.5 202.81.6 20
1.625110 0.220/16.70.5 202.81.6 20
1.625110 0.220/16.70.5 102.81.6 20
1.6 2 10 1 10 0.2 20/16.7 1 20 3 1.6 20
1.6 2 10 1 10 0.2 20/16.7 1 20 3 1.6 20
1.6 2 10 1 10 0.2 20/16.7 1 10 3 1.6 20
1.6 2 10 1 10 0.2 20/16.7 1 30 3 1.6 20
1.6 2 10 1 10 0.2 20/16.7 1 30 3 1.6 20
1.6 2 10 1 10 0.2 20/16.7 1 20 3 1.6 20
1.6 2 15 1 10 0.2 20/16.7 1 35 3.2 1.6 20
1.6 2 15 1 10 0.2 20/16.7 1 35 3.2 1.6 20
1.6 2 15 1 10 0.2 20/16.7 1 25 3.2 1.6 20
1.6 2 5 1.2 15 0.3 40/33 0.5 25 2.8 6.6 50
1.6 2 5 1.2 15 0.3 40/33 0.5 25 2.8 6.6 50
1.6 2 5 1.2 15 0.3 40/33 0.5 15 2.8 6.6 50
1.6 210 1.2 15 0.3 40/33 125 36.6 50
1.6 210 1.2 15 0.3 40/33 125 36.6 50
1.6 210 1.2 15 0.3 40/33 115 36.6 50
1.6 210 1.2 15 0.3 40/33 130 36.6 50
1.6 210 1.2 15 0.3 40/33 130 36.6 50
1.6 210 1.2 15 0.3 40/33 120 36.6 50
1.6 215 1.2 15 0.3 40/33 235 3.2 6.6 50
1.6 215 1.2 15 0.3 40/33 235 3.2 6.6 50
1.6 215 1.2 15 0.3 40/33 225 3.2 6.6 50
Sensitive Triacs Data Sheets
http://www.teccor.com E1 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Specified Test Conditions
di/dt Maximum rate-of-change of on-state current; IGT = 50 mA with
0.1 µs rise time
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate
unenergized
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms
for fusing
IDRM — Peak off-state current, gate open; VDRM = max rated value
IGT — DC gate trigger current in specific operating quadrants;
VD = 12 V dc; RL = 60
IGTM Peak gate trigger current
IH — Holding current gate open; initial on-state current = 100 mA dc
IT(RMS) — RMS on-state current conduction angle of 360°
ITSM — Peak one-cycle surge
PG(AV) — Average gate power dissipation
PGM — Peak gate power dissipation; IGT IGTM
tgt — Gate controlled turn-on time; IGT = 50 mA with 0.1 µs rise time
VDRM — Repetitive peak off-state/blocking voltage
VGT — DC gate trigger voltage; VD = 12 V dc; RL = 60
VTM — Peak on-state voltage at max rated RMS current
General Notes
All measurements are made with 60 Hz resistive load and at an
ambient temperature of +25 °C unless otherwise specified.
Operating temperature range (TJ) is -65 °C to +110 °C for TO-92
devices and -40 °C to 110 °C for all other devices.
Storage temperature range (TS) is -65 °C to +150 °C for TO-92
devices, -40 °C to +150 °C for TO-202 devices, and -40 °C to
+125 °C for TO-220 devices.
Lead solder temperature is a maximum of 230 °C for 10 seconds
maximum at a minimum of 1/16” (1.59 mm) from case.
The case or lead temperature (TC or TL) is measured as shown on
dimensional outline drawings. See “Package Dimensions” section
of this catalog.
IT(RMS)
Part No.
VDRM IGT IDRM
Isolated Non-isolated
(11)
TO-220
TO-252
D-Pak
TO-251
V-Pak
(1)
Volts
(3) (6)
mAmps
(1) (14)
mAmps
QI QII QIII QIV TC = 25 °C TC = 110 °C
MAX See “Package Dimensions” section for variations. (12) MIN MAX MAX
6A
L2006L5 L2006D5 L2006V5 200 5555 0.02 0.5
L4006L5 L4006D5 L4006V5 400 5555 0.02 0.5
L6006L5 L6006D5 L6006V5 600 5555 0.02 0.5
L2006L6 L2006D6 L2006V6 200 5 5 5 10 0.02 0.5
L4006L6 L4006D6 L4006V6 400 5 5 5 10 0.02 0.5
L6006L6 L6006D6 L6006V6 600 5 5 5 10 0.02 0.5
L2006L8 L2006D8 L2006V8 200 10 10 10 20 0.02 0.5
L4006L8 L4006D8 L4006V8 400 10 10 10 20 0.02 0.5
L6006L8 L6006D8 L6006V8 600 10 10 10 20 0.02 0.5
8A
L2008L6 L2008D6 L2008V6 200 55510 0.02 0.5
L4008L6 L4008D6 L4008V6 400 55510 0.02 0.5
L6008L6 L6008D6 L6008V6 600 55510 0.02 0.5
L2008L8 L2008D8 L2008V8 200 10 10 10 20 0.02 0.5
L4008L8 L4008D8 L4008V8 400 10 10 10 20 0.02 0.5
L6008L8 L6008D8 L6008V8 600 10 10 10 20 0.02 0.5
MT1 MT2
G
MT2
MT2
MT1
G
MT2
MT2
G
MT1
Data Sheets Sensitive Triacs
©2002 Teccor Electronics E1 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Electrical Specification Notes
(1) For either polarity of MT2 with reference to MT1 terminal
(2) For either polarity of gate voltage VGT with reference to MT1
terminal
(3) See Gate Characteristics and Definition of Quadrants.
(4) See Figure E1.4 for iT versus vT
.
(5) See Figure E1.6 for VGT versus TC.
(6) See Figure E1.7 for IGT versus TC.
(7) See Figure E1.5 for IH versus TC.
(8) See Figure E1.9 for surge rating and specific duration.
(9) See Figure E1.8 for tgt versus IGT.
(10) See Figure E1.2 and Figure E1.3 for maximum allowable case
temperature at maximum rated current.
(11) See Figure E1.1, Figure E1.2, and Figure E1.3 for TA or TC versus
IT(RMS).
(12) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
(13) Pulse width 10 µs
(14) TC or TL = TJ for test conditions in off state
(15) Minimum non-trigger VGT at 110 °C is 0.2 V.
Gate Characteristics
Teccor triacs may be turned on between gate and MT1 terminals
in the following ways:
In-phase signals (with standard AC line) using Quadrants I
and III
Application of unipolar pulses (gate always positive or nega-
tive), using Quadrants II and III with negative gate pulses and
Quadrants I and IV with positive gate pulses
When maximum surge capability is required, pulses should be a
minimum of one magnitude above IGT rating with a steep rising
waveform (1 µs rise time).
Definition of Quadrants
VTM VGT IHIGTM PGM PG(AV) ITSM dv/dt(c) dv/dt tgt I2tdi/dt
(1) (4)
Volts
(2) (5) (15)
Volts
(1) (7)
mAmps
(13)
Amps
(13)
Watts Watts
(8) (10)
Amps
(1) (10)
Volts/µSec
(1)
Volts/µSec
(9)
µSec Amps2Sec Amps/µSec
TC = 25 °C TC = 25 °C 60/50 Hz TC = 100 °C
MAX MAX MAX TYP TYP TYP
1.6 2 10 1.6 18 0.4 60/50 1 40 3 15 70
1.6 2 10 1.6 18 0.4 60/50 1 30 3 15 70
1.6 2 10 1.6 18 0.4 60/50 1 20 3 15 70
1.6 2 10 1.6 18 0.4 60/50 2 40 3 15 70
1.6 2 10 1.6 18 0.4 60/50 2 30 3 15 70
1.6 2 10 1.6 18 0.4 60/50 2 20 3 15 70
1.6 2 20 1.6 18 0.4 60/50 2 45 3.2 15 70
1.6 2 20 1.6 18 0.4 60/50 2 40 3.2 15 70
1.6 2 20 1.6 18 0.4 60/50 2 30 3.2 15 70
1.6 210 1.6 18 0.4 80/65 240 326.5 70
1.6 210 1.6 18 0.4 80/65 230 326.5 70
1.6 210 1.6 18 0.4 80/65 220 326.5 70
1.6 220 1.6 18 0.4 80/65 245 3.2 26.5 70
1.6 220 1.6 18 0.4 80/65 240 3.2 26.5 70
1.6 220 1.6 18 0.4 80/65 230 3.2 26.5 70
MT2 POSITIVE
(Positive Half Cycle)
MT2 NEGATIVE
(Negative Half Cycle)
MT1
MT2
+
I
GT
REF
QII
MT1
I
GT
GATE
MT2
REF
MT1
MT2
REF
MT1
MT2
REF
QI
QIV
QIII
ALL POLARITIES ARE REFERENCED TO MT1
(
-
)
I
GT
GATE
(+)
I
GT
-
I
GT
GATE
(
-
)
I
GT
GATE
(+)
+
-
Sensitive Triacs Data Sheets
http://www.teccor.com E1 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Electrical Isolation
Teccor’s isolated triac packages withstand a minimum high
potential test of 2500 V ac rms from leads to mounting tab over
the device's operating temperature range. The following isolation
table shows standard isolation ratings.
*UL Recognized File #E71639
* Mounted on 1 cm2 copper foil surface; two-ounce copper foil
Figure E1.1 Maximum Allowable Ambient Temperature versus
On-state Current
Figure E1.2 Maximum Allowable Case Temperature versus
On-state Current (0.8 A and 1 A)
Electrical Isolation
from Leads to Mounting Tab
VAC RMS TO-220 *
2500 Standard
Thermal Resistance (Steady State) Junction to Mounting Tab
and Junction to Ambient
RθJC [RθJA] °C/W (TYP)
Package Code ECFLF2DV
Type
TO-92
Plastic Compak
TO-202
Type 1
TO-220
Isolated
TO-202
Type 2
TO-252
D-Pak
TO-251
V-Pak
0.8 A 60 [135] 60 *
1 A 50 [95] 40 *
4A 3.5 [45] 3.6 [50] 6.0 [70] 3.5 6.0 [70]
6A 3.3 3.2 3.2
8A 2.8 2.7 2.7
20
40
60
80
100
120
RMS On-State Current [IT(RMS)] - Amps
Maximum Allowable Ambient Temperature (TA) - ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
FREE AIR RATING – NO HEATSINK
TO-220 and
TYPE 1 and 3 TO-202
TYPE 2 and 4 TO-202
and TO-251
0.8 A TO-92
1 A TO-92
25
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
50
60
70
80
90
100
110
Maximum Allowable Case Temperature (T
C
) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawings
RMS On-State Current [I
T(RMS)
] – Amps
1 A
0.8 A
Data Sheets Sensitive Triacs
©2002 Teccor Electronics E1 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E1.3 Maximum Allowable Case Temperature versus
On-state Current (4 A, 6 A, and 8 A)
Figure E1.4 On-state Current versus On-state Voltage (Typical)
Figure E1.5 Normalized DC Holding Current versus Case Temperature
Figure E1.6 Normalized DC Gate Trigger Voltage for All Quadrants
versus Case Temperature
Figure E1.7 Normalized DC Gate Trigger Current for All Quadrants
versus Case Temperature
Figure E1.8 Turn-on Time versus Gate Trigger Current (Typical)
01 23 4 5 6 7 8
60
65
70
75
80
85
90
95
100
105
110
RMS On-State Current [I
T(RMS)
] - Amps
Maximum Allowable Case Temperature (T
C
) - ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawings
4 A TYPE 1 and 3 TO-202
4 A TO-220 (Isolated)
4 A TO-252
8 A TO-220 (Isolated)
6 A TO-220 (Isolated)
4 A TYPE 2 and 4 TO-202
4 A TO-251
8 A TO-251 and TO-252
6 A TO-251
6 A TO-252
0 0.5 0.8 1.0 1.2 1.4 1.6 1.8
0
2
4
6
8
10
12
14
16
18
20
Positive or Negative Instantaneous
On-state Voltage (v
T
) - Volts
Positive or Negative Instantaneous
On-state Current (i
T
) - Amps
1 A
4 A
6 A and 8 A
TC = 25 ˚C
0.8 A
-40 -15 +25 +65 +110 +125
0
1.0
2.0
3.0
4.0
-65
Case Temperature (TC) -
˚
C
INITIAL ON-STATE CURRENT
= 100 mA (DC) 0.8 - 4 A Devices
= 200 mA (DC) 6 - 8 A Devices
Ratio of
IH
IH (TC = 25
˚
C)
-65 -40 -15 +65 +110+125+25
0
.5
1.0
1.5
2.0
Ratio of
VGT
VGT (TC = 25 ˚C)
Case Temperature (TC) - ˚C
-65 -40 -15 +65 +110+125+25
0
1.0
2.0
3.0
4.0
Ratio of
I
GT
I
GT
(T
C
= 25 ˚C)
Case Temperature (T
C
) - ˚C
123465 8 10 20 30 40 60 80 100
I
GT
= 5 mA MAX
I
GT
= 10 mA MAX
I
GT
= 20 mA
MAX
I
GT
= 3 mA MAX
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
DC Gate Trigger Current (IGT) - mA
Turn-On Time (tgt) - µSec
TC = 25 ˚C
Sensitive Triacs Data Sheets
http://www.teccor.com E1 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E1.9 Peak Surge Current versus Surge Current Duration
Figure E1.10 Power Dissipation (Typical) versus RMS On-state Current
(0.8 A and 1 A)
Figure E1.11 Power Dissipation (Typical) versus RMS On-state Current
(4 A, 6 A, and 8 A)
12436810204030 60 100 200 400 600 1000
1
2
3
4
6
10
8
20
30
40
60
100
80
150
200
Surge Current Duration – Full Cycles
Peak Surge (Non-Repetitive)
On-State Current (I
TSM
) – Amps
8 A
6 A
0.8 A
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS On-state Current: [IT(RMS)]: Maximum
Rated Value at Specified Case Temperature
NOTES:
1) Gate control may be lost during
and immediately following surge
current interval.
2) Overload may not be repeated until
junction temperature has returned
to steady-state rated value.
1 A
4 A
0 0.25 0.50 0.75 1.0 1.25 1.5
0
0.5
1.0
1.5
RMS On-state Current [IT(RMS)] – Amps
Average On-state Power Dissipation
[PD(AV)] – Watts
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
1 A
0.8 A
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
8.0
6 A and 8 A
4 A
RMS On-state Current [I
T(RMS)
] – Amps
Average On-state Power Dissipation
[P
D(AV)
] – Watts
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360
˚
©2002 Teccor Electronics E2 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Selected Packages*
U.L. RECOGNIZED
File #E71639
Triacs
(0.8 A to 35 A)
E2
General Description
These gated triacs from Teccor Electronics are part of a broad
line of bidirectional semiconductors. The devices range in current
ratings from 0.8 A to 35 A and in voltages from 200 V to 1000 V.
The triac may be gate triggered from a blocking to conduction
state for either polarity of applied voltage and is designed for AC
switching and phase control applications such as speed and tem-
perature modulation controls, lighting controls, and static switch-
ing relays. The triggering signal is normally applied between the
gate and MT1.
Isolated packages are offered with internal construction, having
the case or mounting tab electrically isolated from the semicon-
ductor chip. This feature facilitates the use of low-cost assembly
and convenient packaging techniques. Tape-and-reel capability
is available. See “Packing Options” section of this catalog.
All Teccor triacs have glass-passivated junctions to ensure long-
term device reliability and parameter stability. Teccor's glass-pas-
sivated junctions offer a rugged, reliable barrier against junction
contamination.
Variations of devices covered in this data sheet are available for
custom design applications. Consult factory for more information.
Features
Electrically-isolated packages
Glass-passivated junctions
Voltage capability — up to 1000 V
Surge capability — up to 200 A
Compak Package
Surface mount package — 0.8 A and 1 A series
New small profile three-leaded Compak package
Packaged in embossed carrier tape with 2,500
devices per reel
Can replace SOT-223
E2
MT2 MT1
G
TO-202 *TO-220
3-lead
Compak
TO-92
TO-251
V-Pak
TO-263
D2Pak
TO-92
TO-252
D-Pak
*TO-3
Fastpak
Triacs Data Sheets
http://www.teccor.com E2 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
See “General Notes” on page E2 - 4 and “Electrical Specification Notes” on page E2 - 5.
IT(RMS)
Part Number
VDRM IGT
Isolated Non-isolated
(4)
TO-92 TO-220 Compak TO-202 TO-220
TO-252
D-Pak
TO-251
V-Pak
TO-263
D2Pak
(1)
Volts
(3) (7) (15)
mAmps
QI QII QIII QIV QIV
MAX See “Package Dimensions” section for variations. (11) MIN MAX TYP
0.8 A Q2X8E3 Q2X3 200 10 10 10 25
Q4X8E3 Q4X3 400 10 10 10 25
Q6X8E3 Q6X3 600 10 10 10 25
Q2X8E4 Q2X4 200 25 25 25 50
Q4X8E4 Q4X4 400 25 25 25 50
Q6X8E4 Q6X4 600 25 25 25 50
1A Q201E3 Q2N3 200 101010 25
Q401E3 Q4N3 400 101010 25
Q601E3 Q6N3 600 101010 25
Q201E4 Q2N4 200 252525 50
Q401E4 Q4N4 400 252525 50
Q601E4 Q6N4 600 252525 50
4A Q2004L3 Q2004F31 Q2004D3 Q2004V3 200 10 10 10 25
Q4004L3 Q4004F31 Q4004D3 Q4004V3 400 10 10 10 25
Q6004L3 Q6004F31 Q6004D3 Q6004V3 600 10 10 10 25
Q2004L4 Q2004F41 Q2004D4 Q2004V4 200 25 25 25 50
Q4004L4 Q4004F41 Q4004D4 Q4004V4 400 25 25 25 50
Q6004L4 Q6004F41 Q6004D4 Q6004V4 600 25 25 25 50
Q8004L4 Q8004D4 Q8004V4 800 25 25 25 50
QK004L4 QK004D4 QK004V4 1000 25 25 25 50
6A Q2006L4 Q2006F41 Q2006R4 Q2006N4 200 25 25 25 50
Q4006L4 Q4006F41 Q4006R4 Q4006N4 400 25 25 25 50
Q6006L5 Q6006F51 Q6006R5 Q6006N5 600 50 50 50 75
Q8006L5 Q8006R5 Q8006N5 800 50 50 50 75
QK006L5 QK006R5 QK006N5 1000 50 50 50 75
8A Q2008L4 Q2008F41 Q2008R4 Q2008N4 200 25 25 25 50
Q4008L4 Q4008F41 Q4008R4 Q4008N4 400 25 25 25 50
Q6008L5 Q6008F51 Q6008R5 Q6008N5 600 50 50 50 75
Q8008L5 Q8008R5 Q8008N5 800 50 50 50 75
QK008L5 QK008R5 QK008N5 1000 50 50 50 75
MT1
G
MT2
MT1
MT2
G
G
MT1
MT2
MT2
MT1 G
MT2
MT1 G
MT2
MT2
MT2
MT2
MT1
G
MT2
MT2
G
MT1
MT2
MT2
MT1
G
Data Sheets Triacs
©2002 Teccor Electronics E2 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
See “General Notes” on page E2 - 4 and “Electrical Specification Notes” on page E2 - 5.
IDRM VTM VGT IHIGTM PGM PG(AV) ITSM dv/dt(c) dv/dt tgt I2tdi/dt
(1) (16)
mAmps
(1) (5)
Volts
(2) (6)
(15) (18)
(19)
Volts
(1) (8)
(12)
mAmps
(14)
Amps
(14)
Watts Watts
(9) (13)
Amps
(1) (4) (13)
Volts/µSec
(1)
Volts/µSec
(10)
µSec Amp2Sec Amps/µSec
TC =
25 °C
TC =
100 °C
TC =
125 °C
TC =
25 °C
TC =
25 °C 60/50 Hz
TC=
100 °C
TC=
125 °C
MAX MAX MAX MAX TYP MIN TYP
0.02 0.5 11.6 215 110 0.2 10/8.3 140 30 2.5 0.41 20
0.02 0.5 11.6 215 110 0.2 10/8.3 135 25 2.5 0.41 20
0.02 0.5 11.6 215 110 0.2 10/8.3 125 15 2.5 0.41 20
0.02 0.5 11.6 2.5 25 110 0.2 10/8.3 150 40 30.41 20
0.02 0.5 11.6 2.5 25 110 0.2 10/8.3 145 35 30.41 20
0.02 0.5 11.6 2.5 25 110 0.2 10/8.3 135 25 30.41 20
0.02 0.5 1 1.6 2 15 1 10 0.2 20/16.7 1 40 30 2.5 1.6 30
0.02 0.5 1 1.6 2 15 1 10 0.2 20/16.7 1 40 30 2.5 1.6 30
0.02 0.5 1 1.6 2 15 1 10 0.2 20/16.7 1 30 20 2.5 1.6 30
0.02 0.5 1 1.6 2.5 25 1 10 0.2 20/16.7 1 50 40 3 1.6 30
0.02 0.5 1 1.6 2.5 25 1 10 0.2 20/16.7 1 50 40 3 1.6 30
0.02 0.5 1 1.6 2.5 25 1 10 0.2 20/16.7 1 40 30 3 1.6 30
0.05 0.5 21.6 220 1.2 15 0.3 55/46 250 40 2.5 12.5 50
0.05 0.5 21.6 220 1.2 15 0.3 55/46 250 40 2.5 12.5 50
0.05 0.5 21.6 220 1.2 15 0.3 55/46 240 30 2.5 12.5 50
0.05 0.5 21.6 2.5 30 1.2 15 0.3 55/46 2100 75 312.5 50
0.05 0.5 21.6 2.5 30 1.2 15 0.3 55/46 2100 75 312.5 50
0.05 0.5 21.6 2.5 30 1.2 15 0.3 55/46 275 50 312.5 50
0.05 0.5 21.6 2.5 30 1.2 15 0.3 55/46 260 40 312.5 50
0.05 31.6 2.5 30 1.2 15 0.3 55/46 250 312.5 50
0.05 0.5 2 1.6 2.5 50 1.6 18 0.5 80/65 4 200 120 3 26.5 70
0.05 0.5 2 1.6 2.5 50 1.6 18 0.5 80/65 4 200 120 3 26.5 70
0.05 0.5 2 1.6 2.5 50 1.6 18 0.5 80/65 4 150 100 3 26.5 70
0.05 0.5 2 1.6 2.5 50 1.6 18 0.5 80/65 4 125 85 3 26.5 70
0.05 3 1.6 2.5 50 1.6 18 0.5 80/65 4 100 3 26.5 70
0.05 0.5 21.6 2.5 50 1.8 20 0.5 100/83 4250 150 341 70
0.05 0.5 21.6 2.5 50 1.8 20 0.5 100/83 4250 150 341 70
0.05 0.5 21.6 2.5 50 1.8 20 0.5 100/83 4220 125 341 70
0.05 0.5 21.6 2.5 50 1.8 20 0.5 100/83 4150 100 341 70
0.05 31.6 2.5 50 1.8 20 0.5 100/83 4100 341 70
Triacs Data Sheets
http://www.teccor.com E2 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Specific Test Conditions
di/dt — Maximum rate-of-change of on-state current; IGT = 200 mA with
0.1 µs rise time
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate
unenergized
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms
for fusing
IDRM — Peak off-state current, gate open; VDRM = maximum rated value
IGT — DC gate trigger current in specific operating quadrants;
VD = 12 V dc
IGTM Peak gate trigger current
IH — Holding current (DC); gate open
IT(RMS) — RMS on-state current conduction angle of 360°
ITSM — Peak one-cycle surge
PG(AV) — Average gate power dissipation
PGM — Peak gate power dissipation; IGT IGTM
tgt — Gate controlled turn-on time; IGT = 200 mA with 0.1 µs rise time
VDRM — Repetitive peak blocking voltage
VGT — DC gate trigger voltage; VD = 12 V dc; RL = 60
VTM — Peak on-state voltage at maximum rated RMS current
General Notes
All measurements are made at 60 Hz with a resistive load at an
ambient temperature of +25 °C unless specified otherwise.
Operating temperature range (TJ) is -65 °C to +125 °C for TO-92,
-25 °C to +125 °C for Fastpak, and -40 °C to +125 °C for all other
devices.
Storage temperature range (TS) is -65 °C to +150 °C for TO-92,
-40 °C to +150 °C for TO-202, and -40 °C to +125 °C for all other
devices.
Lead solder temperature is a maximum of 230 °C for 10 seconds,
maximum; 1/16" (1.59 mm) from case.
The case temperature (TC) is measured as shown on the dimen-
sional outline drawings. See “Package Dimensions” section of this
catalog.
IT(RMS)
Part Number
VDRM IGT IDRM
Isolated Non-isolated
(4) (16)
TO-3
Fastpak TO-220 TO-202 TO-220
TO-263
D2Pak
(1)
Volts
(3) (7) (15)
mAmps
(1) (16)
mAmps
QI QII QIII QIV QIV
TC =
25 °C
TC =
100 °C
TC =
125 °C
MAX See “Package Dimensions” section for variations. (11) MIN MAX TYP MAX
10 A
Q2010L4 Q2010R4 Q2010N4 200 25 25 25 50 0.05 1
Q4010L4 Q4010R4 Q4010N4 400 25 25 25 50 0.05 1
Q6010L4 Q6010R4 Q6010N4 600 25 25 25 50 0.05 1
Q8010L4 Q8010R4 Q8010N4 800 25 25 25 50 0.1 1
QK010L4 QK010R4 QK010N4 1000 25 25 25 50 0.1 3
Q2010L5 Q2010F51 Q2010R5 Q2010N5 200 50 50 50 75 0.05 0.5 2
Q4010L5 Q4010F51 Q4010R5 Q4010N5 400 50 50 50 75 0.05 0.5 2
Q6010L5 Q6010F51 Q6010R5 Q6010N5 600 50 50 50 75 0.05 0.5 2
Q8010L5 Q8010R5 Q8010N5 800 50 50 50 75 0.1 0.5 2
QK010L5 QK010R5 QK010N5 1000 50 50 50 75 0.1 3
15 A
Q2015L5 Q2015R5 Q2015N5 200 50 50 50 0.05 0.5 2
Q4015L5 Q4015R5 Q4015N5 400 50 50 50 0.05 0.5 2
Q6015L5 Q6015R5 Q6015N5 600 50 50 50 0.05 0.5 2
Q8015L5 Q8015R5 Q8015N5 800 50 50 50 0.1 1 3
QK015L5 QK015R5 QK015N5 1000 50 50 50 0.1 3
25 A
Q2025R5 Q2025N5 200 50 50 50 0.1 1 3
Q4025R5 Q4025N5 400 50 50 50 0.1 1 3
Q6025R5 Q6025N5 600 50 50 50 0.1 1 3
Q8025R5 Q8025N5 800 50 50 50 0.1 1 3
QK025R5 QK025N5 1000 50 50 50 0.1 3
Q6025P5 600 505050 1200.1 5
Q8025P5 800 505050 1200.1 5
35 A Q6035P5 600 50 50 50 120 0.1 5
Q8035P5 800 50 50 50 120 0.1 5
MT1 MT2
Gate MT1
MT2
T
MT2
MT1 G
MT2
MT1 G
MT2
MT2
MT2
MT2
MT1
G
Data Sheets Triacs
©2002 Teccor Electronics E2 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Electrical Specification Notes
(1) For either polarity of MT2 with reference to MT1 terminal
(2) For either polarity of gate voltage (VGT) with reference to MT1
terminal
(3) See Gate Characteristics and Definition of Quadrants.
(4) See Figure E2.1 through Figure E2.7 for current rating at specific
operating temperature.
(5) See Figure E2.8 through Figure E2.10 for iT versus vT
.
(6) See Figure E2.12 for VGT versus TC.
(7) See Figure E2.11 for IGT versus TC.
(8) See Figure E2.14 for IH versus TC.
(9) See Figure E2.13 for surge rating with specific durations.
(10) See Figure E2.15 for tgt versus IGT.
(11) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
(12) Initial on-state current = 200 mA dc for 0.8 A to10 A devices,
400 mA dc for 15 A to 35 A devices
(13) See Figure E2.1 through Figure E2.6 for maximum allowable case
temperature at maximum rated current.
(14) Pulse width 10 µs; IGT IGTM
(15) RL = 60 for 0.8 A to10 A triacs; RL = 30 for 15 A to 35 A triacs
(16) TC = TJ for test conditions in off state
(17) IGT = 300 mA for 25 A and 35 A devices
(18) Quadrants I, II, III only
(19) Minimum non-trigger VGT at 125 °C is 0.2 V for all except 50 mA
MAX QIV devices which are 0.2 V at 110 °C.
Gate Characteristics
Teccor triacs may be turned on between gate and MT1 terminals
in the following ways:
In-phase signals (with standard AC line) using Quadrants I
and III
Application of unipolar pulses (gate always positive or nega-
tive), using Quadrants II and III with negative gate pulses and
Quadrants I and IV with positive gate pulses
However, due to higher gate requirements for Quadrant IV, it
is recommended that only negative pulses be applied. If pos-
itive pulses are required, see “Sensitive Triacs” section of
this catalog or contact the factory. Also, see
Figure AN1002.8, “Amplified Gate” Thyristor Circuit.
VTM VGT IHIGTM PGM PG(AV) ITSM dv/dt(c) dv/dt tgt I2tdi/dt
(1) (5)
Volts
(2) (6) (15)
(18) (19)
Volts
(1) (8) (12)
mAmps
(14)
Amps
(14)
Watts Watts
(9) (13)
Amps
(1) (4) (13)
Volts/µSec
(1)
Volts/µSec
(10) (17)
µSec Amps2Sec Amps/µSec
TC = 25 °C TC = 25 °C 60/50 Hz
TC =
100 °C
TC =
125 °C
MAX MAX MAX TYP MIN TYP
1.6 2.5 35 1.8 20 0.5 120/100 2 150 3 60 70
1.6 2.5 35 1.8 20 0.5 120/100 2 150 3 60 70
1.6 2.5 35 1.8 20 0.5 120/100 2 100 3 60 70
1.6 2.5 35 1.8 20 0.5 120/100 2 75 3 60 70
1.6 2.5 35 1.8 20 0.5 120/100 2 50 3 60 70
1.6 2.5 50 1.8 20 0.5 120/100 4 350 225 3 60 70
1.6 2.5 50 1.8 20 0.5 120/100 4 350 225 3 60 70
1.6 2.5 50 1.8 20 0.5 120/100 4 300 200 3 60 70
1.6 2.5 50 1.8 20 0.5 120/100 4 250 175 3 60 70
1.6 2.5 50 1.8 20 0.5 120/100 4 150 3 60 70
1.6 2.5 70 220 0.5 200/167 4400 275 4166 100
1.6 2.5 70 220 0.5 200/167 4400 275 4166 100
1.6 2.5 70 220 0.5 200/167 4350 225 4166 100
1.6 2.5 70 220 0.5 200/167 4300 200 4166 100
1.6 2.5 70 220 0.5 200/167 4200 4166 100
1.8 2.5 100 2 20 0.5 200/167 5 400 275 4 166 100
1.8 2.5 100 2 20 0.5 200/167 5 400 275 4 166 100
1.8 2.5 100 2 20 0.5 200/167 5 350 225 4 166 100
1.8 2.5 100 2 20 0.5 200/167 5 300 200 4 166 100
1.8 2.5 100 2 20 0.5 200/167 5 200 4 166 100
1.4 2.75 50 2 20 0.5 250/220 5 550 475 3 260 100
1.4 2.75 50 2 20 0.5 250/220 5 450 400 3 260 100
1.5 2.75 50 220 0.5 350/300 5550 475 3508 100
1.5 2.75 50 220 0.5 350/300 5450 400 3508 100
Triacs Data Sheets
http://www.teccor.com E2 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
In all cases, if maximum surge capability is required, pulses
should be a minimum of one magnitude above IGT rating with a
steep rising waveform (1 µs rise time).
Definition of Quadrants
Electrical Isolation
Teccors isolated triac packages will withstand a minimum high
potential test of 2500 V ac rms from leads to mounting tab or
base, over the operating temperature range of the device. The
following isolation table shows standard and optional isolation
ratings.
* UL Recognized File E71639
** For 4000 V isolation, use V suffix in part number.
* Mounted on 1 cm2 copper foil surface; two-ounce copper foil
MT2 POSITIVE
(Positive Half Cycle)
MT2 NEGATIVE
(Negative Half Cycle)
MT1
MT2
+ I
GT
REF
QII
MT1
I
GT
GATE
MT2
REF
MT1
MT2
REF
MT1
MT2
REF
QI
QIV
QIII
ALL POLARITIES ARE REFERENCED TO MT1
(
-
)
I
GT
GATE
(+)
I
GT
-
I
GT
GATE
(
-
)
I
GT
GATE
(+)
+
-
Electrical Isolation
from Leads to Mounting Tab *
VACRMS
TO-220
Isolated
Fastpak
Isolated
2500 Standard Standard
4000 Optional ** N/A
Thermal Resistance (Steady State)
R θ JC [R θ JA] (TYP.) °C/W
Package Code PECFF2LR D V N
Type
TO-3
Fastpak TO-92 Compak
TO-202
Type 1
TO-202
Type 2
TO-220
Isolated
TO-220
Non-isolated
TO-252
D-Pak
TO-251
V-Pak
TO-263
D2Pak
0.8 A 60 [135] 60 *
1 A 50 [95] 40 *
4A 3.5 [45] 6 [70] 3.6 [50] 3.5 6.0 [70]
6 A 3.8 3.3 1.8 [45] 1.8
8A 3.3 2.8 1.5 1.5
10 A 3.5 2.6 1.3 1.3
15 A 2.1 1.1 1.1
25 A 1.6 0.89 0.89
35 A 1.5
Data Sheets Triacs
©2002 Teccor Electronics E2 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E2.1 Maximum Allowable Case Temperature versus On-state
Current (0.8 A and 1 A)
Figure E2.2 Maximum Allowable Case Temperature versus On-state
Current (4 A and 6 A)
Figure E2.3 Maximum Allowable Case Temperature versus
On-state Current (8 A and 10 A)
Figure E2.4 Maximum Allowable Case Temperature versus
On-state Current (10 A)
Figure E2.5 Maximum Allowable Case Temperature versus
On-state Current (15 A)
Figure E2.6 Maximum Allowable Case Temperature versus
On-state Current (25 A and 35 A)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0
60
70
80
90
100
110
120
130
RMS On-state Current [lT(RMS)] – AMPS
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured
as shown on Dimensional Drawing
1 A
0.8 A
01234567
0
60
70
80
90
100
110
120
130
RMS On-state Current [lT(RMS)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
6 A TO-220 (Isolated)
6 A TO-202
6 A TO-220 (Non-isolated)
6 A D
2
Pak
4 A TO-220 (Isolated)
4 A TO-202 (Type 1 and 3)
4 A TO-252 CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
4 A TO-202 (TYPE 2 and 4)
4 A TO-251
02468101214
0
60
70
80
90
100
110
120
130
RMS On-state Current [l
T(RMS)
] – AMPS
Maximum Allowable Case Temperature (T
C
) – ˚C
10 A TO-220 (Isolated)
8 A TO-220 (Non-isolated)
8 A D2Pak
8 A TO-202
8 A TO-220 (Isolated)
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
02468101214
0
60
70
80
90
100
110
120
130
RMS On-state Current [lT(RMS)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360
˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
10 A TO-202
10 A TO-220 (Non-isolated)
10 A D2Pak
051015
0
60
70
80
90
100
110
120
130
RMS On-state Current [lT(RMS)] – AMPS
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
15 A TO-220 (Non-isolated)
15 A D2Pak
15 A TO-220 (Isolated)
0 1020304050
50
60
70
80
90
100
110
120
130
RMS On-state Current [lT(RMS)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
25 A TO-220 (Non-isolated)
25 A D
2
Pak
25 A TO-3 Fastpak
35 A TO-3 Fastpak
Triacs Data Sheets
http://www.teccor.com E2 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E2.7 Maximum Allowable Ambient Temperature versus
On-state Current
Figure E2.8 On-state Current versus On-state Voltage (Typical)
(0.8 A and 1 A)
Figure E2.9 On-state Current versus On-state Voltage (Typical)
(4 A, 6 A, 8 A, and 10 A)
Figure E2.10 On-state Current versus On-state Voltage (Typical)
(15 A and 25 A)
Figure E2.11 Normalized DC Gate Trigger Current for All Quadrants
versus Case Temperature
Figure E2.12 Normalized DC Gate Trigger Voltage for All Quadrants
versus Case Temperature
120
100
80
60
40
25
20
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TO-220 Devices and
TO-202 (Type 1 and 3)
RMS On-state Current [IT (RMS)] — Amps
Maximum Allowable Ambient Temperature (TA) — ˚C
1 A TO-92
0.8 A TO-92
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360
˚
FREE AIR RATING – NO HEATSINK
TO-202 (TYPE 2 and 4)
TO-251
0 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
1
2
3
4
5
6
7
8
9
10
Positive or Negative Instantaneous On-state Voltage (v
T
) – Volts
Positive or Negative Instantaneous On-state Current (i
T
) – Amps
T
C
= 25 ˚C
1 A
0.8 A
0 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
2
4
6
8
10
12
14
16
18
20
Positive or Negative Instantaneous On-state Voltage (vT) – Volts
Positive or Negative Instantaneous
On-state Current (iT) – Amps
TC = 25 ˚C
6-10 A
4A
0 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
10
20
30
40
50
60
70
80
90
Positive or Negative Instantaneous On-state Voltage (vT) – Volts
Positive or Negative Instantaneous
On-state Current (iT) – Amps
TC = 25 ˚C
15 A and 25 A
15 A and 25 A Fastpak
-65 -40 -15 +25 +65 +125
1.0
2.0
3.0
4.0
Case Temperature (TC) – ˚C
Ratio of IGT
IGT(TC = 25 ˚C)
-65 -15-40 +25 +65 +125
0
.5
1.0
1.5
2.0
Case Temperature (TC) – ˚C
Ratio of VGT
VGT(TC = 25 ˚C)
Data Sheets Triacs
©2002 Teccor Electronics E2 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E2.13 Peak Surge Current versus Surge Current Duration
Figure E2.14 Normalized DC Holding Current versus Case Temperature Figure E2.15 Turn-on Time versus Gate Trigger Current (Typical)
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT [l
T(RMS)
]: Maximum
Rated Value at Specified Case Temperature
NOTES: 1) Gate control may be lost during and
immediately following surge current interval.
2) Overload may not be repeated until
junction temperature has returned to
steady-state rated value.
25 A TO-220
15 A
10 A
8 A
4 A
1 A
6 A
1
10
20
30
40
50
60
80
100
120
300
400
1000
1 10 100 1000
Surge Current Duration – Full Cycles
Peak Surge (Non-repetitive) On-state Current (l
TSM
) – Amps
200
0.8 A
25 A Fastpak
35 A Fastpak
-65 -40 -15 +25 +65 +125
1.0
2.0
3.0
4.0
Case Temperature (TC) – ˚C
Ratio of IH
IH(TC = 25 ˚C)
INITIAL ON-STATE CURRENT
= 200 mA DC 0.8 A - 10 A Devices
= 400 mA DC 15 A - 25 A Devices
0
0 25 50 75 100 125 150 175 200 225 250 275 300
1
2
3
4
5
6
7
8
Typical Turn-on Time (tgt) – µSec
DC Gate Trigger Current (lGT) – mA
Devices with lGT = 10 mA
Devices with lGT = 25 mA
Devices with lGT = 50 mA
TC = 25 ˚C
Triacs Data Sheets
http://www.teccor.com E2 - 10 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E2.16 Power Dissipation (Typical) versus On-state Current
(0.8 A and 1 A)
Figure E2.17 Power Dissipation (Typical) versus On-state Current
(6 A to 10 A and 15 A)
Figure E2.18 Power Dissipation (Typical) versus On-state Current
(25 A to 35 A)
Figure E2.19 Power Dissipation (Typical) versus RMS On-state Current
(4 A)
RMS On-state Current [I
T(RMS)
] – Amps
Average On-state Power Dissipation
[P
D(AV)
] – Watts
0 0.25 0.50 0.75 1.0 1.25
0
0.5
1.0
1.5
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
1 A
0.8 A
012345678910111213141516
0
2
4
6
8
10
12
14
16
18
RMS On-state Current [lT(RMS)] – Amps
Average On-state Power Dissipation [PD(AV)] – Watts
6-10 A
15 A
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
0 8 16 24 32 40
0
5
10
15
20
25
30
35
40
45
RMS On-state Current [lT(RMS)] – Amps
Average On-state Power Dissipation [PD(AV)] – Watts
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
25 A
25 A - 35 A Fastpaks
RMS On-state Current [IT(RMS)] – Amps
Average On-state Power Dissipation
[PD(AV)] – Watts
0 1.0 2.0 3.0 4.0
0
1.0
2.0
3.0
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
4 A
4.0
©2002 Teccor Electronics E3 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
U.L. RECOGNIZED
File #E71639
Quadrac
Internally Triggered Triacs (4 A to 15 A)
E3
General Description
Te cc o r s Quadrac devices are triacs that include a diac trigger
mounted inside the same package. This device, developed by
Teccor, saves the user the expense and assembly time of buying
a discrete diac and assembling in conjunction with a gated triac.
Also, the alternistor Quadrac device (QxxxxLTH) eliminates the
need for a snubber network.
The Quadrac device is a bidirectional AC switch and is gate con-
trolled for either polarity of main terminal voltage. Its primary pur-
pose is for AC switching and phase control applications such as
speed controls, temperature modulation controls, and lighting
controls where noise immunity is required.
Triac current capacities range from 4 A to 15 A with voltage
ranges from 200 V to 600 V. Quadrac devices are available in the
TO-220 package.
The TO-220 package is electrically isolated to 2500 V rms from
the leads to mounting surface. 4000 V rms is available on special
order. This means that no external isolation is required, thus
eliminating the need for separate insulators and insulator-mount-
ing steps and saving dollars over “hot tab” devices.
All Teccor triac and diac chips have glass-passivated junctions to
ensure long-term device reliability and parameter stability.
Variations of devices in this data sheet are available for custom
design applications. Consult the factory for more information.
Features
Glass-passivated junctions
Electrically-isolated package
Internal trigger diac
High surge capability — up to 200 A
High voltage capability — 200 V to 600 V
TO-220
Isolated
MT2 MT1
T
E3
Quadrac Data Sheets
http://www.teccor.com E3 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Specific Test Conditions
[∆V±] Dynamic breakback voltage (forward and reverse)
VBO — Breakover voltage symmetry
CT — Trigger firing capacitance
di/dt — Maximum rate-of-change of on-state current
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate
unenergized
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms
for fusing
IBO — Peak breakover current
IDRM — Peak off-state current gate open; VDRM = maximum rated value
IGTM — Peak gate trigger current (10 µs Max)
IH — Holding current; gate open
IT(RMS) — RMS on-state current, conduction angle of 360°
ITSM — Peak one-cycle surge
tgt — Gate controlled turn-on time
VBO — Breakover voltage (forward and reverse)
VDRM — Repetitive peak blocking voltage
VTM — Peak on-state voltage at maximum rated RMS current
General Notes
All measurements are made at 60 Hz with resistive load at an ambi-
ent temperature of +25 °C unless otherwise specified.
Operating temperature range (TJ) is -40 °C to +125 °C.
Storage temperature range (TS) is -40 °C to +125 °C.
Lead solder temperature is a maximum of +230 °C for 10 seconds
maximum; 1/16" (1.59 mm) from case.
The case temperature (TC) is measured as shown on dimensional
outline drawings. See “Package Dimensions” section of this
catalog.
Electrical Specification Notes
(1) For either polarity of MT2 with reference to MT1
(2) See Figure E3.1 for IH versus TC.
(3) See Figure E3.4 and Figure E3.5 for iT versus vT
.
(4) See Figure E3.9 for surge ratings with specific durations.
IT(RMS)
Part No.
VDRM IDRM VTM
Trigger Diac Specifications (T–MT1)
Isolated VBO VBO [V± ]I
BO CT
(5)
TO-220
(1)
Volts
(1) (10)
mAmps
(1) (3)
Volts
(7)
Volts
(6)
Volts
(6)
Volts µAmps
(11)
µFarads
TC =
25 °C
TC =
100 °C
TC =
125 °C TC = 25 °C
See “Package Dimensions” section
for variations. (12) MIN MAX MAX MAX MIN MAX MIN MAX MAX
4A
Q2004LT 200 0.05 0.5 21.6 333 43 525 0.1
Q4004LT 400 0.05 0.5 21.6 333 43 525 0.1
Q6004LT 600 0.05 0.5 21.6 333 43 525 0.1
6A
Q2006LT 200 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q4006LT 400 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q6006LT 600 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q4006LTH 400 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q6006LTH 600 0.05 0.5 2 1.6 3 33 43 5 25 0.1
8A
Q2008LT 200 0.05 0.5 21.6 333 43 525 0.1
Q4008LT 400 0.05 0.5 21.6 333 43 525 0.1
Q6008LT 600 0.05 0.5 21.6 333 43 525 0.1
Q4008LTH 400 0.05 0.5 21.6 333 43 525 0.1
Q6008LTH 600 0.05 0.5 21.6 333 43 525 0.1
10 A
Q2010LT 200 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q4010LT 400 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q6010LT 600 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q4010LTH 400 0.05 0.5 2 1.6 3 33 43 5 25 0.1
Q6010LTH 600 0.05 0.5 2 1.6 3 33 43 5 25 0.1
15 A
Q2015LT 200 0.05 0.5 21.6 333 43 525 0.1
Q4015LT 400 0.05 0.5 21.6 333 43 525 0.1
Q6015LT 600 0.05 0.5 21.6 333 43 525 0.1
Q4015LTH 400 0.05 0.5 21.6 333 43 525 0.1
Q6015LTH 600 0.05 0.5 21.6 333 43 525 0.1
MT1
MT2
T
Data Sheets Quadrac
©2002 Teccor Electronics E3 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
(5) See Figure E3.6, Figure E3.7, and Figure E3.8 for current rating at
specific operating temperature.
(6) See Figure E3.2 and Figure E3.3 for test circuit.
(7) VBO = [+ VBO] - [- VBO]
(8) See Figure E3.7 and Figure E3.8 for maximum allowable case
temperature at maximum rated current.
(9) Trigger firing capacitance = 0.1 µF with 0.1 µs rise time
(10) TC = TJ for test conditions in off state
(11) Maximum required value to ensure sufficient gate current
(12) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
Electrical Isolation
All Teccor isolated Quadrac packages withstand a minimum high
potential test of 2500 V ac rms from leads to mounting tab over
the operating temperature range of the device. The following iso-
lation table shows standard and optional isolation ratings.
* UL Recognized File #E71639
**For 4000 V isolation, use “V” suffix in part number.
IHITSM dv/dt(c) dv/dt tgt I2tIGTM di/dt
(1) (2)
mAmps
(4) (8)
Amps
(1) (5) (8)
Volts/µSec
(1)
Volts/µSec
(6) (9)
µSec Amps2Sec Amps
(9)
Amps/µSec
TC =
100 °C
TC =
125 °C
MAX 60/50Hz MIN MIN TYP
40 55/46 375 50 312.5 1.2 50
40 55/46 375 50 312.5 1.2 50
40 55/46 350 50 312.5 1.2 50
50 80/65 4 150 100 3 26.5 1.5 70
50 80/65 4 150 100 3 26.5 1.5 70
50 80/65 4 125 85 3 26.5 1.5 70
50 80/65 25 575 450 3 26.5 1.5 70
50 80/65 25 425 350 3 26.5 1.5 70
60 100/83 4175 120 341 1.5 70
60 100/83 4175 120 341 1.5 70
60 100/83 4150 100 341 1.5 70
60 100/83 25 575 450 341 1.5 70
60 100/83 25 425 350 341 1.5 70
60 120/100 4 200 150 3 60 1.5 70
60 120/100 4 200 150 3 60 1.5 70
60 120/100 4 175 120 3 60 1.5 70
60 120/100 30 925 700 3 60 1.5 70
60 120/100 30 775 600 3 60 1.5 70
70 200/167 4300 200 3166 1.5 100
70 200/167 4300 200 3166 1.5 100
70 200/167 4200 150 3166 1.5 100
70 200/167 30 925 700 3166 1.5 100
70 200/167 30 775 600 3166 1.5 100
Thermal Resistance (Steady State)
RθJC [RθJA] °C/W (TYP)
TYPE Isolated TO-220
4A 3.6 [50]
6A 3.3
8A 2.8
10 A 2.6
15 A 2.1
Electrical Isolation
from Leads to Mounting Tab *
V AC RMS TYPE
2500 Standard
4000 Optional **
Quadrac Data Sheets
http://www.teccor.com E3 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E3.1 Normalized DC Holding Current versus Case Temperature
Figure E3.2 Test Circuit
Figure E3.3 Test Circuit Waveforms
Figure E3.4 On-state Current versus On-state Voltage (Typical)
(4 A to 10 A)
Figure E3.5 On-state Current versus On-state Voltage (Typical) (15 A)
Figure E3.6 Maximum Allowable Ambient Temperature versus
On-state Current
Case Temperature (TC) – ˚C
-40 -15 +25 +65 +105
IH
IH(TC = 25 ˚C)
2.0
1.5
1.0
.5
0
INITIAL ON-STATE CURRENT
= 200 mA DC 4 A to 10 A
= 400 mA DC 15 A
Ratio of
+125
120 V
60 Hz
RL
D.U.T. MT2
MT1
VC
CT = 0.1 µF
T
V
C
V+
-V
BO
V-
+V
BO
20
18
16
14
12
10
8
6
4
2
0
0 0.6 0.8 1.0 1.2 1.4 1.6
Positive or Negative
Instantaneous On-state Current (iT) – Amps
Positive or Negative
Instantaneous On-state Voltage (vT) – Volts
6 A, 8 A, and 10 A
4 A
TC = 25 ˚C
90
80
70
60
50
40
30
20
10
0
00.6 0.8 1.0 1.2 1.4 1.6
Positive or Negative
Instantaneous On-state Current (iT) – Amps
15 A
TC = 25˚C
1.8
Positive or Negative
Instantaneous On-state Voltage (vT) – Volts
120
100
80
60
40
20
RMS On-state Current [I
T(RMS)
] – Amps
Maximum Allowable Ambient Temperature (T
A
) – ˚C
25
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
4 A
Data Sheets Quadrac
©2002 Teccor Electronics E3 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E3.7 Maximum Allowable Case Temperature versus
On-state Current (4 A)
Figure E3.8 Maximum Allowable Case Temperature versus
On-state Current (6 A to 15 A)
Figure E3.9 Peak Surge Current versus Surge Current Duration
Figure E3.10 Power Dissipation (Typical) versus On-state Current (4 A)
Figure E3.11 Power Dissipation (Typical) versus On-state Current
(6 A to 10 A and 15 A)
Figure E3.12 Normalized diac VBO versus Junction Temperature
RMS On-state Current [I
T(RMS)
] – Amps
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Maximum Allowable Case Temperature (T
C
) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360
˚
CASE TEMPERATURE: Measured
as shown on Dimensional Drawings
130
120
110
100
90
80
70
600
4 A
RMS On-state Current [IT(RMS)] – Amps
02.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured
as shown on Dimensional Drawings
130
120
110
100
90
80
70
60
0
6 A
10 A
8 A
15 A
200
120
40
1 2 3 4 5 6 8 10 20 3040 60 80 100 200 300 600 1000
80
60
50
100
8
6
5
10
30
20
4
1
3
2
Surge Current Duration – Full Cycles
Peak Surge (Non-repetitive)
On-state Current (I
TSM
) – Amps
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT [IT(RMS)]: Maximum
Rated Value at Specified Case Temperature
NOTES:
1) Gates control may be lost during
and immediately following surge
current interval.
2) Overload may not be repeated until
junction temperature has returned to
steady state rated value.
15 A
10 A
8 A
6 A
4 A
Average On-state Power Dissipation [PD(AV)] – Watts
RMS On-state Current [IT(RMS)] – Amps
4.0
3.0
2.0
1.0
0
01.0 2.0 3.0 4.0 5.0
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
4 A
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
18
16
14
12
10
8
6
4
2
0
16
14
12
10
8
6
4
2
0
RMS On-state Current [I
T(RMS)
] – Amps
Average On-state Power Dissipation [P
D(AV)
] – Watts
15 A
6 A to 10 A
-8
-6
-4
-2
0
+2
+4
-40 -20 0 +20 +40 +60 +80 +100 +120 +140
Junction Temperature (TJ) – ˚C
Percentage of VBO Change – %
Notes
©2002 Teccor Electronics E4 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Selected Packages*
U.L. RECOGNIZED
File #E71639
Alternistor Triacs
(6 A to 40 A)
E4
General Description
Teccor offers bidirectional alternistors with current ratings from
6 A to 40 A and voltages from 200 V to 1000 V as part of Teccor's
broad line of thyristors. Teccor's alternistor is specifically
designed for applications that switch highly inductive loads.
A special chip offers the same performance as two thyristors
(SCRs) wired inverse parallel (back-to-back), providing better
turn-off behavior than a standard triac. An alternistor may be trig-
gered from a blocking to conduction state for either polarity of
applied AC voltage with operating modes in Quadrants I, II,
and III.
This new chip construction provides two electrically separate
SCR structures, providing enhanced dv/dt characteristics while
retaining the advantages of a single-chip device.
All alternistors have glass-passivated junctions to ensure long-
term reliability and parameter stability. Teccor's glass-passivated
junctions offer a reliable barrier against junction contamination.
Teccor's TO-218X package is designed for heavy, steady power-
handling capability. It features large eyelet terminals for ease of
soldering heavy gauge hook-up wire. All the isolated packages
have a standard isolation voltage rating of 2500 V rms.
Variations of devices covered in this data sheet are available for
custom design applications. Consult the factory for further
information.
Features
High surge current capability
Glass-passivated junctions
2500 V ac isolation for L, J, and K Packages
High commutating dv/dt
High static dv/dt
*TO-220
*TO-218
*TO-218X
MT2 MT1
G
E4
TO-263
D2Pak
TO-252
D-Pak
TO-251
V-Pak
Alternistor Triacs Data Sheets
http://www.teccor.com E4 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
See “General Notes” and “Electrical Specification Notes” on page E4 - 5.
IT(RMS)
Part Number
VDRM IGT IDRM
Isolated Non-isolated
(4)(16)
T0-220 TO-220
TO-251
V-Pak
TO-252
D-Pak
TO-263
D2Pak
(1)
Volts
(3) (7) (15) (17)
mAmps
(1) (18)
mAmps
QI QII QIII
TC =
25 °C
TC =
100 °C
TC =
125 °C
MAX See “Package Dimensions” section for variations. (11) MIN MAX MAX
6A
Q2006VH3 Q2006DH3 200 10 10 10 0.01 0.5 2
Q4006VH3 Q4006DH3 400 10 10 10 0.01 0.5 2
Q6006VH3 Q6006DH3 600 10 10 10 0.01 0.5 2
Q8006VH3 Q8006DH3 800 10 10 10 0.01 0.5 2
QK006VH3 QK006DH3 1000 10 10 10 0.02 2
Q2006VH4 Q2006DH4 200 35 35 35 0.01 0.5 2
Q4006VH4 Q4006DH4 400 35 35 35 0.01 0.5 2
Q6006VH4 Q6006DH4 600 35 35 35 0.01 0.5 2
Q8006VH4 Q8006DH4 800 35 35 35 0.01 0.5 2
QK006VH4 QK006DH4 1000 35 35 35 0.02 2
Q2006LH4 Q2006RH4 Q2006NH4 200 35 35 35 0.01 0.5 2
Q4006LH4 Q4006RH4 Q4006NH4 400 35 35 35 0.01 0.5 2
Q6006LH4 Q6006RH4 Q6006NH4 600 35 35 35 0.01 0.5 2
Q8006LH4 Q8006RH4 Q8006NH4 800 35 35 35 0.01 0.5 2
QK006LH4 QK006RH4 QK006NH4 1000 35 35 35 0.02 3
8A
Q2008VH3 Q2008DH3 200 10 10 10 0.01 0.5 2
Q4008VH3 Q4008DH3 400 10 10 10 0.01 0.5 2
Q6008VH3 Q6008DH3 600 10 10 10 0.01 0.5 2
Q8008VH3 Q8008DH3 800 10 10 10 0.01 0.5 2
QK008VH3 QK008DH3 1000 10 10 10 0.02 2
Q2008VH4 Q2008DH4 200 35 35 35 0.01 0.5 2
Q4008VH4 Q4008DH4 400 35 35 35 0.01 0.5 2
Q6008VH4 Q6008DH4 600 35 35 35 0.01 0.5 2
Q8008VH4 Q8008DH4 800 35 35 35 0.01 0.5 2
QK008VH4 QK008DH4 1000 35 35 35 0.02 2
Q2008LH4 Q2008RH4 Q2008NH4 200 35 35 35 0.01 0.5 2
Q4008LH4 Q4008RH4 Q4008NH4 400 35 35 35 0.01 0.5 2
Q6008LH4 Q6008RH4 Q6008NH4 600 35 35 35 0.01 0.5 2
Q8008LH4 Q8008RH4 Q8008NH4 800 35 35 35 0.01 0.5 2
QK008LH4 QK008RH4 QK008NH4 1000 35 35 35 0.02 3
10 A
Q2010LH5 Q2010RH5 Q2010NH5 200 50 50 50 0.01 0.5 2
Q4010LH5 Q4010RH5 Q4010NH5 400 50 50 50 0.01 0.5 2
Q6010LH5 Q6010RH5 Q6010NH5 600 50 50 50 0.01 0.5 2
Q8010LH5 Q8010RH5 Q8010NH5 800 50 50 50 0.01 0.5 2
QK010LH5 QK010RH5 QK010NH5 1000 50 50 50 0.02 3
12 A
Q2012LH5 Q2012RH5 Q2012NH5 200 50 50 50 0.01 0.5 2
Q4012LH5 Q4012RH5 Q4012NH5 400 50 50 50 0.01 0.5 2
Q6012LH5 Q6012RH5 Q6012NH5 600 50 50 50 0.01 0.5 2
Q8012LH5 Q8012RH5 Q8012NH5 800 50 50 50 0.01 0.5 2
QK012LH5 QK012RH5 QK012NH5 1000 50 50 50 0.02 3
MT1 MT2
G
MT1 G
MT2
MT2
MT2
MT2
G
MT1
MT2
MT2
MT1
GMT2
MT2
MT1
G
Data Sheets Alternistor Triacs
©2002 Teccor Electronics E4 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
See “General Notes” and “Electrical Specification Notes” on page E4 - 5.
VGT VTM IHIGTM PGM PG(AV) ITSM dv/dt(c) dv/dt tgt I2tdi/dt
(2) (6)
(15) (17)
(20)
Volts
(1) (5)
Volts
(1) (8)
(12)
mAmps
(14)
Amps
(14)
Watts Watts
(9) (13)
Amps
(1) (4) (13)
Volts/µSec
(1)
Volts/µSec
(10)
µSec Amps2Sec
(19)
Amps/µSec
TC = 25 °C 60/50 Hz TC = 100 °C TC = 125 °C
MAX MAX MAX MIN MIN TYP
1.3 1.6 15 1.6 18 0.4 65/55 20 100 75 417.5 70
1.3 1.6 15 1.6 18 0.4 65/55 20 100 75 417.5 70
1.3 1.6 15 1.6 18 0.4 65/55 20 75 50 417.5 70
1.3 1.6 15 1.6 18 0.4 65/55 20 50 40 417.5 70
1.3 1.6 15 1.6 18 0.4 65/55 20 40 417.5 70
1.3 1.6 35 1.6 18 0.5 65/55 25 500 400 417.5 70
1.3 1.6 35 1.6 18 0.5 65/55 25 500 400 417.5 70
1.3 1.6 35 1.6 18 0.5 65/55 25 400 300 417.5 70
1.3 1.6 35 1.6 18 0.5 65/55 25 300 200 417.5 70
1.3 1.6 35 1.6 18 0.5 65/55 25 150 417.5 70
1.3 1.6 35 1.6 18 0.5 85/80 25 750 600 430 70
1.3 1.6 35 1.6 18 0.5 85/80 25 575 450 430 70
1.3 1.6 35 1.6 18 0.5 85/80 25 425 350 430 70
1.3 1.6 35 1.6 18 0.5 85/80 25 300 250 430 70
1.3 1.6 35 1.6 18 0.5 85/80 25 150 430 70
1.3 1.6 15 1.6 18 0.4 85/80 20 100 75 4 30 70
1.3 1.6 15 1.6 18 0.4 85/80 20 100 75 4 30 70
1.3 1.6 15 1.6 18 0.4 85/80 20 75 50 4 30 70
1.3 1.6 15 1.6 18 0.4 85/80 20 50 40 4 30 70
1.3 1.6 15 1.6 18 0.4 85/80 20 40 4 30 70
1.3 1.6 35 1.6 18 0.5 85/80 25 750 400 4 30 70
1.3 1.6 35 1.6 18 0.5 85/80 25 575 450 4 30 70
1.3 1.6 35 1.6 18 0.5 85/80 25 425 350 4 30 70
1.3 1.6 35 1.6 18 0.5 85/80 25 300 250 4 30 70
1.3 1.6 35 1.6 18 0.5 85/80 25 150 4 30 70
1.3 1.6 35 2 20 0.5 100/83 25 500 400 4 41 70
1.3 1.6 35 2 20 0.5 100/83 25 500 400 4 41 70
1.3 1.6 35 2 20 0.5 100/83 25 400 300 4 41 70
1.3 1.6 35 2 20 0.5 100/83 25 300 200 4 41 70
1.3 1.6 35 2 20 0.5 100/83 25 150 4 41 70
1.3 1.6 50 220 0.5 120/110 30 1150 1000 460 70
1.3 1.6 50 220 0.5 120/110 30 1000 750 460 70
1.3 1.6 50 220 0.5 120/110 30 850 650 460 70
1.3 1.6 50 220 0.5 120/110 30 650 500 460 70
1.3 1.6 50 220 0.5 120/110 30 300 460 70
1.3 1.6 50 2 20 0.5 120/110 30 1150 1000 4 60 70
1.3 1.6 50 2 20 0.5 120/110 30 1000 750 4 60 70
1.3 1.6 50 2 20 0.5 120/110 30 850 650 4 60 70
1.3 1.6 50 2 20 0.5 120/110 30 650 500 4 60 70
1.3 1.6 50 2 20 0.5 120/110 30 300 4 60 70
Alternistor Triacs Data Sheets
http://www.teccor.com E4 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
See “General Notes” and “Electrical Specification Notes” on page E4 - 5.
Test Conditions
di/dt Maximum rate-of-change of on-state current
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate
unenergized
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms
for fusing
IDRM — Peak off-state current gate open; VDRM = maximum rated value
IGT — DC gate trigger current in specific operating quadrants;
VD = 12 V dc
IGTM Peak gate trigger current
IH — Holding current (DC); gate open
IT(RMS) — RMS on-state current conduction angle of 360°
ITSM — Peak one-cycle surge
PG(AV) — Average gate power dissipation
PGM — Peak gate power dissipation; IGT IGT M
tgt — Gate controlled turn-on time; IGT = 300 mA with 0.1 µs rise time
VDRM — Repetitive peak blocking voltage
VGT — DC gate trigger voltage; VD = 12 V dc
VTM — Peak on-state voltage at maximum rated RMS current
IT(RMS)
Part Number
VDRM IGT
Isolated Non-isolated
(4)(16)
T0-220
TO-218
(16) TO-218X TO-220
TO-263
D2Pak
(1)
Volts
(3) (7) (15) (17)
mAmps
QI QII QIII
MAX See “Package Dimensions” section for variations. (11) MAX
16 A
Q2016LH3 Q2016RH3 Q2016NH3 200 20 20 20
Q4016LH3 Q4016RH3 Q4016NH3 400 20 20 20
Q6016LH3 Q6016RH3 Q6016NH3 600 20 20 20
Q8016LH3 Q8016RH3 Q8016NH3 800 20 20 20
QK016LH3 QK016RH3 QK016NH3 1000 20 20 20
Q2016LH4 Q2016RH4 Q2016NH4 200 35 35 35
Q4016LH4 Q4016RH4 Q4016NH4 400 35 35 35
Q6016LH4 Q6016RH4 Q6016NH4 600 35 35 35
Q8016LH4 Q8016RH4 Q8016NH4 800 35 35 35
QK016LH4 QK016RH4 QK016NH4 1000 35 35 35
Q2016LH6 Q2016RH6 Q2016NH6 200 80 80 80
Q4016LH6 Q4016RH6 Q4016NH6 400 80 80 80
Q6016LH6 Q6016RH6 Q6016NH6 600 80 80 80
Q8016LH6 Q8016RH6 Q8016NH6 800 80 80 80
QK016LH6 QK016RH6 QK016NH6 1000 80 80 80
25 A
Q2025L6 Q2025K6 Q2025J6 Q2025R6 Q2025NH6 200 80 80 80
Q4025L6 Q4025K6 Q4025J6 Q4025R6 Q4025NH6 400 80 80 80
Q6025L6 Q6025K6 Q6025J6 Q6025R6 Q6025NH6 600 80 80 80
Q8025L6 Q8025K6 Q8025J6 Q8025R6 Q8025NH6 800 80 80 80
QK025L6 QK025K6 QK025R6 QK025NH6 1000 80 80 80
30 A
Q2030LH5 200 50 50 50
Q4030LH5 400 50 50 50
Q6030LH5 600 50 50 50
35 A
Q2035RH5 Q2035NH5 200 50 50 50
Q4035RH5 Q4035NH5 400 50 50 50
Q6035RH5 Q6035NH5 600 50 50 50
40 A
Q2040K7 Q2040J7 200 100 100 100
Q4040K7 Q4040J7 400 100 100 100
Q6040K7 Q6040J7 600 100 100 100
Q8040K7 Q8040J7 800 100 100 100
QK040K7 1000 100 100 100
MT1 MT2
GKG
AK
A
G
A
AMT1 G
MT2
MT2
MT2
MT2
MT1
G
Data Sheets Alternistor Triacs
©2002 Teccor Electronics E4 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
General Notes
All measurements are made at 60 Hz with a resistive load at an
ambient temperature of +25 °C unless specified otherwise.
Operating temperature range (TJ) is -40 °C to +125 °C.
Storage temperature range (TS) is -40 °C to +125 °C.
Lead solder temperature is a maximum of 230 °C for 10 seconds
maximum 1/16" (1.59 mm) from case.
The case temperature (TC) is measured as shown in the dimen-
sional outline drawings. See “Package Dimensions” section.
Electrical Specification Notes
(1) For either polarity of MT2 with reference to MT1 terminal
(2) For either polarity of gate voltage (VGT) with reference to MT1
terminal
(3) See Gate Characteristics and Definition of Quadrants.
(4) See Figure E4.1 through Figure E4.4 for current rating at specific
operating temperature and Figure 4.16 for free air rating (no heat
sink).
(5) See Figure E4.5 and Figure E4.6 for iT and vT
.
(6) See Figure E4.7 for VGT versus TC.
(7) See Figure E4.8 for IGT versus TC.
(8) See Figure E4.9 for IH versus TC.
(9) See Figure E4.10 and Figure E4.11 for surge rating with specific
durations.
IDRM VGT VTM IHIGTM PGM PG(AV) ITSM dv/dt(c) dv/dt tgt I2tdi/dt
(1) (18)
mAmps
(2) (6)
(15) (17)
(20)
Volts
(1) (5)
Volts
(1) (8)
(12)
mAmps
(14)
Amps
(14)
Watts Watts
(9) (13)
Amps
(1) (4) (13)
Volts/µSec
(1)
Volts/µSec
(10)
µSec Amps2Sec
(19)
Amps/µSec
TC =
25 °C
TC =
100 °C
TC =
125 °C
TC =
25 °C
TC =
25 °C 60/50 Hz
TC =
100 °C
TC =
125 °C
MAX MAX MAX MAX MIN MIN TYP
0.05 0.5 21.5 1.6 35 220 0.5 200/167 20 500 400 3166 100
0.05 0.5 27 1.5 1.6 35 220 0.5 200/167 20 400 350 3166 100
0.05 0.5 21.5 1.6 35 220 0.5 200/167 20 300 250 3166 100
0.1 1 3 1.5 1.6 35 220 0.5 200/167 20 275 200 3166 100
0.1 31.5 1.6 35 220 0.5 200/167 20 200 3166 100
0.05 0.5 2 2 1.6 50 220 0.5 200/167 25 650 500 3166 100
0.05 0.5 2 2 1.6 50 220 0.5 200/167 25 600 475 3166 100
0.05 0.5 2 2 1.6 50 220 0.5 200/167 25 500 400 3166 100
0.1 1 3 2 1.6 50 220 0.5 200/167 25 425 350 3166 100
0.1 3 2 1.6 50 220 0.5 200/167 25 300 3166 100
0.05 0.5 22.5 1.6 70 220 0.5 200/167 30 875 600 5166 100
0.05 0.5 22.5 1.6 70 220 0.5 200/167 30 875 600 5166 100
0.05 0.5 22.5 1.6 70 220 0.5 200/167 30 800 520 5166 100
0.1 1 3 2.5 1.6 70 220 0.5 200/167 30 700 475 5166 100
0.1 32.5 1.6 70 220 0.5 200/167 30 350 5166 100
0.05 0.5 2 2.5 1.8 100 2 20 0.5 250/208 30 875 600 5 259 100
0.05 0.5 2 2.5 1.8 100 2 20 0.5 250/208 30 875 600 5 259 100
0.05 0.5 2 2.5 1.8 100 2 20 0.5 250/208 30 800 520 5 259 100
0.1 1 3 2.5 1.8 100 2 20 0.5 250/208 30 700 475 5 259 100
0.1 3 2.5 1.8 100 2 20 0.5 250/208 30 400 5 259 100
0.05 0.5 2 2 1.4 75 220 0.5 350/290 20 650 500 3508 100
0.05 0.5 2 2 1.4 75 220 0.5 350/290 20 600 475 3508 100
0.05 0.5 2 2 1.4 75 220 0.5 350/290 20 500 400 3508 100
0.05 0.5 2 2 1.5 75 2 20 0.5 350/290 20 650 500 3 508 100
0.05 0.5 2 2 1.5 75 2 20 0.5 350/290 20 600 475 3 508 100
0.05 0.5 2 2 1.5 75 2 20 0.5 350/290 20 500 400 3 508 100
0.2 2 5 2.5 1.8 120 440 0.8 400/335 50 1100 700 5664 150
0.2 2 5 2.5 1.8 120 440 0.8 400/335 50 1100 700 5664 150
0.2 2 5 2.5 1.8 120 440 0.8 400/335 50 1000 625 5664 150
0.2 2 5 2.5 1.8 120 440 0.8 400/335 50 900 575 5664 150
0.2 52.5 1.8 120 440 0.8 400/335 50 500 5664 150
Alternistor Triacs Data Sheets
http://www.teccor.com E4 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
(10) See Figure E4.12 for tgt versus IGT.
(11) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
(12) Initial on-state current = 400 mA dc for 16 A to 40 A devices and
100 mA for 6 A to 12 A devices.
(13) See Figure E4.1 through Figure E4.4 for maximum allowable case
temperature at maximum rated current.
(14) Pulse width 10 µs; IGT IGTM
(15) For 6 A to 12 A devices, RL = 60 ; 16 A and above, RL = 30
(16) 40 A pin terminal leads on K package can run 100 °C to 125 °C.
(17) Alternistor does not turn on in Quadrant IV.
(18) TC = TJ for test conditions in off state
(19) IGT = 200 mA for 6 A to 12 A devices and 500 mA for 16 A to 40 A
devices with gate pulse having rise time of 0.1 µs.
(20) Minimum non-trigger VGT at 125 °C is 0.2 V.
Gate Characteristics
Teccor triacs may be turned on in the following ways:
In-phase signals (with standard AC line) using Quadrants I
and III
Application of unipolar pulses (gate always negative), using
Quadrants II and III with negative gate pulses
In all cases, if maximum surge capability is required, gate pulses
should be a minimum of one magnitude above minimum IGT rating
with a steep rising waveform (1 µs rise time).
If QIV and QI operation is required (gate always positive), see
Figure AN1002.8, “Amplified Gate” Thyristor Circuit.
Definition of Quadrants
Electrical Isolation
Teccors isolated alternistor packages withstand a minimum high
potential test of 2500 V ac rms from leads to mounting tab, over
the operating temperature range of the device. The following iso-
lation table shows standard and optional isolation ratings.
* UL Recognized File E71639
** For 4000 V isolation, use V suffix in part number.
* UL Recognized Product per UL File E71639
** For 4000 V isolation, use V suffix in part number.
Electrical Isolation
from Leads to Mounting Tab *
VACRMS
TO-218
Isolated
TO-220
Isolated
TO-218X
Isolated
2500 Standard Standard Standard
4000 N/A Optional ** N/A
MT2 POSITIVE
(Positive Half Cycle)
MT2 NEGATIVE
(Negative Half Cycle)
MT1
MT2
+ I
GT
REF QII
MT1
I
GT
GATE
MT2
REF
MT1
MT2
REF
MT1
MT2
REF
QI
QIV
QIII
ALL POLARITIES ARE REFERENCED TO MT1
(
-
)
I
GT
GATE
(+)
I
GT
-
I
GT
GATE
(
-
)
I
GT
GATE
(+)
+
-
NOTE: Alternistors will not operate in QIV
Thermal Resistance (Steady State)
R θ JC [R θ JA] (TYP.) °C/W
Package Code KJLRDVN
Type
TO-218
Isolated *
TO-218X
Isolated *
TO-220
Isolated **
TO-220
Non-Isolated
TO-252
D-Pak
TO-251
V-Pak
TO-263
D2Pak
6 A 3.3 [50] 1.80 [45] 2.1 2.3 [64] 1.80
8 A 2.8 1.50 1.8 2.1 1.50
10 A 2.6 1.30 1.30
12 A 2.3 1.20 1.20
16 A 2.1 1.10 1.10
25 A 1.35 1.32 2.0 0.87 0.87
30 A 2.3
35 A 0.85
40 A 0.97 0.95
Data Sheets Alternistor Triacs
©2002 Teccor Electronics E4 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E4.1 Maximum Allowable Case Temperature versus
On-state Current (6 A to 12 A)
Figure E4.2 Maximum Allowable Case Temperature versus
On-state Current (8 A to 12 A)
Figure E4.3 Maximum Allowable Case Temperature versus
On-state Current (16 A)
Figure E4.4 Maximum Allowable Case Temperature versus
On-state Current (25 A to 40 A)
Figure E4.5 On-state Current versus On-state Voltage (Typical)
(6 A to 12 A)
Figure E4.6 On-state Current versus On-state Voltage (Typical)
(16 A to 40 A)
02468101214
0
60
70
80
90
100
110
120
130
RMS On-State Current [l
T(RMS)
] - AMPS
Maximum Allowable Case Temperature (T
C
) - ˚C
12A TO-220 (ISOLATED)
10A TO-220 (NON-ISOLATED)
AND D
2
PAK
6A TO-220 (ISOLATED)
6A TO-220
(NON-ISOLATED)
AND D
2
PAK
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360
˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
02468101214
0
60
70
80
90
100
110
120
130
RMS On-state Current [l
T(RMS)
] – Amps
Maximum Allowable Case
Temperature (T
C
) – ˚C
12 A TO-220 (Non-isolated)
and TO-263
10 A TO-220 (Isolated)
8 A TO-220 (Non-isolated),
TO-263, TO-251, and TO-252
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
8 A TO-220 (Isolated)
0
60
70
80
90
100
110
120
130
0 5 10 15
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
16A TO-220 (Non-isolated) and TO-263
16A TO-220 (Isolated)
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
0 1020304050
50
60
70
80
90
100
110
120
130
RMS On-state Current [lT(RMS)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
35 A TO-220 (Non-isolated)
and TO-263
25 A and 30 A
TO-220 (Isolated)
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
CASE TEMPERATURE: Measured as
shown on Dimensional Drawing
40 A TO-218
(Isolated)
25
25 A TO-220 (Non-isolated)
TO-218 (Isolated)
TO-263
0
2
6
8
10
12
14
16
18
20
0 0.6 0.8 1.0 1.2 1.4 1.6
Positive or Negative Instantaneous
On-state Voltage (vT) – Volts
Positive or Negative Instantaneous
On-state Current (iT) – Amps
T
C
= 25 ˚C
4
6 A to 12 A Devices
90
80
70
60
50
40
30
20
10
0
00.6 0.8 1.0 1.2 1.4 1.6
Positive or Negative Instantaneous
On-state Current (iT) – Amps
T
C
= 25˚C
1.8
Positive or Negative Instantaneous On-state Voltage (vT) – Volts
40 A Devices
16 A Devices
25 A to 35 A Devices
Alternistor Triacs Data Sheets
http://www.teccor.com E4 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E4.7 Normalized DC Gate Trigger Voltage for all Quadrants
versus Case Temperature
Figure E4.8 Normalized DC Gate Trigger Current for all Quadrants
versus Case Temperature
Figure E4.9 Normalized DC Holding Current versus Case Temperature
Figure E4.10 Peak Surge Current versus Surge Current Duration
(6 A to 12 A)
Figure E4.11 Peak Surge Current versus Surge Current Duration
(16 A to 40 A)
Figure E4.12 Turn-on Time versus Gate Trigger Current (Typical)
0
.5
1.0
1.5
2.0
-65 -15 +65+25 +125-40
Case Temperature (TC) – ˚C
VGT (TC = 25 ˚C)
Ratio of VGT
0
1.0
2.0
3.0
4.0
-65 -15 +65+25 +125
-40
Case Temperature (T
C
) – ˚C
I
GT
(T
C
= 25 ˚C)
Ratio of
I
GT
0
1.0
2.0
3.0
4.0
-65 -15 +65+25 +125-40
Case Temperature (T
C
) – ˚C
I
H
(T
C
= 25 ˚C)
Ratio of I
H
INITIAL ON-STATE CURRENT
= 400 mA dc 16 A to 40 A Devices
= 100 mA dc 6 to 12A Devices
200
120
40
123456810 20 30 40 60 80 100 200 300 600 1000
80
60
50
100
8
6
5
10
30
20
4
1
3
2
Surge Current Duration – Full Cycles
Peak Surge (Non-Repetitive)
On-state Current (I
TSM
) – Amps
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT [IT(RMS)]: Maximum
Rated Value at Specified Case Temperature
Notes:
1) Gate control may be lost during and
immediately following surge current
interval
2) Overload may not be repeated until
junction temperature has returned
to steady state rated value.
10 A to 12 A Devices
8 A TO-251
and TO-252
8 A Devices
6 A Devices
6 A TO-251
and TO-252
110
100 1000
10
20
30
40
50
60
80
100
250
300
400
1000
Surge Current Duration – Full Cycles
Peak Surge (Non-repetitive)
On-state Current (ITSM) – Amps
200
Notes:
1) Gate control may be lost during and
immediately following surge current
interval.
2) Overload may not be repeated until
junction temperature has returned to
steady-state rated value.
SUPPLY FREQUENCY: 60Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT [I
T(RMS)
]: Maximum
Rated Value at Specified Case Temperature
40 A Devices
35 A Devices
30 A Devices
25 A Devices
16 A Devices
0100 200 300 400 500
0
2
4
6
8
10
DC Gate Trigger Current (I
GT
) – mA
IGT = 80 to 100 mA
Typical Turn-on
Time (t
gt
) – µs
IGT = 10 mA to 35 mA
IGT = 50 mA
Data Sheets Alternistor Triacs
©2002 Teccor Electronics E4 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E4.13 Power Dissipation (Typical) versus On-state Current
(6 A to 12 A)
Figure E4.14 Power Dissipation (Typical) versus On-state Current
(16 A)
Figure E4.15 Power Dissipation (Typical) versus On-state Current
(25 A to 40 A)
Figure E4.16 Maximum Allowable Ambient Temperature versus
On-state Current
01234567891011121314151
6
0
2
4
6
8
10
12
14
16
18
RMS On-state Curren
t [lT(RMS)] – AmpsS
Average On-state Power
Dissipation [P
D(AV)
] – Watts
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360
˚
6A to 12A Devices
0246810 12 14 16
0
2
4
6
8
10
12
14
16
18
RMS On-state Current [I
T(RMS)
] – Amps
Average On-state Power
Dissipation [P
D (AV)
] – Watts
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or inductive
CONDUCTION ANGLE: 360˚
16A Devices
012
20 28 36
416 24 32 40
8
0
5
10
15
20
25
30
35
40
45
RMS On-State Current [I
T(RMS)
]—Amps
Average On-State Power
Dissipation [P
D(AV)
]—Watts
25 A
40 A
Current Waveform: Sinusoidal
Load: Resistive or Inductive
Conduction Angle: 360˚
30 A and
35 A Devices
120
100
80
60
40
25
20
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.
0
TO-220 Devices
RMS On-state Current [I
T (RMS)
] – Amps
Maximum Allowable Ambient Temperature (T
A
) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 360˚
FREE AIR RATING – NO HEATSINK
TO-251 Devices
Notes
©2002 Teccor Electronics E5 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Selected Packages*
U.L. RECOGNIZED
File #E71639
Sensitive SCRs
(0.8 A to 10 A)
E5
General Description
The Teccor line of sensitive SCR semiconductors are half-wave
unidirectional, gate-controlled rectifiers (SCR-thyristor) which
complement Teccor's line of power SCRs. This group of
packages offers ratings of 0.8 A to 10 A, and 200 V to 600 V with
gate sensitivities of 12 µA to 500 µA. For gate currents in the
10 mA to 50 mA ranges, see “SCRs” section of this catalog.
The TO-220 and TO-92 are electrically isolated where the case
or tab is internally isolated to allow the use of low-cost assembly
and convenient packaging techniques.
Teccor's line of SCRs features glass-passivated junctions to
ensure long-term device reliability and parameter stability.
Teccor's glass offers a rugged, reliable barrier against junction
contamination.
Tape-and-reel packaging is available for the TO-92 package.
Consult the factory for more information.
Variations of devices covered in this data sheet are available for
custom design applications. Consult the factory for more
information.
Features
Electrically-isolated TO-220 package
High voltage capability — up to 600 V
High surge capability — up to 100 A
Glass-passivated chip
Compak Features
Surface mount package — 0.8 A series
New small-profile three-leaded Compak package
Four gate sensitivities available
Packaged in embossed carrier tape with 2,500
devices per reel
Can replace SOT-223
E5
TO-202
TO-92
3-lead
Compak
*TO-220
Isolated
TO-252
D-Pak
TO-251
V-Pak AK
G
Sensitive SCRs Data Sheets
http://www.teccor.com E5 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
See “General Notes” on page E5 - 4 and “Electrical Specifications Notes” on page E5 - 5
TYPE
Part Number
IT
VDRM &
VRRM IGT
IDRM &
IRRM VTM
Non-isolated
TO-92 TO-202
TO-251
V-Pak Compak
TO-252
D-Pak
(1)
Amps
Volts
(2) (12)
(14) (18)
µAmps
(20) (21)
µAmps
(3) (10)
Volts
See “Package Dimensions” section for variations. (11)
IT(RMS) IT(AV)
TC or TL =
25 °C
TC or TL =
100 °C
TC or TL =
110 °C
MAX MIN MAX MAX MAX
0.8 A
S2S1 0.8 0.51 200 12 2100 1.7
S4S1 0.8 0.51 400 12 2100 1.7
S6S1 0.8 0.51 600 12 2100 1.7
S2S2 0.8 0.51 200 50 2100 1.7
S4S2 0.8 0.51 400 50 2100 1.7
S6S2 0.8 0.51 600 50 2100 1.7
S2S 0.8 0.51 200 200 2100 1.7
S4S 0.8 0.51 400 200 2100 1.7
S6S 0.8 0.51 600 200 2100 1.7
S2S3 0.8 0.51 200 500 2100 1.7
S4S3 0.8 0.51 400 500 2100 1.7
S6S3 0.8 0.51 600 500 2100 1.7
EC103B 0.8 0.51 200 200 150 1.7
EC103D 0.8 0.51 400 200 150 1.7
EC103M 0.8 0.51 600 200 2100 1.7
EC103B1 0.8 0.51 200 12 150 1.7
EC103D1 0.8 0.51 400 12 150 1.7
EC103M1 0.8 0.51 600 12 2100 1.7
EC103B2 0.8 0.51 200 50 150 1.7
EC103D2 0.8 0.51 400 50 150 1.7
EC103M2 0.8 0.51 600 50 2100 1.7
EC103B3 0.8 0.51 200 500 150 1.7
EC103D3 0.8 0.51 400 500 150 1.7
EC103M3 0.8 0.51 600 500 2100 1.7
2N5064 0.8 0.51 200 200 150 1.7
2N6565 0.8 0.51 400 200 1100 1.7
1.5 A
TCR22-4 1.5 0.95 200 200 1 100 1.5
TCR22-6 1.5 0.95 400 200 1 100 1.5
TCR22-8 1.5 0.95 600 200 2 100 1.5
4A
T106B1 42.5 200 200 2100 2.2
T106D1 42.5 400 200 2100 2.2
T106M1 42.5 600 200 2100 2.2
T107B1 42.5 200 500 2100 2.5
T107D1 42.5 400 500 2100 2.5
T107M1 42.5 600 500 2100 2.5
S2004VS1 S2004DS1 42.5 200 50 2100 1.6
S4004VS1 S4004DS1 42.5 400 50 2100 1.6
S6004VS1 S6004DS1 42.5 600 50 2100 1.6
S2004VS2 S2004DS2 42.5 200 200 2100 1.6
S4004VS2 S4004DS2 42.5 400 200 2100 1.6
S6004VS2 S6004DS2 42.5 600 200 2100 1.6
K
G
A
K
A
G
A
A
AG
K
A
G
K
A
A
K
G
Data Sheets Sensitive SCRs
©2002 Teccor Electronics E5 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
.
See “General Notes” on page E5 - 4 and “Electrical Specifications Notes” on page E5 - 5
VGT IHIGM VGRM PGM PG(AV) ITSM dv/dt di/dt tgt tql2t
(4) (12) (22)
Volts
(5) (15)
(16) (19)
mAmps
(17)
Amps Volts
(17)
Watts Watts
(6) (7) (13)
Amps
Volts/µSec Amps/µSec
(8)
µSec
(9)
µSec Amps2/Sec
TC or TL =
-40 °C
TC or TL =
25 °C
TC or TL =
110 °C 60/50 Hz
MAX MAX MIN MIN TYP (23) TYP MAX
1.2 0.8 0.2 51510.1 20/16 20 50 260 1.6
1.2 0.8 0.2 51510.1 20/16 20 50 260 1.6
1.2 0.8 0.2 51510.1 20/16 10 50 260 1.6
1.2 0.8 0.25 51510.1 20/16 25 50 360 1.6
1.2 0.8 0.25 51510.1 20/16 25 50 360 1.6
1.2 0.8 0.25 51510.1 20/16 10 50 360 1.6
1.2 0.8 0.25 51510.1 20/16 30 50 450 1.6
1.2 0.8 0.25 51510.1 20/16 30 50 450 1.6
1.2 0.8 0.25 51510.1 20/16 15 50 450 1.6
1.2 0.8 0.25 81510.1 20/16 40 50 545 1.6
1.2 0.8 0.25 81510.1 20/16 40 50 545 1.6
1.2 0.8 0.25 81510.1 20/16 20 50 545 1.6
1.2 0.8 0.25 51510.1 20/16 30 50 3.5 50 1.6
1.2 0.8 0.25 51510.1 20/16 30 50 3.5 50 1.6
1.2 0.8 0.25 51510.1 20/16 15 50 3.5 50 1.6
1.2 0.8 0.2 51510.1 20/16 20 50 260 1.6
1.2 0.8 0.2 51510.1 20/16 20 50 260 1.6
1.2 0.8 0.2 51510.1 20/16 10 50 260 1.6
1.2 0.8 0.25 51510.1 20/16 25 50 360 1.6
1.2 0.8 0.25 51510.1 20/16 25 50 360 1.6
1.2 0.8 0.25 51510.1 20/16 10 50 360 1.6
1.2 0.8 0.25 81510.1 20/16 40 50 545 1.6
1.2 0.8 0.25 81510.1 20/16 40 50 545 1.6
1.2 0.8 0.25 81510.1 20/16 20 50 545 1.6
1.2 0.8 0.25 51510.1 20/16 25 50 2.2 60 1.6
1.2 0.8 0.25 51610.1 20/16 25 50 2.2 60 1.6
1 0.80.2551610.120/1660 50 3.550 1.6
1 0.80.2551610.120/1640 50 3.550 1.6
1 0.80.2551610.120/1630 50 3.550 1.6
10.8 0.2 51610.1 20/16 850 450 1.6
10.8 0.2 51610.1 20/16 850 450 1.6
10.8 0.2 51610.1 20/16 850 450 1.6
10.8 0.2 61610.1 20/16 850 545 1.6
10.8 0.2 61610.1 20/16 850 545 1.6
10.8 0.2 61610.1 20/16 850 545 1.6
10.8 0.2 41610.1 30/25 850 350 3.7
10.8 0.2 41610.1 30/25 850 350 3.7
10.8 0.2 41610.1 30/25 850 350 3.7
10.8 0.2 61610.1 30/25 850 450 3.7
10.8 0.2 61610.1 30/25 850 450 3.7
10.8 0.2 61610.1 30/25 850 450 3.7
Sensitive SCRs Data Sheets
http://www.teccor.com E5 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Specific Test Conditions
di/dt Maximum rate-of-change of on-state current; IGT = 50 mA pulse
width 15 µsec with 0.1 µs rise time
dv/dt — Critical rate-of-rise of forward off-state voltage
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms
for fusing
IDRM and IRRM — Peak off-state current at VDRM and VRRM
IGT DC gate trigger current VD = 6 V dc; RL = 100
IGM — Peak gate current
IH — DC holding current; initial on-state current = 20 mA
IT — Maximum on-state current
ITSM — Peak one-cycle forward surge current
PG(AV) — Average gate power dissipation
PGMPeak gate power dissipation
tgt — Gate controlled turn-on time gate pulse = 10 mA; minimum
width = 15 µS with rise time 0.1 µs
tq — Circuit commutated turn-off time
VDRM and VRRM — Repetitive peak off-state forward and reverse voltage
VGRM — Peak reverse gate voltage
VGT — DC gate trigger voltage; VD = 6 V dc; RL = 100
VTM — Peak on-state voltage
General Notes
Teccor 2N5064 and 2N6565 Series devices conform to all JEDEC
registered data. See specifications table on pages E5 - 2 and
E5 - 3.
The case lead temperature (TC or TL) is measured as shown on
dimensional outline drawings in the “Package Dimensions” section
of this catalog.
All measurements (except IGT) are made with an external resistor
RGK = 1 k unless otherwise noted.
All measurements are made at 60 Hz with a resistive load at an
ambient temperature of +25 °C unless otherwise specified.
Operating temperature (TJ) is -65 °C to +110 °C for EC Series
devices, -65 °C to +125 °C for 2N Series devices, -40 °C to
+125 °C for “TCR” Series, and -40 °C to +110 °C for all others.
Storage temperature range (TS) is -65 °C to +150 °C for TO-92
devices, -40 °C to +150 °C for TO-202 and Compak devices, and
-40 °C to +125 °C for all others.
Lead solder temperature is a maximum of +230 °C for 10 seconds
maximum 1/16" (1.59 mm) from case.
TYPE
Part Number
IT
VDRM &
VRRM IGT
IDRM &
IRRM VTM
Isolated Non-isolated
TO-220 TO-202
TO-251
V-Pak
TO-252
D-Pak
(1)
Amps
Volts
(2) (12)
µAmps
(20) (21)
µAmps
(3) (10)
Volts
See “Package Dimensions” section for variations. (11)
IT(RMS) IT(AV)
TC =
25 °C
TC =
110 °C
MAX MAX MIN MAX MAX MAX MAX
6A
S2006LS2 S2006FS21 S2006VS2 S2006DS2 63.8 200 200 5250 1.6
S4006LS2 S4006FS21 S4006VS2 S4006DS2 63.8 400 200 5250 1.6
S6006LS2 S6006FS21 S6006VS2 S6006DS2 63.8 600 200 5250 1.6
S2006LS3 S2006FS31 S2006VS3 S2006DS3 63.8 200 500 5250 1.6
S4006LS3 S4006FS31 S4006VS3 S4006DS3 63.8 400 500 5250 1.6
S6006LS3 S6006FS31 S6006VS3 S6006DS3 63.8 600 500 5250 1.6
8A
S2008LS2 S2008FS21 S2008VS2 S2008DS2 8 5.1 200 200 5 250 1.6
S4008LS2 S4008FS21 S4008VS2 S4008DS2 8 5.1 400 200 5 250 1.6
S6008LS2 S6008FS21 S6008VS2 S6008DS2 8 5.1 600 200 5 250 1.6
S2008LS3 S2008FS31 S2008VS3 S2008DS3 8 5.1 200 500 5 250 1.6
S4008LS3 S4008FS31 S4008VS3 S4008DS3 8 5.1 400 500 5 250 1.6
S6008LS3 S6008FS31 S6008VS3 S6008DS3 8 5.1 600 500 5 250 1.6
10 A
S2010LS2 S2010FS21 S2010VS2 S2010DS2 10 6.4 200 200 5250 1.6
S4010LS2 S4010FS21 S4010VS2 S4010DS2 10 6.4 400 200 5250 1.6
S6010LS2 S6010FS21 S6010VS2 S6010DS2 10 6.4 600 200 5250 1.6
S2010LS3 S2010FS31 S2010VS3 S2010DS3 10 6.4 200 500 5250 1.6
S4010LS3 S4010FS31 S4010VS3 S4010DS3 10 6.4 400 500 5250 1.6
S6010LS3 S6010FS31 S6010VS3 S6010DS3 10 6.4 600 500 5250 1.6
K
A
G
K
A
G
A
A
AG
K
A
A
K
G
Data Sheets Sensitive SCRs
©2002 Teccor Electronics E5 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Electrical Specifications Notes
(1) See Figure E5.1 through Figure E5.9 for current ratings at
specified operating temperatures.
(2) See Figure E5.10 for IGT versus TC or TL.
(3) See Figure E5.11 for instantaneous on-state current (iT) versus on-
state voltage (vT) TYP.
(4) See Figure E5.12 for VGT versus TC or TL.
(5) See Figure E5.13 for IH versus TC or TL.
(6) For more than one full cycle, see Figure E5.14.
(7) 0.8 A to 4 A devices also have a pulse peak forward current on-
state rating (repetitive) of 75 A. This rating applies for operation at
60 Hz, 75 °C maximum tab (or anode) lead temperature, switching
from 80 V peak, sinusoidal current pulse width of 10 µs minimum,
15 µs maximum. See Figure E5.20 and Figure E5.21.
(8) See Figure E5.15 for tgt versus IGT.
(9) Test conditions as follows:
– TC or TL 80 °C, rectangular current waveform
– Rate-of-rise of current 10 A/µs
– Rate-of-reversal of current 5A/µs
– ITM = 1 A (50 µs pulse), Repetition Rate = 60 pps
– VRRM = Rated
– VR = 15 V minimum, VDRM = Rated
– Rate-of-rise reapplied forward blocking voltage = 5 V/µs
– Gate Bias = 0 V, 100 (during turn-off time interval)
(10) Test condition is maximum rated RMS current except TO-92
devices are 1.2 APK; T106/T107 devices are 4 APK.
(11) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
(12) VD = 6 V dc, RL = 100 (See Figure E5.19 for simple test circuit
for measuring gate trigger voltage and gate trigger current.)
(13) See Figure E5.1 through Figure E5.9 for maximum allowable case
temperature at maximum rated current.
(14) IGT = 500 µA maximum at TC = -40 °C for T106 devices
(15) IH = 10 mA maximum at TC = -65 °C for 2N5064 Series and
2N6565 Series devices
(16) IH = 6 mA maximum at TC = -40 °C for T106 devices
(17) Pulse Width 10 µs
(18) IGT = 350 µA maximum at TC = -65 °C for 2N5064 Series and
2N6565 Series devices
(19) Latching current can be higher than 20 mA for higher IGT types.
Also, latching current can be much higher at -40 °C. See Figure
E5.18.
(20) TC or TL = TJ for test conditions in off state
(21) IDRM and IRRM = 50 µA for 2N5064 and 100 µA for 2N6565 at
125 °C
(22) TO-92 devices specified at -65 °C instead of -40 °C
(23) TC = 110 °C
VGT IHIGM VGRM PGM PG(AV) ITSM dv/dt di/dt tgt tql2t
(4) (12) (22)
Volts
(5) (19)
mAmps
(17)
Amps Volts
(17)
Watts Watts
(6) (13)
Amps
Volts/µSec
Amps/µSec
(8)
µSec
(9)
µSec Amps2Sec
TC =
-40 °C
TC =
25 °C
TC =
110 °C TC = 110 °C
MAX MAX MIN 60/50 Hz TYP TYP MAX
10.8 0.25 61610.1 100/83 10 100 450 41
10.8 0.25 61610.1 100/83 8100 450 41
10.8 0.25 61610.1 100/83 8100 450 41
10.8 0.25 81610.1 100/83 10 100 545 41
10.8 0.25 81610.1 100/83 8100 545 41
10.8 0.25 81610.1 100/83 8100 545 41
10.80.2561610.1100/8310 100 45041
10.80.2561610.1100/838 100 45041
10.80.2561610.1100/838 100 45041
10.80.2581610.1100/8310 100 54541
10.80.2581610.1100/838 100 54541
10.80.2581610.1100/838 100 54541
10.8 0.25 61610.1 100/83 10 100 450 41
10.8 0.25 61610.1 100/83 8100 450 41
10.8 0.25 61610.1 100/83 8100 450 41
10.8 0.25 81610.1 100/83 10 100 545 41
10.8 0.25 81610.1 100/83 8100 545 41
10.8 0.25 81610.1 100/83 8100 545 41
Sensitive SCRs Data Sheets
http://www.teccor.com E5 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
*Mounted on 1 cm2 copper foil surface; two-ounce copper foil
Electrical Isolation
Teccor’s isolated sensitive SCRs will withstand a minimum high
potential test of 2500 V ac rms from leads to mounting tab over
the device's operating temperature range. The following table
shows other standard and optional isolation ratings.
*UL Recognized File #E71639
**For 4000 V isolation, use “V” suffix in part number.
Figure E5.1 Maximum Allowable Case Temperature versus
RMS On-state Current
Figure E5.2 Maximum Allowable Case Temperature versus
RMS On-state Current
Figure E5.3 Maximum Allowable Case Temperature versus
Average On-state Current
Thermal Resistance (Steady State)
RθJC [Rθ JA] °C/W (TYPICAL)
Package Code ELF2FCDV
Type
TO-92 TO-220 TO-202
Type 2, 4, & 41
TO-202
Type 1 & 3
Compak TO-252
D-Pak
TO-251
V-Pak
0.8 A 75 [160] 60*
1.5 A 50 [160]
4.0 A 10 [100] 6.2 [80] 3.0 3.8 [85]
6.0 A 4.0 [65] 4.3 1.8 2.4
8.0 A 3.4 3.9 1.5 2.1
10.0 A 3.0 3.4 1.45 1.72
Electrical Isolation *
from Leads to Mounting Tab
V AC RMS TO-220
2500 Standard
4000 Optional **
50
60
70
80
90
100
110
120
130
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measured
as Shown on Dimensional Drawing
RMS On-State Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
Compak
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
EC Series
JEDEC 2N Series
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
40
50
60
70
80
90
100
110
120
130
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measured
as Shown on Dimensional Drawing
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
2.6
4 A TO-251
and TO-252
T106 and T107
Type 1 and 3
T106 and T107
Type 2 and 4
TCR22 Devices
0 0.1 0.2 0.3 0.4 0.5 0.6
50
60
70
80
90
100
110
120
130
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measured
as Shown on Dimensional Drawing
Average On-state Current [I
T(AV)
] – Amps
Maximum Allowable Case Temperature (T
C
) – ˚C
0.51
Compak
EC Series
JEDEC 2N Series
Data Sheets Sensitive SCRs
©2002 Teccor Electronics E5 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E5.4 Maximum Allowable Case Temperature versus
Average On-state Current
Figure E5.5 Maximum Allowable Ambient Temperature versus
On-state Current
Figure E5.6 Maximum Allowable Ambient Temperature versus
RMS On-state Current
Figure E5.7 Maximum Allowable Ambient Temperature versus
Average On-state Current
Figure E5.8 Maximum Allowable Case Temperature versus
RMS On-state Current
Figure E5.9 Maximum Allowable Case Temperature versus
Average On-state Current
0 0.5 1.0 1.5 2.0 2.5 3.0
50
60
70
80
90
100
110
120
130
Average On-state Current [IT(AV)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
0.95
40
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measured
as Shown on Dimensional Drawing
1.65 1.9 2.54
T106 and T107
Type 1 and 3
T106 and T107
Type 2 and 4
TCR22
Devices
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
140
120
100
80
60
40
20
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180
˚
FREE AIR RATING
1.5 A and JEDEC
2N Series I
T(AV)
and EC Series I
T(AV)
On-state Current – Amps
Maximum Allowable Ambient Temperature (T
A
) – ˚C
1.5 A Devices
and JEDEC
2N Series I
T(RMS)
EC Series I
T(RMS)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
140
120
100
80
60
40
20
RMS On-state Current [I
T(RMS)
] – Amps
Maximum Allowable
Ambient Temperature (T
A
) – ˚C
2.0
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180
˚
FREE AIR RATING
TO-220
T106/T107 TO-202
Type 1 and 3
T106/T107 TO-202
Type 2 and 4
and TO-251
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
20
40
60
80
100
120
140
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180
˚
FREE AIR RATING
Average On-state Current [IT(AV)] – Amps
Maximum Allowable
Ambient Temperature (TA) – ˚C
TO-220
T106/T107 TO-202
Type 1 and 3
T106/T107 TO-202
Type 2 and 4
and TO-251
80
246 8100
85
90
95
100
105
110
115
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
TEMPERATURE: Measured as
Shown on Dimensional Drawings
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
6 A TO-220
and TO-202
8 A TO-220
and TO-202
10 A TO-220
and TO-202
6 A TO-251
and TO-252
8 A TO-251
and TO-252
10 A TO-251
and TO-252
80
134560
85
90
95
100
105
110
Average On-state Current [IT(AV)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
72
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measured
as Shown on Dimensional Drawings
6 A TO-220
and TO-202
8 A TO-220
and TO-202
10 A TO-220
and TO-202
6 A TO-251
and TO-252
8 A TO-251
and TO-252
10 A TO-251
and TO-252
Sensitive SCRs Data Sheets
http://www.teccor.com E5 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E5.10 Normalized DC Gate-Trigger Current versus
Case Temperature
Figure E5.11 Instantaneous On-state Current versus
On-state Voltage (Typical)
Figure E5.12 Normalized DC Gate-Trigger Voltage versus
Case Temperature
Figure E5.13 Normalized DC Holding Current versus Case Temperature
-65 -15 +25 +65 +110 +125-40
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
Case Temperature (TC) – ˚C
Ratio of IGT
IGT (TC = 25 ˚C)
See General Notes for specific device
operating temperature range.
0 .6 .8 1.0 1.2 1.4 1.6
0
4
8
12
16
20
24
28
32
TC = 25˚C
6 A to 10 A Devices
0.8 A to 1.5 A TO-92,
T106/T107, and
Compak
Instantaneous On-state Voltage (vT) – Volts
Instantaneous On-state Current (iT) – Amps
4 A TO-251 and TO-252
-65 -15 +25 +65 +110 +125-40
0
0.5
1.0
1.5
2.0
Case Temperature (TC) – ˚C
Ratio of VGT
VGT (TC = 25 ˚C)
See General Notes for specific
operating temperature range
-65 -40 -15 +25 +65 +110 +125
0
1.0
2.0
3.0
4.0
See General Notes for specific
operating temperature range.
Case Temperature (T
C
) – ˚C
Ratio of I
H
IH
(T
C
= 25 ˚C)
Data Sheets Sensitive SCRs
©2002 Teccor Electronics E5 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E5.14 Peak Surge On-state Current versus Surge Current Duration
Figure E5.15 Typical Turn-on Time versus Gate Trigger Current
Figure E5.16 Power Dissipation (Typical) versus RMS On-state Current
1 2 3 4 5 6 8 10 20 30 40 50 60 80 100 200 300 400 600 100
0
1
2
3
4
5
6
8
10
20
30
40
50
60
80
100
200
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT: [IT(RMS)]: Max
Rated Value at Specified Case Temperature
Sur
g
e Current Duration – Full Cycles
Peak Surge (Non-repetitive)
On-state Current (ITSM) – Amps
Notes:
1) Gate control may be lost during
and immediately following surge
current interval.
2) Overload may not be repeated
until junction temperature has
returned to steady-state rated value.
6 A Devices
8 A Devices
10 A Devices
4 A TO-251 and TO-252
1.5 A Devices
TO-106
and TO-107
0.8 A TO-92
and Compak
0.01 0.1 1 10 100
0.1
1.0
10
100
I
GT
= 50 µA MAX
I
GT
= 200 µA MAX
I
GT
= 500 µA MAX
T
C
= 25 ˚C
I
GT
= 12 µA MAX
DC Gate Trigger Current (I
GT
) – mA
Turn-on Time (t
gt
) – µs
01234
1.0
2.0
3.0
4.0
5.0
T106 and T107
0.8 A TO-92 and Compak
1.5 A Devices
RMS On-state Current [I
T(RMS)
] – Amps
Average On-state Power Dissipation [P
D(AV)
] – Watts
CURRENT WAVEFORM: Half Sine Wave
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
4 A TO-251 and TO-252
Sensitive SCRs Data Sheets
http://www.teccor.com E5 - 10 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E5.17 Power Dissipation (Typical) versus RMS On-state Current
Figure E5.18 Normalized DC Latching Current versus Case Temperature
Figure E5.19 Simple Test Circuit for Gate Trigger Voltage and
Current Measurement
Note: V1 — 0 V to 10 V dc meter
VGT — 0 V to 1 V dc meter
IG — 0 mA to 1 mA dc milliammeter
R1 — 1 k potentiometer
To measure gate trigger voltage and current, raise gate voltage
(VGT) until meter reading V1 drops from 6 V to 1 V. Gate trigger
voltage is the reading on VGT just prior to V1 dropping. Gate trig-
ger current IGT can be computed from the relationship
where IG is reading (in amperes) on meter just prior to V1 drop-
ping.
Note: IGT may turn out to be a negative quantity (trigger current
flows out from gate lead).
024681
0
0
2
4
6
8
10
12
RMS On-state Current [IT(RMS)] – Amps
CURRENT WAVEFORM: Half Sine Wave
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
Average On-state
Power Dissipation [PD(AV)] – Watts
6 A to 10 A
TO-220, TO-202,
TO-251, and TO-252
-65 -15 +25 +65 +110 +125-40
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
Case Temperature (TC) – ˚C
Ratio of IL
IL (TC = 25 ˚C)
See General Notes for specific device
operating temperature range.
V1
6 VDC
+
100
D.U.T.
Reset
Normally-closed
Pushbutton
1 k
(1%)
I
G
V
GT
100
IGT
R1
IN4001
IGT IG
VGT
1000
------------- Amps=
Data Sheets Sensitive SCRs
©2002 Teccor Electronics E5 - 11 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E5.20 Peak Repetitive Capacitor Discharge Current
Figure E5.21 Peak Repetitive Sinusoidal Curve
180
160
140
120
100
80
60
40
20
0
1.0 3.0 5.0 7.0 10 30 50 70 100
Peak Discharge Current (ITM) – Amps
Peak Current Duration (tW) – µs
0.8 A to 4 A
ITM
tW
tW = 5 TIME CONSTANTS
60 Hz
12 Hz
1 Hz
180
160
140
120
100
80
60
40
20
0
1.0 3.0 5.0 7.0 10 30 50 70 100
Peak Discharge Current (I
TM
) – Amps
Peak Current Duration (t
W
) – µs
0.8 A to 4 A
ITM
tW
60 Hz
12 Hz
1 Hz
Notes
©2002 Teccor Electronics E6 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Selected Packages*
U.L. RECOGNIZED
File #E71639
AK
G
SCRs
(1 A to 70 A)
E6
General Description
The Teccor line of thyristor SCR semi-conductors are half-wave,
unidirectional, gate-controlled rectifiers which complement Tec-
cor's line of sensitive SCRs. Teccor offers devices with ratings of
1 A to 70 A and 200 V to 1000 V, with gate sensitivities from
10 mA to 50 mA. If gate currents in the 12 µA to 500 µA ranges
are required, see “Sensitive SCRs” section of this catalog.
Three packages are offered in electrically isolated construction
where the case or tab is internally isolated to allow the use of
low-cost assembly and convenient packaging techniques.
The Teccor line of SCRs features glass-passivated junctions to
ensure long-term reliability and parameter stability. Teccor’s
glass offers a rugged, reliable barrier against junction contamina-
tion.
Variations of devices covered in this data sheet are available for
custom design applications. Consult the factory for more informa-
tion.
Features
Electrically-isolated package
High voltage capability — 200 V to 1000 V
High surge capability — up to 950 A
Glass-passivated chip
Compak SCR
Surface mount package — 1 A series
New small profile three-leaded Compak package
Packaged in embossed carrier tape with 2,500
devices per reel
Can replace SOT-223
E6
TO-92
*TO-218
TO-202
*TO-218X
3-lead
Compak
TO-252
D-Pak
TO-251
V-Pak
*TO-220
TO-263
D2Pak
SCRs Data Sheets
http://www.teccor.com E6 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Specific Test Conditions
di/dt Maximum rate-of-rise of on-state current; IGT = 150 mA with
0.1 µs rise time
dv/dt — Critical rate of applied forward voltage
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms
for fusing
IDRM and IRRM — Peak off-state forward and reverse current at VDRM and
VRRM
Igt — dc gate trigger current; VD = 12 V dc; RL = 60 for 1 to 16 A
devices and 30 for 20 to 70 A devices
IGM — Peak gate current
IH — dc holding current; gate open
IT — Maximum on-state current
ITSM — Peak one-cycle forward surge current
PG(AV) — Average gate power dissipation
PGMPeak gate power dissipation
tgt — Gate controlled turn-on time; gate pulse = 100 mA; minimum
width = 15 µs with rise time 0.1 µs
tq — Circuit commutated turn-off time
VDRM and VRRM — Repetitive peak off-state forward and reverse voltage
Vgt — DC gate trigger voltage; VD = 12 V dc; RL = 60 for 1 to 16 A
devices and 30 for 20 to 70 A devices
VTM — Peak on-state voltage at maximum rated RMS current
General Notes
All measurements are made at 60 Hz with a resistive load at an
ambient temperature of +25 °C unless otherwise specified.
Operating temperature range (TJ) is -65 °C to +125 °C for TO-92
devices and -40 °C to +125 °C for all other packages.
Storage temperature range (TS) is -65 °C to +150 °C for TO-92
devices, -40 °C to +150 °C for TO-202 and TO-220 devices, and
-40 °C to +125 °C for all others.
Lead solder temperature is a maximum of 230 °C for 10 seconds
maximum; 1/16" (1.59 mm) from case.
The case temperature (TC) is measured as shown on dimensional
outline drawings in the “Package Dimensions” sectionof this
catalog.
TYPE
Part Number
IT
VDRM
& VRRM IGT
Isolated Non-isolated
TO-92 TO-220 TO-202 TO-220
TO-251
V-Pak Compak
TO-252
D-Pak
(1) (2) (15)
Amps
Volts
(4)
mAmps
See “Package Dimensions” section for variations. (11)
IT(RMS) IT(AV)
MAX MAX MIN MIN MAX
1A
S201E S2N1 10.64 200 110
S401E S4N1 10.64 400 110
S601E S6N1 10.64 600 110
6A
S2006L S2006F1 S2006V S2006D 6 3.8 200 1 15
S4006L S4006F1 S4006V S4006D 6 3.8 400 1 15
S6006L S6006F1 S6006V S6006D 6 3.8 600 1 15
S8006L S8006V S8006D 6 3.8 800 1 15
SK006L SK006V SK006D 6 3.8 1000 1 15
8A
S2008L S2008F1 S2008R S2008V S2008D 85.1 200 115
S4008L S4008F1 S4008R S4008V S4008D 85.1 400 115
S6008L S6008F1 S6008R S6008V S6008D 85.1 600 115
S8008L S8008R S8008V S8008D 85.1 800 115
SK008L SK008R SK008V SK008D 85.1 1000 115
10 A
S2010L S2010F1 S2010R S2010V S2010D 10 6.4 200 1 15
S4010L S4010F1 S4010R S4010V S4010D 10 6.4 400 1 15
S6010L S6010F1 S6010R S6010V S6010D 10 6.4 600 1 15
S8010L S8010R S8010V S8010D 10 6.4 800 1 15
SK010L SK010R SK010V SK010D 10 6.4 1000 1 15
12 A
S2012R S2012V S2012D 12 7.6 200 120
S4012R S4012V S4012D 12 7.6 400 120
S6012R S6012V S6012D 12 7.6 600 120
S8012R S8012V S8012D 12 7.6 800 120
SK012R SK012V SK012D 12 7.6 1000 120
K
G
A
K
A
G
K
A
G
A
K
A
G
AA
AG
K
A
G
K
A
A
K
G
Data Sheets SCRs
©2002 Teccor Electronics E6 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Electrical Specification Notes
(1) See Figure E6.5 through Figure E6.16 for current rating at
specified operating case temperature.
(2) See Figure E6.1 and Figure E6.2 for free air current rating.
(3) See Figure E6.19 and Figure E6.20 for instantaneous on-state
current versus on-state voltage (typical).
(4) See Figure E6.18 for IGT versus TC.
(5) See Figure E6.17 for IH versus TC.
(6) For more than one full cycle rating, see Figure E6.23.
(7) See Figure E6.22 for tgt versus IGT.
(8) See Figure E6.21 for VGT versus TC.
(9) Test conditions are as follows:
•I
T = 1 A for 1 A devices and 2 A for all other devices
Pulse duration = 50 µs, dv/dt = 20 V/µs, di/dt = -10 A/µs for 1 A
devices, and -30 A/µs for other devices
•I
GT = 200 mA at turn-on
(10) See Figure E6.5 through Figure E6.10 for maximum allowable
case temperatures at maximum rated current.
(11) See package outlines for lead form configuration. When ordering
special lead forming, add type number as suffix to part number.
(12) Pulse width 10 µs
(13) Initial on-state current = 200 mA dc for 1 A through 16 A devices;
400 mA dc for 20 A through 70 A devices.
(14) TC = TJ for test conditions in off state.
(15) The R, K, or M package rating is intended for high surge condition
use only and not recommended for 50 A rms continuous current
use since narrow pin lead temperature can exceed PCB solder melting
temperature. Teccor's J package or W package is recommended
for 50 A rms continuous current requirements.
(16) For various durations of an exponentially decaying current
waveform, see Figure E6.3 and Figure E6.4. (tW is defined as
5 time constants.)
(17) Minimum non-trigger VGT at 125 °C is 0.2 V.
IDRM & IRRM VTM VGT IHIGM PGM PG(AV) ITSM dv/dt I2tdi/dt tgt tq
(14)
mAmps
(3)
Volts
(8)
(17)
Volts
(5) (13)
mAmps
(12)
Amps
(12)
Watts Watts
(6) (10)
Amps Volts/µSec
Amps2Sec Amps/µSec
(7)
µSec
(9) (10)
µSec
TC =
25 °C
TC =
100 °C
TC =
125 °C
TC =
25 °C
TC =
25 °C 60/50 Hz
TC =
100 °C
TC =
125 °C
MAX MAX MAX MAX MIN MIN TYP MAX
0.01 0.2 0.5 1.6 1.5 30 1.5 15 0.3 30/25 40 20 3.7 50 235
0.01 0.2 0.5 1.6 1.5 30 1.5 15 0.3 30/25 40 20 3.7 50 235
0.01 0.2 0.5 1.6 1.5 30 1.5 15 0.3 30/25 40 20 3.7 50 235
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 350 250 41 100 2 35
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 350 250 41 100 2 35
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 300 225 41 100 2 35
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 250 200 41 100 2 35
0.02 3 1.6 1.5 30 2 20 0.5 100/83 100 41 100 2 35
0.01 0.2 0.5 1.6 1.5 30 220 0.5 100/83 350 250 41 100 235
0.01 0.2 0.5 1.6 1.5 30 220 0.5 100/83 350 250 41 100 235
0.01 0.2 0.5 1.6 1.5 30 220 0.5 100/83 300 225 41 100 235
0.01 0.2 0.5 1.6 1.5 30 220 0.5 100/83 250 200 41 100 235
0.02 31.6 1.5 30 220 0.5 100/83 100 41 100 235
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 350 250 41 100 2 35
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 350 250 41 100 2 35
0.01 0.2 0.5 1.6 1.5 30 2 20 0.5 100/83 300 225 41 100 2 35
0.02 0.5 1 1.6 1.5 30 2 20 0.5 100/83 250 200 41 100 2 35
0.02 3 1.6 1.5 30 2 20 0.5 100/83 100 41 100 2 35
0.01 0.5 11.6 1.5 40 220 0.5 120/100 350 250 60 100 235
0.01 0.5 11.6 1.5 40 220 0.5 120/100 350 250 60 100 235
0.01 0.5 11.6 1.5 40 220 0.5 120/100 300 225 60 100 235
0.02 0.5 11.6 1.5 40 220 0.5 120/100 250 200 60 100 235
0.02 31.6 1.5 40 220 0.5 120/100 100 60 100 235
SCRs Data Sheets
http://www.teccor.com E6 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
See “General Notes” on page E6 - 2 and “Electrical Specification Notes” on page E6 - 3.
TYPE
Part Number
IT
VDRM &
VRRM IGT IDRM & IRRM
Isolated Non-isolated
TO-220 TO-218X TO-218 TO-220 TO-218X TO-218
TO-263
D2Pak
(1) (15)
Amps
Volts
(4)
mAmps
(14)
mAmps
IT(RMS) IT(AV)
TC =
25 °C
TC =
100 °C
TC =
125 °C
See “Package Dimensions” section for variations. (11) MAX MIN MIN MAX MAX
15 A
S2015L 15 9.5 200 130 0.01 0.5 1
S4015L 15 9.5 400 130 0.01 0.5 1
S6015L 15 9.5 600 130 0.01 0.5 1
S8015L 15 9.5 800 130 0.02 1 2
SK015L 15 9.5 1000 130 0.02 3
16 A
S2016R S2016N 16 10 200 1 30 0.01 0.5 1
S4016R S4016N 16 10 400 1 30 0.01 0.5 1
S6016R S6016N 16 10 600 1 30 0.01 0.5 1
S8016R S8016N 16 10 800 1 30 0.02 1 2
SK016R SK016N 16 10 1000 1 30 0.02 3
20 A
S2020L 20 12.8 200 130 0.01 0.5 1
S4020L 20 12.8 400 130 0.01 0.5 1
S6020L 20 12.8 600 130 0.01 0.5 1
S8020L 20 12.8 800 130 0.02 1.0 2
SK020L 20 12.8 1000 130 0.02 3
25 A
S2025L S2025R S2025N 25 16 200 1 35 0.01 1 2
S4025L S4025R S4025N 25 16 400 1 35 0.01 1 2
S6025L S6025R S6025N 25 16 600 1 35 0.01 1 2
S8025L S8025R S8025N 25 16 800 1 35 0.02 1.5 3
SK025L SK025R SK025N 25 16 1000 1 35 0.02 3
35 A
S2035J S2035K 35 22 200 540 0.01 1 2
S4035J S4035K 35 22 400 540 0.01 1 2
S6035J S6035K 35 22 600 540 0.01 1 2
S8035J S8035K 35 22 800 540 0.02 1.5 3
SK035K 35 22 1000 540 0.02 3
40 A
S2040R S2040N 40 25 200 5 40 0.01 1 2
S4040R S4040N 40 25 400 5 40 0.01 1 2
S6040R S6040N 40 25 600 5 40 0.01 1 2
S8040R S8040N 40 25 800 5 40 0.02 1.5 3
SK040R SK040N 40 25 1000 5 40 0.03 5
55 A
S2055R S2055W S2055M S2055N 55 35 200 540 0.01 1 2
S4055R S4055W S4055M S4055N 55 35 400 540 0.01 1 2
S6055R S6055W S6055M S6055N 55 35 600 540 0.01 1 2
S8055R S8055W S8055M S8055N 55 35 800 540 0.02 1.5 3
SK055R SK055M SK055N 55 35 1000 540 0.03 5
65 A
S2065J S2065K 65 41 200 5 50 0.02 1.5 3
S4065J S4065K 65 41 400 5 50 0.02 1.5 3
S6065J S6065K 65 41 600 5 50 0.02 1.5 3
S8065J S8065K 65 41 800 5 50 0.02 2 5
SK065K 65 41 1000 5 50 0.03 5
70 A
S2070W 70 45 200 550 0.02 1.5 3
S4070W 70 45 400 550 0.02 1.5 3
S6070W 70 45 600 550 0.02 1.5 3
S8070W 70 45 800 550 0.02 2 5
K
A
G
KAG
A
KG
A
KAG
A
K
A
G
A
A
K
A
G
A
A
A
K
G
Data Sheets SCRs
©2002 Teccor Electronics E6 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
See “General Notes” on page E6 - 2 and “Electrical Specification Notes” on page E6 - 3.
VTM VGT IHIGM PGM PG(AV) ITSM dv/dt I2tdi/dt tgt tq
(3)
Volts
(8) (17)
Volts
(5) (13)
mAmps
(12)
Amps
(12)
Watts Watts
(6) (10) (16)
Amps Volts/µSec
Amps2Sec Amps/µSec
(7)
µSec
(9) (10)
µSec
TC = 25 °C TC = 25 °C 60/50 Hz
TC =
100 °C
TC =
125 °C
MAX MAX MAX MIN MIN TYP MAX
1.6 1.5 40 330 0.6 225/188 450 350 210 125 235
1.6 1.5 40 330 0.6 225/188 450 350 210 125 235
1.6 1.5 40 330 0.6 225/188 425 325 210 125 235
1.6 1.5 40 330 0.6 225/188 400 300 210 125 235
1.6 1.5 40 330 0.6 225/188 200 210 125 235
1.6 1.5 40 3 30 0.6 225/188 450 350 210 125 2 35
1.6 1.5 40 3 30 0.6 225/188 450 350 210 125 2 35
1.6 1.5 40 3 30 0.6 225/188 425 325 210 125 2 35
1.6 1.5 40 3 30 0.6 225/188 400 300 210 125 2 35
1.6 1.5 40 3 30 0.6 225/188 200 210 125 2 35
1.6 1.5 40 330 0.6 300/255 450 350 374 125 235
1.6 1.5 40 330 0.6 300/255 450 350 374 125 235
1.6 1.5 40 330 0.6 300/255 425 325 374 125 235
1.6 1.5 40 330 0.6 300/255 400 300 374 125 235
1.6 1.5 40 330 0.6 300/255 200 374 125 235
1.6 1.5 50 3.5 35 0.8 350/300 450 350 510 150 2 35
1.6 1.5 50 3.5 35 0.8 350/300 450 350 510 150 2 35
1.6 1.5 50 3.5 35 0.8 350/300 425 325 510 150 2 35
1.6 1.5 50 3.5 35 0.8 350/300 400 300 510 150 2 35
1.6 1.5 50 3.5 35 0.8 350/300 200 510 150 2 35
1.8 1.5 50 3.5 35 0.8 500/425 450 350 1035 150 235
1.8 1.5 50 3.5 35 0.8 500/425 450 350 1035 150 235
1.8 1.5 50 3.5 35 0.8 500/425 425 325 1035 150 235
1.8 1.5 50 3.5 35 0.8 500/425 400 300 1035 150 235
1.8 1.5 50 3.5 35 0.8 500/425 200 1035 150 235
1.8 1.5 60 3.5 35 0.8 520/430 650 550 1122 175 2.5 35
1.8 1.5 60 3.5 35 0.8 520/430 650 550 1122 175 2.5 35
1.8 1.5 60 3.5 35 0.8 520/430 600 500 1122 175 2.5 35
1.8 1.5 60 3.5 35 0.8 520/430 500 475 1122 175 2.5 35
1.8 1.5 60 3.5 35 0.8 520/430 250 1122 175 2.5 35
1.8 1.5 60 440 0.8 650/550 650 550 1750 175 2.5 35
1.8 1.5 60 440 0.8 650/550 650 550 1750 175 2.5 35
1.8 1.5 60 440 0.8 650/550 600 500 1750 175 2.5 35
1.8 1.5 60 440 0.8 650/550 500 475 1750 175 2.5 35
1.8 1.5 60 440 0.8 650/550 250 1750 175 2.5 35
1.8 2 80 5 50 1 950/800 650 550 3745 200 2.5 35
1.8 2 80 5 50 1 950/800 650 550 3745 200 2.5 35
1.8 2 80 5 50 1 950/800 600 500 3745 200 2.5 35
1.8 2 80 5 50 1 950/800 500 475 3745 200 2.5 35
1.8 2 80 5 50 1 950/800 250 3745 200 2.5 35
1.8 280 550 1950/800 650 550 3745 200 2.5 35
1.8 280 550 1950/800 650 550 3745 200 2.5 35
1.8 280 550 1950/800 600 500 3745 200 2.5 35
1.8 280 550 1950/800 500 475 3745 200 2.5 35
SCRs Data Sheets
http://www.teccor.com E6 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
* Mounted on 1cm2 copper foil surface; two-ounce copper foil
Electrical Isolation
Teccors isolated SCR packages will withstand a minimum high
potential test of 2500 V ac rms from leads to mounting tab over
the device's operating temperature range. The following table
shows standard and optional isolation ratings.
* UL Recognized File #E71639
** For 4000 V isolation, use “V” suffix in part number.
Thermal Resistance (Steady State)
RθJC [RθJA] °C/W (TYP.)
Pkg.
Code
LF F2 R J WKM D V N
Type
TO-220
Isolated
TO-202
Type 1
Non-isolated
TO-202
Type 2
Non-isolated
TO-220
Non-isolated
TO-218X
Isolated
TO-218X
Non-isolated
TO-218
Isolated
TO-218
Non-isolated
TO-252
D-Pak
Surface Mount
TO-251AA
V-Pak
Non-isolated
TO-263
D2Pak
Non-isolated
1A See below
6A 4.0 [50] 4.3 [45] 9.5 [70] 1.7 2.3 [70]
8A 3.4 3.9 1.8 [40] 1.5 2.0
10 A 3.0 3.4 1.6 1.45 1.7
12 A 1.5 1.4 1.6
15 A 2.5
16 A 1.3 1.3
20 A 2.4
25 A 2.35 1.0 1.0
35 A 0.70 0.70
40 A 0.6 0.6
55 A 0.5 0.53 0.53 0.5
65 A 0.86 0.86
70 A 0.60
Thermal Resistance (Steady State)
RθJC [RθJA] °C/W (TYP.)
Package Code CE
Type
Compak TO-92
1A 35 * 50 [145]
Electrical Isolation *
from Leads to Mounting Tab
VACRMS
TO-220
Isolated
TO-218X
Isolated
TO-218
Isolated
2500 Standard Standard Standard
4000 Optional ** N/A N/A
Data Sheets SCRs
©2002 Teccor Electronics E6 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E6.1 Maximum Allowable Ambient Temperature versus
RMS On-state Current
Figure E6.2 Maximum Allowable Ambient Temperature versus
Average On-state Current
Figure E6.3 Peak Capacitor Discharge Current (6 A through 55 A)
Figure E6.4 Peak Capacitor Discharge Current Derating
(6 A through 55 A)
Figure E6.5 Maximum Allowable Case Temperature versus
RMS On-state Current (1 A)
Figure E6.6 Maximum Allowable Case Temperature versus
RMS On-state Current (6 A, 8 A, and 10 A)
20
40
60
80
100
120
00.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
FREE AIR RATING
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Ambient Temperature (TA) – ˚C
8 A TO-220 (Non-isolated)
6 A TO-220 (Isolated) and
6 A TO-202 (Types 1 and 3)
1 A TO-92
6 A TO-202
(Types 2 and 4)
and 6 A TO-251
20
40
60
80
100
120
00.2 0.4 0.6 0.8 1.0 1.2 1.4
Maximum Allowable
Ambient Temperature (TA) – ˚C
Average On-state Current [IT(AV)] – Amps
8 A TO-220 (Non-isolated)
6 A TO-220 (Isolated) and
6 A TO-202 (Types 1 and 3)
1 A TO-92
6 A TO-202
(Types 2 and 4)
and 6 A TO-251
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
FREE AIR RATING
0.5 1.0 2.0 5.0 10 20 50
20
50
100
200
300
1000
Pulse Current Duration (tw) – ms
Peak Discharge Current (ITM) – Amps
tw
ITM
tw = 5 times constants
6 A to 10 A Devices
12 A Devices
25 A Devices
55 A Devices
15 A and 16 A
Devices
25 50 75 100 125
0
0.2
0.4
0.6
0.8
1.0
Case Temperature (TC) – ˚C
Normalized Peak Current
50
60
70
80
90
100
110
120
130
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
0 0.4 0.8 1.20.6
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawing
1.00.2
1 A Devices
024681012
50
60
70
80
90
100
110
120
130
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180º
CASE TEMPERATURE: Measure as
shown on dimensional drawings
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
8 A TO-220 (Isolated)
and 8 A TO-202
6 A Devices
8 A TO-220 (Non-isolated)
TO-251 and TO-252
10 A TO-220 (Isolated)
and 10 A TO-202
SCRs Data Sheets
http://www.teccor.com E6 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E6.7 Maximum Allowable Case Temperature versus
RMS On-state Current (10 A, 12 A, 16 A, and 20 A)
Figure E6.8 Maximum Allowable Case Temperature versus
RMS On-state Current (25 A and 35 A)
Figure E6.9 Maximum Allowable Case Temperature versus
RMS On-state Current (40 A through 70 A)
Figure E6.10 Maximum Allowable Case Temperature versus
RMS On-state Current (55 A and 65 A)
Figure E6.11 Maximum Allowable Case Temperature versus
Average On-state Current (1 A)
Figure E6.12 Maximum Allowable Case Temperature versus
Average On-state Current (8 A, 10 A, and 12 A)
04 8121620
50
60
70
80
90
100
110
120
130
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawing
10 A TO-220
(Non-isolated)
15 A TO-220
(Isolated)
20 A TO-220 (Isolated)
16 A TO-220 (Non-isolated)
and TO-263
10 A TO-251 and 10 A TO-252
12 A TO-220 (Non-isolated)
TO-251 and TO-252
0 4 8 12162024283236
50
60
70
80
90
100
110
120
130
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure
as shown on dimensional drawings
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
35 A TO-218
(Isolated)
25 A TO-220
(Non-isolated)
and TO-263
25 A TO-220
(Isolated)
0 10203040506070
50
60
70
80
90
100
110
120
130
RMS On-state Current [I
T(RMS)
] – Amps
Maximum Allowable
Case Temperature (T
C
) – ˚C
65 A TO-218X
(Isolated)
55 A TO-218X
(Non-isolated)
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawings
40 A TO-220
(Non-isolated)
and TO-263
70 A TO-218X
(Non-isolated)
010203040
50
60
70
80
90
100
110
120
130
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
50 60 70 75
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawings
* The R, K or M package rating
is intended only for high surge
condition use and is not recommended
for >50 A rms continuous
current use, since narrow pin lead
temperature can exceed PCB solder
melting temperature. J or W packages
are recommended for >50 A rms
continuous current requirements.
65 A TO-218AC
(Isolated) *
55 A TO-218AC
(Non-isolated) *
55 A TO-220
(Non-isolated)
and TO-263 *
0 0.2 0.4 0.6 0.8
50
60
70
80
90
100
110
120
130
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawings
Average On-state Current [IT(AV)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
1 A Devices
80
10 2345678
90
100
110
120
130
Average On-state Current [IT(AV)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawings
6 A TO-220
6 A TO-202
6 A TO-251
6 A TO-252
8 A TO-220 (Isolated)
8 A TO-202
10 A TO-220 (Isolated)
and 10 A TO-202
8 A TO-220
(Non-isolated)
12 A TO-220 (Non-isolated)
and TO-251 and TO-252
10 A TO-251
10 A TO-252
10 A TO-220
(Non-isolated)
Data Sheets SCRs
©2002 Teccor Electronics E6 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E6.13 Maximum Allowable Case Temperature versus
Average On-state Current (10 A through 20 A)
Figure E6.14 Maximum Allowable Case Temperature versus
Average On-state Current (25 A and 35 A)
Figure E6.15 Maximum Allowable Case Temperature versus
Average On-state Current (40 A through 70 A)
Figure E6.16 Maximum Allowable Case Temperature versus
Average On-state Current (55 A and 65 A)
Figure E6.17 Normalized dc Holding Current versus Case Temperature
Figure E6.18 Normalized DC Gate-Trigger Current versus
Case Temperature
02468101214
50
60
70
80
90
100
110
120
130
Average On-state Current [IT(AV)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measured
as shown on dimensional drawings
20 A TO-220
(Isolated)
15 A TO-220
(Isolated)
10 A TO-220
(Non-isolated)
16 A TO-220 (Non-isolated) and TO-263
0 .4 8 12 16 20 24
50
60
70
80
90
100
110
120
130
Average On-state Current [IT(AV)] – Amps
Maximum Allowable Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawings
35 A TO-218 (Non-isolated)
35 A TO-218 (Isolated)
25A TO-220 (Non-isolated)
and TO-263
25A TO-220 (Isolated)
0 1020304050
50
60
70
80
90
100
110
120
130
Average On-state Current [I
T(AV)
] – Amps
Maximum Allowable
Case Temperature (T
C
) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure as
shown on dimensional drawings
70 A TO-218X
(Non-isolated)
40 A TO-220
(Non-isolated)
and TO-263
55 A TO-218X
(Non-isolated)
65 A TO-218X
(Isolated)
0 102030405
0
50
60
70
80
90
100
110
120
130
Average On-state Current [IT(AV)] – Amps
Maximum Allowable
Case Temperature (TC) – ˚C
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
CASE TEMPERATURE: Measure
as shown on dimensional drawings
55 A TO-218AC (Non-isolated)
*
* The R, K, or M package
rating is intended only for high
surge condition use and is not
recommended for >32 A (AV)
continuous current use since narrow
pin lead temperature can exceed PCB
solder melting temperature. J or W
packages are recommended for >32 A
(AV) continuous current requirements.
55 A TO-220
(Non-isolated)
and TO-263
*
65 A TO-218AC
(Isolated) *
-40 -15 +25 +65 +105 +125
0
.5
1.0
1.5
2.0
Case Temperature (TC) – ˚C
Ratio of IH
IH (TC = 25 ˚C)
INITIAL ON-STATE CURRENT =
200 mA dc for 1 A to 20 A Devices
and 400 mA dc for 25 A to 70 A Devices
-40 -15 +25 +65 +105 +125
0
0.5
1.0
1.5
2.0
Case Temperature (T
C
) – ˚C
Ratio of IGT
I
GT
(T
C
= 25 ˚C)
SCRs Data Sheets
http://www.teccor.com E6 - 10 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E6.19 Instantaneous On-state Current versus On-state Voltage
(Typical) (6 A through 25 A)
Figure E6.20 Instantaneous On-state Current versus On-state Voltage
(Typical) (35 A through 70 A)
Figure E6.21 Normalized DC Gate-trigger Voltage versus
Case Temperature
Figure E6.22 Typical Turn-on Time versus Gate-trigger Current
0 0.6 0.8 1.0 1.2 1.4 1.6
0
10
20
30
40
50
60
70
80
90
Instantaneous On-state Voltage (vT) – Volts
Instantaneous On-state Current (iT) – Amps
TC = 25˚C
12 A Devices
15 A to 20 A Devices
1 A Devices
6 A to 10 A Devices
25 A Devices
0 .6 .8 1.0 1.2 1.4 1.6
0
20
40
60
80
100
120
140
160
180
200
Instantaneous On-state Voltage (vT) – Volts
Instantaneous On-state
Current (iT) – Amps
TC = 25˚C
65 A and 70 A Devices
55 A Devices
35 A to 40 A Devices
-40 -15 +25 +65 +105 +125
0
0.5
1.0
1.5
Case Temperature (T
C
) – ˚C
Ratio of V
GT
V
GT
(T
C
= 25 ˚C)
10 20 30 40 50 60 80 100 200
1
2
3
4
5
6
7
0
Turn-on Time (tgt) – µs
DC Gate Trigger Current (IGT) – mA
6 A to 12 A Devices
1 A Devices
40 A to 70 A Devices
15 A to 35 A Devices
TC = 25˚C
Data Sheets SCRs
©2002 Teccor Electronics E6 - 11 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E6.23 Peak Surge Current versus Surge Current Duration
Figure E6.24 Power Dissipation (Typical) versus RMS On-state Current
(1 A)
Figure E6.25 Power Dissipation (Typical) versus RMS On-state Current
(6 A through 20 A)
8
1
2
3
4
5
6
1000
10
20
30
40
50
60
80
100
200
300
400
500
600
800
123 54 6 7 8 10 20 30 40 60 80100 200 300400 600 1000
Surge Current Duration – Full Cycles
70 A Devices
65 A TO-218
55 A Devices
25 A Devices
35 A Devices
20 A Devices
16 A Devices
15 A Devices
12 A Devices
10 A Devices
1 A Devices
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT: [IT(RMS)]: Max-
Rated Value at Specified Case Temperature
Notes:
1) Gate control may be lost during and
immediately following surge current
interval.
2) Overload may not be repeated until
junction temperature has returned to
steady-state rated value.
8 A Devices
6 A Devices
Peak Surge (Non-repetitive) On-state Current (ITSM) – Amps
40 A Devices
0 0.2 0.4 0.6 0.8
0
0.4
0.8
1.0
0.2
RMS On-state Current [I
T(RMS)
] – Amps
Average On-state Power
Dissipation [P
D(AV)
] – Watts
CURRENT WAVEFORM: Half Sine Wave
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
1.0 A Devices
1.0
0.6
0481216
0
RMS On-state Current [IT(RMS)] – Amps
Average On-state
Power Dissipation [PD(AV)] – Watts
CURRENT WAVEFORM: Half Sine Wave
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
2 6 10 14 18
2
4
6
8
10
12
14
16
18
20
15 A to 20 A Devices
12 A Devices
6 A to 10 A Devices
SCRs Data Sheets
http://www.teccor.com E6 - 12 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E6.26 Power Dissipation (Typical) versus RMS On-state Current
(25 A and 35 A)
Figure E6.27 Power Dissipation (Typical) versus RMS On-state Current
(40 A through 70 A)
0 8 16 24 32
0
RMS On-state Current [IT(RMS)] – Amps
Average On-state
Power Dissipation [PD(AV)] x– Watts
412202836
4
8
12
16
20
24
28
32
25 A TO-220 Devices
35 A Devices
CURRENT WAVEFORM: Half Sine Wave
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
RMS On-state Current [IT(RMS)] – Amps
Average On-state
Power Dissipation [PD(AV)] – Watts
0 10203040506070
0
10
20
30
40
50
60
65 A and 70 A Devices
CURRENT WAVEFORM: Half Sine Wave
LOAD: Resistive or Inductive
CONDUCTION ANGLE: 180˚
40 A and 55 A Devices
U.L. RECOGNIZED
File #E71639
TO-220
Isolated
AC
©2002 Teccor Electronics E7 - 1 http://www.teccor.com
Thyristor Product Catalog + 1 972-580-7777
Rectifiers
(15 A to 25 A)
E7
General Description
Teccor manufactures 15 A rms to 25 A rms rectifiers with volt-
ages rated from 200 V to 1000 V. Due to the electrically-isolated
TO-220 package, these rectifiers may be used in common anode
or common cathode circuits using only one part type, thereby
simplifying stock requirements.
Teccor's silicon rectifiers feature glass-passivated junctions to
ensure long term reliability and stability. In addition, glass offers a
rugged, reliable barrier against junction contamination.
Features
Electrically-isolated packages
High voltage capabilities — 200 V to 1000 V
High surge capabilities — up to 350 A
Glass-passivated junctions
E7
http://www.teccor.com E7 - 2 ©2002 Teccor Electronics
+ 1 972-580-7777 Thyristor Product Catalog
Rectifiers Data Sheets
Test Conditions
I2t — RMS surge (non-repetitive) forward current for 8.3 ms for fusing
IF(AV)Average forward current
IF(RMS) — RMS forward current
IFSM — Peak one-cycle surge current
IRM — Peak reverse current
RθJC — Thermal resistance (steady state) junction to case
VFM — Peak forward voltage at rated average forward current
VR — DC blocking voltage
VRRM — Peak repetitive reverse voltage
General Notes
Operating temperature range (TJ) is -40 °C to +125 °C.
Storage temperature range (TS) is -40 °C to +125 °C.
Lead solder temperature is a maximum of 230 °C for 10 seconds
maximum at a minimum of 1/16" (1.59 mm) from case.
The case temperature (TC) is measured as shown on dimensional
outline drawings in the “Package Dimensions” section of this
catalog.
Teccor's electrically-isolated TO-220 devices withstand a high
potential test of 2500 V ac rms from leads to mounting tab over the
operating temperature range.
Typical Reverse Recovery Time (trr) is 4 µs. (Test conditions =
0.9 A forward current and 1.5 A reverse current)
Electrical Specification Notes
(1) See Figure E7.3 for current rating at specified case temperature.
(2) For more than one full cycle rating, see Figure E7.4.
(3) TC = TJ for test conditions
(4) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
Electrical Isolation
* UL Recognized File #E71639
** For 4000 V isolation, use “V” suffix in the part number.
Type
Part Number
VRRM VRIF(AV) IF(RMS) IFSM IRM VFM I2tRθJC
Isolated
TO-220 Volts Volts
(1)
Amps Amps
(2)
Amps
(3)
mA Volts
Amps2Sec °C/W
60/50 Hz
TC =
25 °C
TC =
100 °C
TC =
125 °CT
C=25 °C
See “Package Dimensions”
section for variations. (4) MIN MIN MAX MAX MAX MAX TYP
15 A
D2015L 200 200 9.5 15 225/188 0.1 0.5 11.6 210 2.85
D4015L 400 400 9.5 15 225/188 0.1 0.5 11.6 210 2.85
D6015L 600 600 9.5 15 225/188 0.1 0.5 11.6 210 2.58
D8015L 800 800 9.5 15 225/188 0.1 0.5 11.6 210 2.85
DK015L 1000 1000 9.5 15 225/188 0.1 31.6 210 2.85
20 A
D2020L 200 200 12.7 20 300/255 0.1 0.5 1 1.6 374 2.5
D4020L 400 400 12.7 20 300/255 0.1 0.5 1 1.6 374 2.5
D6020L 600 600 12.7 20 300/255 0.1 0.5 1 1.6 374 2.5
D8020L 800 800 12.7 20 300/255 0.1 0.5 1 1.6 374 2.5
DK020L 1000 1000 12.7 20 300/255 0.1 3 1.6 374 2.5
25 A
D2025L 200 200 15.9 25 350/300 0.1 0.5 11.6 508 2.7
D4025L 400 400 15.9 25 350/300 0.1 0.5 11.6 508 2.7
D6025L 600 600 15.9 25 350/300 0.1 0.5 11.6 508 2.7
D8025L 800 800 15.9 25 350/300 0.1 0.5 11.6 508 2.7
DK025L 1000 1000 15.9 25 350/300 0.1 31.6 508 2.7
C
A
Not
Used
Electrical Isolation
from Leads to Mounting Tab *
VACRMS TO-220
Isolated
2500 Standard
4000 Optional **
©2002 Teccor Electronics E7 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Rectifiers
Figure E7.1 Instantaneous Forward Current versus Forward Voltage
(Typical)
Figure E7.2 Forward Power Dissipation (Typical)
Figure E7.3 Maximum Allowable Case Temperature versus
Average Forward Current
Figure E7.4 Peak Surge Forward Current versus Surge Current
Duration
0 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
20
40
60
80
100
120
140
Instantaneous Forward Voltage (vF) – Volts
Instantaneous Forward Current (iF) – Amps
15 A Devices
TC = 25˚C
20 A Devices
25 A Devices
16
120 2 4 6 8 101214
0
4
8
12
16
20
SINGLE PULSE RECTIFICATION
60 Hz SINE WAVE
20 A Devices
15 A Devices
25 A Devices
Average Forward Current [IF(AV)] – Amps
Average Forward
Power Dissipation [PF(AV)] – Watts
02468101214
0
70
75
80
85
90
95
100
105
110
115
120
125
20 A Devices
15 A Devices
Average Forward Current [I
F (AV)
] – Amps
Maximum Allowable Case Temperature (T
C
) – ˚C
SUPPLY FREQUENCY: 60 Hz Sine Wave
LOAD: Resistive or Inductive
CASE TEMPERATURE:
Measured As Shown on Dimensional Drawing
16
25 A Devices
10
20
30
40
60
80
100
200
300
400
600
800
1000
1 2 4 6 10 20 40 60 100 200 400 600 1000
Surge Current Duration – Cycles
SUPPLY FREQUENCY: 60 Hz Sinewave
LOAD: Resistive or Inductive
RMS ON-STATE CURRENT: [IF(RMS)]
Maximium Rated Value at Specified
Case Temperature
15 A Devices
20 A Devices
25 A Devices
Peak Surge (Non-repetitive)
Forward Current (I
FSM
) – Amps
Notes
2002 Teccor Electronics E8 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Diac
HT and ST Series
E8
General Description
Teccor’s HT and ST Series of bilateral trigger diacs offer a range
of voltage characteristics from 27 V to 45 V.
A diac semiconductor is a full-wave or bidirectional thyristor. It is
triggered from a blocking- to conduction-state for either polarity
of applied voltage whenever the amplitude of applied voltage
exceeds the breakover voltage rating of the diac.
The Teccor line of diacs features glass-passivated junctions to
ensure long-term reliability and parameter stability. Teccor’s
glass offers a rugged, reliable barrier against junction
contamination.
The diac specifications listed in this data sheet are for standard
products. Special parameter selections such as close tolerance
voltage symmetry are available. Consult the factory for more
information about custom design applications.
Features
Bilateral triggering device
Glass-passivated junctions
Wide voltage range selections
ST Series
Epoxy SMT package
High-temperature, solder-bonded die attachment
HT Series
DO-35 trigger package
Pre-tinned leads
E8
DO-214
DO-35
Diac Data Sheets
http://www.teccor.com E8 - 2 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
General Notes
Lead solder temperature is +230 °C for 10-second maximum;
1/16" (1.59 mm) from case.
See “Package Dimensions” section of this catalog.
Electrical Specification Notes
(1) Breakover voltage symmetry as close as 1 V is available from the
factory on these products.
(2) See Figure E8.4 and Figure E8.5 for test circuit and waveforms.
(3) Typical switching time is 900 nano-seconds measured at IPK
(Figure E8.4) across a 20 resistor (Figure E8.5). Switching time
is defined as rise time of IPK between the 10% to 90% points.
(4) See V-I Characteristics.
Bilateral Trigger DIAC Specifications
Maximum Ratings, Absolute-Maximum Values
– Maximum Trigger Firing Capacitance: 0.1 µF
– Device dissipation (at TA = -40 °C to +40 °C):
250 mW for DO-35 and 300 mW for DO-214
– Derate above +40 °C:
3.6 mW/°C for DO-35 and 3 mW/°C for DO-214
Temperature Ranges
Storage: -40 °C to +125 °C
Operating (Junction): -40 °C to +125 °C
V-I Characteristics
* Mounted on 1 cm2 copper foil surface; two-ounce copper foil
Electrical Characteristics TC = 25°C
Part No. VBO VBO VBB IBO ITRM
DO-35 DO-214
Breakover Voltage
(Forward and
Reverse)
Volts
Breakover Voltage
Symmetry
VBO =
[ | +VBO | - | - VBO | ]
Volts
Dynamic
Breakback
Voltage
(3)
| V± |
Volts
Peak Breakover
Current
at
Breakover
Voltage
µAmps
Peak Pulse
Current
for 10 µs
120 PPS
TA 40 °C
Amps
MIN MAX MAX MIN MAX MAX
HT-32 ST-32 27 37 3 (1) 10 (2) 25 2
HT-32A / HT-5761 28 36 2 (1) 7 at 10 mA (4) 25 2
HT-32B / HT-5761A ST-32B 30 34 2 (1) 7 at 10 mA (4) 25 2
HT-34B ST-34B 32 36 2 (1) 10 (2) 25 2
HT-35 ST-35 30 40 3 (1) 10 (2) 25 2
HT-36A / HT-5762 ST-36A 32 40 2 (1) 7 at 10 mA (4) 25 2
HT-36B ST-36B 34 38 2 (1) 10 (2) 25 2
HT-40 ST-40 35 45 3 (1) 10 (2) 25 2
HT and ST Series Thermal Resistance
Junction to Lead - RθJL: °C/W
Junction to Ambient [RθJA]: °C/W
(based on maximum lead temperature of
90 °C for DO-214 and 85 °C for DO-35 devices)
Y Package
DO-35
S Package
DO-214
100 [278] °C/W 65 °C/W *
10 mA
Breakover
Current
I
BO
-V
BO
Voltage
Current
Breakover
Voltage
V
BO
+V
BO
V
Data Sheets Diac
2002 Teccor Electronics E8 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure E8.1 Typical Diac/Triac Full-wave Phase Control Circuit Using
Lower Voltage Diacs.
Figure E8.2 Repetitive Peak On-state Current versus Pulse Duration
120 V ac
60 Hz
LOAD — Up to 1500 W
3.3 k
200 k
0.1 µF
100 V
HT-35
Bilateral
Trigger
Diac
Triac
Q2015L5
MT2
MT1
G
12
46 200 4006001000 2000 4000 10000
.001
.002
.003
.005
0.1
0.2
0.3
3.0
0.5
5.0
.01
0.02
0.03
0.05
1.0
10
2.0
Repetitive Peak On-state Current (ITRM) – Amps
Base Pulse Duration – µs
Safe Operating
Area
10 20 40 60 100
PULSE REPETITION RATE = 120 pps
TA = 40 ˚C
Diac Data Sheets
http://www.teccor.com E8 - 4 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure E8.3 Normalized VBO Change versus Junction Temperature
Figure E8.4 Test Circuit Waveforms (Refer to Figure E8.5.)
Figure E8.5 Circuit Used to Measure Diac Characteristics
(Refer to Figure E8.4.)
Figure E8.6 Peak Output Current versus Triggering Capacitance
(Per Figure E8.5 with RL of 20 )
-8
-6
-4
-2
0
+2
+4
+6
+8
-40 -20 0 +20 +40 +60 +80 +100 +120 +140
Junction Temperature (T
J
) – ˚C
Percentage of V
BO
Change – %
ST Series
HT Series
V+
V-
VC
0
-VBO
IL
+IPK
0t
-IPK
t
+VBO
Typical pulse base width is 10 µs
120 V rms
60 Hz
47 k
D.U.T.
RL
20
1%
VC
100 k
*
CT
IL
O.1 µF
* Adjust for one firing in each half cycle. D.U.T. = Diac
Triggering Capacitance (C
T
) – µF
Peak Output Current (I
PK
) – mA
.01 .02 .03 .04 .05 .06 .07 .08 .09
0
50
100
150
200
250
300
Typical (35 V Device)
.10
©2002 Teccor Electronics E9 - 1 http://www.teccor.com
Thyristor Product Catalog + 1 972-580-7777
Sidac
(79 V to 330 V)
E9
General Description
The sidac is a silicon bilateral voltage triggered switch with
greater power-handling capabilities than standard diacs. Upon
application of a voltage exceeding the sidac breakover voltage
point, the sidac switches on through a negative resistance region
to a low on-state voltage. Conduction continues until the current
is interrupted or drops below the minimum holding current of the
device.
Teccor’s sidacs feature glass-passivated junctions to ensure a
rugged and dependable device capable of withstanding harsh
environments.
Variations of devices covered in this data sheet are available for
custom design applications. Consult the factory for more informa-
tion.
Applications
High-voltage lamp ignitors
Natural gas ignitors
Gas oil ignitors
High-voltage power supplies
Xenon ignitors
Overvoltage protector
Pulse generators
Fluorescent lighting ignitors
HID lighting ignitors
Features
AC circuit oriented
Glass-passivated junctions
High surge current capability
E9
TO-92
Type 70
DO-214
Surface Mount
TO-202
DO-15X
http://www.teccor.com E9 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Sidac Data Sheets
Specific Test Conditions
di/dt Critical rate-of-rise of on-state current
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM;
TJ 100 °C
IBO — Breakover current 50/60 Hz sine wave
IDRM — Repetitive peak off-state current 50/60 Hz sine wave; V = VDRM
IH — Dynamic holding current 50/60 Hz sine wave; R = 100
IT(RMS) On-state RMS current TJ 125 °C 50/60 Hz sine wave
ITSM — Peak one-cycle surge current 50/60 Hz sine wave (non-
repetitive)
RS — Switching resistance 50/60 Hz sine wave
VBO — Breakover voltage 50/60 Hz sine wave
VDRM — Repetitive peak off-state voltage
VTM — Peak on-state voltage; IT = 1 A
General Notes
All measurements are made at 60 Hz with a resistive load at an
ambient temperature of +25 °C unless otherwise specified.
Storage temperature range (TS) is -65 °C to +150 °C.
•The case (T
C) or lead (TL) temperature is measured as shown on
the dimensional outline drawings in the “Package Dimensions” sec-
tion of this catalog.
Junction temperature range (TJ) is -40 °C to +125 °C.
Lead solder temperature is a maximum of +230 °C for 10-second
maximum; 1/16" (1.59 mm) from case.
Electrical Specification Notes
(1) See Figure E9.5 for VBO change versus junction temperature.
(2) See Figure E9.6 for IBO versus junction temperature.
(3) See Figure E9.2 for IH versus case temperature.
(4) See Figure E9.13 for test circuit.
(5) See Figure E9.1 for more than one full cycle rating.
(6) TC 90 °C for TO-92 Sidac
TC 105 °C for TO-202 Sidacs
TL 100 °C for DO-15X
TL 90 °C for DO-214
(7) See Figure E9.14 for clarification of sidac operation.
(8) For best sidac operation, the load impedance should be near or
less than switching resistance.
(9) See package outlines for lead form configurations. When ordering
special lead forming, add type number as suffix to part number.
(10) Do not use electrically connected mounting tab or center lead.
V-I Characteristics
Type
Part No. IT(RMS) VDRM VBO IDRM IBO IH
TO-92 DO-15X
(10)
TO-202 DO-214
(7) (8)
Amps Volts
(1)
Volts µAmps
(2)
µAmps
(3) (4)
mAmps
See “Package Dimensions” section for variations. (9) MAX MIN MIN MAX MAX MAX TYP MAX
K0900E70 K0900G K0900S 1±70 79 97 510 60 150
K1050E70 K1050G K1050S 1±90 95 113 510 60 150
K1100E70 K1100G K1100S 1±90 104 118 510 60 150
K1200E70 K1200G K1200S 1±90 110 125 510 60 150
K1300E70 K1300G K1300S 1±90 120 138 510 60 150
K1400E70 K1400G K1400S 1±90 130 146 510 60 150
K1500E70 K1500G K1500S 1±90 140 170 510 60 150
K2000E70 K2000G K2000F1 K2000S 1±180 190 215 510 60 150
K2200E70 K2200G K2200F1 K2200S 1±180 205 230 510 60 150
K2400E70 K2400G K2400F1 K2400S 1±190 220 250 510 60 150
K2500E70 K2500G K2500F1 K2500S 1±200 240 280 510 60 150
K3000F1 1±200 270 330 510 60 150
RS
VBO VS
()
ISIBO
()
--------------------------------=
-V
+I
V
DRM
+V
V
S
I
S
I
H
R
S
I
DRM
I
BO
V
BO
V
T
I
T
(I
S
- I
BO
)
(V
BO
- V
S
)
R
S =
-I
©2002 Teccor Electronics E9 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Sidac
* Mounted on 1 cm2 copper foil surface; two-ounce copper foil
** RθJA for TO-202 Type 23 and Type 41 is 70 °C/Watt.
Figure E9.1 Peak Surge Current versus Surge Current Duration
Figure E9.2 Normalized DC Holding Current versus Case/Lead
Temperature
VTM ITSM RSdv/dt di/dt
Volts
MAX
(5)
Amps
(8)
kVolts/µSec Amps/µSec
Package 60 Hz 50 Hz
EGF S MIN MIN TYP
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 1.5 20 16.7 0.1 1500 150
1.5 1.5 31.5 20 16.7 0.1 1500 150
1.5 1.5 31.5 20 16.7 0.1 1500 150
1.5 1.5 31.5 20 16.7 0.1 1500 150
1.5 1.5 31.5 20 16.7 0.1 1500 150
320 16.7 0.1 1500 150
Thermal Resistance (Steady State)
RθJC [RθJA] °C/W (TYPICAL)
E Package G Package F Package S Package
35 [95] 18 [75] 7 [45] ** 30 * [85]
1.0 10 100 1000
1.0
2.0
4.0
6.0
8.0
10
20
40
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT: IT RMS Maximum Rated
Value at Specified Junction Temperature
Notes:
1) Blocking capability may be lost during
and immediately following surge
current interval.
2) Overload may not be repeated until
junction temperature has returned
to steady-state rated value.
Sur
e Current Duration – Full Cycles
Peak Surge (Non-repetitive)
On-state Current [ITSM] – Amps
100
0
.5
1.0
2.0
1.5
-15-40 +25 +65 +105 +125
Case Temperature (T
C
) –
˚
C
IH
I
H
(T
C
= 25
˚
C)
Ratio of
http://www.teccor.com E9 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Sidac Data Sheets
Figure E9.3 Repetitive Peak On-state Current (ITRM) versus
Pulse Width at Various Frequencies
Figure E9.4 Maximum Allowable Ambient Temperature versus
On-state Current
Figure E9.5 Normalized VBO Change versus Junction Temperature
Figure E9.6 Normalized Repetitive Peak Breakover Current versus
Junction Temperature
Figure E9.7 On-state Current versus On-state Voltage (Typical)
Figure E9.8 Power Dissipation (Typical) versus On-state Current
[Refer to Figure E9.14 for Basic Sidac Circuit]
di/dt Limit Line
0.6
0.8
4
2
4
6
8
10
20
40
60
80
100
200
400
600
2 x 10-3
68
1 x 10-2
2468
1 x 10-1
24681
1
Pulse base width (to) – ms
Repetitive Peak
On-state Current (ITRM) – Amps
VBO Firing
Current
Waveform
Non-Repeated
Repetition Frequency f=5 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 5 kHz
f = 10 kHz
f = 20 kHz
TJ = 125 ºC Max
to
ITRM
l/f
Non-Repeated
0 0.2 0.4 0.6 0.8 1.0
20
40
60
80
100
120
140
25
RMS On-state Current [IT(RMS)] – Amps
Maximum Allowable Ambient Temperature (TA) – ˚C
CURRENT WAVEFORM: Sinusoidal - 60 Hz
LOAD: Resistive or Inductive
FREE AIR RATING
TO-92 and DO-214
DO-15X and TO-202 Type 23 and 41
TO-202 Type 1
-12
-20 0 +20 +40 +60 +80 +100 +120
-10
-8
-6
-4
-2
0
+2
+4
-40
+25
Junction Temperature (TJ) – ˚C
Percentage of VBO Change – %
+140
K2xxxF1
K1xxxE
K1xxxG
K1xxxS
K2xxxE
K2xxxG
K2xxxS
20 30 40 50 60 8070 90 100 110 120
1
2
3
4
5
6
7
8
9
Junction Temperature (TJ) – ˚C
Repetitive Peak Breakover
Current (IBO) Multiplier
V = VBO
130
00.8 1.21.0 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
6
0
1
2
3
4
5
6
7
8
9
Positive or Negative Instantaneous On-state Voltage (v
T
) – Volts
Positive or Negative Instantaneous
On-state Current (i
T
) – Amps
TL = 25 ˚C
TO-92, DO-214 and DO-15X
"E", "S" and "G" Packages
TO-202 "F" Package
0.2 0.4 0.6 0.8 1.0
0
0.4
0.8
1.2
1.6
0.2
0.6
1.0
1.4
1.8
2.0
2.2
RMS On-state Current [IT(RMS)] – Amps
Average On-state
Power Dissipation [PD(AV)] – Watts
"E", "S" and "G" Packages
TO-92, DO-214 and DO-15X
TO-202 "F" Package
CURRENT WAVEFORM: Sinusoidal
LOAD: Resistive or Inductive
CONDUCTION ANGLE:
See Basic Sidac Cirucit
©2002 Teccor Electronics E9 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Sidac
Figure E9.9 Comparison of Sidac versus SCR for Gas Ignitor Circuit
Figure E9.10 Circuit (Low Voltage Input) for Gas Ignition
Figure E9.11 Typical High Pressure Sodium Lamp Firing Circuit
Figure E9.12 Xenon Lamp Flashing Circuit
Figure E9.13 Dynamic Holding Current Test Circuit for Sidacs
Figure E9.14 Basic Sidac Circuit
100-250 V ac
60 Hz
100-250 V ac
60 Hz
SCR Sidac
4.7 µF
100 V
10 µF
50 V
24 V ac
60 Hz
4.7 µF
100 V
½ W K1200E
Sidac
200 V
H.V.
Ignitor
1.2 µF
4.7 k
- +
- +
+
-
Sidac
120 V ac
60 Hz
16 mH
3.3 k
0.47 µF
400 V
Ballast
Sidac
220 V ac
60 Hz
7.5 k
0.22 µF
Ballast
Lamp
120 V ac 220 V ac
Lamp
- +
+
-
Xenon Lamp
K2200G
10 µF
2 W
120 V ac
60 Hz
10 µF
450 V
4 kV
0.01 µF
400 V
20 M
Sidac
200-
400 V
100
250 V
Trigger
Transformer
20:1
100-250 V ac
60 Hz
Scope
Push to test
S1 Switch to test
in each direction
100
1%
Device
Under
Test
S1
Scope Indication
Trace Stops
I
H
I
PK
Load
100-250 V ac
60 Hz IH
VBO
120-145˚
Conduction
Angle
IH
IH
Load Current
VBO
VBO
http://www.teccor.com E9 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Sidac Data Sheets
Figure E9.15 Relaxation Oscillator Using a Sidac
Figure E9.16 Sidac Added to Protect Transistor for Typical Transistor Inductive Load Switching Requirements
VDC(IN) VB0 VC
ILRL
R
SIDAC
(a) Circuit
Rmax VIN - VBO
IBO
Rmin VIN - VTM
IH (MIN)
(b) Waveforms
VBO
VC
IL
t
t
C
VCE Monitor
100 mH
IC Monitor
+
-
RS = 0.1
Test Circuit
VBB1 =10 V
+
-
VBB2 =0
RBB2 =
100
RBB1 =
150
2N6127
(or equivalent)
50
50
Input
(See Note B)
TIP-47
VCC = 20 V
Voltage and Current Waveforms
Input
Voltage
0 V
5 V
0.63 A
0
Sidac VBO
10 V
VCE(sat)
tw 3 ms
(See Note A)
Collector
Current
Collector
Voltage
100 ms
tw
Note A: Input pulse width is increased until ICM = 0.63 A.
Note B: Sidac (or Diac or series of Diacs) chosen so that VBO is just below VCEO rating of transistor to be protected.
The Sidac (or Diac) eliminates a reverse breakdown of the transistor in inductive switching circuits where otherwise the
transistor could be destroyed.
2002 Teccor Electronics M1 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Package Dimensions
M1
This section contains the dimensions for the following packages:
F Package — TO-202AB, Type 1 (Non-isolated)
Y Package — DO-35 or DO-204AH
R Package — TO-220AB (Non-isolated)
L Package — TO-220AB (Isolated)
P Package — TO-3 Fastpak (Isolated)
E Package — TO-92 (Isolated)
S Package — DO-214AA
M Package — TO-218AC (Non-isolated)
K Package — TO-218AC (Isolated)
W Package — TO-218X (Non-isolated)
J Package — TO-218X (Isolated)
G Package — DO-15X Axial Lead
C Package — Compak
N Package — TO-263
D Package — TO-252
V Package — TO-251
M1
Package Dimensions Data Sheets
http://www.teccor.com M1 - 2 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
F Package — TO-202AB, Type 1
Non-isolated Mounting Tab Common with MT2 / Anode / PIN 2
Y Package — DO-35 or DO-204AH
(1) Package contour optional within dimensions A and C. Slugs, if any,
shall be included within this cylinder but shall not be subject to the
minimum limit of Dimension A.
(2) Lead diameter is not controlled in this zone to allow for flash, lead
finish build-up, and minor irregularities other than slugs.
N
P
Q
S
0.070 x 45˚Chamfer Common t
o
All Types
L
KJ
M
MT1 / Cathode / PIN 1
MT2 / Anode / PIN 2
Case
Temperature
Measurement
Point
Tab Common to
MT2 / Anode / PIN 2
A
B
C
D
G
F
H
E
Notes:
(1) Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm)
(2) Pin 2 and mounting tab are electrically connected. Do not use either
for Sidac o
p
eration.
Gate / Trigger / PIN 3
R
DIA.
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.365 0.385 9.27 9.78
B0.243 0.253 6.17 6.43
C0.110 0.120 2.79 3.05
D0.780 0.810 19.81 20.57
E0.290 0.310 7.37 7.87
F0.400 0.430 10.16 10.92
G0.052 0.062 1.32 1.58
H0.055 0.065 1.40 1.65
J0.023 0.029 0.58 0.74
K0.095 0.105 2.41 2.67
L0.195 0.205 4.95 5.21
M0.049 0.059 1.24 1.50
N0.017 0.023 0.43 0.58
P0.055 0.065 1.40 1.65
Q0.175 0.185 4.45 4.70
R0.124 0.130 3.15 3.30
S0.390 0.405 9.91 10.29
C
B
A
DIA.
1
1
2
D
DIA.
TYP
E
TYP
B
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.060 0.090 1.530 2.280
B0.015 0.381
C0.135 0.165 3.430 4.190
D0.018 0.022 0.458 0.558
E1.000 25.400
Data Sheets Package Dimensions
2002 Teccor Electronics M1 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
R Package — TO-220AB
Non-isolated Mounting Tab Common with Center Lead
L Package — TO-220AB
Isolated Mounting Tab
A O
P
N
M
H
L
J
K
G
F
E
DIA.
B
C
D
Case
Temperature
Measurement
Point
Gate/Trigger *
MT2 / Anode
MT1 / Cathode
Note: Maximum torque
to be applied to mounting tab
is 8 in-lbs. (0.904 Nm).
* The gate pin is not used
on diode rectifiers.
R Package
MT2 / Anode
R
Notch in gate
lead identifies
non-isolated tab
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.380 0.420 9.65 10.67
B0.105 0.115 2.66 2.92
C0.230 0.250 5.85 6.35
D0.590 0.620 14.98 15.75
E0.142 0.147 3.61 3.73
F0.110 0.130 2.80 3.30
G0.540 0.575 13.71 14.60
H0.025 0.035 0.63 0.89
J0.195 0.205 4.95 5.21
K0.095 0.105 2.41 2.67
L0.060 0.075 1.52 1.91
M0.070 0.085 1.78 2.16
N0.018 0.024 0.45 0.61
O0.178 0.188 4.52 4.78
P0.045 0.060 1.14 1.53
R0.038 0.048 0.97 1.22
A O
P
N
M
H
L
J
K
G
F
E
DIA.
B
C
D
Case
Temperature
Measurement
Point
Gate/Trigger *
MT2 / Anode
MT1 / Cathode
Note: Maximum torque
to be applied to mounting tab
is 8 in-lbs. (0.904 Nm).
* The gate pin is not used
on diode rectifiers.
R Package
MT2 / Anode
R
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.380 0.420 9.65 10.67
B0.105 0.115 2.66 2.92
C0.230 0.250 5.85 6.35
D0.590 0.620 14.98 15.75
E0.142 0.147 3.61 3.73
F0.110 0.130 2.80 3.30
G0.540 0.575 13.71 14.60
H0.025 0.035 0.63 0.89
J0.195 0.205 4.95 5.21
K0.095 0.105 2.41 2.67
L0.060 0.075 1.52 1.91
M0.070 0.085 1.78 2.16
N0.018 0.024 0.45 0.61
O0.178 0.188 4.52 4.78
P0.045 0.060 1.14 1.53
R0.038 0.048 0.97 1.22
Package Dimensions Data Sheets
http://www.teccor.com M1 - 4 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
P Package — TO-3 Fastpak
Isolated Mounting Base
Note: Maximum torque to be applied to mounting tab is 8 in-lbs.
(0.904 Nm).
E Package — TO-92
All leads insulated from case. Case is electrically nonconductive.
MT2
Gate
MT1
Φ G
5-
Φ
N
Φ
J (MT1, MT2)
Φ
K (Gate)
FH
E
C
B
A
D
Q
O
R
S
P
U
T
I
ML
T
C
Measuring Point
Dimension
Inches Millimeters
MIN MAX MIN MAX
A1.531 1.543 38.90 39.20
B1.177 1.185 29.90 30.10
C0.843 0.850 21.40 21.60
D0.780 0.795 19.80 20.20
E0.783 0.791 19.90 20.10
F0.874 0.906 22.20 23.00
G0.161 0.169 4.10 4.30
H0.386 0.465 9.80 11.80
I0.508 0.587 12.90 14.90
J0.079 0.087 2.00 2.20
K0.047 0.055 1.20 1.40
L0.307 0.319 7.80 8.10
M0.372 0.396 9.45 10.05
N0.043 0.059 1.10 1.50
O0.315 0.331 8.00 8.40
P0.098 0.106 2.50 2.70
Q0.846 0.886 21.50 22.50
R0.244 0.256 6.20 6.50
S0.106 0.130 2.70 3.30
T (MT1) 0.321 0.329 8.15 8.35
T (MT2) 0.321 0.329 8.15 8.35
T (Gate) 0.220 0.228 5.60 5.80
U (MT1) 0.246 0.254 6.25 6.45
U (MT2) 0.246 0.254 6.25 6.45
U (Gate) 0.183 0.191 4.65 4.85
V0.120 0.130 3.05 3.30
W0.175 0.185 4.45 4.70
A
B
T
C
Measuring Point
Gate / PIN 2 Anode / MT2 / PIN
3
Cathode /
MT1 / PIN 1
E
HG
F
D
K
J
L
M
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.176 0.196 4.47 4.98
B0.500 12.70
D0.095 0.105 2.41 2.67
E0.150 3.81
F0.046 0.054 1.16 1.37
G0.135 0.145 3.43 3.68
H0.088 0.096 2.23 2.44
J0.176 0.186 4.47 4.73
K0.088 0.096 2.23 2.44
L0.013 0.019 0.33 0.48
M0.013 0.017 0.33 0.43
Data Sheets Package Dimensions
2002 Teccor Electronics M1 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
S Package — DO-214AA
M Package — TO-218AC
Non-Isolated Mounting Tab Common with Center Lead
K Package — TO-218AC
Isolated Mounting Tab
0.079
(2.0)
0.110
(2.8)
0.079
(2.0)
Pad Outline
H
K
J
E
FL
G
A
C
B
D
TC / TL Temperature
Measurement Point
Dimensions are in inches
(and millimeters).
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.140 0.155 3.56 3.94
B0.205 0.220 5.21 5.59
C0.077 0.083 1.96 2.11
D0.166 0.180 4.22 4.57
E0.036 0.056 0.91 1.42
F0.073 0.083 1.85 2.11
G0.004 0.008 0.10 0.20
H0.077 0.086 1.96 2.18
J0.043 0.053 1.09 1.35
K0.008 0.012 0.20 0.30
L0.027 0.049 0.69 1.24
C
D
H
G
F
B
A
E
TC Measurement Point
U DIA.
M Package
MT2 / Anode
P
Gate / PIN 3
J
MT2 / Anode / PIN 2
MT1 / Cathode / PIN 1
M
N 3 Times
K
L
R
Q
Note: Maximum torque
to be applied to mounting
tab is 8 in-lbs. (0.904 Nm).
W
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.810 0.835 20.57 21.21
B0.610 0.630 15.49 16.00
C0.178 0.188 4.52 4.78
D0.055 0.070 1.40 1.78
E0.487 0.497 12.37 12.62
F0.635 0.655 16.13 16.64
G0.022 0.029 0.56 0.74
H0.075 0.095 1.91 2.41
J0.575 0.625 14.61 15.88
K0.211 0.219 5.36 5.56
L0.422 0.437 10.72 11.10
M0.058 0.068 1.47 1.73
N0.045 0.055 1.14 1.40
P0.095 0.115 2.41 2.92
Q0.008 0.016 0.20 0.41
R0.008 0.016 0.20 0.41
U0.159 0.163 4.04 4.14
W0.085 0.095 2.17 2.42
Package Dimensions Data Sheets
http://www.teccor.com M1 - 6 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
W Package — TO-218X
Non-isolated Mounting Tab Common with Center Lead
J Package — TO-218X
Isolated Mounting Tab
G Package — DO-15X
Axial Lead
G
R
YH
D
C
K
B
A
EF
N
T
MP
J
L
S
V
U DIA.
WX
MT1 / Cathode
MT2 / Anode
W Package
MT2 / Anode
T
c
Measurement
Point
Gate
Note: Maximum torque to
be applied to mounting tab
is 8 in-lbs. (0.904 Nm).
Z
DIM
INCHES MILLIMETERS
MIN MAX MIN MAX
A0.810 0.835 20.57 21.21
B0.610 0.630 15.49 16.00
C0.178 0.188 4.52 4.78
D0.055 0.070 1.40 1.78
E0.487 0.497 12.37 12.62
F0.635 0.655 16.13 16.64
G0.022 0.029 0.56 0.74
H0.075 0.095 1.91 2.41
J0.575 0.625 14.61 15.88
K0.256 0.264 6.50 6.71
L0.220 0.228 5.58 5.79
M0.080 0.088 2.03 2.24
N0.169 0.177 4.29 4.49
P0.034 0.042 0.86 1.07
R0.113 0.121 2.87 3.07
S0.086 0.096 2.18 2.44
T0.156 0.166 3.96 4.22
U0.159 0.163 4.04 4.14
V0.603 0.618 15.31 15.70
W0.000 0.005 0.00 0.13
X0.003 0.012 0.07 0.30
Y0.028 0.032 0.71 0.81
Z0.085 0.095 2.17 2.42
GL
LφD
φB2
TL Measuring Point
Dimension
Inches Millimeters
MIN MAX MIN MAX
φB2 0.027 0.035 0.686 0.889
φD0.104 0.150 2.640 3.810
G0.230 0.300 5.840 7.620
L1.000 25.400
Data Sheets Package Dimensions
2002 Teccor Electronics M1 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
C Package — Compak
N Package — TO-263
D2Pak Surface Mount
0.079
(2.0)
0.040
(1.0)
0.030
(0.76)
0.079
(2.0)
0.079
(2.0)
0.110
(2.8)
Pad Outline
H
K
JE
F
L
G
AC
B
M
D
N
P
Gate
MT1 / Cathode
MT2 / Anode
T
C
/ T
L
Temperature
Measurement Point
Dimensions are in inches
(and millimeters).
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.140 0.155 3.56 3.94
B0.205 0.220 5.21 5.59
C0.077 0.083 1.96 2.11
D0.166 0.180 4.22 4.57
E0.036 0.056 0.91 1.42
F0.073 0.083 1.85 2.11
G0.004 0.008 0.10 0.20
H0.077 0.086 1.96 2.18
J0.043 0.053 1.09 1.35
K0.008 0.012 0.20 0.30
L0.027 0.049 0.69 1.24
M0.022 0.028 1
0.56
0.71
N0.027 0.033 0.69 0.84
P0.052 0.058 1.32 1.47
B
A
V
G
S
D 2PL
C
E
K
H
J
F
0.46
(11.684)
0.17 (4.318)
0.26
(6.604)
0.115 (2.921)
0.15 (3.81)
0.08 (2.032)
Pad Outline
0.085 (2.159)
0.665
(16.891)
0.35
(8.89)
U
W
Case
Temperature
Measurement
Dimensions are
in inches
(and millimeters).
MT1 / Cathode
MT2 / Anode
Gate
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.360 0.370 9.14 9.40
B0.380 0.420 9.65 10.67
C0.178 0.188 4.52 4.78
D0.025 0.035 0.63 0.89
E0.048 0.055 1.22 1.40
F0.060 0.075 1.52 1.91
G0.095 0.105 2.41 2.67
H0.083 0.093 2.11 2.36
J0.018 0.024 0.46 0.61
K0.090 0.110 2.29 2.79
S0.590 0.625 14.99 15.87
V0.035 0.045 0.89 1.14
U0.002 0.010 0.05 0.25
W0.040 0.070 1.02 1.78
Package Dimensions Data Sheets
http://www.teccor.com M1 - 8 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
D Package — TO-252AA
D-Pak Surface Mount
V Package — TO-251AA
V-Pak Through Hole
G
A
C
B
E
K
P
L
F
.460
0.071 (1.8)
0.118 (3.0)
0.181
(4.6)
Pad Outline
0.264
(6.7)
O
D
Case
Temperature
Measurement
Point
M
H
0.264
(6.7)
Dimensions
are in inches
(and millimeters).
0.063
(1.6)
MT1 / Cathode
MT2 / Anode
Gate
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.236 0.244 6.00 6.20
B0.379 0.409 9.63 10.39
C0.176 0.184 4.47 4.67
D0.035 0.050 0.89 0.27
E0.087 0.093 2.21 2.36
F0.027 0.033 0.69 0.84
G0.205 0.213 5.21 5.41
H0.251 0.261 6.38 6.63
J0.040 0.050 1.02 1.27
K0.086 0.094 2.18 2.39
L0.026 0.036 0.66 0.91
M0.018 0.023 0.46 0.58
N0.170 0.180 4.32 4.57
O0.002 0.010 0.05 0.25
P0.018 0.023 0.46 0.58
D
B
C
J
L
K
A
Case
Temperature
Measurement
Point
H
E
F
G
Gate
MT1 / Cathode
MT2 / Anode
Mounting
Tab
Internally
Connected
to MT2
MT2 / Anode
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.040 0.050 1.02 1.27
B0.236 0.244 6.00 6.20
C0.350 0.375 8.89 9.53
D0.205 0.213 5.21 5.41
E0.251 0.261 6.38 6.63
F0.027 0.033 0.69 0.84
G0.087 0.093 2.21 2.36
H0.086 0.094 2.18 2.39
J0.018 0.023 0.46 0.58
K0.036 0.042 0.91 1.07
L0.018 0.023 0.46 0.58
©2002 Teccor Electronics M2 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Lead Form Dimensions
M2
The TO-202AB, TO-220AB, and TO-92 package configurations,
because of their unique design, can be mounted in a variety of
methods, depending upon heat sink requirements and circuit
packaging methods. Any of the derived types shown in this sec-
tion are available as standard parts direct from the factory. Cus-
tom package variations are available. Consult the factory for
more information.
To designate lead form options, simply indicate the type number
at the end of the Teccor standard part number.
Example: Q2004F312 (Signifies Type 12)
Note: When ordering a TO-202 F package, include a 1 for stan-
dard full tab package. When ordering anything other than full tab,
remove the 1 and add the Lead Form Type.
See “Description of Part Numbers” in the Product Selection
Guide of this catalog for a complete description of Teccor part
numbers.
Lead Bending Specifications
Leads may be bent easily and may be bent to any desired angle,
provided that the bend is made at a minimum 0.063" (0.1 for
TO-218) away from the package body with a minimum radius of
0.032". DO-15X device leads may be bent with a minimum radius
of 0.050", and DO-35 device leads may be bent with a minimum
radius of 0.028". Leads should be held firmly between the pack-
age body and the bend, so that strain on the leads is not trans-
mitted to the package body.
When bending leads in the plane of the leads (spreading), bend
only the narrow part.
Sharp angle bends should be done only once, as repetitive bend-
ing will fatigue and break the leads.
M2
http://www.teccor.com M2 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Lead Form Dimensions Data Sheets
TO-202AB Type 11 — F Package
TO-202AB Type 12 — F Package
TO-202AB Type 2 — F Package
TO-202AB Type 21 — F Package
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.080 0.120 2.03 3.05
B0.301 0.361 7.65 9.17
C0.080 0.120 2.03 3.05
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.435 0.495 11.05 12.57
B0.120 0.160 3.05 4.06
Tab Common to
MT2 / Anode
MT1 / Cathode
MT2 / Anode
Gate
A
B
C
MT2 / Anode
Tab Common
to MT2 / Anode
MT1 / Cathode
MT2 / Anode
Gate
A
B
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.240 0.260 6.100 6.60
B0.030 0.050 0.762 1.27
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.030 0.050 0.762 1.27
B0.240 0.260 6.100 6.60
C0.080 0.120 2.030 3.05
D0.301 0.361 7.650 9.17
E0.080 0.120 2.030 3.05
A
MT1 / Cathode
MT2 / Anode
Gate
B
MT1 / Cathode
MT2 / Anode
Gate
C
D
E
MT2 /
Anode
A
B
©2002 Teccor Electronics M2 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Lead Form Dimensions
TO-202AB Type 23 — F Package
Sidac Only
TO-202AB Type 26 — F Package
TO-202AB Type 3 — F Package
Non-isolated
TO-202AB Type 32 — F Package
Non-isolated
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.240 0.260 6.100 6.60
B0.030 0.050 0.762 1.27
C0.030 0.050 0.762 1.27
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.240 0.260 6.100 6.60
B0.030 0.050 0.762 1.27
C0.050 0.070 0.127 1.78
D0.095 0.105 2.410 2.67
E0.172 0.202 4.370 5.13
MT1 / Pin 1
MT2 / Pin 2
C
A
B
Gate
A
MT2 / Anode
MT1 / Cathode
B
E
C
D
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.030 0.050 0.762 1.27
B0.645 0.705 16.380 17.91
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.030 0.050 0.762 1.27
B0.435 0.495 11.050 12.57
C0.120 0.160 3.050 4.06
MT2 / Anode
MT1 / Cathode
A
B
Gate
MT2 / Anode
MT1 / Cathode
Gate
B
C
A
http://www.teccor.com M2 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Lead Form Dimensions Data Sheets
TO-202AB Type 4 — F Package
TO-202AB Type 41 — F Package
TO-202AB Type 43 — F Package
Surface Mount
TO-220 Type 51 — R or L Package
Replaces RCA 6249
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.240 0.260 6.100 6.600
B0.114 0.134 2.900 3.400
C0.023 0.029 0.584 0.737
D0.030 0.050 0.762 1.270
E0.297 0.327 7.540 8.310
F0.030 0.050 0.765 1.270
G0.297 0.327 7.540 8.310
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.380 0.420 9.65 10.67
B0.180 0.220 4.57 5.59
AB
C
MT2 / Anode
D
EF
G
Gate
MT1 / Cathode
MT2 / Anode
Gate
MT1 / Cathode
B
A
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.030 0.050 0.762 1.270
B0.680 0.760 17.270 19.300
C0.110 0.130 2.800 3.300
D0.080 0.100 2.030 2.540
E0.080 0.100 2.030 2.540
F0.110 0.130 2.800 3.300
G0.000 0.013 0.000 0.330
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.320 0.340 8.13 8.64
B0.190 4.83
C0.795 0.850 20.19 21.59
MT2 / Anode
A
Gate
MT1 / Cathode
B
F
E
D
C
0.150
0.450
0.150
0.050
Five
PLCs
Pad Outline
G
A
C
MT2 / Anode
Gate
B
Ref Only
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
MT1 / Cathode
©2002 Teccor Electronics M2 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Lead Form Dimensions
TO-220 Type 52 — R or L Package
TO-220 Type 53 — R or L Package
TO-220 Type 54 — R Package
Replaces Motorola Form 4, G.E. Type 4, RCA 6206
TO-220 Type 55 — R or L Package
Replaces G.E. Type 5
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.169 0.189 4.29 4.80
B0.040 0.060 1.02 1.52
C0.250 6.35
D0.110 0.170 2.79 4.32
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.175 4.45
B0.542 0.582 13.77 14.78
C0.167 0.207 4.24 5.26
D0.355 0.395 9.02 10.03
AC
Gate / Trigger
MT2 / Anode
MT1 / Cathode
B
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
D
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
MT1 / Cathode
MT2 / Anode
Gate / Trigger
MT2 / Anode
A
D
C
B
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.040 0.070 1.02 1.78
B0.500 12.70
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.065 0.095 1.65 2.41
B0.353 0.433 8.97 11.00
C0.115 0.130 2.92 3.30
A
MT2 / Anode
Gate
MT1 / Cathode
B
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
MT1 / Cathode
MT2 / Anode
Gate / Trigger
C
B
A
MT2 / Anode
http://www.teccor.com M2 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Lead Form Dimensions Data Sheets
TO-220 Type 56 — R or L Package
Replaces G.E. Type 6, Motorola Lead Form 3, RCA 6221
TO-220 Type 57 — R Package
Similar to TO-66, Gate-Cathode Reversed
TO-220 Type 58 — R or L Package
TO-220 Type 59 — R or L Package
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.570 0.590 14.48 14.99
B0.120 0.130 3.05 3.30
C0.172 0.202 4.37 5.13
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.040 0.070 1.02 1.78
B0.570 0.590 14.48 14.99
C0.340 0.422 8.64 10.72
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
MT1 / Cathode
A
C
MT2 / Anode
Gate / Trigger
MT2 / Anode
B
MT1 / Cathode C
Gate
MT2 / Anode
B
A
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.175 4.45
B0.542 0.582 13.77 14.78
C0.167 0.207 4.24 5.26
D0.355 0.395 9.02 10.03
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.685 0.725 17.40 18.42
B0.558 0.598 14.17 15.19
C0.375 9.53
D0.250 6.35
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
MT1 / Cathode Gate
MT2 / Anode
A
D
C
B
MT2 / Anode
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
MT1 / Cathode Gate
D
C
B
MT2 / Anode
MT2 /
Anode
A
©2002 Teccor Electronics M2 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Lead Form Dimensions
TO-220 Type 65 — R or L Package
Replaces RCA 6210
TO-220 Type 67 — R Package
Surface Mount
TO-220 Type 68 — R or L Package
Surface Mount
TO-92 Type 70 — E Package
Sidac Only
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.550 0.580 12.70 14.27
B0.820 0.260 14.73 15.75
C0.530 0.570 7.62
D0.080 0.120 2.03 3.05
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.780 0.850 19.05 21.59
B0.080 0.100 2.03 2.54
C0.110 0.130 2.79 3.30
D0.013 0.33
MT1 / Cathode
MT2 / Anode A
B
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
Gate / Trigger
MT2 / Anode
C
D
MT1 / Cathode
Gate
B
C
A
D
MT2 / Anode
0.460
0.270
0.170
0.150
0.050 TYP
0.155
0.230 0.115
0.860
Pad Outline
This Footprint
Optional
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.780 0.850 19.05 21.59
B0.080 0.100 2.03 2.54
C0.110 0.130 2.79 3.30
D0.013 0.33
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.060 1.52
B0.50 12.7
MT1 / Cathode
Gate / Trigger
MT2 / Anode
B
C
A
D
Mounting Tab
Common to
MT2 / Anode
for Non-isolated
R Package
0.460
0.270
0.170
.150
0.860
0.050 TYP0.045
0.055 TYP
0.230
0.115
Pad Outline
This Footprint
Optional
A
MT1 / Pin 1
B
MT2 / Pin 3
Flat
Side
http://www.teccor.com M2 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Lead Form Dimensions Data Sheets
TO-92 Type 73 — E Package
Surface Mount
TO-92 Type 75 — E Package
Replaces TO-5 Pinout
TO-218 Type 81 — K, M, J, or W Packages
TO-218 Type 82 — M and W Packages
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.000 0.010 0.000 0.254
B0.052 0.067 1.320 1.700
C0.295 0.315 7.490 8.000
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.400 10.16
B0.500 12.70
C0.080 0.120 2.03 3.05
D0.045 0.085 1.14 2.16
E0.180 0.220 4.57 5.59
F0.080 0.120 2.03 3.05
A
B
CMT2 / Anode/ Pin 3
Gate / Pin 2
MT1 / Cathode / Pin 1
0.034
TYP 0.016
TYP
0.08
Pad Outline
MT2 / Anode / Pin 3
F
B
A
Gate / Pin 2
Flat Side
D TYP
E
C
MT1 / Cathode / Pin 1
Gate / Pin 2
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.080 0.120 2.03 3.05
B0.580 0.640 14.73 16.26
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.095 2.41
B0.080 0.120 2.03 3.05
C0.580 0.640 14.73 16.26
B
MT1 / Cathode
A
Gate
Mounting Tab Common to
MT2 / Anode on W Package
MT2 / Anode
C
MT1 / Cathode
B
Gate
Mounting Tab
Common to
MT2 / Anode
A
©2002 Teccor Electronics M2 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Data Sheets Lead Form Dimensions
DO-35 Type 91 — Y Package
DO-35 Type 92 — Y Package
DO-35 Type 93 — Y Package
Surface Mount
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.519 0.521 12.18 13.23
B0.140 0.172 3.56 4.37
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.610 0.630 15.49 16.00
B0.140 0.172 3.56 4.37
A
B
A
B
Dimension
Inches Millimeters
MIN MAX MIN MAX
A0.020 0.060 0.508 1.52
B0.290 0.310 7.370 7.87
C0.370 0.430 9.400 10.92
D0.040 0.060 1.020 1.52
B
C
A
D
Notes
2002 Teccor Electronics M3 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Packing Options
M3
Packing options include:
•Bulk Pack
Reel Pack (RP)
Ammo Pack (AP)
Tube Pack (TP)
Embossed Carrier (RP)
See “Package Type and Packing Options” on page M3-2.
Sample Instructions for Choosing a
Packing Option
(1) If selecting an “L401E6” (sensitive gate, 400 V, 1 A triac in a
TO-92 package), choose one of the options available for that
device:
Bulk packed in 2,000 quantity
Tape and Reel with 2,000 parts per reel
Tape and Ammo with 2,000 parts per box
(2) Add the designated code as a suffix to the device number,
such as “L401E6 RP” if selecting Tape and Reel or “L401E6
AP” if selecting Tape and Ammo. (Bulk packing requires no
suffix.)
M3
Packing Options Data Sheets
http://www.teccor.com M3 - 2 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Package Type and Packing Options
Package Type Package Code
Packing Options
Bulk Pack
Reel Pack
(RP)
Ammo Pack
(AP)
Tube Pack
(TP)
Embossed Carrier
(RP)
TO-92 E2,000 2,000 2,000 Contact factory
for availability
Only
Type 73
TO-220 L, R 500 n/a n/a 50 Only
Type 67 and 68
TO-202 F500 700 (Type 2) n/a 50 Only
Type 43
TO-218 K, J, M, W 250 n/a n/a Contact factory
for availability
n/a
Fastpak P200 n/a n/a n/a n/a
TO-251 V-Pak V1,000 Contact factory
for availability
n/a 75 n/a
TO-252 D-Pak Dn/a n/a n/a 75 2500
TO-263 D2Pak Nn/a n/a n/a 50 500
DO-214 S1,000 n/a n/a n/a 2500
Compak C1,000 n/a n/a n/a 2500
DO-35 Y10,000
Minimum order
of 5,000
available
5,000 n/a n/a n/a
DO-15X G1,000 5,000 n/a n/a n/a
Data Sheets Packing Options
2002 Teccor Electronics M3 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
TO-92 (3-lead) Reel Pack (RP) Radial Leaded
Meets all EIA-468-B 1994 Standards
TO-92 (3-lead) Ammo Pack (AP) Radial Leaded
Meets all EIA-468-B 1994 Standards
0.708
(18.0)
1.6
(41.0)
0.5
(12.7) 0.1 (2.54)
0.2 (5.08)
0.236
(6.0)
0.02 (0.5)
Direction of Feed
Dimensions
are in inches
(and millimeters).
1.97
(50.0)
14.17(360.0)
Flat up
1.26
(32.0)
0.098 (2.5) MAX
MT1 / Cathode MT2 / Anode
Gate
0.354
(9.0)
0.157 DIA
(4.0)
Flat down
25 Devices per fold
MT1 / Cathode
MT2 / Anode
Gate
Direction of Feed
Dimensions
are in inches
(and millimeters).
0.708
(18.0)
1.62
(41.2)
0.5
(12.7)
0.1 (2.54)
0.2 (5.08)
0.236
(6.0)
0.02 (0.5)
1.85
(47.0)
13.3
(338.0)
1.27
(32.2)
0.098 (2.5) MAX
12.2
(310.0)
1.85
(47.0)
0.354
(9.0)
0.157 DIA
(4.0)
Packing Options Data Sheets
http://www.teccor.com M3 - 4 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
TO-92 Type 70 Reel Pack (RP3) Optional
Meets all EIA-468-B 1994 Standards
TO-92 Type 70 Reel Pack (RP2) Standard
Meets all EIA-468-B 1994 Standards
Flat Up
0.708
(18.0)
1.3
(33.1)
0.5
(12.7) 0.1 (2.54)
0.354
(9.0)
0.236
(6.0)
0.02 (0.5)
Direction of Feed
Dimensions
are in inches
(and millimeters).
1.97
(50.0)
14.17
(360.0)
0.95
(24.1)
0.157 DI
A
(4.0)
Flat Down
1.62
(41.2)
0.708
(18.0) 0.354
(9.0)
0.236
(6.0)
0.02
(0.5)
0.50
(12.7)
14.17
(360.0)
0.20
(5.08)
0.125 (3.2) MAX
1.27
(32.2)
1.97
(50.0)
0.50
(12.7)
0.25
(6.35)
Dimensions
are in inches
(and millimeters).
Direction of Feed
0.157 DIA
(4.0)
Data Sheets Packing Options
2002 Teccor Electronics M3 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
TO-92 Type 70 Ammo Pack (AP) Radial Leaded
Meets all EIA-468-B 1994 Standards
Flat down
25 Devices per fold
0.708
(18.0)
1.27
(32.2)
0.125 (3.2) MAX
1.62
(41.2)
MAX
0.50
(12.7)
0.354
(9.0)
0.236
(6.0)
0.02 (0.5)
0.20 (5.08)
0.50
(12.7)
0.25
(6.35)
Direction of Feed
Dimensions
are in inches
(and millimeters).
1.85
(47.0)
13.3
(338.0)
12.2
(310.0)
1.85
(47.0)
0.157 DIA
(4.0)
Packing Options Data Sheets
http://www.teccor.com M3 - 6 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
TO-202 Type 2 Reel Pack (RP)
Meets all EIA-468-B 1994 Standards
Reel Pack (RP) for TO-252 Embossed Carrier
Meets all EIA-481-2 Standards
MT1 / Cathode
MT2 / Anode
Gate
Direction of Feed
Dimensions
are in inches
(and millimeters).
0.708
(18.0)
1.33
(33.8)
0.5
(12.7)
0.1 (2.54)
0.2 (5.08)
0.236
(6.0)
0.02 (0.5)
1.97
(50.0)
14.17
(360.0)
0.63
(16.0)
0.354
(9.0)
0.157 DIA
(4.0)
0.512 (13.0) Arbor
Hole Dia.
DC
DC
XXXXXX
DC
Gate MT1 / Cathode
MT2 / Anode
0.63
(16.0)
0.157
(4.0)
0.64
(16.3)
12.99
(330.0)
0.524
(13.3)
0.315
(8.0)
0.059 DIA
(1.5)
*
*
Cover tape
Direction of Feed
Dimensions
are in inches
(and millimeters).
Data Sheets Packing Options
2002 Teccor Electronics M3 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
TO-263 Embossed Carrier Reel Pack (RP)
Meets all EIA-481-2 Standards
DO-214 Embossed Carrier Reel Pack (RP)
Meets all EIA-481-1 Standards
Gate
MT1 / Cathode
MT2 / Anode
0.512 (13.0) Arbor
Hole Dia.
0.945
(24.0)
0.63
(16.0)
1.01
(25.7)
12.99
(330.0)
0.827
(21.0)
0.157
(4.0)
Direction of Feed
Dimensions
are in inches
(and millimeters).
*
* Cover tape
0.059 DIA
(1.5)
0.472
(12.0) 0.36
(9.2)
0.315
(8.0)
0.157
(4.0)
0.49
(12.4)
0.512 (13.0) Arbor
Hole Dia.
12.99
(330.0)
Dimensions
are in inches
(and millimeters).
Direction of Feed
0.059 DIA
(1.5) Cover tape
Packing Options Data Sheets
http://www.teccor.com M3 - 8 2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Compak Embossed Carrier Reel Pack (RP)
Meets all EIA-481-1 Standards
DO-15X and DO-35 Reel Pack (RP)
Meets all EIA RS-296 Standards
8.0
Anode / MT2
Cathode / MT1
Gate
0.47
(12.0) 0.36
(9.2)
0.315
(8.0)
0.157
(4.0)
0.49
(12.4)
0.512 (13.0) Arbor
Hole Dia.
12.99
(330.0)
Dimensions
are in inches
(and millimeters).
Direction of Feed
0.059 DIA
(1.5)
Cover tape
3.15 (80.0) TYP
DO-15X DO-35
Dimensions
are in inches
(and millimeters).
Direction of Feed
0.252
(6.4)
0.898
(22.8)
0.197
(5.0)
2.063
(52.4)
10.0 - 14.0
(254.0 - 356.0)
0.252
(6.4)
0.956
(24.3)
0.197
(5.0)
2.063
(52.4)
©2002 Teccor Electronics http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Application Notes
Fundamental Characteristics of Thyristors - - - - - - - - - - - - - - - - - - - AN1001
Gating, Latching, and Holding of SCRs and Triacs - - - - - - - - - - - - - AN1002
Phase Control Using Thyristors- - - - - - - - - - - - - - - - - - - - - - - - - - - AN1003
Mounting and Handling of Semiconductor Devices - - - - - - - - - - - - - AN1004
Surface Mount Soldering Recommendations - - - - - - - - - - - - - - - - - AN1005
Testing Teccor Semiconductor Devices Using Curve Tracers - - - - - AN1006
Thyristors Used as AC Static Switches and Relays- - - - - - - - - - - - - AN1007
Explanation of Maximum Ratings and Characteristics for Thyristors - AN1008
Miscellaneous Design Tips and Facts - - - - - - - - - - - - - - - - - - - - - - AN1009
Thyristors for Ignition of Fluorescent Lamps - - - - - - - - - - - - - - - - - - AN1010
Notes
©2002 Teccor Electronics AN1001 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
AN1001
Fundamental Characteristics of Thyristors
Introduction
The thyristor family of semiconductors consists of several very
useful devices. The most widely used of this family are silicon
controlled rectifiers (SCRs), triacs, sidacs, and diacs. In many
applications these devices perform key functions and are real
assets in meeting environmental, speed, and reliability specifica-
tions which their electro-mechanical counterparts cannot fulfill.
This application note presents the basic fundamentals of SCR,
triac, sidac, and diac thyristors so the user understands how they
differ in characteristics and parameters from their electro-
mechanical counterparts. Also, thyristor terminology is defined.
SCR
Basic Operation
Figure AN1001.1 shows the simple block construction of an SCR.
Figure AN1001.1 SCR Block Construction
The operation of a PNPN device can best be visualized as a spe-
cially coupled pair of transistors as shown in Figure AN1001.2.
Figure AN1001.2 Coupled Pair of Transistors as a SCR
The connections between the two transistors trigger the occur-
rence of regenerative action when a proper gate signal is applied
to the base of the NPN transistor. Normal leakage current is so
low that the combined hFE of the specially coupled two-transistor
feedback amplifier is less than unity, thus keeping the circuit in
an off-state condition. A momentary positive pulse applied to the
gate biases the NPN transistor into conduction which, in turn,
biases the PNP transistor into conduction. The effective hFE
momentarily becomes greater than unity so that the specially
coupled transistors saturate. Once saturated, current through the
transistors is enough to keep the combined hFE greater than
unity. The circuit remains “on” until it is “turned off” by reducing
the anode-to-cathode current (IT) so that the combined hFE is less
than unity and regeneration ceases. This threshold anode current
is the holding current of the SCR.
Geometric Construction
Figure AN1001.3 shows cross-sectional views of an SCR chip
and illustrations of current flow and junction biasing in both the
blocking and triggering modes.
Figure AN1001.3 Cross-sectional View of SCR Chip
Gate
Gate
J1
J2
J3
P
N
P
N
Schematic Symbol
Block Construction
Cathode
Anode
Cathode
Anode
N
P
N
P
N
PGate
Cathode
J1
J2J2
J3
Anode
N
N
N
Cathode
Gate
Anode Load
P
P
Two-transistor
Schematic
Two-transistor Block
Construction Equivalent
Gate Cathode
(-)
(+) IGT
PN
N
P
(+)
(+)
Anode
IT
Forward Bias and Current Flow
Gate Cathode
PN
N
P
(-)
Anode
Reverse Bias
Reverse Biased
Junction (-)
Anode
Equivalent Diode
Relationship
Forward
Blocking
Junction
Cathode
(-)
(+)
Anode
Equivalent Diode
Relationship
Cathode
(+)
Reverse Biased
Gate Junction
AN1001
AN1001 Application Notes
http://www.teccor.com AN1001 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Triac
Basic Operation
Figure AN1001.4 shows the simple block construction of a triac.
Its primary function is to control power bilaterally in an AC circuit.
Figure AN1001.4 Triac Block Construction
Operation of a triac can be related to two SCRs connected in par-
allel in opposite directions as shown in Figure AN1001.5.
Although the gates are shown separately for each SCR, a triac
has a single gate and can be triggered by either polarity.
Figure AN1001.5 SCRs Connected as a Triac
Since a triac operates in both directions, it behaves essentially
the same in either direction as an SCR would behave in the for-
ward direction (blocking or operating).
Geometric Construction
Figure AN1001.6 show simplified cross-sectional views of a triac
chip in various gating quadrants and blocking modes.
Figure AN1001.6 Simplified Cross-sectional of Triac Chip
NN
N
PNP
Block Construction
Main
Terminal 2
(MT2)
Gate
Schematic Symbol
MT1
Gate
MT2
Main
Terminal 1
(MT1)
MT1
MT2
N
N
N
N
N
N
P
P
P
P
GATE(+) MT1(-)
IGT
NN
ITMT2(+)
QUADRANT I
GATE(-) MT1(-)
MT2(+)
QUADRANT II
IGT
Blocking
Junction
MT2(+)
MT1(-)
Equivalent Diode
Relationship
N
N
N
N
N
N
N
N
P
P
P
P
GATE(+)
MT1(+)
IGT
QUADRANT III
GATE(-)
MT1(+)
MT2(-)
QUADRANT IV
Blocking
Junction
Equivalent Diode
Relationship
IT
IT
IGT
MT1(+)
MT2(-)
MT2(-)
Application Notes AN1001
©2002 Teccor Electronics AN1001 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Sidac
Basic Operation
The sidac is a multi-layer silicon semiconductor switch. Figure
AN1001.7 illustrates its equivalent block construction using two
Shockley diodes connected inverse parallel. Figure AN1001.7
also shows the schematic symbol for the sidac.
Figure AN1001.7 Sidac Block Construction
The sidac operates as a bidirectional switch activated by voltage.
In the off state, the sidac exhibits leakage currents (IDRM) less
than 5 µA. As applied voltage exceeds the sidac VBO, the device
begins to enter a negative resistance switching mode with char-
acteristics similar to an avalanche diode. When supplied with
enough current (IS), the sidac switches to an on state, allowing
high current to flow. When it switches to on state, the voltage
across the device drops to less than 5 V, depending on magni-
tude of the current flow. When the sidac switches on and drops
into regeneration, it remains on as long as holding current is less
than maximum value (150 mA, typical value of 30 mA to 65 mA).
The switching current (IS) is very near the holding current (IH)
value. When the sidac switches, currents of 10 A to 100 A are
easily developed by discharging small capacitor into primary or
small, very high-voltage transformers for 10 µs to 20 µs.
The main application for sidacs is ignition circuits or inexpensive
high voltage power supplies.
Geometric Construction
Figure AN1001.8 Cross-sectional View of a Bidirectional Sidac Chip
with Multi-layer Construction
Diac
Basic Operation
The construction of a diac is similar to an open base NPN tran-
sistor. Figure AN1001.9 shows a simple block construction of a
diac and its schematic symbol.
Figure AN1001.9 Diac Block Construction
The bidirectional transistor-like structure exhibits a high-imped-
ance blocking state up to a voltage breakover point (VBO) above
which the device enters a negative-resistance region. These
basic diac characteristics produce a bidirectional pulsing oscilla-
tor in a resistor-capacitor AC circuit. Since the diac is a bidirec-
tional device, it makes a good economical trigger for firing triacs
in phase control circuits such as light dimmers and motor speed
controls. Figure AN1001.10 shows a simplified AC circuit using a
diac and a triac in a phase control application.
Figure AN1001.10 AC Phase Control Circuit
Geometric Construction
Figure AN1001.11 Cross-sectional View of Diac Chip
P
N
P
N
N
P
N
P
2
3
4
5
2
3
4
1
Equivalent Diode Relationship Schematic Symbol
MT2 MT2
MT1 MT1
P
3
P
1
N
2
N
4
P
5
MT1
MT2
MT1
MT2
N
N
P
MT1 MT2
Block Construction Schematic Symbol
Load
N
N
P
MT1
MT2
Cross-section of Chip Equivalent Diode
Relationship
MT1
MT2
AN1001 Application Notes
http://www.teccor.com AN1001 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Electrical Characteristic Curves of Thyristors
Figure AN1001.12 V-I Characteristics of SCR Device
Figure AN1001.13 V-I Characteristics of Triac Device
Figure AN1001.14 V-I Characteristics of Bilateral Trigger Diac
Figure AN1001.15 V-I Characteristics of a Sidac Chip
Methods of Switching on Thyristors
Three general methods are available for switching thyristors to
on-state condition:
Application of gate signal
Static dv/dt turn-on
Voltage breakover turn-on
Application Of Gate Signal
Gate signal must exceed IGT and VGT requirements of the thyristor
used. For an SCR (unilateral device), this signal must be positive
with respect to the cathode polarity. A triac (bilateral device) can
be turned on with gate signal of either polarity; however, different
polarities have different requirements of IGT and VGT which must
be satisfied. Since diacs and sidacs do not have a gate, this
method of turn-on is not applicable. In fact, the single major
application of diacs is to switch on triacs.
Static dv/dt Turn-on
Static dv/dt turn-on comes from a fast-rising voltage applied
across the anode and cathode terminals of an SCR or the main
terminals of a triac. Due to the nature of thyristor construction, a
small junction capacitor is formed across each PN junction.
Figure AN1001.16 shows how typical internal capacitors are
linked in gated thyristors.
Figure AN1001.16 Internal Capacitors Linked in Gated Thyristors
Reverse
Breakdown
Voltage
Forward
Breakover
Voltage
Specified Minimum
Off - State
Blocking
Voltage (VDRM)
+I
-I
+V
-V
Minimum Holding
Current (I
H
)
Voltage Drop (VT) at
Specified Current (iT)
Latching Current (IL)
Off - State Leakage
Current - (IDRM) at
Specified VDRM
Specified Minimum
Reverse Blocking
Voltage (VRRM)
Reverse Leakage
Current - (IRRM) at
Specified VRRM
Breakover
Voltage
Specified Minimum
Off-state
Blocking
Voltage (V
DRM
)
+I
-I
+V
-V
Minimum Holding
Current (I
H
)
Voltage Drop (V
T
) at
Specified Current (i
T
)Latching Current (I
L
)
Off-state Leakage
Current – (I
DRM)
at
Specified V
DRM
+I
-I
10 mA
+V-V
Breakover
Current
I
BO
Breakover
Voltage
V
BO
V
-V
+I
V
DRM
+V
V
S
I
S
I
H
R
S
I
DRM
I
BO
V
BO
V
T
I
T
(I
S
- I
BO
)
(V
BO
- V
S
)
R
S =
-I
Application Notes AN1001
©2002 Teccor Electronics AN1001 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
When voltage is impressed suddenly across a PN junction, a
charging current flows, equal to:
When becomes greater or equal to thyristor IGT,
the thyristor switches on. Normally, this type of turn-on does not
damage the device, providing the surge current is limited.
Generally, thyristor application circuits are designed with static
dv/dt snubber networks if fast-rising voltages are anticipated.
Voltage Breakover Turn-on
This method is used to switch on sidacs and diacs. However,
exceeding voltage breakover of SCRs and triacs is definitely not
recommended as a turn-on method.
In the case of SCRs and triacs, leakage current increases until it
exceeds the gate current required to turn on these gated thyris-
tors in a small localized point. When turn-on occurs by this
method, localized heating in a small area may melt the silicon or
damage the device if di/dt of the increasing current is not suffi-
ciently limited.
Diacs used in typical phase control circuits are basically pro-
tected against excessive current at breakover as long as the fir-
ing capacitor is not excessively large. When diacs are used in a
zener function, current limiting is necessary.
Sidacs are typically pulse-firing, high-voltage transformers and
are current limited by the transformer primary. The sidac should
be operated so peak current amplitude, current duration, and
di/dt limits are not exceeded.
Triac Gating Modes Of Operation
Triacs can be gated in four basic gating modes as shown in
Figure AN1001.17.
Figure AN1001.17 Gating Modes
The most common quadrants for triac gating-on are Quadrants I
and III, where the gate supply is synchronized with the main ter-
minal supply (gate positive — MT2 positive, gate negative —
MT2 negative). Gate sensitivity of triacs is most optimum in
Quadrants I and III due to the inherent thyristor chip construction.
If Quadrants I and III cannot be used, the next best operating
modes are Quadrants II and III where the gate has a negative
polarity supply with an AC main terminal supply. Typically, Quad-
rant II is approximately equal in gate sensitivity to Quadrant I;
however, latching current sensitivity in Quadrant II is lowest.
Therefore, it is difficult for triacs to latch on in Quadrant II when
the main terminal current supply is very low in value.
Special consideration should be given to gating circuit design
when Quadrants I and IV are used in actual application, because
Quadrant IV has the lowest gate sensitivity of all four operating
quadrants.
General Terminology
The following definitions of the most widely-used thyristor terms,
symbols, and definitions conform to existing EIA-JEDEC stan-
dards:
Breakover Point – Any point on the principal voltage-current
characteristic for which the differential resistance is zero and
where the principal voltage reaches a maximum value
Principal Current – Generic term for the current through the col-
lector junction (the current through main terminal 1 and main ter-
minal 2 of a triac or anode and cathode of an SCR)
Principal Voltage – Voltage between the main terminals:
(1) In the case of reverse blocking thyristors, the principal volt-
age is called positive when the anode potential is higher than
the cathode potential and negative when the anode potential
is lower than the cathode potential.
(2) For bidirectional thyristors, the principal voltage is called
positive when the potential of main terminal 2 is higher than
the potential of main terminal 1.
Off State – Condition of the thyristor corresponding to the high-
resistance, low-current portion of the principal voltage-current
characteristic between the origin and the breakover point(s) in
the switching quadrant(s)
On State – Condition of the thyristor corresponding to the low-
resistance, low-voltage portion of the principal voltage-current
characteristic in the switching quadrant(s).
Specific Terminology
Average Gate Power Dissipation [PG(AV)] – Value of gate power
which may be dissipated between the gate and main terminal 1
(or cathode) averaged over a full cycle
Breakover Current (IBO) – Principal current at the breakover
point
Breakover Voltage (VBO) – Principal voltage at the breakover
point
Circuit-commutated Turn-off Time (tq) – Time interval between
the instant when the principal current has decreased to zero after
external switching of the principal voltage circuit and the instant
when the thyristor is capable of supporting a specified principal
voltage without turning on
Critical Rate-of-rise of Commutation Voltage of a Triac
(Commutating dv/dt) – Minimum value of the rate-of-rise of prin-
cipal voltage which will cause switching from the off state to the
on state immediately following on-state current conduction in the
opposite quadrant
iC
dv
dt
------
èø
æö
=
Cdv
dt
------
èø
æö
MT2 POSITIVE
(Positive Half Cycle)
MT2 NEGATIVE
(Negative Half Cycle)
MT1
MT2
+
I
GT
REF
QII
MT1
I
GT
GATE
MT2
REF
MT1
MT2
REF
MT1
MT2
REF
QI
QIV
QIII
ALL POLARITIES ARE REFERENCED TO MT1
(
-
)
I
GT
GATE
(+)
I
GT
-
I
GT
GATE
(
-
)
I
GT
GATE
(+)
+
-
NOTE: Alternistors will not operate in Q IV
AN1001 Application Notes
http://www.teccor.com AN1001 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Critical Rate-of-rise of Off-state Voltage or Static dv/dt
(dv/dt) – Minimum value of the rate-of-rise of principal voltage
which will cause switching from the off state to the on state
Critical Rate-of-rise of On-state Current (di/dt) – Maximum
value of the rate-of-rise of on-state current that a thyristor can
withstand without harmful effect
Gate-controlled Turn-on Time (tgt) – Time interval between a
specified point at the beginning of the gate pulse and the instant
when the principal voltage (current) has dropped to a specified
low value (or risen to a specified high value) during switching of a
thyristor from off state to the on state by a gate pulse.
Gate Trigger Current (IGT) – Minimum gate current required to
maintain the thyristor in the on state
Gate Trigger Voltage (VGT) – Gate voltage required to produce
the gate trigger current
Holding Current (IH)Minimum principal current required to
maintain the thyristor in the on state
Latching Current (IL) – Minimum principal current required to
maintain the thyristor in the on state immediately after the switch-
ing from off state to on state has occurred and the triggering sig-
nal has been removed
On-state Current (IT) – Principal current when the thyristor is in
the on state
On-state Voltage (VT) – Principal voltage when the thyristor is in
the on state
Peak Gate Power Dissipation (PGM) – Maximum power which
may be dissipated between the gate and main terminal 1 (or
cathode) for a specified time duration
Repetitive Peak Off-state Current (IDRM) – Maximum instanta-
neous value of the off-state current that results from the applica-
tion of repetitive peak off-state voltage
Repetitive Peak Off-state Voltage (VDRM) – Maximum instanta-
neous value of the off-state voltage which occurs across a thyris-
tor, including all repetitive transient voltages and excluding all
non-repetitive transient voltages
Repetitive Peak Reverse Current of an SCR (IRRM) – Maximum
instantaneous value of the reverse current resulting from the
application of repetitive peak reverse voltage
Repetitive Peak Reverse Voltage of an SCR (VRRM) – Maximum
instantaneous value of the reverse voltage which occurs across
the thyristor, including all repetitive transient voltages and exclud-
ing all non-repetitive transient voltages
Surge (Non-repetitive) On-state Current (ITSM) – On-state cur-
rent of short-time duration and specified waveshape
Thermal Resistance, Junction to Ambient (RθJA) – Temperature
difference between the thyristor junction and ambient divided by
the power dissipation causing the temperature difference under
conditions of thermal equilibrium
Note: Ambient is the point at which temperature does not change
as the result of dissipation.
Thermal Resistance, Junction to Case (RθJC) – Temperature dif-
ference between the thyristor junction and the thyristor case
divided by the power dissipation causing the temperature differ-
ence under conditions of thermal equilibrium
©2002 Teccor Electronics AN1002 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
AN1002
Gating, Latching, and Holding of SCRs and Triacs
Introduction
Gating, latching, and holding currents of thyristors are some of
the most important parameters. These parameters and their
interrelationship determine whether the SCRs and triacs will
function properly in various circuit applications.
This application note describes how the SCR and triac parame-
ters are related. This knowledge helps users select best operat-
ing modes for various circuit applications.
Gating of SCRs and Triacs
Three general methods are available to switch thyristors to
on-state condition:
Applying proper gate signal
Exceeding thyristor static dv/dt characteristics
Exceeding voltage breakover point
This application note examines only the application of proper
gate signal. Gate signal must exceed the IGT and VGT require-
ments of the thyristor being used. IGT (gate trigger current) is the
minimum gate current required to switch a thyristor from the off
state to the on state. VGT (gate trigger voltage) is the voltage
required to produce the gate trigger current.
SCRs (unilateral devices) require a positive gate signal with
respect to the cathode polarity. Figure AN1002.1 shows the cur-
rent flow in a cross-sectional view of the SCR chip.
Figure AN1002.1 SCR Current Flow
In order for the SCR to latch on, the anode-to-cathode current (IT)
must exceed the latching current (IL) requirement. Once latched
on, the SCR remains on until it is turned off when anode-to-cath-
ode current drops below holding current (IH) requirement.
Triacs (bilateral devices) can be gated on with a gate signal of
either polarity with respect to the MT1 terminal; however, differ-
ent polarities have different requirements of IGT and VGT.
Figure AN1002.2 illustrates current flow through the triac chip in
various gating modes.
Figure AN1002.2 Triac Current Flow (Four Operating Modes)
PN
N
P
Anode
CathodeGate
(+) (-)
(+) I
T
I
GT
N
N
N
N
N
N
P
P
P
P
Gate(+) MT1(-)
IGT
NN
ITMT2(+)
QUADRANT I
Gate(-) MT1(-)
MT2(+)
QUADRANT II
IGT
N
N
N
N
N
N
N
N
P
P
P
P
Gate(+)
MT1(+)
IGT
QUADRANT III
Gate(-)
MT1(+)
MT2(-)
QUADRANT IV
IT
IT
IGT
MT2(-)
AN1002
AN1002 Application Notes
http://www.teccor.com AN1002 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Triacs can be gated on in one of four basic gating modes as
shown in Figure AN1002.3. The most common quadrants for
gating on triacs are Quadrants I and III, where the gate supply is
synchronized with the main terminal supply (gate positive — MT2
positive, gate negative — MT2 negative). Optimum triac gate
sensitivity is achieved when operating in Quadrants I and III due
to the inherent thyristor chip construction. If Quadrants I and III
cannot be used, the next best operating modes are Quadrants II
and III where the gate supply has a negative polarity with an AC
main terminal supply. Typically, Quadrant II is approximately
equal in gate sensitivity to Quadrant I; however, latching current
sensitivity in Quadrant II is lowest. Therefore, it is difficult for
triacs to latch on in Quadrant II when the main terminal current
supply is very low in value.
Special consideration should be given to gating circuit design
when Quadrants I and IV are used in actual application, because
Quadrant IV has the lowest gate sensitivity of all four operating
quadrants.
Figure AN1002.3 Definition of Operating Quadrants in Triacs
The following table shows the relationships between different
gating modes in current required to gate on triacs.
Example of 4 A triac:
If IGT(I) = 10 mA, then
IGT(II) = 16 mA
IGT(III) = 25 mA
IGT(IV) = 27 mA
Gate trigger current is temperature-dependent as shown in
Figure AN1002.4. Thyristors become less sensitive with
decreasing temperature and more sensitive with increasing
temperature.
Figure AN1002.4 Typical DC Gate Trigger Current versus Case
Temperature
For applications where low temperatures are expected, gate cur-
rent supply should be increased to at least two to eight times the
gate trigger current requirements at 25 °C. The actual factor var-
ies by thyristor type and the environmental temperature.
Example of a 10 A triac:
If IGT(I) = 10 mA at 25 °C, then
IGT(I) = 20 mA at -40 °C
In applications where high di/dt, high surge, and fast turn-on are
expected, gate drive current should be steep rising (1 µs rise
time) and at least twice rated IGT or higher with minimum 3 µs
pulse duration. However, if gate drive current magnitude is very
high, then duration may have to be limited to keep from over-
stressing (exceeding the power dissipation limit of) gate junction.
Latching Current of SCRs and Triacs
Latching current (IL) is the minimum principal current required to
maintain the thyristor in the on state immediately after the switch-
ing from off state to on state has occurred and the triggering sig-
nal has been removed. Latching current can best be understood
by relating to the “pick-up” or “pull-in” level of a mechanical relay.
Figure AN1002.5 and Figure AN1002.6 illustrate typical thyristor
latching phenomenon.
In the illustrations in Figure AN1002.5, the thyristor does not stay
on after gate drive is removed due to insufficient available princi-
pal current (which is lower than the latching current requirement).
Figure AN1002.5 Latching Characteristic of Thyristor (Device Not
Latched)
In the illustration in Figure AN1002.6 the device stays on for the
remainder of the half cycle until the principal current falls below
the holding current level. Figure AN1002.5 shows the character-
istics of the same device if gate drive is removed or shortened
before latching current requirement has been met.
Typical Ratio of at 25 °C
Type
Operating Mode
Quadrant I Quadrant II Quadrant III Quadrant IV
4A Triac 11.6 2.5 2.7
10 A Triac 1 1.5 1.4 3.1
MT2 POSITIVE
(Positive Half Cycle)
MT2 NEGATIVE
(Negative Half Cycle)
MT1
MT2
+ I
GT
REF
QII
MT1
I
GT
GATE
MT2
REF
MT1
MT2
REF
MT1
MT2
REF
QI
QIV
QIII
ALL POLARITIES ARE REFERENCED TO MT1
(
-
)
I
GT
GATE
(+)
I
GT
-
I
GT
GATE
(
-
)
I
GT
GATE
(+)
+
-
NOTE: Alternistors will not operate in Q IV
IGT In given Quadrant()
IGT Quadrant 1()
-----------------------------------------------------------------------------
2.0
1.5
1.0
.5
0
-40 -15 +25 +65 +100
Case Temperature (TC) – ˚C
Ratio of IGT
IGT(TC = 25˚C)
Gate Pulse
(Gate Drive to Thyristor)
Principal
Current
Through
Thyristor
Latching
Current
Requirement
Time
Zero
Crossing Point
Time
Application Notes AN1002
©2002 Teccor Electronics AN1002 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1002.6 Latching and Holding Characteristics of Thyristor
Similar to gating, latching current requirements for triacs are dif-
ferent for each operating mode (quadrant). Definitions of latching
modes (quadrants) are the same as gating modes. Therefore,
definitions shown in Figure AN1002.2 and Figure AN1002.3 can
be used to describe latching modes (quadrants) as well. The fol-
lowing table shows how different latching modes (quadrants)
relate to each other. As previously stated, Quadrant II has the
lowest latching current sensitivity of all four operating quadrants.
Example of a 4 Amp Triac:
If IL(I) = 10 mA, then
IL(II) = 40 mA
IL(III) = 12 mA
IL(IV) = 11 mA
Latching current has even somewhat greater temperature depen-
dence compared to the DC gate trigger current. Applications with
low temperature requirements should have sufficient principal
current (anode current) available to ensure thyristor latch-on.
Two key test conditions on latching current specifications are
gate drive and available principal (anode) current durations.
Shortening the gate drive duration can result in higher latching
current values.
Holding Current of SCRs and Triacs
Holding current (IH) is the minimum principal current required to
maintain the thyristor in the on state. Holding current can best be
understood by relating it to the “drop-out” or “must release” level
of a mechanical relay. Figure AN1002.6 shows the sequences of
gate, latching, and holding currents. Holding current will always
be less than latching. However, the more sensitive the device,
the closer the holding current value approaches its latching cur-
rent value.
Holding current is independent of gating and latching, but the
device must be fully latched on before a holding current limit can
be determined.
Holding current modes of the thyristor are strictly related to the
voltage polarity across the main terminals. The following table
illustrates how the positive and negative holding current modes
of triacs relate to each other.
Example of a 10 A triac:
If IH(+) = 10 mA, then
IH(-) = 13 mA
Holding current is also temperature-dependent like gating and
latching shown in Figure AN1002.7. The initial on-state current is
200 mA to ensure that the thyristor is fully latched on prior to
holding current measurement. Again, applications with low tem-
perature requirements should have sufficient principal (anode)
current available to maintain the thyristor in the on-state condi-
tion.
Both minimum and maximum holding current specifications may
be important, depending on application. Maximum holding cur-
rent must be considered if the thyristor is to stay in conduction at
low principal (anode) current; the minimum holding current must
be considered if the device is expected to turn off at a low princi-
pal (anode) current.
Figure AN1002.7 Typical DC Holding Current vs Case Temperatures
Example of a 10 A triac:
If IH(+) = 10 mA at 25 °C, then
IH(+) 7.5 mA at 65 °C
Relationship of Gating, Latching, and
Holding Currents
Although gating, latching, and holding currents are independent
of each other in some ways, the parameter values are related. If
gating is very sensitive, latching and holding will also be very
sensitive and vice versa. One way to obtain a sensitive gate and
not-so-sensitive latching-holding characteristic is to have an
“amplified gate” as shown in Figure AN1002.8.
Typical Ratio of at 25 °C
Type
Operating Mode
Quadrant I Quadrant II Quadrant III Quadrant IV
4A Triac 1 4 1.2 1.1
10 A Triac 141.11
Time
Time
Holding Current Poin
t
Zero Crossing Point
Principal
Current
Through
Thyristor
Gate Pulse
Gate
Drive
to Thyristor
Latching
Current
Point
ILIn given Quadrant()
ILQuadrant 1()
------------------------------------------------------------------------
Typical Triac Holding Current Ratio
Type
Operating Mode
IH(+) IH(-)
4 A Triac 11.1
10 A Triac 11.3
2.0
1.5
1.0
.5
0-40 -15 +25 +65 +100
Case Temperature (T
C
) – ˚C
Ratio of I
H
I
H
(T
C
= 25 ˚C)
INITIAL ON-STATE CURRENT = 200 mA dc
AN1002 Application Notes
http://www.teccor.com AN1002 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1002.8 “Amplified Gate” Thyristor Circuit
The following table and Figure AN1002.9 show the relationship of
gating, latching, and holding of a 4 A device.
Figure AN1002.9 Typical Gating, Latching, and Holding Relationships of 4 A Triac at 25 °C
The relationships of gating, latching, and holding for several
device types are shown in the following table. For convenience
all ratios are referenced to Quadrant I gating.
A
K
A
K
G
G
Sensitive
SCR Power
SCR
MT2
G
G
Sensitive
Triac
Power
Triac
*
*
Resistor is provided for limiting gate
current (I
GTM
) peaks to power device.
*
MT2
MT1 MT1
Typical 4 A Triac Gating, Latching,
and Holding Relationship
Parameter
Quadrants or Operating Mode
Quadrant I Quadrant II Quadrant III Quadrant IV
IGT (mA) 10 17 18 27
IL (mA) 12 48 12 13
IH (mA) 10 10 12 12
50 40 30 20 10 0 10 20 30 40
(mA)
20
10
20
10
QUADRANT II
QUADRANT III
(mA)
QUADRANT I
QUADRANT IV
I
GT
(Solid Line)
I
L
(Dotted Line)
I
H
(+)
I
H
(–)
Typical Ratio of Gating, Latching, and Holding Currents at 25 °C
Devices
Ratio
4A Triac 1.6 2.5 2.7 1.2 4.8 1.2 1.3 1.0 1.2
10 A Triac 1.5 1.4 3.1 1.6 4.0 1.8 2.0 1.1 1.6
15 A Alternistor 1.5 1.8 2.4 7.0 2.1 2.2 1.9
1 A Sensitive SCR –––25–––25
6A SCR –––3.2 –––2.6
IGT II()
IGT I()
------------------ IGT III()
IGT I()
-------------------- IGT IV()
IGT I()
-------------------- ILI()
IGT I()
----------------ILII()
IGT I()
----------------ILIII()
IGT I()
----------------ILIV()
IGT I()
---------------- IH+()
IGT I()
----------------IH(-)
IGT I()
----------------
Application Notes AN1002
©2002 Teccor Electronics AN1002 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Examples of a 10 A triac:
If IGT(I) = 10 mA, then
IGT(II) = 15 mA
IGT(III) = 14 mA
IGT(IV) = 31 mA
If IL(I) = 16 mA, then
IL(II) = 40 mA
IL(III) = 18 mA
IL(IV) = 20 mA
If IH(+) = 11 mA at 25 °C, then
IH(+) = 16 mA
Summary
Gating, latching, and holding current characteristics of thyristors
are quite important yet predictable (once a single parameter
value is known). Their interrelationships (ratios) can also be used
to help designers in both initial circuit application design as well
as device selection.
Notes
©2002 Teccor Electronics AN1003 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
AN10039
Phase Control Using Thyristors
Introduction
Due to high-volume production techniques, thyristors are now
priced so that almost any electrical product can benefit from elec-
tronic control. A look at the fundamentals of SCR and triac phase
controls shows how this is possible.
Output Power Characteristics
Phase control is the most common form of thyristor power con-
trol. The thyristor is held in the off condition — that is, all current
flow in the circuit is blocked by the thyristor except a minute leak-
age current. Then the thyristor is triggered into an “on” condition
by the control circuitry.
For full-wave AC control, a single triac or two SCRs connected in
inverse parallel may be used. One of two methods may be used
for full-wave DC control — a bridge rectifier formed by two SCRs
or an SCR placed in series with a diode bridge as shown in
Figure AN1003.1.
Figure AN1003.1 SCR/Triac Connections for Various Methods of
Phase Control
Figure AN1003.2 illustrates voltage waveform and shows com-
mon terms used to describe thyristor operation. Delay angle is
the time during which the thyristor blocks the line voltage. The
conduction angle is the time during which the thyristor is on.
It is important to note that the circuit current is determined by the
load and power source. For simplification, assume the load is
resistive; that is, both the voltage and current waveforms are
identical.
Figure AN1003.2 Sine Wave Showing Principles of Phase Control
Different loads respond to different characteristics of the AC
waveform. For example, some are sensitive to average voltage,
some to RMS voltage, and others to peak voltage. Various volt-
age characteristics are plotted against conduction angle for
half- and full-wave phase control circuits in Figure AN1003.3
and Figure AN1003.4.
Control
Circuit
Line
Load
Two SCR AC Control
Control
Circuit
Triac AC Control
Line Loa
d
Control
Circuit
One SCR DC Control
Control
Circuit
Line Line
Load
Two SCR DC Control
Load
Full-wave Rectified Operation
Voltage Applied to Load
Delay (Triggering) Angle
Conduction Angle
AN1003
AN1003 Application Notes
http://www.teccor.com AN1003 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1003.3 Half-Wave Phase Control (Sinusoidal)
Figure AN1003.4 Symmetrical Full-Wave Phase Control (Sinusoidal)
Figure AN1003.3 and Figure AN1003.4 also show the relative
power curve for constant impedance loads such as heaters.
Because the relative impedance of incandescent lamps and
motors change with applied voltage, they do not follow this curve
precisely. To use the curves, find the full-wave rated power of the
load, and then multiply by the ratio associated with the specific
phase angle. Thus, a 180° conduction angle in a half-wave circuit
provides 0.5 x full-wave conduction power.
In a full-wave circuit, a conduction angle of 150° provides 97%
full power while a conduction angle of 30° provides only 3% of full
power control. Therefore, it is usually pointless to obtain conduc-
tion angles less than 30° or greater than 150°.
Figure AN1003.5 and Figure AN1003.6 give convenient direct
output voltage readings for 115 V/230 V input voltage. These
curves also apply to current in a resistive circuit.
Figure AN1003.5 Output Voltage of Half-wave Phase
Figure AN1003.6 Output Voltage of Full-wave Phase Control
Peak Voltage
RMS
AVG
Power
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
00 20 40 60 80 100 120 140 160 180
Conduction Angle (
θ)
Normalized Sine Wave RMS Voltage Power
as Fraction of Full Conduction
HALF WAVE
θ
Peak Voltage
RMS
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
00 20 40 60 80 100 120 140 160 180
Conduction Angle (θ)
Normal Sine Wave RMS Voltage Power
as Fraction of Full Conduction
FULL WAVE
Power
AVG
θ
θ
Peak Voltage
180
160
140
120
100
80
60
40
20
00 20 40 60 80 100 120 140 160 180
Conduction Angle (θ)
RMS
AVG
Output Voltage
360
320
280
240
200
160
120
80
40
0
Input
Voltage
230 V 115 V
HALF WAVE θ
Peak Voltage
RMS
0 20 40 60 80 100 120 140 160 180
Conduction Angle (θ)
AVG
Output Voltage
360
320
280
240
200
160
120
80
40
0
Input
Voltage
230 V 115 V
180
160
140
120
100
80
60
40
20
0
FULL WAVE
θ
θ
Application Notes AN1003
©2002 Teccor Electronics AN1003 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Control Characteristics
A relaxation oscillator is the simplest and most common control
circuit for phase control. Figure AN1003.7 illustrates this circuit
as it would be used with a thyristor. Turn-on of the thyristor
occurs when the capacitor is charged through the resistor from a
voltage or current source until the breakover voltage of the
switching device is reached. Then, the switching device changes
to its on state, and the capacitor is discharged through the thyris-
tor gate. Trigger devices used are neon bulbs, unijunction tran-
sistors, and three-, four-, or five-layer semiconductor trigger
devices. Phase control of the output waveform is obtained by
varying the RC time constant of the charging circuit so the trigger
device breakdown occurs at different phase angles within the
controlled half or full cycle.
Figure AN1003.7 Relaxation Oscillator Thyristor Trigger Circuit
Figure AN1003.8 shows the capacitor voltage-time characteristic
if the relaxation oscillator is to be operated from a pure DC
source.
Figure AN1003.8 Capacitor Charging from DC Source
Usually, the design starting point is the selection of a capacitance
value which will reliably trigger the thyristor when the capacitance
is discharged. Trigger devices and thyristor gate triggering char-
acteristics play a part in the selection. All the device characteris-
tics are not always completely specified in applications, so
experimental determination is sometimes needed.
Upon final selection of the capacitor, the curve shown in Figure
AN1003.8 can be used in determining the charging resistance
needed to obtain the desired control characteristics.
Many circuits begin each half-cycle with the capacitor voltage at
or near zero. However, most circuits leave a relatively large
residual voltage on the capacitor after discharge. Therefore, the
charging resistor must be determined on the basis of additional
charge necessary to raise the capacitor to trigger potential.
For example, assume that we want to trigger an S2010L SCR
with a 32 V trigger diac. A 0.1 µF capacitor will supply the neces-
sary SCR gate current with the trigger diac. Assume a 50 V dc
power supply, 30° minimum conduction angle, and 150° maxi-
mum conduction angle with a 60 Hz input power source. At
approximately 32 V, the diac triggers leaving 0.66 VBO of diac
voltage on the capacitor. In order for diac to trigger, 22 V must be
added to the capacitor potential, and 40 V additional (50-10) are
available. The capacitor must be charged to 22/40 or 0.55 of the
available charging voltage in the desired time. Looking at Figure
AN1003.8, 0.55 of charging voltage represents 0.8 time constant.
The 30° conduction angle required that the firing pulse be
delayed 150° or 6.92 ms. (The period of 1/2 cycle at 60 Hz is
8.33 ms.) To obtain this time delay:
6.92 ms = 0.8 RC
RC = 8.68 ms
if C = 0.10 µF
then,
To obtain the minimum R (150° conduction angle), the delay is
30° or
(30/180) x 8.33 = 1.39 ms
1.39 ms = 0.8 RC
RC = 1.74 ms
Using practical values, a 100 k potentiometer with up to 17 k min-
imum (residual) resistance should be used. Similar calculations
using conduction angles between the maximum and minimum
values will give control resistance versus power characteristic of
this circuit.
Triac Phase Control
The basic full-wave triac phase control circuit shown in
Figure AN1003.9 requires only four components. Adjustable
resistor R1 and C1 are a single-element phase-shift network.
When the voltage across C1 reaches breakover voltage (VBO) of
the diac, C1 is partially discharged by the diac into the triac gate.
The triac is then triggered into the conduction mode for the
remainder of that half-cycle. In this circuit, triggering is in Quad-
rants I and III. The unique simplicity of this circuit makes it suit-
able for applications with small control range.
Switching
Device
Voltage
or
Current
Source
Triac
R
C
SCR
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0012 3 45
6
Time Constants
Ratio of (Capacitor Voltage
Supply Source Voltage
)
R8.68 3
×10
0.1 6
×10
-------------------------- 86,000 ==
R1.74 3
×10
0.1 6
×10
---------------------------17,400 ==
AN1003 Application Notes
http://www.teccor.com AN1003 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1003.9 Basic Diac-Triac Phase Control
The hysteresis (snap back) effect is somewhat similar to the
action of a kerosene lantern. That is, when the control knob is
first rotated from the off condition, the lamp can be lit only at
some intermediate level of brightness, similar to turning up the
wick to light the lantern. Brightness can then be turned down until
it finally reaches the extinguishing point. If this occurs, the lamp
can only be relit by turning up the control knob again to the inter-
mediate level. Figure AN1003.10 illustrates the hysteresis effect
in capacitor-diac triggering. As R1 is brought down from its maxi-
mum resistance, the voltage across the capacitor increases until
the diac first fires at point A, at the end of a half-cycle (conduction
angle θi). After the gate pulse, however, the capacitor voltage
drops suddenly to about half the triggering voltage, giving the
capacitor a different initial condition. The capacitor charges to the
diac, triggering voltage at point B in the next half-cycle and giving
a steady-state conduction angle shown as θ for the triac.
Figure AN1003.10 Relationship of AC Line Voltage and Triggering
Voltage
In the Figure AN1003.11 illustration, the addition of a second RC
phase-shift network extends the range on control and reduces
the hysteresis effect to a negligible region. This circuit will control
from 5% to 95% of full load power, but is subject to supply volt-
age variations. When R1 is large, C1 is charged primarily through
R3 from the phase-shifted voltage appearing across C2. This
action provides additional range of phase-shift across C1 and
enables C2 to partially recharge C1 after the diac has triggered,
thus reducing hysteresis. R3 should be adjusted so that the circuit
just drops out of conduction when R1 is brought to maximum
resistance.
Figure AN1003.11 Extended Range Full-wave Phase Control
By using one of the circuits shown in Figure AN1003.12, the hys-
teresis effect can be eliminated entirely. The circuit (a) resets the
timing capacitor to the same level after each positive half-cycle,
providing a uniform initial condition for the timing capacitor. This
circuit is useful only for resistive loads since the firing angle is not
symmetrical throughout the range. If symmetrical firing is
required, use the circuit (b) shown in Figure AN1003.12.
Figure AN1003.12 Wide-range Hysteresis Free Phase Control
For more complex control functions, particularly closed loop con-
trols, the unijunction transistor may be used for the triggering
device in a ramp and pedestal type of firing circuit as shown in
Figure AN1003.13.
Load
R1
C1
0.1 µF
Triac
(Q2010L5)
250 k
3.3 k
R2
120 V
(60 Hz) (For Inductive
Loads)
100
0.1 µF
Diac
HT34B
Diac Triggers at "A"
Diac Does Not
Trigger at "A"
B
A
AC Line
Capacitor
Voltage θi
[+Diac VBO]
[–Diac VBO]
θ
R4
C1Diac
HT34B
Triac
(Q2010L5)
68 k
3.3 k
R1
120 V
(60 Hz)
0.1 µF
Load
R2
250 k
R3
100 k
Trim
C2
0.1 µF
R3
C1Diac
Triac
(Q2010L5)
15 k
1/2 W
3.3 k
R1
120 V
(60 Hz)
0.1 µF
Load
R2
250 k
D1
D2
D1, D2 = 200 V Diodes
(a)
(b)
C1Diac
Triac
(Q2010L5)
R3
120 V
(60 Hz)
Load
D1
0.1 µF
R1 = 250 k POT
D3
R4
R1
D4
R2
D2
R2, R3 = 15 k, 1/2 W
R4 = 3.3 k
D1, D2, D3, D4 = 200 V Diodes
Application Notes AN1003
©2002 Teccor Electronics AN1003 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1003.13 Precision Proportional Temperature Control
Several speed control and light dimming (phase) control circuits
have been presented that give details for a complete 120 V appli-
cation circuit but none for 240 V. Figure AN1003.14 and Figure
AN1003.15 show some standard phase control circuits for 240 V,
60 Hz/50 Hz operation along with 120 V values for comparison.
Even though there is very little difference, there are a few key
things that must be remembered. First, capacitors and triacs con-
nected across the 240 V line must be rated at 400 V. Secondly,
the potentiometer (variable resistor) value must change consider-
ably to obtain the proper timing or triggering for 180° in each half-
cycle.
Figure AN1003.14 shows a simple single-time-constant light dim-
mer (phase control) circuit, giving values for both 120 V and
240 V operation.
Figure AN1003.14 Single-time-constant Circuit for Incandescent Light
Dimming, Heat Control, and Motor Speed Control
The circuit shown in Figure AN1003.15 is a double-time-constant
circuit which has improved performance compared to the circuit
shown in Figure AN1003.14. This circuit uses an additional RC
network to extend the phase angle so that the triac can be trig-
gered at small conduction angles. The additional RC network
also minimizes any hysteresis effect explained and illustrated in
Figure AN1003.10 and Figure AN1003.11.
Figure AN1003.15 Double-time-constant Circuit for Incandescent Light
Dimming, Heat Control, and Motor Speed Control
Load
120 V
(60 Hz)
R2R6
R7
R3
R5
R4
R8
D2
D1
D6
D3
R1
D5
Temp
TT1
C1
Q1
D4
Q2
Tria
c
"Gain"
0
Ramp
Time
Cool
Hot
UJT Triggering Level
Pedestal
UJT Emitter Voltage
R1, R2 = 2.2 k, 2 W
R3 = 2.2 k, 1/2 W
R4 = Thermistor, approx. 5 k
at operating temperature
R5 = 10 k Potentiometer
R6 = 5 M Potentiometer
R7 = 100 k, 1/2 W
R8 = 1 k, 1/2 W
Q1 = 2N2646
Q2 = Q2010L5
T1 = Dale PT 10-101
or equivalent
D1-4 = 200 V Diode
D5 = 20 V Zener
D6 = 100 V Diode
C1 = 0.1 µF, 30 V
0.1 µF 200 V
0.1 µF 400 V
AC
Input
Voltage
120 V ac
60 Hz
240 V ac
50/60 Hz
12 A
3 A
250 k
500 k
Q2015L9
Q4004L4
100 µH
200 µH
R1Q1
L1
C1, C3
R1
R2
C1
HT-32
3.3 k
AC
Input
C2
D1
Q1
L1
R3 *
100
C3 *
Load
Note: L1 and C1 form an
RFI filter that may be eliminated
* dv/dt snubber network
when required
0.1 µF
100 V
AC
Load
Current
0.1 µF 200 V
0.1 µF 400 V
0.1 µF 400 V
AC
Input
Voltage
120 V ac
60 Hz
240 V ac
50 Hz
240 V ac
60 Hz
8 A
6 A
6 A
250 k
500 k
500 k
Q2010L5
Q4008L4
Q4008L4
100 µH
200 µH
200 µH
R2Q1
L1
C1, C2, C4
R2
R1
C1
HT-32
3.3 k
AC
Input
C2
D1
Q1
L1
R4 *
100
C4 *
Note: L1 and C1 form an
RFI filter that may be eliminated
* dv/dt snubber network
when required
R3
0.1 µF
100 V
15 k
1/2 W
C3
Load
AC
Load
Current
AN1003 Application Notes
http://www.teccor.com AN1003 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Permanent Magnet Motor Control
Figure AN1003.16 illustrates a circuit for phase controlling a per-
manent magnet (PM) motor. Since PM motors are also genera-
tors, they have characteristics that make them difficult for a
standard triac to commutate properly. Control of a PM motor is
easily accomplished by using an alternistor triac with enhanced
commutating characteristics.
Figure AN1003.16 Circuit for Phase Controlling a Permanent Magnet
Motor
PM motors normally require full-wave DC rectification. Therefore,
the alternistor triac controller should be connected in series with
the AC input side of the rectifier bridge. The possible alternative
of putting an SCR controller in series with the motor on the DC
side of the rectifier bridge can be a challenge when it comes to
timing and delayed turn-on near the end of the half cycle. The
alternistor triac controller shown in Figure AN1003.16 offers a
wide range control so that the alternistror triac can be triggered at
a small conduction angle or low motor speed; the rectifiers and
alternistors should have similar voltage ratings, with all based on
line voltage and actual motor load requirements.
SCR Phase Control
Figure AN1003.17 shows a very simple variable resistance half-
wave circuit. It provides phase retard from essentially zero (SCR
full on) to 90 electrical degrees of the anode voltage wave (SCR
half on). Diode CR1 blocks reverse gate voltage on the negative
half-cycle of anode supply voltage. This protects the reverse gate
junction of sensitive SCRs and keeps power dissipation low for
gate resistors on the negative half cycle. The diode is rated to
block at least the peak value of the AC supply voltage. The retard
angle cannot be extended beyond the 90-degree point because
the trigger circuit supply voltage and the trigger voltage produc-
ing the gate current to fire are in phase. At the peak of the AC
supply voltage, the SCR can still be triggered with the maximum
value of resistance between anode and gate. Since the SCR will
trigger and latch into conduction the first time IGT is reached, its
conduction cannot be delayed beyond 90 electrical degrees with this
circuit.
Figure AN1003.17 Half-wave Control, 0° to 90° Conduction
Figure AN1003.18 shows a half-wave phase control circuit using
an SCR to control a universal motor. This circuit is better than
simple resistance firing circuits because the phase-shifting char-
acteristics of the RC network permit the firing of the SCR beyond
the peak of the impressed voltage, resulting in small conduction
angles and very slow speed.
Figure AN1003.18 Half-wave Motor Control
DC
MTR
115 V ac
Input
1.5 A
3.3 k
250 k
15 k 1/2 W
0.1 µF
400 V
HT-32
Q4006LH4
100
0.1 µF
100 V
0.1 µF
400 V
GMT1
MT2
+
-
R1
AC
Input
SCR1
2.2 k
R3
R2
CR1
Load
IN4003
IN4003
IN4004
IN4004
IN4004
120 V ac
60 Hz
120 V ac
60 Hz
240 V ac
60 Hz
240 V ac
60 Hz
240 V ac
50Hz
0.8 A
8.5 A
0.8 A
8.5 A
2.5 A
500 k
100 k
1 M
250 k
1 M
1 k
Not
Required
1 k
Not
Required
1 k
EC103B
S2010F1
EC103D
S4010F1
T106D1
R2R3
SCR1
CR1
AC
Input
Voltage
AC
Load
Current
M
R1
R2
C1
D1
SCR1
HT-32
3.3 k
AC
Supply
Universal Motor
CR1
AC
Input
Voltage
120 V ac
60 Hz
240 V ac
60 Hz
240 V ac
50 Hz
AC
Load
Current
8 A
6.5 A
6.5 A
150 k
200 k
200 k
IN4003
IN4004
IN4004
S2015L
S4008L
S4008L
0.1µF 200 V
0.1µF 400 V
0.1µF 400 V
R2CR1SCR1C1
Application Notes AN1003
©2002 Teccor Electronics AN1003 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Phase Control from Logic (DC) Inputs
Triacs can also be phase-controlled from pulsed DC unidirec-
tional inputs such as those produced by a digital logic control
system. Therefore, a microprocessor can be interfaced to AC
load by using a sensitive gate triac to control a lamp's intensity or
a motor's speed.
There are two ways to interface the unidirectional logic pulse to
control a triac. Figure AN1003.19 illustrates one easy way if load
current is approximately 5 A or less. The sensitive gate triac
serves as a direct power switch controlled by HTL, TTL, CMOS,
or integrated circuit operational amplifier. A timed pulse from the
system's logic can activate the triac anywhere in the AC sine-
wave producing a phase-controlled load.
Figure AN1003.19 Sensitive Gate Triac Operating in
Quadrants I and IV
The key to DC pulse control is correct grounding for DC and AC
supply. As shown in Figure AN1003.19, DC ground and AC
ground/neutral must be common plus MT1 must be con-
nected to common ground. MT1 of the triac is the return for
both main terminal junctions as well as the gate junction.
Figure AN1003.20 shows an example of a unidirectional (all neg-
ative) pulse furnished from a special I.C. that is available from
LSI Computer Systems in Melville, New York. Even though the
circuit and load is shown to control a Halogen lamp, it could be
applied to a common incandescent lamp for touch-controlled
dimming.
Figure AN1003.20 Typical Touch Plate Halogen Lamp Dimmer
For a circuit to control a heavy-duty inductive load where an
alternistor is not compatible or available, two SCRs can be driven
by an inexpensive TO-92 triac to make a very high current triac or
alternistor equivalent, as shown in Figure AN1003.21. See ”Rela-
tionship of IAV, IRMS, and IPK in AN1009 for design calcula-
tions.
Figure AN1003.21 Triac Driving Two Inverse Parallel Non-Sensitive
Gate SCRs
Figure AN1003.22 shows another way to interface a unidirec-
tional pulse signal and activate AC loads at various points in the
AC sine wave. This circuit has an electrically-isolated input which
allows load placement to be flexible with respect to AC line. In
other words, connection between DC ground and AC neutral is
not required.
Figure AN1003.22 Opto-isolator Driving a Triac or Alternistor
Microcontroller Phase Control
Traditionally, microcontrollers were too large and expensive to be
used in small consumer applications such as a light dimmer.
Microchip Technology Inc. of Chandler, Arizona has developed a
line of 8-pin microcontrollers without sacrificing the functionality
of their larger counterparts. These devices do not provide high
drive outputs, but when combined with a sensitive triac can be
used in a cost-effective light dimmer.
Figure AN1003.23 illustrates a simple circuit using a transformer-
less power supply, PIC 12C508 microcontroller, and a sensitive
triac configured to provide a light dimmer control. R3 is connected
to the hot lead of the AC power line and to pin GP4. The ESD pro-
tection diodes of the input structure allow this connection without
damage. When the voltage on the AC power line is positive, the
protection diode form the input to VDD is forward biased, and the
input buffer will see approximately VDD + 0.7 V. The software will
read this pin as high. When the voltage on the line is negative,
the protection diode from VSS to the input pin is forward biased,
and the input buffer sees approximately VSS - 0.7 V. The software
will read the pin as low. By polling GP4 for a change in state, the
software can detect zero crossing.
Load
MT2
Sensitive Gate
Triac
MT1
8
16
G
VDD
OV
Hot
Neutral
120 V
60 Hz
VDD = 15 VDC
Touch
Plate
115 V ac
220 V ac
Halogen
Lamp
N
L
LS7631 / LS7632
VDD MODE CAP SYNC
TRIG VSS EXT SENS
12
34
5678
MT1
MT2
C1
C5
L
T
G
Z
R3
C2
R1
R2
C3C4
R4
R5R6
D1
+
NOTE: As a precaution,
transformer should have
thermal protection.
C1 = 0.15 µF, 200 V
C2 = 0.22 µF, 200 V
C3 = 0.02 µF, 12 V
C4 = 0.002 µF, 12 V
C5 = 100 µF, 12 V
R1 = 270, ¼ W
R2 = 680 k, ¼ W
C1 = 0.15 µF, 400 V
C2 = 0.1 µF, 400 V
C3 = 0.02 µF, 12 V
C4 = 0.002 µF, 12 V
C5 = 100 µF, 12 V
R1 = 1 k, ¼ W
R2 = 1.5 M, ¼ W
R3 = 62, ¼ W
R4 = 1 M to 5 M, ¼ W
(Selected for sensitivity)
R5, R6 = 4.7 M, ¼ W
D1 = 1N4148
Z = 5.6 V, 1 W Zener
T = Q4006LH4 Alternistor
L = 100 µH (RFI Filter)
R3 = 62, ¼ W
R4 = 1 M to 5 M, ¼ W
(Selected for sensitivity)
R5, R6 = 4.7 M, ¼ W
D1 = 1N4148
Z = 5.6 V, 1 W Zener
T = Q6006LH4 Alternistor
L = 200 µH (RFI Filter)
115 V ac 220 V ac
OR
Load
MT2
Hot
Neutral
A
K
G
A
KG
MT1
G
Triac
Gate Pulse
Input
Non-sensitive
Gate SCRs
1
2
6
4
100100
0.1 µF
250 V
Timed
Input
Pulse
Rin
C1
MT2
MT1
Hot
120 V
60 Hz
Triac or
Alternistor
Neutral
Load could be here
instead of u
pp
er location
G
Load
AN1003 Application Notes
http://www.teccor.com AN1003 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1003.23 Microcontroller Light Dimmer Control
With a zero crossing state detected, software can be written to
turn on the triac by going from tri-state to a logic high on the gate
and be synchronized with the AC phase cycles (Quadrants I
and IV). Using pull-down switches connected to the microcontol-
ler inputs, the user can signal the software to adjust the duty
cycle of the triac.
For higher amperage loads, a small 0.8 A, TO-92 triac (operating
in Quadrants I and IV) can be used to drive a 25 A alternistor
triac (operating in Quadrants I and III) as shown in the heater
control illustration in Figure AN1003.24.
For a complete listing of the software used to control this circuit,
see the Microchip application note PICREF-4. This application
note can be downloaded from Microchip's Web site at
www.microchip.com.
120 V ac
(High)
AC
(Return)
White
RV1
Varistor
R1
47
C3
0.1 µF
+5 V
R2
1 M D1
1N4001
D1
1N4001
R3
20 M
D3
1N5231 C1
220 µF
C2
0.01 µF
VDD
GP5
GP4
GP3
VSS
GP0
GP1
GP2
R6
470
Q1
L4008L5
R4
470
R5
470S2
S1
Bright
Dim
VDD
150 W
Lamp
JP1
Remote
Switch
Connector
1
2
3
U1
12C508
Application Notes AN1003
©2002 Teccor Electronics AN1003 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1003.24 Microcontroller Heater Control
Summary
The load currents chosen for the examples in this application
note were strictly arbitrary, and the component values will be the
same regardless of load current except for the power triac or
SCR. The voltage rating of the power thyristor devices must be a
minimum of 200 V for 120 V input voltage and 400 V for 240 V
input voltage.
The use of alternistors instead of triacs may be much more
acceptable in higher current applications and may eliminate the
need for any dv/dt snubber network.
For many electrical products in the consumer market, competitive
thyristor prices and simplified circuits make automatic control a
possibility. These simple circuits give the designer a good feel for
the nature of thyristor circuits and their design. More sophistica-
tion, such as speed and temperature feedback, can be devel-
oped as the control techniques become more familiar. A
remarkable phenomenon is the degree of control obtainable with
very simple circuits using thyristors. As a result, industrial and
consumer products will greatly benefit both in usability and mar-
ketability.
120VAC
(HIGH)
AC
(RETURN)
WHITE
RV1
VARISTOR
R1
47
C3
.1µF
+5V
R2
1M
2000 W
D1
1N4001
D1
1N4001
R3
20M
D3
1N5231 C1
220µF
C2
.01µF
VDD
GP5
GP4
GP3
VSS
GP0
GP1
GP2
R6
470
R70
100
Q1
L4X8E5
Q2
Q4025L6
R4
470
R5
470
S2
S1
INCREASE HEAT
DECREASE HEAT
VDD
U1
12C508
Notes
©2002 Teccor Electronics AN1004 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
4
Mounting and Handling of Semiconductor Devices
Introduction
Proper mounting and handling of semiconductor devices, particu-
larly those used in power applications, is an important, yet some-
times overlooked, consideration in the assembly of electronic
systems. Power devices need adequate heat dissipation to
increase operating life and reliability and allow the device to
operate within manufacturers' specifications. Also, in order to
avoid damage to the semiconductor chip or internal assembly,
the devices should not be abused during assembly. Very often,
device failures can be attributed directly to a heat sinking or
assembly damage problem.
The information in this application note guides the semi-
conductor user in the proper use of Teccor devices, particularly
the popular and versatile TO-220 and TO-202 epoxy packages.
Contact the Teccor Applications Engineering Group for further
details or suggestions on use of Teccor devices.
Lead Forming — Typical Configurations
A variety of mounting configurations are possible with Teccor
power semiconductor TO-202, TO-92, DO-15X, and TO-220
packages, depending upon such factors as power requirements,
heat sinking, available space, and cost considerations. Figure
AN1004.1 shows typical examples and basic design rules.
Figure AN1004.1 Component Mounting
These are suitable only for vibration-free environments and low-
power, free-air applications. For best results, the device should
be in a vertical position for maximum heat dissipation from con-
vection currents.
Standard Lead Forms
Teccor encourages users to allow factory production of all lead
and tab form options. Teccor has the automated machinery and
expertise to produce pre-formed parts at minimum risk to the
device and with greater convenience for the consumer. See the
“Lead Form Dimensions” section of this catalog for a complete
list of readily available lead form options. Contact Teccor for
information regarding custom lead form designs.
Lead Bending Method
Leads may be bent easily and to any desired angle, provided that
the bend is made at a minimum 0.063" (0.1" for TO-218 package)
away from the package body with a minimum radius of 0.032"
(0.040" for TO-218 package) or 1.5 times lead thickness rule.
DO-15X device leads may be bent with a minimum radius of
0.050”, and DO-35 device leads may be bent with a minimum
radius of 0.028”. Leads should be held firmly between the pack-
age body and the bend so that strain on the leads is not transmit-
ted to the package body, as shown in Figure AN1004.2. Also,
leads should be held firmly when trimming length.
ABC
D
SOCKET TYPE MOUNTING:
Useful in applications for testing or
where frequent removal is
necessary. Excellent selection of
socket products available from
com
p
anies such as Molex.
AN1004
AN1004 Application Notes
http://www.teccor.com AN1004 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1004.2 Lead Bending Method
When bending leads in the plane of the leads (spreading), bend
only the narrow part. Sharp angle bends should be done only
once as repetitive bending will fatigue and break the leads.
The mounting tab of the TO-202 package may also be bent or
formed into any convenient shape as long as it is held firmly
between the plastic case and the area to be formed or bent. With-
out this precaution, bending the tab may fracture the chip and
permanently damage the unit.
Heat Sinking
Use of the largest, most efficient heat sink as is practical and cost
effective extends device life and increases reliability. In the illus-
tration shown in Figure AN1004.3, each device is electrically iso-
lated.
Figure AN1004.3 Several Isolated TO-220 Devices Mounted to a
Common Heat Sink
Many power device failures are a direct result of improper
heat dissipation. Heat sinks with a mating area smaller than the
metal tab of the device are unacceptable. Heat sinking material
should be at least 0.062" thick to be effective and efficient.
Note that in all applications the maximum case temperature (TC)
rating of the device must not be exceeded. Refer to the individual
device data sheet rating curves (TC versus IT) as well as the indi-
vidual device outline drawings for correct TC measurement point.
Figure AN1004.4 through Figure AN1004.6 show additional
examples of acceptable heat sinks.
Figure AN1004.4 Examples of PC Board Mounts
Figure AN1004.5 Vertical Mount Heat Sink
Several types of vertical mount heat sinks are available. Keep
heat sink vertical for maximum convection.
Figure AN1004.6 Examples of Extruded Aluminum
When coupled with fans, extruded aluminum mounts have the
highest efficiency.
Heat Sinking Notes
Care should be taken not to mount heat sinks near other heat-
producing elements such as power resistors, because black
anodized heat sinks may absorb more heat than they dissipate.
Some heat sinks can hold several power devices. Make sure that
if they are in electrical contact to the heat sink, the devices do not
short-circuit the desired functions. Isolate the devices electrically
or move to another location. Recall that the mounting tab of Tec-
cor isolated TO-220 devices is electrically isolated so that several
devices may be mounted on the same heat sink without extra
insulating components. If using an external insulator such as
mica, with a thickness of 0.004", an additional thermal resistance
of 0.8° C/W for TO-220 or 0.5° C/W for TO-218 devices is added
to the RθJC device rating.
Incorrect
(A)
(B)
Correct
Heat Sink
Heat Sin
k
Printed
Circuit
Board
B
A
Application Notes AN1004
©2002 Teccor Electronics AN1004 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Allow for adequate ventilation. If possible, route heat sinks to out-
side of assembly for maximum airflow.
Mounting Surface Selection
Proper mounting surface selection is essential to efficient trans-
fer of heat from the semiconductor device to the heat sink and
from the heat sink to the ambient. The most popular heat sinks
are flat aluminum plates or finned extruded aluminum heat sinks.
The mounting surface should be clean and free from burrs or
scratches. It should be flat within 0.002 inch per inch, and a sur-
face finish of 30 to 60 microinches is acceptable. Surfaces with a
higher degree of polish do not produce better thermal conductiv-
ity.
Many aluminum heat sinks are black anodized to improve ther-
mal emissivity and prevent corrosion. Anodizing results in high
electrical but negligible thermal insulation. This is an excellent
choice for isolated TO-220 devices. For applications of TO-202
devices where electrical connection to the common anode tab is
required, the anodization should be removed. Iridite or chromate
acid dip finish offers low electrical and thermal resistance. Either
TO-202 or isolated TO-220 devices may be mounted directly to
this surface, regardless of application. Both finishes should be
cleaned prior to use to remove manufacturing oils and films.
Some of the more economical heat sinks are painted black. Due
to the high thermal resistance of paint, the paint should be
removed in the area where the semiconductor is attached.
Bare aluminum should be buffed with #000 steel wool and fol-
lowed with an acetone or alcohol rinse. Immediately, thermal
grease should be applied to the surface and the device mounted
down to prevent dust or metal particles from lodging in the critical
interface area.
For good thermal contact, the use of thermal grease is essential
to fill the air pockets between the semiconductor and the mount-
ing surface. This decreases the thermal resistance by 20%. For
example, a typical TO-220 with RθJC of 1.2 °C/W may be lowered
to 1 °C/W by using thermal grease.
Teccor recommends Dow-Corning 340 as a proven effective ther-
mal grease. Fibrous applicators are not recommended as they
may tend to leave lint or dust in the interface area. Ensure that
the grease is spread adequately across the device mounting sur-
face, and torque down the device to specification.
Contact Teccor Applications Engineering for assistance in choos-
ing and using the proper heat sink for specific application.
Hardware And Methods
TO-220
The mounting hole for the Teccor TO-220 devices should not
exceed 0.140” (6/32) clearance. (Figure AN1004.7) No insulating
bushings are needed for the L Package (isolated) devices as the
tab is electrically isolated from the semiconductor chip. 6/32
mounting hardware, especially round head or Fillister machine
screws, is recommended and should be torqued to a value of
6 inch-lbs.
Figure AN1004.7 TO-220 Mounting
Punched holes are not acceptable due to cratering around the
hole which can cause the device to be pulled into the crater by
the fastener or can leave a significant portion of the device out of
contact with the heat sink. The first effect may cause immediate
damage to the package and early failure, while the second can
create higher operating temperatures which will shorten operat-
ing life. Punched holes are quite acceptable in thin metal plates
where fine-edge blanking or sheared-through holes are
employed.
Drilled holes must have a properly prepared surface. Excessive
chamfering is not acceptable as it may create a crater effect.
Edges must be deburred to promote good contact and avoid
puncturing isolation materials.
For high-voltage applications, it is recommended that only the
metal portion of the TO-220 package (as viewed from the bottom
of the package) be in contact with the heat sink. This will provide
maximum oversurface distance and prevent a high voltage path
over the plastic case to a grounded heat sink.
TO-202
The mounting hole for the Teccor TO-202 devices should not
exceed 0.112” (4/40) clearance. (Figure AN1004.8) Since tab is
electrically common with anode, heat sink may or may not need
to be electrically isolated from tab. If not, use 4/40 screw with
lock washer and nut. Mounting torque is 6 inch-lbs.
Figure AN1004.8 TO-202 Mounting
A nylon bushing and mica insulation are required to insulate the
tab in an isolated application. A compression washer is recom-
mended to avoid damage to the bushing. Do not attempt to
mount non-formed tabs to a plane surface, as the resulting strain
on the case may cause it or the semiconductor chip assembly to
fail. Teccor has the facilities and expertise to properly tab form
TO-202 devices for the convenience of the consumer.
Lockwasher
6-32 Nut
Heatsink
* Mounting
screw
6-32
* Screw head must not touch
the epoxy body of the device
Avoid axial stress
Boundary of
exposed metal tab
On heavy aluminum heatsinks
High potential appication
using Isolated TO-220
Heat Sink
at Case
Potential
A
Heat Sink
Compression
Washer
Nut
Appropriate
Screw
4/40 Nylon
Bushing
Mica
Insulator
Tab
Form
B
AN1004 Application Notes
http://www.teccor.com AN1004 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
TO-218
The mounting hole for the TO-218 device should not exceed
0.164” (8/32) clearance. Isolated versions of TO-218 do not
require any insulating material since mounting tab is electrically
isolated from the semiconductor chip. Round lead or Fillister
machine screws are recommended. Maximum torque to be
applied to mounting tab should not exceed 8 inch-lbs.
The same precautions given for the TO-220 package concerning
punched holes, drilled holes, and proper prepared heat sink
mounting surface apply to the TO-218 package. Also for high-
voltage applications, it is recommended that only the metal por-
tion of the mounting surface of the TO-218 package be in contact
with heat sink. This achieves maximum oversurface distance to
prevent a high-voltage path over the device body to grounded
heat sink.
General Mounting Notes
Care must be taken on both packages at all times to avoid strain
to the tab or leads. For easy insertion of the part onto the board
or heat sink, avoid axial strain on the leads. Carefully measure
mounting holes for the tab and the leads, and do any forming of
the tab or leads before mounting. Refer to the “Lead Form
Dimensions” section of this catalog before attempting lead form
operations.
Rivets may be used for less demanding and more economical
applications. 1/8" all-aluminum pop rivets can be used on both
TO-220 and TO-202 packages. Use a 0.129”-0.133” (#30) drill for
the hole and insert the rivet from the top side, as shown in Figure
AN1004.9. An insertion tool, similar to a “USM” PRG 430 hand
riveter, is recommended. A wide selection of grip ranges is avail-
able, depending upon the thickness of the heat sink material. Use
an appropriate grip range to securely anchor the device, yet not
deform the mounting tab. The recommended rivet tool has a pro-
truding nipple that will allow easy insertion of the rivet and keep
the tool clear of the plastic case of the device.
Figure AN1004.9 Pop Riveting Technique
A Milford #511 (Milford Group, Milford, CT) semi-tubular steel
rivet set into a 0.129" receiving hole with a riveting machine simi-
lar to a Milford S256 is also acceptable. Contact the rivet
machine manufacturer for exact details on application and set-up
for optimum results.
Pneumatic or other impact riveting devices are not recommended
due to the shock they may apply to the device.
Under no circumstance should any tool or hardware come into
contact with the case. The case should not be used as a brace
for any rotation or shearing force during mounting or in use. Non-
standard size screws, nuts, and rivets are easily obtainable to
avoid clearance problems.
Always use an accurate torque wrench to mount devices. No gain
is achieved by overtorquing devices. In fact, overtorquing may
cause the tab and case to deform or rupture, seriously damaging
the device. The curve shown in Figure AN1004.10 illustrates the
effect of proper torque.
Figure AN1004.10 Effect of Torque to Sink Thermal Resistance
With proper care, the mounting tab of a device can be soldered to
a surface. However, the heat required to accomplish this opera-
tion can damage or destroy the semiconductor chip or internal
assembly. See “Surface Mount Soldering Recommendations”
(AN1005) in this catalog.
Spring-steel clips can be used to replace torqued hardware in
assembling thyristors to heat sinks. Clips snap into heat sink
slots to hold the device in place for PC board insertion. Clips are
available in several sizes for various heat sink thicknesses and
thyristor case styles from Aavid Thermalloy in Concord, New
Hampshire. A typical heatsink is shown in Figure AN1004.11
Figure AN1004.11 Typical Heat Sink Using Clips
1/2 Rated
Torque
Rated
Torque
Torque – inch-lbs
˚C/Watt
C-S
Effect of Torque on Case to Sink
Thermal Resistance
θ
Application Notes AN1004
©2002 Teccor Electronics AN1004 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Soldering Of Leads
A prime consideration in soldering leads is the soldering of
device leads into PC boards, heat sinks, and so on. Significant
damage can be done to the device through improper soldering. In
any soldering process, do not exceed the data sheet lead solder
temperature of +230 °C for 10 seconds, maximum, 1/16" from
the case.
This application note presents details about the following three
types of soldering:
Hand soldering
Wave soldering
Dip soldering
Hand Soldering
This method is mostly used in prototype breadboarding applica-
tions and production of small modules. It has the greatest poten-
tial for misuse. The following recommendations apply to Teccor
TO-92, TO-202, TO-220, and TO-218 packages.
Select a small- to medium-duty electric soldering iron of 25 W to
45 W designed for electrical assembly application. Tip tempera-
ture should be rated from 600 °F to 800 °F (300 °C to 425 °C).
The iron should have sufficient heat capacity to heat the joint
quickly and efficiently in order to minimize contact time to the
part. Pencil tip probes work very well. Neither heavy-duty electri-
cal irons of greater than 45 W nor flame-heated irons and large
heavy tips are recommended, as the tip temperatures are far too
high and uncontrollable and can easily exceed the time-tempera-
ture limit of the part.
Teccor Fastpak devices require a different soldering technique.
Circuit connection can be done by either quick-connect terminals
or solder.
Since most quick-connect 0.250” female terminals have a maxi-
mum rating of 30 A, connection to terminals should be made by
soldering wires instead of quick-connects.
Recommended wire is 10 AWG stranded wire for use with MT1
and MT2 for load currents above 30 A. Soldering should be per-
formed with a 100-watt soldering iron. The iron should not remain
in contact with the wire and terminal longer than 40 seconds so
the Fastpak triac is not damaged.
For the Teccor TO-218X package, the basic rules for hand sol-
dering apply; however, a larger iron may be required to apply suf-
ficient heat to the larger leads to efficiently solder the joint.
Remember not to exceed the lead solder temperatures of
+230 °C for 10 seconds, maximum, 1/16" (1.59mm) from the
case.
A 60/40 or 63/37 Sn/Pb solder is acceptable. This low melting-
point solder, used in conjunction with a mildly activated rosin flux,
is recommended.
Insert the device into the PC board and, if required, attach the
device to the heat sink before soldering. Each lead should be
individually heat sinked as it is soldered. Commercially available
heat sink clips are excellent for this use. Hemostats may also be
used if available. Needle-nose pliers are a good heat sink choice;
however, they are not as handy as stand-alone type clips.
In any case, the lead should be clipped or grasped between the
solder joint and the case, as near to the joint as possible. Avoid
straining or twisting the lead in any way.
Use a clean pre-tinned iron, and solder the joint as quickly as
possible. Avoid overheating the joint or bringing the iron or solder
into contact with other leads that are not heat sinked.
Wave Solder
Wave soldering is one of the most efficient methods of soldering
large numbers of PC boards quickly and effectively. Guidelines
for soldering by this method are supplied by equipment manufac-
turers. The boards should be pre-heated to avoid thermal shock
to semiconductor components, and the time-temperature cycle in
the solder wave should be regulated to avoid heating the device
beyond the recommended temperature rating. A mildly activated
resin flux is recommended. Figure AN1004.12 shows typical heat
and time conditions.
Figure AN1004.12 Reflow Soldering with Pre-heating
Dip Soldering
Dip soldering is very similar to wave soldering, but it is a hand
operation. Follow the same considerations as for wave soldering,
particularly the time-temperature cycle which may become oper-
ator dependent because of the wide process variations that may
occur. This method is not recommended.
Board or device clean-up is left to the discretion of the customer.
Teccor devices are tolerant of a wide variety of solvents, and they
conform to MIL-STD 202E method 215 “Resistance to Solvents.”
Time (Seconds)
0
0
20
40
60
80
100
120
140
160
180
200
220
240
30 60 90 120 150 180 210 240 270 300
Temperature – ˚C
Pre-heat Soak Reflow Cool
Down
0.5 - 0.6 ˚C/s
1.3 - 1.6 ˚C/s
<2.5 ˚C/s
<2.5 ˚C/s
Peak Temperature
220 ˚C - 245 ˚C
Soaking Zone Reflow Zone
Pre-heating Zone
( 2 min. MAX )
60 - 90 s typical
( 2-4 min MAX )
( 2 min. MAX )
30 - 60 s typical
260
Notes
©2002 Teccor Electronics AN1005 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
5AN1005
Surface Mount Soldering Recommendations
Introduction
The most important consideration in reliability is achieving a good
solder bond between surface mount device (SMD) and substrate
since the solder provides the thermal path from the chip. A good
bond is less subject to thermal fatiguing and will result in
improved device reliability.
The most economic method of soldering is a process in which all
different components are soldered simultaneously, such as
DO-214, Compak, TO-252 devices, capacitors, and resistors.
Reflow Of Soldering
The preferred technique for mounting microminiature compo-
nents on hybrid thick- and thin-film is reflow soldering.
The DO-214 is designed to be mounted directly to or on thick-film
metallization which has been screened and fired on a substrate.
The recommended substrates are Alumina or P.C. Board mate-
rial.
Recommended metallization is silver palladium or molymanga-
nese (plated with nickel or other elements to enhance solderabil-
ity). For more information, consult Du Pont's Thick-Film
handbook or the factory.
It is best to prepare the substrate by either dipping it in a solder
bath or by screen printing a solder paste.
After the substrate is prepared, devices are put in place with
vacuum pencils. The device may be laid in place without special
alignment procedures since it is self-aligning during the solder
reflow process and will be held in place by surface tension.
For reliable connections, keep the following in mind:
(1) Maximum temperature of the leads or tab during the solder-
ing cycle does not exceed 275 °C.
(2) Flux must affect neither components nor connectors.
(3) Residue of the flux must be easy to remove.
Good flux or solder paste with these properties is available on the
market. A recommended flux is Alpha 5003 diluted with benzyl
alcohol. Dilution used will vary with application and must be
determined empirically.
Having first been fluxed, all components are positioned on the
substrate. The slight adhesive force of the flux is sufficient to
keep the components in place.
Because solder paste contains a flux, it has good inherent adhe-
sive properties which eases positioning of the components. Allow
flux to dry at room temperature or in a 70 °C oven. Flux should be
dry to the touch. Time required will depend on flux used.
With the components in position, the substrate is heated to a
point where the solder begins to flow. This can be done on a
heating plate, on a conveyor belt running through an infrared tun-
nel, or by using vapor phase soldering.
In the vapor phase soldering process, the entire PC board is uni-
formly heated within a vapor phase zone at a temperature of
approximately 215 °C. The saturated vapor phase zone is
obtained by heating an inert (inactive) fluid to the boiling point.
The vapor phase is locked in place by a secondary vapor. (Figure
AN1005.1) Vapor phase soldering provides uniform heating and
prevents overheating.
Figure AN1005.1 Principle of Vapor Phase Soldering
No matter which method of heating is used, the maximum
allowed temperature of the plastic body must not exceed 250 °C
during the soldering process. For additional information on tem-
perature behavior during the soldering process, see Figure
AN1005.2 and Figure AN1005.3.
Figure AN1005.2 Reflow Soldering Profile
Transport
Cooling pipes
PC board
Heating
elements
Boiling liquid (primary medium)
Vapor phase
zone
Vapor lock
(secondary
medium)
Time (Seconds)
0
0
20
40
60
80
100
120
140
160
180
200
220
240
30 60 90 120 150 180 210 240 270 300
Temperature – ˚C
Pre-heat Soak Reflow Cool
Down
0.5 - 0.6
˚
C/s
1.3 - 1.6
˚
C/s
<2.5
˚
C/s
<2.5
˚
C/s
Peak Temperature
220
˚
C - 245
˚
C
Soaking Zone Reflow Zone
Pre-heating Zone
( 2 min. MAX )
60 - 90 s typical
( 2-4 min MAX )
( 2 min. MAX )
30 - 60 s typical
260
AN1005
AN1005 Application Notes
http://www.teccor.com AN1005 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Reflow Soldering Zones
Zone 1: Initial Pre-heating Stage (25 °C to 150 °C)
Excess solvent is driven off.
PCB and Components are gradually heated up.
Temperature gradient shall be <2.5 °C/Sec.
Zone 2: Soak Stage (150 °C to 180 °C)
Flux components start activation and begin to reduce the
oxides on component leads and PCB pads.
PCB components are brought nearer to the temperature at
which solder bonding can occur.
Soak allows different mass components to reach the same
temperature.
Activated flux keeps metal surfaces from re-oxidizing.
Zone 3: Reflow Stage (180 °C to 235 °C)
Paste is brought to the alloy’s melting point.
Activated flux reduces surface tension at the metal interface so
metallurgical bonding occurs.
Zone 4: Cool-down Stage (180 °C to 25 °C)
Assembly is cooled evenly so thermal shock to the components
or PCB is reduced.
The surface tension of the liquid solder tends to draw the leads of
the device towards the center of the soldering area and so has a
correcting effect on slight mispositionings. However, if the layout
is not optimized, the same effect can result in undesirable shifts,
particularly if the soldering areas on the substrate and the com-
ponents are not concentrically arranged. This problem can be
solved by using a standard contact pattern which leaves suffi-
cient scope for the self-positioning effect (Figure AN1005.3 and
Figure AN1005.4) Figure AN1005.5 shows the reflow soldering
procedure.
Figure AN1005.3 Minimum Required Dimensions of Metal Connection
of Typical DO-214 Pads on Hybrid Thick- and Thin-
film Substrates
Figure AN1005.4 Modified DO-214 Compak — Three-leaded Surface
Mount Package
Figure AN1005.5 Reflow Soldering Procedure
After the solder is set and cooled, visually inspect the connec-
tions and, where necessary, correct with a soldering iron. Finally,
the remnants of the flux must be removed carefully.
Use vapor degrease with an azeotrope solvent or equivalent to
remove flux. Allow to dry.
After the drying procedure is complete, the assembly is ready for
testing and/or further processing.
0.079
(2.0)
0.110
(2.8)
0.079
(2.0)
Pad Outlin
e
Dimensions are in inches (and millimeters).
0.079
(2.0)
0.040
(1.0)
0.030
(0.76)
0.079
(2.0)
0.079
(2.0)
0.110
(2.8)
Pad Outline
Dimensions are in inches (and millimeters).
1. Screen print solder paste
(or flux)
2. Place component
(allow flux to dry)
3. Reflow solder
Application Notes AN1005
©2002 Teccor Electronics AN1005 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Wave Soldering
Wave soldering is the most commonly used method for soldering
components in PCB assemblies. As with other soldering pro-
cesses, a flux is applied before soldering. After the flux is
applied, the surface mount devices are glued into place on a PC
board. The board is then placed in contact with a molten wave of
solder at a temperature between 240 °C and 260 °C, which
affixes the component to the board.
Dual wave solder baths are also in use. This procedure is the
same as mentioned above except a second wave of solder
removes excess solder.
Although wave soldering is the most popular method of PCB
assembly, drawbacks exist. The negative features include solder
bridging and shadows (pads and leads not completely wetted) as
board density increases. Also, this method has the sharpest ther-
mal gradient. To prevent thermal shock, some sort of pre-heating
device must be used. Figure AN1005.6 shows the procedure for
wave soldering PCBs with surface mount devices only. Figure
AN1005.7 shows the procedure for wave soldering PCBs with
both surface mount and leaded components.
Figure AN1005.6 Wave Soldering PCBs With Surface Mount Devices
Only
Figure AN1005.7 Wave Soldering PCBs With Both Surface Mount
and Leaded Components
Immersion Soldering
Maximum allowed temperature of the soldering bath is 235 °C.
Maximum duration of soldering cycle is five seconds, and forced
cooling must be applied.
Hand Soldering
It is possible to solder the DO-214, Compak, and TO-252 devices
with a miniature hand-held soldering iron, but this method has
particular drawbacks and should be restricted to laboratory use
and/or incidental repairs on production circuits.
Recommended Metal-alloy
(1) 63/37 Sn/Pb
(2) 60/40 Sn/Pb
Pre-Heating
Pre-heating is recommended for good soldering and to avoid
damage to the DO-214, Compak, TO-252 devices, other compo-
nents, and the substrate. Maximum pre-heating temperature is
165 °C while the maximum pre-heating duration may be 10 sec-
onds. However, atmospheric pre-heating is permissible for sev-
eral minutes provided temperature does not exceed 125 °C.
Screen print glue
Wave solder
Apply glue
Cure glue
Place component
or
PC board
Insert
leaded
components
Turn over the
PC board
Apply
glue
Place
SMDs
Cure
glue
Turn over the
PC board
Wave solder
AN1005 Application Notes
http://www.teccor.com AN1005 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Gluing Recommendations
Prior to wave soldering, surface mount devices (SMDs) must be
fixed to the PCB or substrate by means of an appropriate adhe-
sive. The adhesive (in most cases a multicomponent adhesive)
has to fulfill the following demands:
Uniform viscosity to ensure easy coating
No chemical reactions upon hardening in order not to deterio-
rate component and PC board
Straightforward exchange of components in case of repair
Low-temperature Solder for Reducing
PC Board Damage
In testing and troubleshooting surface-mounted components,
changing parts can be time consuming. Moreover, desoldering
and soldering cycles can loosen and damage circuit-board pads.
Use low-temperature solder to minimize damage to the PC board
and to quickly remove a component. One low-temperature alloy
is indium-tin, in a 50/50 mixture. It melts between 118 °C and
125 °C, and tin-lead melts at 183 °C. If a component needs
replacement, holding the board upside down and heating the
area with a heat gun will cause the component to fall off. Per-
forming the operation quickly minimizes damage to the board and
component.
Proper surface preparation is necessary for the In-Sn alloy to wet
the surface of the copper. The copper must be clean, and you
must add flux to allow the alloy to flow freely.You can use rosin
dissolved in alcohol. Perform the following steps:
(1) Cut a small piece of solder and flow it onto one of the pads.
(2) Place the surface-mount component on the pad and melt the
soldered pad to its pin while aligning the part. (This operation
places all the pins flat onto their pads.)
(3) Cut small pieces of the alloy solder and flow each piece onto
each of the other legs of the component.
Indium-tin solder is available from ACI Alloys, San Jose, CA and
Indium Corporation of America, Utica, NY.
Multi-use Footprint
Package soldering footprints can be designed to accommodate
more than one package. Figure AN1005.8 shows a footprint
design for using both the Compak and an SOT-223. Using the
dual pad outline makes it possible to use more than one supplier
source.
Cleaning Recommendations
Using solvents for PC board or substrate cleaning is permitted
from approximately 70 °C to 80 °C.
The soldered parts should be cleaned with azeotrope solvent fol-
lowed by a solvent such as methol, ethyl, or isopropyl alcohol.
Ultrasonic cleaning of surface mount components on PCBs or
substrates is possible.
The following guidelines are recommended when using ultra-
sonic cleaning:
Cleaning agent: Isopropanol
Bath temperature: approximately 30 °C
Duration of cleaning: MAX 30 seconds
Ultrasonic frequency: 40 kHz
Ultrasonic changing pressure: approximately 0.5 bar
Cleaning of the parts is best accomplished using an ultrasonic
cleaner which has approximately 20 W of output per one liter of
solvent. Replace the solvent on a regular basis.
Figure AN1005.8 Dual Footprint for Compak Package
MT2 / Anode Compak
Footprint
Footprint
for either
Compak
or SOT-223
Dual Pad Outline
Pad Outline
0.150
(3.8)
0.328
(8.33)
0.079
(2.0)
0.030
(.76)
0.040
(1.0)
0.019
(.48)
0.079
(2.0)
0.091
(2.31)
0.079
(2.0)
.055
(1.4)
0.059
(1.5) TYP
TYP
0.079
(2.0)
0.079
(2.0)
0.079
(2.0)
0.110
(2.8) 0.030
(.76)
0.040
(1.0)
Gate
Gate
Gate
MT1 / Cathode
MT1
Not
used
M
T
2
SOT-223
Footprint
Dimensions are in inches (and millimeters).
MT2 / Anode
MT1 / Cathode
MT2 / Anode
©2002 Teccor Electronics AN1006 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
6
Testing Teccor Semiconductor Devices
Using Curve Tracers
Introduction
One of the most useful and versatile instruments for testing semi-
conductor devices is the curve tracer (CT). Tektronix is the best
known manufacturer of curve tracers and produces four basic
models: 575, 576, 577 and 370. These instruments are specially
adapted CRT display screens with associated electronics such
as power supplies, amplifiers, and variable input and output func-
tions that allow the user to display the operating characteristics of
a device in an easy-to-read, standard graph form. Operation of
Tektronix CTs is simple and straightforward and easily taught to
non-technical personnel. Although widely used by semiconductor
manufacturers for design and analytical work, the device con-
sumer will find many uses for the curve tracer, such as incoming
quality control, failure analysis, and supplier comparison. Curve
tracers may be easily adapted for go-no go production testing.
Tektronix also supplies optional accessories for specific applica-
tions along with other useful hardware.
Tektronix Equipment
Although Tektronix no longer produces curve tracer model 575,
many of the units are still operating in the field, and it is still an
extremely useful instrument. The 576, 577 and 370 are current
curve tracer models and are more streamlined in their appear-
ance and operation. The 577 is a less elaborate version of the
576, yet retains all necessary test functions.
The following basic functions are common to all curve tracers:
Power supply supplies positive DC voltage, negative DC volt-
age, or AC voltage to bias the device. Available power is varied
by limiting resistors.
Step generator supplies current or voltage in precise steps to
control the electrode of the device. The number, polarity, and
frequency of steps are selectable.
Horizontal amplifier displays power supply voltage as applied
to the device. Scale calibration is selectable.
Vertical amplifier displays current drawn from the supply by
the device. Scale calibration is selectable.
Curve tracer controls for beam position, calibration, pulse opera-
tion, and other functions vary from model to model. The basic
theory of operation is that for each curve one terminal is driven
with a constant voltage or current and the other one is swept with
a half sinewave of voltage. The driving voltage is stepped
through several values, and a different trace is drawn on each
sweep to generate a family of curves.
Limitations, Accuracy, and Correlation
Although the curve tracer is a highly versatile device, it is not
capable of every test that one may wish to perform on semicon-
ductor devices such as dv/dt, secondary reverse breakdown,
switching speeds, and others. Also, tests at very high currents
and/or voltages are difficult to conduct accurately and without
damaging the devices. A special high-current test fixture avail-
able from Tektronix can extend operation to 200 A pulsed peak.
Kelvin contacts available on the 576 and 577 eliminate inaccu-
racy in voltage measured at high current (VTM) by sensing voltage
drop due to contact resistance and subtracting from the reading.
Accuracy of the unit is within the published manufacturer’s speci-
fication. Allow the curve tracer to warm up and stabilize before
testing begins. Always expand the horizontal or vertical scale as
far as possible to increase the resolution. Be judicious in record-
ing data from the screen, as the trace line width and scale resolu-
tion factor somewhat limit the accuracy of what may be read.
Regular calibration checks of the instrument are recommended.
Some users keep a selection of calibrated devices on hand to
verify instrument operation when in doubt. Re-calibration or
adjustment should be performed only by qualified personnel.
Often discrepancies exist between measurements taken on
different types of instrument. In particular, most semiconductor
manufacturers use high-speed, computerized test equipment to
test devices. They test using very short pulses. If a borderline
unit is then measured on a curve tracer, it may appear to be out
of specification. The most common culprit here is heat. When a
semiconductor device increases in temperature due to current
flow, certain characteristics may change, notably gate character-
istics on SCRs, gain on transistors, leakage, and so on. It is very
difficult to operate the curve tracer in such a way as to eliminate
the heating effect. Pulsed or single-trace operation helps reduce
this problem, but care should be taken in comparing curve tracer
measurements to computer tests. Other factors such as stray
capacitances, impedance matching, noise, and device oscillation
also may create differences.
AN1006
AN1006 Application Notes
http://www.teccor.com AN1006 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Safety (Cautions and Warnings)
Adhere rigidly to Tektronix safety rules supplied with each
curve tracer. No attempt should be made to defeat any of the
safety interlocks on the device as the curve tracer can produce a
lethal shock. Also, older 575 models do not have the safety inter-
locks as do the new models. Take care never to touch any device
or open the terminal while energized.
WARNING: Devices on the curve tracer may be easily dam-
aged from electrical overstress.
Follow these rules to avoid destroying devices:
Familiarize yourself with the expected maximum limits of the
device.
Limit the current with the variable resistor to the minimum nec-
essary to conduct the test.
Increase power slowly to the specified limit.
Watch for device “runaway” due to heating.
Apply and increase gate or base drive slowly and in small
steps.
Conduct tests in the minimum time required.
General Test Procedures
Read all manuals before operating a curve tracer.
Perform the following manufacturers equipment check:
1. Turn on and warm up curve tracer, but turn off, or down, all
power supplies.
2. Correctly identify terminals of the device to be tested. Refer
to the manufacturer’s guide if necessary.
3. Insert the device into the test fixture, matching the device
and test terminals.
4. Remove hands from the device and/or close interlock cover.
5. Apply required bias and/or drive.
6. Record results as required.
7. Disconnect all power to the device before removing.
Model 576 Curve Tracer Procedures
The following test procedures are written for use with the model
576 curve tracer. (Figure AN1006.1)
See “Model 370 Curve Tracer Procedure Notes” on page
AN1006-16 and “Model 577 Curve Tracer Procedure Notes” on
page AN1006-18 for setting adjustments required when using
model 370 and 577 curve tracers.
The standard 575 model lacks AC mode, voltage greater than
200 V, pulse operations, DC mode, and step offset controls. The
575 MOD122C does allow voltage up to 400 V, including 1500 V
in an AC mode. Remember that at the time of design, the 575
was built to test only transistors and diodes. Some ingenuity,
experience, and external hardware may be required to test other
types of devices.
For further information or assistance in device testing on Tek-
tronix curve tracers, contact the Teccor Applications Engineering
group.
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1006.1 Tektronix Model 576 Curve Tracer
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
TYPE 576
TEKTRONIX, INC.
CURVE TRACER
PORTLAND, ORE, U.S.A. VERTICAL
DISPLAY OFFSET
HORIZONTAL
STEP GENERATOR
AMPLITUDE
COLLECTOR SUPPLY
HORIZONTAL
VOLTAGE CONTROL
Note: All Voltage
Settings Will Be
Referenced to
"Collector"
STEP/OFFSET
AMPLITUDE
(AMPS/VOLTS)
OFFSET
STEP/OFFSET
POLARITY
RATE
TERMINAL
SELECTOR
KELVIN TERMINALS
USED WHEN
MEASURING VTM OR VFM
VARIABLE
COLLECTOR
SUPPLY VOLTAGE
VARIABLE
COLLECTOR
SUPPLY
VOLTAGE RANGE
CRT
TERMINAL
JACKS
C
B
E
GATE/TRIGGER LEFT-RIGHT SELECTOR
FOR TERMINAL JACKS
MAX PEAK
POWER
(POWER DISSIPATION)
MT2/ANODE
MT1/CATHODE
STEP FAMILY
C
B
E
AN1006 Application Notes
http://www.teccor.com AN1006 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Power Rectifiers
The rectifier is a unidirectional device which conducts when for-
ward voltage (above 0.7 V) is applied.
To connect the rectifier:
1. Connect Anode to Collector Terminal (C).
2. Connect Cathode to Emitter Terminal (E).
To begin testing, perform the following procedures.
Procedure 1: VRRM and IRM
To measure the VRRM and IRM parameter:
1. Set Variable Collector Supply Voltage Range to 1500 V.
(2000 V on 370)
2. Set Horizontal knob to sufficient scale to allow viewing of
trace at the required voltage level (100 V/DIV for 400 V and
600 V devices and 50 V/DIV for 200 V devices).
3. Set Mode to Leakage.
4. Set Vertical knob to 100 µA/DIV. (Due to leakage setting, the
CRT readout will be 100 nA per division.)
5. Set Terminal Selector to Emitter Grounded-Open Base.
6. Set Polarity to (–).
7. Set Power Dissipation to 2.2 W. (2W on 370)
8. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
9. Increase Variable Collector Supply Voltage to the rated
VRRM of the device and observe the dot on the CRT. Read
across horizontally from the dot to the vertical current scale.
This measured value is the leakage current.
(Figure AN1006.2)
Figure AN1006.2 IRM = 340 nA at VRRM = 600 V
Procedure 2: VFM
Before testing, note the following:
A Kelvin test fixture is required for this test. If a Kelvin fixture is
not used, an error in measurement of VFM will result due to
voltage drop in fixture. If a Kelvin fixture is not available,
Figure AN1006.3 shows necessary information to wire a test
fixture with Kelvin connections.
Due to the current limitations of standard curve tracer
model 576, VFM cannot be tested at rated current without a Tek-
tronix model 176 high-current module. The procedure below is
done at IT(RMS) = 10 A (20 APK). This test parameter allows the
use of a standard curve tracer and still provides an estimate of
whether VFM is within specification.
Figure AN1006.3 Instructions for Wiring Kelvin Socket
To measure the VFM parameter:
1. Set Variable Collector Supply Voltage Range to 15 Max
Peak Volts. (16 V on 370)
2. Set Horizontal knob to 0.5 V/DIV.
3. Set Mode to Norm.
4. Set Vertical knob to 2 A/DIV.
5. Set Power Dissipation to 220 W (100 W on 577).
6. Set Polarity to (+).
7. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
8. Increase Variable Collector Supply Voltage until current
reaches 20 A.
WARNING: Limit test time to 15 seconds maximum.
To measure VFM, follow along horizontal scale to the point where
the trace crosses the 20 A axis. The distance from the left-hand
side of scale to the crossing point is the VFM value.
(Figure AN1006.4)
Note: Model 370 current is limited to 10 A.
VRRM
IRM
100
nA
100
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
SOCKET
SOCKET PINS
One set of
pins wired to
Collector (C),
Base (B), and
Emitter (E)
Terminals
The pins which correspond to
the anode and cathode of the
device are wired to the terminals
marked CSENSE (MT2/Anode) and
ESENSE (MT1/Cathode). The gate
does not require a Kelvin
connection.
Socket used
must have two
sets of pins
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1006.4 VFM = 1 V at IPK = 20 A
SCRs
SCRs are half-wave unidirectional rectifiers turned on when cur-
rent is supplied to the gate terminal. If the current supplied to the
gate is to be in the range of 12 µA and 500 µA, then a sensitive
SCR is required; if the gate current is between 1 mA and 50 mA,
then a non-sensitive SCR is required.
To connect the rectifier:
1. Connect Anode to Collector Terminal (C).
2. Connect Cathode to Emitter Terminal (E).
Note: When sensitive SCRs are being tested, a 1 k resistor
must be connected between the gate and the cathode, except
when testing IGT.
To begin testing, perform the following procedures.
Procedure 1: VDRM, VRRM, IDRM, IRRM
To measure the VDRM, VRRM, IDRM, and IRRM parameter:
1. Set Variable Collector Supply Voltage Range to appropri-
ate Max Peak Volts for device under test. (Value selected
should be equal to or greater than the device’s VDRM rating.)
2. Set Horizontal knob to sufficient scale to allow viewing of
trace at the required voltage level. (The 100 V/DIV scale
should be used for testing devices having a VDRM value of
600 V or greater; the 50 V/DIV scale for testing parts rated
from 300 V to 500 V, and so on.)
3. Set Mode to Leakage.
4. Set Polarity to (+).
5. Set Power Dissipation to 0.5 W. (0.4 W on 370)
6. Set Terminal Selector to Emitter Grounded-Open Base.
7. Set Vertical knob to approximately ten times the maximum
leakage current (IDRM, IRRM) specified for the device. (For
sensitive SCRs, set to 50 µA.)
Note: The CRT screen readout should show 1% of the maximum
leakage current if the vertical scale is divided by 1,000 when
leakage current mode is used.
Procedure 2: VDRM, IDRM
To measure the VDRM and IDRM parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
2. Set Variable Collector Supply Voltage to the rated VDRM of
the device and observe the dot on CRT. Read across hori-
zontally from the dot to the vertical current scale. This mea-
sured value is the leakage current. (Figure AN1006.5)
WARNING: Do NOT exceed VDRM/VRRM rating of SCRs, triacs,
or Quadracs. These devices can be damaged.
Figure AN1006.5 IDRM = 350 nA at VDRM = 600 V
Procedure 3: VRRM, IRRM
To measure the VRRM and IRRM parameter:
1. Set Polarity to (–).
2. Repeat Steps 1 and 2 (VDRM, IDRM) except substitute VRRM
value for VDRM. (Figure AN1006.6)
.
Figure AN1006.6 IRRM = 340 nA at VRRM = 600 V
Procedure 4: VTM
To measure the VTM parameter:
1. Set Terminal Selector to Step Generator-Emitter Grounded.
2. Set Polarity to (+).
3. Set Step/Offset Amplitude to twice the maximum IGT rating
of the device (to ensure the device turns on). For sensitive
SCRs, set to 2mA.
4. Set Max Peak Volts to 15 V. (16 V on 370)
5. Set Offset by depressing 0 (zero).
500
mV
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
IT
VFM
2
A
()k
DIV
9m
PER
DIV
100
nA
100
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
VDRM
IDRM
()k
DIV
9m
PER
DIV
100
nA
100
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
VRRM
IRRM
()k
DIV
9m
PER
DIV
AN1006 Application Notes
http://www.teccor.com AN1006 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
6. Set Rate by depressing Norm.
7. Set Step Family by depressing Rep (repetitive).
8. Set Mode to DC.
9. Set Horizontal knob to 0.5 V/DIV.
10. Set Power Dissipation to 220 W (100 W on 577).
11. Set Number of Steps to 1. (Set steps to 0 (zero) on 370.)
12. Set Vertical knob to a sufficient setting to allow the viewing
of 2 times the IT(RMS) rating of the device (IT(peak)) on CRT.
Before continuing with testing, note the following:
(1) Due to the excessive amount of power that can be
generated in this test, only parts with an IT(RMS) rating
of 6 A or less should be tested on standard curve
tracer. If testing devices above 6 A, a Tektronix model
176 high-current module is required.
(2) A Kelvin test fixture is required for this test. If a
Kelvin fixture is not used, an error in measurement of
VTM will result due to voltage drop in the fixture. If a
Kelvin fixture is not available, Figure AN1006.3 shows
necessary information to wire a test fixture with
Kelvin connectors.
13. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
14. Increase Variable Collector Supply Voltage until current
reaches rated IT(peak), which is twice the IT(RMS) rating of the-
SCR under test.
Note: Model 370 current is limited to 10 A.
WARNING: Limit test time to 15 seconds maximum after the
Variable Collector Supply has been set to IT(peak), After the
Variable Collector Supply Voltage has been set to IT(peak), the
test time can automatically be shortened by changing Step
Family from repetitive to single by depressing the Single
button.
To measure VTM, follow along horizontal scale to the point where
the trace crosses the IT(peak) value. The distance from the left-
hand side of scale to the intersection point is the VTM value.
(Figure AN1006.7)
Figure AN1006.7 VTM = 1.15 V at IT(peak) = 12 A
Procedure 5: IH
To measure the IH parameter:
1. Set Polarity to (+).
2. Set Power Dissipation to 2.2 W. (2W on 370)
3. Set Max Peak Volts to 75 V. (80 V on 370)
4. Set Mode to DC.
5. Set Horizontal knob to Step Generator.
6. Set Vertical knob to approximately 10 percent of the maxi-
mum IH specified.
Note: Due to large variation of holding current values, the
scale may have to be adjusted to observe holding current.
7. Set Number of Steps to 1.
8. Set Offset by depressing 0 (zero). (Press Aid and Oppose at
the same time on 370.)
9. Set Step/Offset Amplitude to twice the maximum IGT of the
device.
10. Set Terminal Selector to Step Generator-Emitter Grounded.
11. Set Step Family by depressing Single.
12. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
13. Increase Variable Collector Supply Voltage to maximum
position (100).
14. Set Step Family by depressing Single. (This could possibly
cause the dot on CRT to disappear, depending on the verti-
cal scale selected.)
15. Change Terminal Selector from Step Generator-Emitter
Grounded to Open Base-Emitter Grounded.
16. Decrease Variable Collector Supply Voltage to the point
where the line on the CRT changes to a dot. The position of
the beginning point of the line, just before the line becomes a
dot, represents the holding current value. (Figure AN1006.8)
Figure AN1006.8 IH = 1.2 mA
Procedure 6: IGT and VGT
To measure the IGT and VGT parameter:
1. Set Polarity to (+).
2. Set Number of Steps to 1.
3. Set Offset by depressing Aid.
4. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at
the same time on 370.)
5. Set Terminal Selector to Step Generator-Emitter Grounded.
6. Set Mode to Norm.
7. Set Max Peak Volts to 15 V. (16 V on 370)
500
mV
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
IPK
VTM
2
A
()k
DIV
9m
PER
DIV
100
mA
20
500
A
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
IH
()k
DIV
9m
PER
DIV
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
8. Set Power Dissipation to 2.2 W. (2W on 370) For sensitive
SCRs, set at 0.5 W. (0.4 W on 370)
9. Set Horizontal knob to 2 V/DIV.
10. Set Vertical knob to 50 mA/DIV.
11. Increase Variable Collector Supply Voltage until voltage
reaches 12 V on CRT.
12. After 12 V setting is completed, change Horizontal knob to
Step Generator.
Procedure 7: IGT
To measure the IGT parameter:
1. Set Step/Offset Amplitude to 20% of maximum rated IGT.
Note: RGK should be removed when testing IGT.
2. Set Left-Right Terminal Jack Selector to correspond with
location of the test fixture.
3. Gradually increase Offset Multiplier until device reaches
the conduction point. (Figure AN1006.9) Measure IGT by fol-
lowing horizontal axis to the point where the vertical line
crosses axis. This measured value is IGT. (On 370, IGT will be
numerically displayed on screen under offset value.)
Figure AN1006.9 IGT = 25 µA
Procedure 8: VGT
To measure the VGT parameter:
1. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at
the same time on 370.)
2. Set Step Offset Amplitude to 20% rated VGT.
3. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
4. Gradually increase Offset Multiplier until device reaches
the conduction point. (Figure AN1006.10) Measure VGT by
following horizontal axis to the point where the vertical line
crosses axis. This measured value is VGT. (On 370, VGT will
be numerically displayed on screen, under offset value.)
Procedure 9: GT will be numerically displayed on screen
under offset value.)
Figure AN1006.10 VGT = 580 mV
Triacs
Triacs are full-wave bidirectional AC switches turned on when
current is supplied to the gate terminal of the device. If gate con-
trol in all four quadrants is required, then a sensitive gate triac is
needed, whereas a standard triac can be used if gate control is
only required in Quadrants I through III.
To connect the triac:
1. Connect the Gate to the Base Terminal (B).
2. Connect MT1 to the Emitter Terminal (E).
3. Connect MT2 to the Collector Terminal (C).
To begin testing, perform the following procedures.
Procedure 1: (+)VDRM, (+)IDRM, (-)VDRM, (-)IDRM
Note: The (+) and (-) symbols are used to designate the polarity
MT2 with reference to MT1.
To measure the (+)VDRM, (+)IDRM, (-)VDRM, and (-)IDRM parameter:
1. Set Variable Collector Supply Voltage Range to appropri-
ate Max Peak Volts for device under test. (Value selected
should be equal to the device’s VDRM rating.)
WARNING: Do NOT exceed VDRM/VRRM rating of SCRs, tri-
acs, or Quadracs. These devices can be damaged.
2. Set Horizontal knob to sufficient scale to allow viewing of
trace at the required voltage level. (The 100 V/DIV scale
should be used for testing devices having a VDRM rating of
600 V or greater; the 50 V/DIV scale for testing parts rated
from 30 V to 500 V, and so on.)
3. Set Mode to Leakage.
4. Set Polarity to (+).
5. Set Power Dissipation to 0.5 W. (0.4 W on 370)
6. Set Terminal Selector to Emitter Grounded-Open Base.
7. Set Vertical knob to ten times the maximum leakage current
(IDRM) specified for the device.
Note: The CRT screen readout should show 1% of the maxi-
mum leakage current. The vertical scale is divided by 1,000
when leakage mode is used.
50
mA
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
IGT
()k
DIV
9m
PER
DIV
10
A
5 K
50
mA
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
VGT
200
mV
250m
()k
DIV
9m
PER
DIV
AN1006 Application Notes
http://www.teccor.com AN1006 - 8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Procedure 2: (+)VDRM, (+)IDRM
To measure the (+)VDRM and (+)IDRM parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
location of the test fixture.
2. Increase Variable Collector Supply Voltage to the rated
VDRM of the device and observe the dot on the CRT. Read
across horizontally from the dot to the vertical current scale.
This measured value is the leakage current.
(Figure AN1006.11)
Figure AN1006.11 (+)IDRM = 205 nA at (+)VDRM = 600 V
Procedure 3: (-)VDRM, (-)IDRM
To measure the (-)VDRM and (-)IDRM parameter:
1. Set Polarity to (–).
2. Repeat Procedures 1 and 2. (Read measurements from
upper right corner of the screen.)
Procedure 4: VTM (Forward and Reverse)
To measure the VTM (Forward and Reverse) parameter:
1. Set Terminal Selector to Step Generator-Emitter Grounded.
2. Set Step/Offset Amplitude to twice the maximum IGT rating
of the device (to insure the device turns on).
3. Set Variable Collector Supply Voltage Range to 15 V Max
Peak volts. (16 V on 370)
4. Set Offset by depressing 0 (zero).
5. Set Rate by depressing Norm.
6. Set Step Family by depressing Rep (Repetitive).
7. Set Mode to Norm.
8. Set Horizontal knob to 0.5 V/DIV.
9. Set Power Dissipation to 220 W (100 W on 577).
10. Set Number of Steps to 1.
11. Set Step/Offset Polarity to non-inverted (button extended;
on 577 button depressed).
12. Set Vertical knob to a sufficient setting to allow the viewing
of 1.4 times the IT(RMS) rating of the device [IT(peak) on CRT].
Note the following:
Due to the excessive amount of power that can be generated in
this test, only parts with an IT(RMS) rating of 8 A or less should be
tested on standard curve tracer. If testing devices above 8 A, a
Tektronix model 176 high-current module is required.
A Kelvin test fixture is required for this test. If a Kelvin fixture is
not used, an error in measurement of VTM will result due to volt-
age drop in fixture. If a Kelvin fixture is not available,
Figure AN1006.3 shows necessary information to wire a test
fixture with Kelvin connections.
Procedure 5: VTM (Forward)
To measure the VTM (Forward) parameter:
1. Set Polarity to (+).
2. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
3. Increase Variable Collector Supply Voltage until current
reaches rated IT(peak), which is 1.4 times IT(RMS) rating of the
triac under test.
Note: Model 370 current is limited to 10 A.
WARNING: Limit test time to 15 seconds maximum. After
the Variable Collector Supply Voltage has been set to IT(peak),
the test time can automatically be set to a short test time by
changing Step Family from repetitive to single by depress-
ing the Single button.
To measure VTM, follow along horizontal scale to the point where
the trace crosses the IT(peak) value. The distance from the left-
hand side of scale to the crossing point is the VTM value.
(Figure AN1006.12)
Figure AN1006.12 VTM (forward) = 1.1 V at IPK = 11.3 A (8 A rms)
Procedure 6: VTM (Reverse)
To measure the VTM (Reverse) parameter:
1. Set Polarity to (–).
2. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
3. Increase Variable Collector Supply Voltage until current
reaches rated IT(peak).
4. Measure VTM(Reverse) similar to Figure AN1006.12, except from
upper right hand corner of screen.
Procedure 7: IH(Forward and Reverse)
To measure the IH (Forward and Reverse) parameter:
1. Set Step/Offset Amplitude to twice the IGT rating of the
device.
2. Set Power Dissipation to 10 W.
50
nA
100
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
IDRM
VDRM
()k
DIV
9m
PER
DIV
500
mV
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
VTM
IPK
2
A
100
mA
20
()k
DIV
9m
PER
DIV
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
3. Set Max Peak Volts to 75 V. (80 V on 370)
4. Set Mode to DC.
5. Set Horizontal knob to Step Generator.
6. Set Vertical knob to approximately 10% of the maximum IH
specified.
Note: Due to large variation of holding current values, the
scale may have to be adjusted to observe holding current.
7. Set Number of Steps to 1.
8. Set Step/Offset Polarity to non-inverted (button extended,
on 577 button depressed).
9. Set Offset by depressing 0 (zero). (Press Aid and Oppose at
same time on 370.)
10. Set Terminal Selector to Step Generator-Emitter Grounded.
Procedure 8: IH(Forward)
To measure the IH (Forward) parameter:
1. Set Polarity to (+).
2. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
3. Increase Variable Collector Supply Voltage to maximum
position (100).
4. Set Step Family by depressing Single.
This could possibly cause the dot on the CRT to disappear,
depending on the vertical scale selected).
5. Decrease Variable Collector Supply Voltage to the point
where the line on the CRT changes to a dot. The position of
the beginning point of the line, just before the line becomes a
dot, represents the holding current value.
(Figure AN1006.13)
Figure AN1006.13 IH (Forward) = 8.2 mA
Procedure 9: IH(Reverse)
To measure the IH (Reverse) parameter:
1. Set Polarity to (–).
2. Repeat Procedure 7 measuring IH(Reverse). (Read measure-
ments from upper right corner of the screen.)
Procedure 10: IGT
To measure the IGT parameter:
1. Set Polarity to (+).
2. Set Number of Steps to 1. (Set number of steps to 0 (zero)
on 370.)
3. Set Offset by depressing Aid. (On 577, also set Zero button
to Offset. Button is extended.)
4. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at
same time on 370.)
5. Set Terminal Selector to Step Generator-Emitter Grounded.
6. Set Mode to Norm.
7. Set Max Peak Volts to 15 V. (16 V on 370)
8. Set Power Dissipation to 10 W.
9. Set Step Family by depressing Single.
10. Set Horizontal knob to 2 V/DIV.
11. Set Vertical knob to 50 mA/DIV.
12. Set Step/Offset Polarity to non-inverted position (button
extended, on 577 button depressed).
13. Set Variable Collector Supply Voltage until voltage
reaches 12 V on CRT.
14. After 12 V setting is completed, change Horizontal knob to
Step Generator.
Procedure 11: IGT – Quadrant I [MT2 (+) Gate (+)]
To measure the IGT – Quadrant I parameter:
1. Set Step/Offset Amplitude to approximately 10% of rated
IGT.
2. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
3. Gradually increase Offset Multiplier until device reaches
conduction point. (Figure AN1006.14) Measure IGT by follow-
ing horizontal axis to the point where the vertical line passes
through the axis. This measured value is IGT. (On 370, IGT is
numerically displayed on screen under offset value.)
Figure AN1006.14 IGT in Quadrant I = 18.8 mA
5
mA
100m
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
50
mA
IH
50
mA
10
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
5
mA
IGT
AN1006 Application Notes
http://www.teccor.com AN1006 - 10 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Procedure 12: IGT – Quadrant II [MT2 (+) Gate (-)]
To measure the IGT – Quadrant II parameter:
1. Set Step/Offside Polarity by depressing Invert (release but-
ton on 577).
2. Set Polarity to (+).
3. Set observed dot to bottom right corner of CRT grid by turn-
ing the horizontal position knob. When Quadrant II testing is
complete, return dot to original position.
4. Repeat Procedure 11.
Procedure 13: IGT – Quadrant III [MT2 (-) Gate (-)]
To measure the IGT – Quadrant III parameter:
1. Set Polarity to (–).
2. Set Step/Offset Polarity to non-inverted position (button
extended, on 577 button depressed).
3. Repeat Procedure 11. (Figure AN1006.15)
Figure AN1006.15 IGT in Quadrant III = 27 mA
Procedure 14: IGT – Quadrant IV [MT2 (-) Gate (+)]
To measure the IGT – Quadrant IV parameter:
1. Set Polarity to (–).
2. Set Step/Offset Polarity by depressing Invert (release but-
ton on 577).
3. Set observed dot to top left corner of CRT grid by turning the
Horizontal position knob. When Quadrant IV testing is com-
plete, return dot to original position.
4. Repeat Procedure 11.
Procedure 15: VGT
To measure the VGT parameter:
1. Set Polarity to (+).
2. Set Number of Steps to 1. (Set steps to 0 (zero) on 370.)
3. Set Offset by depressing Aid. (On 577, also set 0 (zero) but-
ton to Offset. Button is extended.)
4. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at
same time on 370.)
5. Set Terminal Selector to Step Generator-Emitter Grounded.
6. Set Mode to Norm.
7. Set Max Peak Volts to 15 V. (16 V on 370)
8. Set Power Dissipation to 10 W.
9. Set Step Family by depressing Single.
10. Set Horizontal knob to 2 V/DIV.
11. Set Step/Offset Polarity to non-inverted position (button
extended, on 577 button depressed).
12. Set Current Limit to 500 mA (not available on 577).
13. Increase Variable Collector Supply Voltage until voltage
reaches 12 V on CRT.
14. After 12 V setting is complete, change Horizontal knob to
Step Generator.
Procedure 16: VGT – Quadrant I [MT2 (+) Gate (+)]
To measure the VGT – Quadrant I parameter:
1. Set Step/Offset Amplitude to 20% of rated VGT.
2. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
3. Gradually increase Offset Multiplier until device reaches
conduction point. (Figure AN1006.16) Measure VGT by fol-
lowing horizontal axis to the point where the vertical line
passes through the axis. This measured value will be VGT.
(On 370, VGT will be numerically displayed on screen under
offset value.)
Figure AN1006.16 VGT in Quadrant I = 780 mV
Procedure 17: VGT – Quadrant II [MT2 (+) Gate (-)]
To measure the VGT – Quadrant II parameter:
1. Set Step/Offset Polarity by depressing Invert (release but-
ton on 577).
2. Set Polarity to (+).
3. Set observed dot to bottom right corner of CRT grid by turn-
ing the horizontal position knob. When Quadrant II testing is
complete, return dot to original position.
4. Repeat Procedure 16.
Procedure 18: VGT – Quadrant III [MT2 (-) Gate (-)]
To measure the VGT – Quadrant III parameter:
1. Set Polarity to (–).
2. Set Step/Offset Polarity to non-inverted position (button
extended, on 577 button depressed).
50
mA
10
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
5
mA
IGT
50
mA
500
mV
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
100m
VGT
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 11 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
3. Repeat Procedure 16. (Figure AN1006.17)
Figure AN1006.17 VGT in Quadrant III = 820 mV
Procedure 19: VGT – Quadrant IV [MT2 (-) Gate (+)]
To measure the VGT – Quadrant IV parameter:
1. Set Polarity to (–).
2. Set Step/Offset Polarity by depressing Invert (release but-
ton on 577).
3. Set observed dot to top left corner of CRT grid by turning the
Horizontal position knob. When testing is complete in Quad-
rant IV, return dot to original position.
4. Repeat Procedure 16.
Quadracs
Quadracs are simply triacs with an internally-mounted diac. As
with triacs, Quadracs are bidirectional AC switches which are
gate controlled for either polarity of main terminal voltage.
To connect the Quadrac:
1. Connect Trigger to Base Terminal (B).
2. Connect MT1 to Emitter Terminal (E).
3. Connect MT2 to Collector Terminal (C).
To begin testing, perform the following procedures.
Procedure 1: (+)VDRM, (+)IDRM, (-)VDRM, (-)IDRM
Note: The (+) and (-) symbols are used to designate the polarity
of MT2 with reference to MT1.
To measure the (+)VDRM, (+)IDRM, (-)VDRM, and (-)IDRM parameter:
1. Set Variable Collector Supply Voltage Range to appropri-
ate Max Peak Volts for device under test. (Value selected
should be equal to or greater than the device’s VDRM rating).
2. Set Horizontal knob to sufficient scale to allow viewing of
trace at the required voltage level. (The 100 V/DIV scale
should be used for testing devices having a VDRM rating of
600 V or greater; the 50 V/DIV scale for testing parts rated
from 300 V to 500 V, and so on).
3. Set Mode to Leakage.
4. Set Polarity to (+).
5. Set Power Dissipation to 0.5 W. (0.4 W on 370)
6. Set Terminal Selector to Emitter Grounded-Open Base.
7. Set Vertical knob to ten times the maximum leakage current
(IDRM) specified for the device.
Note: The CRT readout should show 1% of the maximum
leakage current. The vertical scale is divided by 1,000 when
the leakage mode is used.
Procedure 2: (+)VDRM and (+)IDRM
To measure the (+)VDRM and (+)IDRM parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
2. Increase Variable Collector Supply Voltage to the rated
VDRM of the device and observe the dot on the CRT. (Read
across horizontally from the dot to the vertical current scale.)
This measured value is the leakage current.
(Figure AN1006.18)
WARNING: Do NOT exceed VDRM/VRRM rating of SCRs, triacs,
or Quadracs. These devices can be damaged.
Figure AN1006.18 (+)IDRM = 51 nA at (+)VDRM = 400 V
Procedure 3: (-)VDRM and (-)IDRM
To measure the (-)VDRM and (-)IDRM parameter:
1. Set Polarity to (–).
2. Repeat Procedures 1 and 2. (Read measurements from
upper right corner of screen).
Procedure 4: VBO, IBO, VBO
(Quadrac Trigger Diac or Discrete Diac)
To connect the Quadrac:
1. Connect MT1 to Emitter Terminal (E).
2. Connect MT2 to Collector Terminal (C).
3. Connect Trigger Terminal to MT2 Terminal through a 10
resistor.
To measure the VBO, IBO, and VBO parameter:
1. Set Variable Collector Supply Voltage Range to 75 Max
Peak Volts.(80 V on 370)
2. Set Horizontal knob to 10 V/DIV.
3. Set Vertical knob to 50 µA/DIV.
4. Set Polarity to AC.
5. Set Mode to Norm.
6. Set Power Dissipation to 0.5 W. (0.4 W on 370)
50
mA
100m
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
500
mV
VGT
50
nA
50
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
VDRM
IDRM
AN1006 Application Notes
http://www.teccor.com AN1006 - 12 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
7. Set Terminal Selector to Emitter Grounded-Open Base.
Procedure 5: VBO (Positive and Negative)
To measure the VBO (Positive and Negative) parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
2. Set Variable Collector Supply Voltage to 55 V (65 V on
370) and apply voltage to the device under test (D.U.T.)
using the Left Hand Selector Switch. The peak voltage at
which current begins to flow is the VBO value.
(Figure AN1006.19)
Figure AN1006.19 (+)VBO = 35 V; (-)VBO = 36 V; (±)IBO < 10 A
Procedure 6: IBO (Positive and Negative)
To measure the IBO (Positive and Negative) parameter, at the VBO point,
measure the amount of device current just before the device
reaches the breakover point. The measured current at this point
is the IBO value.
Note: If IBO is less than 10 µA, the current cannot readily be seen
on curve tracer.
Procedure 7: VBO (Voltage Breakover Symmetry)
To measure the VBO (Voltage Breakover Symmetry) parameter:
1. Measure positive and negative VBO values per Procedure 5.
2. Subtract the absolute value of VBO (-) from VBO (+).
The absolute value of the result is:
VBO = [ I+VBO I - I -VBO I ]
Procedure 8: VTM (Forward and Reverse)
To test VTM, the Quadrac must be connected the same as when
testing VBO, IBO, and VBO.
To connect the Quadrac:
1. Connect MT1 to Emitter Terminal (E).
2. Connect MT2 to Collector Terminal (C).
3. Connect Trigger Terminal to MT2 Terminal through a 10
resistor.
Note the following:
Due to the excessive amount of power that can be generated in
this test, only parts with an IT(RMS) rating of 8 A or less should be
tested on standard curve tracer. If testing devices above 8 A, a
Tektronix model 176 high-current module is required.
A Kelvin test fixture is required for this test. If a Kelvin fixture is
not used, an error in measurement of VTM will result due to volt-
age drop in fixture. If a Kelvin fixture is not available,
Figure AN1006.3 shows necessary information to wire a test
fixture with Kelvin connections.
To measure the VTM (Forward and Reverse) parameter:
1. Set Terminal Selector to Emitter Grounded-Open Base.
2. Set Max Peak Volts to 75 V. (80 V on 370)
3. Set Mode to Norm.
4. Set Horizontal knob to 0.5 V/DIV.
5. Set Power Dissipation to 220 watts (100 watts on a 577).
6. Set Vertical knob to a sufficient setting to allow the viewing
of 1.4 times the IT(RMS) rating of the device IT(peak) on the CRT.
Procedure 9: VTM(Forward)
To measure the VTM (Forward) parameter:
1. Set Polarity to (+).
2. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
3. Increase Variable Collector Supply Voltage until current
reaches rated IT(peak), which is 1.4 times the IT(RMS) rating of
the triac under test.
Note: Model 370 current is limited to 10 A.
WARNING: Limit test time to 15 seconds maximum.
4. To measure VTM, follow along horizontal scale to the point
where the trace crosses the IT(peak) value. This horizontal dis-
tance is the VTM value. (Figure AN1006.20)
Figure AN1006.20 VTM (Forward) = 1.1 V at IPK = 5.6 A
Procedure 10: VTM(Reverse)
To measure the VTM (Reverse) parameter:
1. Set Polarity to (–).
2. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
3. Increase Variable Collector Supply Voltage until current
reaches rated IT(peak).
4. Measure VTM(Reverse) the same as in Procedure 8. (Read mea-
surements from upper right corner of screen).
50
A
10
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
V
BO
I
BO +VBO
+IBO
500
mV
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
IPK
VTM
1
A
()k
DIV
9m
PER
DIV
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 13 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Procedure 11: IH(Forward and Reverse)
For these steps, it is again necessary to connect the Trigger to
MT2 through a 10 resistor. The other connections remain the
same.
To measure the IH (Forward and Reverse) parameter:
1. Set Power Dissipation to 50 W.
2. Set Max Peak Volts to 75 V. (80 V on 370)
3. Set Mode to DC.
4. Set Horizontal knob to 5 V/DIV.
5. Set Vertical knob to approximately 10% of the maximum IH
specified.
Note: Due to large variations of holding current values, the
scale may have to be adjusted to observe holding current.
6. Set Terminal Selector to Emitter Grounded-Open Base.
Procedure 12: IH(Forward)
To measure the IH (Forward) parameter:
1. Set Polarity to (+).
2. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
3. Increase Variable Collector Supply Voltage to maximum
position (100).
Note: Depending on the vertical scale being used, the dot
may disappear completely from the screen.
4. Decrease Variable Collector Supply Voltage to the point
where the line on the CRT changes to a dot. The position of
the beginning point of the line, just before the line changes to
a dot, represents the IH value. (Figure AN1006.21)
Figure AN1006.21 IH (Forward) = 18 mA
Procedure 13: IH(Reverse)
To measure the IH (Reverse) parameter:
1. Set Polarity to (–).
2. Continue testing per Procedure 12 for measuring IH (Reverse).
Sidacs
The sidac is a bidirectional voltage-triggered switch. Upon appli-
cation of a voltage exceeding the sidac breakover voltage point,
the sidac switches on through a negative resistance region (simi-
lar to a diac) to a low on-state voltage. Conduction continues until
current is interrupted or drops below minimum required holding
current.
To connect the sidac:
1. Connect MT1 to the Emitter Terminal (E).
2. Connect MT2 to the Collector Terminal (C).
To begin testing, perform the following procedures.
Procedure 1: (+) VDRM, (+)IDRM, (-)VDRM, (-)IDRM
Note: The (+) and (-) symbols are used to designate the polarity
of MT2 with reference to MT1.
To measure the (+)VDRM, (+)IDRM, (-)VDRM, and (-)IDRM parameter:
1. Set Variable Collector Supply Voltage Range to 1500 Max
Peak Volts.
2. Set Horizontal knob to 50 V/DIV.
3. Set Mode to Leakage.
4. Set Polarity to (+).
5. Set Power Dissipation to 2.2 W. (2W on 370)
6. Set Terminal Selector to Emitter Grounded-Open Base.
7. Set Vertical knob to 50 µA/DIV. (Due to leakage mode, the
CRT readout will show 50 nA.)
Procedure 2: (+)VDRM and (+)IDRM
To measure the (+)VDRM and (+)IDRM parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
2. Increase Variable Collector Supply Voltage to the rated
VDRM of the device and observe the dot on the CRT. Read
across horizontally from the dot to the vertical current scale.
This measured value is the leakage current.
(Figure AN1006.22)
Figure AN1006.22 IDRM = 50 nA at VDRM = 90 V
5
mA
5
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
IH
50
nA
50
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
VDRM
IDRM
AN1006 Application Notes
http://www.teccor.com AN1006 - 14 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Procedure 3: (-) VDRM and (-) IDRM
To measure the (-)VDRM and (-)IDRM parameter:
1. Set Polarity to (–).
2. Repeat Procedures 1 and 2. (Read measurements from
upper right corner of the screen).
Procedure 4: VBO and IBO
To measure the VBO and IBO parameter:
1. Set Variable Collector Supply Voltage Range to 1500 Max
Peak Volts. (2000 V on 370)
2. Set Horizontal knob to a sufficient scale to allow viewing of
trace at the required voltage level (50 V/DIV for 95 V to
215 V VBO range devices and 100 V/DIV for devices having
VBO 15 V).
3. Set Vertical knob to 50 µA/DIV.
4. Set Polarity to AC.
5. Set Mode to Norm.
6. Set Power Dissipation to 10 W.
7. Set Terminal Selector to Emitter Grounded-Open Base.
8. Set Left-Right Terminal Jack Selector to correspond with
location of test fixture.
Procedure 5: VBO
To measure the VBO parameter, increase Variable Collector
Supply Voltage until breakover occurs. (Figure AN1006.23) The
voltage at which current begins to flow and voltage on CRT does
not increase is the VBO value.
Figure AN1006.23 (+)VBO = 100 V; (-)VBO = 100 V; (±)IBO < 10 µA
Procedure 6: IBO
To measure the IBO parameter, at the VBO point, measure the
amount of device current just before the device reaches the
breakover mode. The measured current at this point is the IBO
value.
Note: If IBO is less than 10 µA, the current cannot readily be seen
on the curve tracer.
Procedure 7: IH(Forward and Reverse)
To measure the IH (Forward and Reverse) parameter:
1. Set Variable Collector Supply Voltage Range to 1500 Max
Peak Volts (400 V on 577; 2000 V on 370).
2. Set Horizontal knob to a sufficient scale to allow viewing of
trace at the required voltage level (50 V/DIV for devices with
VBO range from 95 V to 215 V and 100 V/DIV for devices
having VBO 215 V).
3. Set Vertical knob to 20% of maximum holding current speci-
fied.
4. Set Polarity to AC.
5. Set Mode to Norm.
6. Set Power Dissipation to 220 W (100 W on 577).
7. Set Terminal Selector to Emitter Grounded-Open Base.
8. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
WARNING: Limit test time to 15 seconds maximum.
9. Increase Variable Collector Supply Voltage until device
breaks over and turns on. (Figure AN1006.24)
Figure AN1006.24 IH = 48 mA in both forward and reverse
directions
IH is the vertical distance between the center horizontal axis and
the beginning of the line located on center vertical axis.
Procedure 8: VTM(Forward and Reverse)
To measure the VTM (Forward and Reverse) parameter:
1. Set Variable Collector Supply Voltage Range to 350 Max
Peak Volts. (400 V on 370)
2. Set Horizontal knob to 0.5 V/DIV.
3. Set Vertical knob to 0.5 A/DIV.
4. Set Polarity to (+).
5. Set Mode to Norm.
6. Set Power Dissipation to 220 W (100 W on 577).
7. Set Terminal Selector to Emitter Grounded-Open Base.
Before continuing with testing, note the following:
A Kelvin test fixture is required for this test. If a Kelvin fixture is
not used, an error in measurement of VTM will result due to volt-
age drop in fixture. If a Kelvin fixture is not available,
Figure AN1006.3 shows necessary information to wire a test
fixture with Kelvin Connections.
50
A
50
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
V
BO
+VBO
+IBO
I
BO
20
mA
50
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
IH
IH
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 15 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
To continue testing, perform the following procedures.
Procedure 9: VTM(Forward)
To measure the VTM (Forward) parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
2. Increase Variable Collector Supply Voltage until current
reaches rated IT(peak), which is 1.4 times the IT(RMS) rating of
the sidac.
Note: Model 370 current is limited. Set to 400 mA. Check for
1.1 V MAX.
WARNING: Limit test time to 15 seconds.
3. To measure VTM, follow along horizontal scale to the point
where the trace crosses the IT(peak) value. This horizontal dis-
tance is the VTM value. (Figure AN1006.25)
Figure AN1006.25 VTM (Forward) = 950 mV at IPK = 1.4 A
Procedure 10: VTM(Reverse)
To measure the VTM (Reverse) parameter:
1. Set Polarity to (–).
2. Repeat Procedure 8 to measure VTM(Reverse).
Diacs
Diacs are voltage breakdown switches used to trigger-on triacs
and non-sensitive SCRs in phase control circuits.
Note: Diacs are bi-directional devices and can be connected in
either direction.
To connect the diac:
1. Connect one side of the diac to the Collector Terminal (C).
2. Connect other side of the diac to the Emitter Terminal (E).
To begin testing, perform the following procedures.
Procedure 1: Curve Tracer Setup
To set the curve tracer and begin testing:
1. Set Variable Collector Supply Voltage Range to 75 Max
Peak Volts. (80 V on 370)
2. Set Horizontal knob to sufficient scale to allow viewing of
trace at the required voltage level (10 V to 20 V/DIV depend-
ing on device being tested).
3. Set Vertical knob to 50 µA/DIV.
4. Set Polarity to AC.
5. Set Mode to Norm.
6. Set Power Dissipation to 0.5 W. (0.4 W on 370)
7. Set Terminal Selector to Emitter Grounded-Open Base.
Procedure 2: VBO
To measure the VBO parameter:
1. Set Left-Right Terminal Jack Selector to correspond with
the location of the test fixture.
2. Set Variable Collector Supply Voltage to 55 V (65 V for
370) and apply voltage to device under test (D.U.T.), using
Left-Right-Selector Switch. The peak voltage at which cur-
rent begins to flow is the VBO value. (Figure AN1006.26)
Figure AN1006.26 (+)VBO = 35 V; (-)VBO = 36 V; (±)IBO < 15 µA;
(-)IBO < 10 µA and Cannot Be Read Easily
Procedure 3: IBO
To measure the IBO parameter, at the VBO point, measure the
amount of device current just before the device reaches the
breakover mode. The measured current at this point is the IBO
value.
Note: If IBO is less than 10 µA, the current cannot readily be seen
on the curve tracer.
Procedure 4: VBO(Voltage Breakover Symmetry)
To measure the VBO (Voltage Breakover Symmetry) parameter:
1. Measure positive and negative values of VBO as shown in
Figure AN1006.26.
2. Subtract the absolute value of VBO(-) from VBO(+).
The absolute value of the result is:
VBO = [ I +VBO I - I -VBO I ]
500
mA
500
mV
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
VTM
IPK
50
A
10
V
PER
V
E
R
T
DIV
PER
H
O
R
I
Z
DIV
PER
S
T
E
P
()k
DIV
9m
PER
DIV
+VBO
+IBO
I
BO V
BO
AN1006 Application Notes
http://www.teccor.com AN1006 - 16 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Model 370 Curve Tracer Procedure Notes
Because the curve tracer procedures in this application note are
written for the Tektronix model 576 curve tracer, certain settings
must be adjusted when using model 370. Variable Collector Sup-
ply Voltage Range and Power Dissipation controls have different
scales than model 576. The following table shows the guidelines
for setting Power Dissipation when using model 370.
(Figure AN1006.27)
Although the maximum power setting on the model 370 curve
tracer is 200 W, the maximum collector voltage available is only
400 V at 220 W. The following table shows the guidelines for
adapting Collector Supply Voltage Range settings for model 370
curve tracer procedures:
The following table shows the guidelines for adapting terminal
selector knob settings for model 370 curve tracer procedures:
Model 576 Model 370
If power dissipation is 0.1 W, set at 0.08 W.
If power dissipation is 0.5 W, set at 0.4 W.
If power dissipation is 2.2 W, set at 2 W.
If power dissipation is 10 W, set at 10 W.
If power dissipation is 50 W, set at 50 W.
If power dissipation is 220 W, set at 220 W.
Model 576 Model 370
If voltage range is 15 V, set at 16 V.
If voltage range is 75 V, set at 80 V.
If voltage range is 350 V, set at 400 V.
If voltage range is 1500 V, set at 2000 V.
Model 576 Model 370
If Step generator (base) is emitter grounded, then Base Step generator is
emitter common.
If Emitter grounded is open base, then Base open is emitter
common.
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 17 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1006.27 Tektronix Model 370 Curve Tracer
PROGRAMMABLE
CURVE TRACER
SETUP MEMORYDISPLAY
INTENSITY
POSITION
GPIB PLOTTER
STEP GENERATOR
AUX SIPPLY
STEP/OFFSET
AMPLITUDE
CURSOR
MEASUREMENT
HORIZONTAL
VOLTS/DIV
VERTICAL
CURRENT/DIV
OFFSET
POLARITY
COLLECTOR SUPPLY
COLLECTOR SUPPLY
VARIABLE
C
B
E
C
SENSE
E
SENSE
B
SENSE
C
B
E
C
SENSE
E
SENSE
B
SENSE
POWER
MAX PEAK
POWER
WATTS
TERMINAL
JACKS
GATE/TRIGGER
MT2/ANODE
MT1/CATHODE
VARIABLE
COLLECTOR
SUPPLY VOLTAGE
RANGE
TERMINAL
SELECTOR
VARIABLE
COLLECTOR
SUPPLY
VOLTAGE
MAX PEAK
POWER
(POWER DISSIPATION)
OFFSET
STEP/OFFSET
AMPLITUDE
(AMPS/VOLTS)
STEP/OFFSET
POLARITY
HORIZONTAL
VOLTAGE CONTROL
Note: All Voltage
Settings Will Be
Referenced to
"Collector"
CRT
LEFT-RIGHT SELECTOR
FOR TERMINAL JACKS
LEFT RIGHT
BOTH
KELVIN TERMINALS
USED WHEN
MEASURING VTM OR VFM
COLLECTOR
STEP
FAMILY
MAX PEAK
VOLTS
POLARITY
VERT/DIV
CURSOR
HORZ/DIV
CURSOR
PER STEP
OFFSET
OR gm/DIV
AUX SUPPLY
CONFIGURATION
AN1006 Application Notes
http://www.teccor.com AN1006 - 18 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Model 577 Curve Tracer Procedure Notes
Because the curve tracer procedures in this application note are written for the Tektronix model 576 curve tracer, certain settings must
be adjusted when using model 577. Model 576 curve tracer has separate controls for polarity (AC,+,-) and mode (Norm, DC, Leakage),
whereas Model 577 has only a polarity control. The following table shows the guidelines for setting Collector Supply Polarity when
using model 577. (Figure AN1006.28)
One difference between models 576 and 577 is the Step/Offset
Polarity setting. The polarity is inverted when the button is
depressed on the Model 576 curve tracer. The Model 577 is
opposite the Step/Offset Polarity is “inverted” when the button
is extended and “Normal” when the button is depressed. The
Step/Offset Polarity is used only when measuring IGT and VGT of
triacs and Quadracs in Quadrants l through lV.
Also, the Variable Collector Supply Voltage Range and Power
Dissipation controls have different scales than model 576. The
following table shows the guidelines for setting Power Dissipation
when using model 577.
Although the maximum power setting on model 576 curve tracer
is 220 W (compared to 100 W for model 577), the maximum col-
lector current available is approximately the same. This is due to
the minimum voltage range on model 577 curve tracer being
6.5 V compared to 15 V for model 576. The following table shows
the guidelines for adapting Collector Voltage Supply Range set-
tings for model 577 curve tracer procedures:
Model 576 Model 577
If using Leakage mode along with polarity setting of +(NPN) and -(PNP),
[vertical scale divided by 1,000],
set Collector Supply Polarity to either +DC or -DC, depending on polarity setting
specified in the procedure. The vertical scale is read directly from the scale on the
control knob.
If using DC mode along with either +(NPN) or -(PNP) polarity, set Collector Supply Polarity to either +DC or -DC depending on polarity
specified.
If using Norm mode along with either +(NPN) or -(PNP) polarity, set Collector Supply Polarity to either +(NPN) or -(PNP) per specified procedure.
If using Norm mode with AC polarity, set Collector Supply Polarity to AC.
Model 576 Model 577
If power dissipation is 0.1 W, set at 0.15 W.
If power dissipation is 0.5 W, set at 0.6 W.
If power dissipation is 2.2 W, set at 2.3 W.
If power dissipation is 10 W, set at 9 W.
If power dissipation is 50 W, set at 30 W.
If power dissipation is 220 W, set at 100 W.
Model 576 Model 577
If voltage range is 15 V, set at either 6.5 V or 25 V, depending on parameter
being tested. Set at 6.5 V when measuring VTM (to
allow maximum collector current) and set at 25 V
when measuring IGT and VGT.
If voltage range is 75 V, set at 100 V.
If voltage range is 1500 V, set at 1600 V.
Application Notes AN1006
©2002 Teccor Electronics AN1006 - 19 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1006.28 Tektronix Model 577 Curve Tracer
BRIGHTNESS
STORE
INTENSITY
FOCUS
POWER
STEP/OFFSET
AMPLIFIER
POLARITY
OFFSET
MULTI
POSITION
POSITION
DISPLAY
MAX PEAK
VOLTS
VARIABLE
COLLECTOR%
COLLECTOR SUPPLY
POLARITY
STEP
RATE
COLLECTOR SUPPLY
TERMINAL
JACKS
SENSE SENSE
SENSE SENSE
C
B
E
C
B
E
EE
CC
KELVIN TERMINALS
USED WHEN MEASURING VTM OR VFM
VARIABLE
VOLTAGE
LOOPING
COMPENSATION
STEP GEN
OUTPUT
(off)
VARIABLE
OUTPUT
EXT BASE
OR EMIT
INPUT
VERTICAL
RIGHTLEFT
Avoid
extremely
bright display
Adjust for
best focus
STEP
GENERATOR
SECTION
NUMBER OF STEPS
STEP/OFFSET
POLARITY
HORIZONTAL
VOLTAGE CONTROL
Note: All Voltage
Settings Will Be
Referenced to
"Collector"
Indicates Dangerous
Voltages on Test
jacks
VERTICAL CURRENT
SUPPLY
LEFT-RIGHT
SELECTOR FOR
TERMINAL JACKS
Indicates
Collector
Supply
Disabled
Watch high power
settings. Can damage
device under test
MAX PEAK POWER
(POWER DISSIPATION)
VARIABLE COLLECTOR
SUPPLY VOLTAGE RANGE
CRT
VARIABLE COLLECTOR
SUPPLY VOLTAGE
MT1/CATHODE
GATE/TRIGGER
MT2/ANODE
Terminal Selector
GROUND
BEAM
FINDER
STEP
FAMILY
Notes
©2002 Teccor Electronics AN1007 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
7
Thyristors Used as AC Static Switches and Relays
Introduction
Since the SCR and the triac are bistable devices, one of their
broad areas of application is in the realm of signal and power
switching. This application note describes circuits in which these
thyristors are used to perform simple switching functions of a
general type that might also be performed non-statically by vari-
ous mechanical and electromechanical switches. In these appli-
cations, the thyristors are used to open or close a circuit
completely, as opposed to applications in which they are used to
control the magnitude of average voltage or energy being deliv-
ered to a load. These latter types of applications are described in
detail in “Phase Control Using Thyristors” (AN1003).
Static AC Switches
Normally Open Circuit
The circuit shown in Figure AN1007.1 provides random (any-
where in half-cycle), fast turn-on (<10 µs) of AC power loads and
is ideal for applications with a high-duty cycle. It eliminates com-
pletely the contact sticking, bounce, and wear associated with
conventional electromechanical relays, contactors, and so on. As
a substitute for control relays, thyristors can overcome the differ-
ential problem; that is, the spread in current or voltage between
pickup and dropout because thyristors effectively drop out every
half cycle. Also, providing resistor R1 is chosen correctly, the cir-
cuits are operable over a much wider voltage range than is a
comparable relay. Resistor R1 is provided to limit gate current
(IGTM) peaks. Its resistance plus any contact resistance (RC) of the
control device and load resistance (RL) should be just greater
than the peak supply voltage divided by the peak gate current
rating of the triac. If R1 is set too high, the triacs may not trigger
at the beginning of each cycle, and phase control of the load will
result with consequent loss of load voltage and waveform distor-
tion. For inductive loads, an RC snubber circuit, as shown in Fig-
ure AN1007.1, is required. However, a snubber circuit is not
required when an alternistor is used.
Figure AN1007.2 illustrates an analysis to better understand a
typical static switch circuit. The circuit operation occurs when
switch S1 is closed, since the triac Q1 will initially be in the block-
ing condition. Current flow will be through load RL, S1, R1, and
gate to MT1 junction of the thyristor. When this current reaches
the required value of IGT, the MT2 to MT1 junctions will switch to
the conduction state and the voltage from MT2 to MT1 will be VT
.
As the current approaches the zero crossing, the load current will
fall below holding current turning the triac Q1 device off until it is
refired in the next half cycle. Figure AN1007.3 illustrates the volt-
age waveform appearing across the MT2 to MT1 terminals of Q1.
Note that the maximum peak value of current which S1 will carry
would be 25 mA since Q1 has a 25 mA maximum IGT rating. Addi-
tionally, no arcing of a current value greater than 25 mA when
opening S1 will occur when controlling an inductive load. It is
important also to note that the triac Q1 is operating in Quadrants I
and III, the more sensitive and most suitable gating modes for tri-
acs. The voltage rating of S1 (mechanical switch or reed switch)
must be equivalent to or greater than line voltage applied.
Figure AN1007.1 Basic Triac Static Switch
Figure AN1007.2 Analysis of Static Switch
Load
RL
R1
100
R2
100
S1
Control
Device
Reed
Switch
For
Inductive
Loads
C1
0.1 µF
Tr i a c
R1 √2•V (RL + RC) Where IGTM is Peak Gate Current
Rating of Triac
IGTM
VRMS
MT1
IGT
MT2
AC Voltage Input
120 V rms, 60 Hz
VIN
RL
S1
IGT VGT
Q1
+
-
Load
R1
G
Q2008L4
AN1007
AN1007 Application Notes
http://www.teccor.com AN1007 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1007.3 Waveform Across Static Switch
A typical example would be in the application of this type circuit
for the control of 5 A resistive load with 120 V rms input voltage.
Choosing a value of 100 for R1 and assuming a typical value of
1 V for the gate to MT1 (VGT) voltage, we can solve for VP by the
following:
VP = IGT (RL + R1) + VGT
Note: RC is not included since it is negligible.
VP = 0.025 (24 + 100) + 1.0 = 4.1 V
Additionally the turn-on angle is
[ θ = 1.4°]
The power lost by the turn-on angle is essentially zero. The
power dissipation in the gate resistor is very minute. A 100 ,
0.25 W rated resistor may safely be used. The small turn-on
angle also ensures that no appreciable RFI is generated.
The relay circuit shown in Figure AN1007.1 and Figure AN1007.2
has several advantages in that it eliminates contact bounce,
noise, and additional power consumption by an energizing coil
and can carry an in-rush current of many times its steady state
rating.
The control device S1 indicated can be either electrical or
mechanical in nature. Light-dependent resistors and light- acti-
vated semiconductors, optocoupler, magnetic cores, and mag-
netic reed switches are all suitable control elements. Regardless
of the switch type chosen, it must have a voltage rating equal to
or greater than the peak line voltage applied. In particular, the
use of hermetically sealed reed switches as control elements in
combination with triacs offers many advantages. The reed switch
can be actuated by passing DC current through a small coiled
wire or by the proximity of a small magnet. In either case, com-
plete electrical isolation exists between the control signal input,
which may be derived from many sources, and the switched
power output. Long life of the triac/reed switch combination is
ensured by the minimal volt-ampere switching load placed on the
reed switch by the triac triggering requirements. The thyristor rat-
ings determine the amount of load power that can be switched.
Normally Closed Circuit
With a few additional components, the thyristor can provide a
normally closed static switch function. The critical design portion
of this static switch is a clamping device to turn off/eliminate gate
drive and maintain very low power dissipation through the clamp-
ing component plus have low by-pass leakage around the power
thyristor device. In selecting the power thyristor for load require-
ments, gate sensitivity becomes critical to maintain low power
requirements. Either sensitive SCRs or sensitive logic triacs must
be considered, which limits the load in current capacity and type.
However, this can be broader if an extra stage of circuitry for gat-
ing is permitted.
Figure AN1007.4 illustrates an application using a normally
closed circuit driving a sensitive SCR for a simple but precise
temperature controller. The same basic principle could be applied
to a water level controller for a motor or solenoid. Of course, SCR
and diode selection would be changed depending on load current
requirements.
Figure AN1007.4 Normally Closed Temperature Controller
A mercury-in-glass thermostat is an extremely sensitive measur-
ing instrument, capable of sensing changes in temperature as
small as 0.1 °C. Its major limitation lies in its very low current-
handling capability for reliability and long life, and contact current
should be held below 1 mA. In the circuit of Figure AN1007.4, the
S2010LS2 SCR serves as both current amplifier for the Hg ther-
mostat and as the main load switching element.
With the thermostat open, the SCR will trigger each half cycle
and deliver power to the heater load. When the thermostat
closes, the SCR can no longer trigger and the heater shuts off.
Maximum current through the thermostat in the closed position is
less than 250 µA rms.
Figure AN1007.5 shows an all solid state, optocoupled, normally
closed switch circuit. By using a low voltage SBS triggering
device, this circuit can turn on with only a small delay in each half
cycle and also keep gating power low. When the optocoupled
transistor is turned on, the gate drive is removed with only a few
milliamps of bypass current around the triac power device. Also,
by use of the BS08D and 0.1 µF, less sensitive triacs and alter-
nistors can be used to control various types of high current loads.
120 V rms (170 V peak)
V
P
-
1 V rms or 1.6 V peak MAX
V
P
+
V
T
+
V
T
-
θ
θSin 14.1
170VPK
---------------------=
1000 W Heater Load
120 V ac
60 CPS
D2015L
CR
1
—CR
4
CR
4
CR
3
CR
1
CR
2
S2010LS2
0.1 µF
R
1
510 k
SCR
1
Twist Leads to Minimize
Pickup
Hg in Glass Thermostat
Application Notes AN1007
©2002 Teccor Electronics AN1007 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1007.5 Normally Closed Switch Circuit
Optocoupled Driver Circuits
Random Turn-on, Normally Open
Many applications use optocouplers to drive thyristors. The com-
bination of a good optocoupler and a triac or alternistor makes an
excellent, inexpensive solid state relay. Application information
provided by the optocoupler manufacturers is not always best for
application of the power thyristor. Figure AN1007.6 shows a stan-
dard circuit for a resistive load.
Figure AN1007.6 Optocoupled Circuit for Resistive Loads (Triac or
Alternistor)
A common mistake in this circuit is to make the series gate resis-
tor too large in value. A value of 180 is shown in a typical appli-
cation circuit by optocoupler manufacturers. The 180 is based
on limiting the current to 1 A peak at the peak of a 120 V line
input. This is good for protection of the optocoupler output triac,
as well as the gate of the power triac on a 120 V line; however, it
must be lowered if a 24 V line is being controlled, or if the RL
(resistive load) is 200 W or less. This resistor limits current for
worst case turn-on at the peak line voltage, but it also sets turn-
on point (conduction angle) in the sine wave, since triac gate cur-
rent is determined by this resistor and produced from the sine
wave voltage as illustrated in Figure AN1007.2. The load resis-
tance is also important, since it can also limit the amount of avail-
able triac gate current. A 100 gate resistor would be a better
choice in most 120 V applications with loads greater than 200 W
and optocouplers from Quality Technologies or Vishay with opto-
coupler output triacs that can handle 1.7 APK (ITSM rating) for a
few microseconds at the peak of the line. For loads less than
200 W, the resistor can be dropped to 22 . Remember that if the
gate resistor is too large in value, the triac will not turn on at all or
not turn on fully, which can cause excessive power dissipation in
the gate resistor, causing it to burn out. Also, the voltage and dv/
dt rating of the optocoupler's output device must be equal to or
greater than the voltage and dv/dt rating of the triac or alternistor
it is driving.
Figure AN1007.7 illustrates a circuit with a dv/dt snubber network
included. This is a typical circuit presented by optocoupler manu-
facturers.
Figure AN1007.7 Optocoupler Circuit for Inductive Loads (Triac or
Alternistor)
This “T” circuit hinges around one capacitor to increase dv/dt
capability to either the optocoupler output triac or the power triac.
The sum of the two resistors then forms the triac gate resistor.
Both resistors should then be standardized and lowered to
100 . Again, this sum resistance needs to be low, allowing as
much gate current as possible without exceeding the instanta-
neous current rating of the opto output triac or triac gate junction.
By having 100 for current limit in either direction from the
capacitor, the optocoupler output triac and power triac can be
protected against di/dt produced by the capacitor. Of course, it is
most important that the capacitor be connected between proper
terminals of triac. For example, if the capacitor and series resis-
tor are accidentally connected between the gate and MT2, the
triac will turn on from current produced by the capacitor, resulting
in loss of control.
For low current (mA) and/or highly inductive loads, it may be nec-
essary to have a latching network (3.3 k + 0.047 µF) connected
directly across the power triac. The circuit shown in Figure
AN1007.8 illustrates the additional latching network.
Load
Triac 51 k
0.02 µF
(4) IN4004
PS2502
+
120 V ac
Q2008L4
BS08D
Rin
VCC
16
4
180
G
RL
120 V
60 Hz
MT2
MT1
Hot
Neutral
Load Could Be
in Either Le
g
2
Rin
VCC
16
4
100
G
Neutral
2
100
ZL
120 V
60 Hz
MT2
MT1
Hot
0.1 µF
C1
AN1007 Application Notes
http://www.teccor.com AN1007 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1007.8 Optocoupler Circuit for Lower Current Inductive
Loads (Triac or Alternistor)
In this circuit, the series gate resistors are increased to 180
each, since a 240 V line is applied. Note that the load is placed
on the MT1 side of the power triac to illustrate that load place-
ment is not important for the circuit to function properly.
Also note that with standard U.S. residential 240 V home wiring,
both sides of the line are hot with respect to ground (no neutral).
Therefore, for some 240 V line applications, it will be necessary
to have a triac switch circuit in both sides of the 240 V line input.
If an application requires back-to-back SCRs instead of a triac or
alternistor, the circuit shown in Figure AN1007.9 may be used.
Figure AN1007.9 Optocoupled Circuit for Heavy-duty Inductive Loads
All application comments and recommendations for optocoupled
switches apply to this circuit. However, the snubber network can
be applied only across the SCRs as shown in the illustration. The
optocoupler should be chosen for best noise immunity. Also, the
voltage rating of the optocoupler output triac must be equal to or
greater than the voltage rating of SCRs.
Summary of Random Turn-on Relays
As shown in Figure AN1007.10, if the voltage across the load is
to be phase controlled, the input control circuitry must be syn-
chronized to the line frequency and the trigger pulses delayed
from zero crossing every half cycle. If the series gate resistor is
chosen to limit the peak current through the opto-driver to less
than 1 A, then on a 120 V ac line the peak voltage is 170 V;
therefore, the resistor is 180 . On a 240 V ac line the peak volt-
age is 340 V; therefore, the resistor should be 360 . These gate
pulses are only as long as the device takes to turn on (typically,
5 µs to 6 µs); therefore, 0.25 W resistor is adequate.
Figure AN1007.10 Random Turn-on Triac Driver
Select the triac for the voltage of the line being used, the current
through the load, and the type of load. Since the peak voltage of
a 120 V ac line is 170 V, you would choose a 200 V (MIN) device.
If the application is used in an electrically noisy industrial envi-
ronment, a 400 V device should be used. If the line voltage to be
controlled is 240 V ac with a peak voltage of 340 V, then use at
least a 400 V rated part or 600 V for more design margin. Selec-
tion of the voltage rating of the opto-driver must be the same or
higher than the rating of the power triac. In electrically noisy
industrial locations, the dv/dt rating of the opto-driver and the
triac must be considered.
The RMS current through the load and main terminals of the triac
should be approximately 70% of the maximum rating of the
device. However, a 40 A triac should not be chosen to control a
1 A load due to low latching and holding current requirements.
Remember that the case temperature of the triac must be main-
tained at or below the current versus temperature curve specified
on its data sheet. As with all semiconductors the lower the case
temperature the better the reliability. Opto-driven gates normally
do not use a sensitive gate triac. The opto-driver can supply up to
1 A gate pulses and less sensitive gate triacs have better dv/dt
capability. If the load is resistive, it is acceptable to use a stan-
dard triac. However, if the load is a heavy inductive type, then an
alternistor triac, or back-to-back SCRs as shown in Figure
AN1007.9, is recommended. A series RC snubber network may
or may not be necessary when using an alternistor triac. Nor-
mally a snubber network is not needed when using an alternistor
because of its high dv/dt and dv/dt(c) capabilities. However,
latching network as described in Figure AN1007.8 may be
needed for low current load variations.
Zero Crossing Turn-on, Normally Open
Relay Circuits
When a power circuit is mechanically switched on and off
mechanically, generated high-frequency components are gener-
ated that can cause interference problems such as RFI. When
power is initially applied, a step function of voltage is applied to
the circuit which causes a shock excitation. Random switch
opening stops current off, again generating high frequencies. In
addition, abrupt current interruption in an inductive circuit can
lead to high induced-voltage transients.
The latching characteristics of thyristors are ideal for eliminating
interference problems due to current interruption since these
devices can only turn off when the on-state current approaches
zero, regardless of load power factor.
On the other hand, interference-free turn-on with thyristors
requires special trigger circuits. It has been proven experimen-
6
R
in
V
cc
1180
G
240 V ac
MT2
MT1
2
180
0.1 µF
3
4
5
0.047 µF
3.3 k
Load
Rin
Vcc
1G120 V ac
2
30.1µF
Load
6
4
5
100
K
A
100
G
A
K
NS-SCR
NS-
SCR
Tr i a c o r
Alternistor
MT2
0.1µf
100
Load
MT1
Hot
Neutral
120/240 V ac
G
180 for 120 V ac
360 for 240 V ac
Input
Rin 16
5
4
3
2
Load could be here
instead of lower location
Application Notes AN1007
©2002 Teccor Electronics AN1007 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
tally that general purpose AC circuits will generate minimum
electromagnetic interference (EMI) if energized at zero voltage.
The ideal AC circuit switch, therefore, consists of a contact which
closes at the instant when voltage across it is zero and opens at
the instant when current through it is zero. This has become
known as “zero-voltage switching.”
For applications that require synchronized zero-crossing turn-on,
the illustration in Figure AN1007.11 shows a circuit which incor-
porates an optocoupler with a built-in zero-crossing detector
Figure AN1007.11 Optocoupled Circuit with Zero-crossing Turn-on
(Triac or Alternistor)
Also, this circuit includes a dv/dt snubber network connected
across the power triac. This typical circuit illustrates switching the
hot line; however, the load may be connected to either the hot or
neutral line. Also, note that the series gate resistor is low in value
(22 Ω), which is possible on a 120 V line and above, since zero-
crossing turn-on is ensured in any initial half cycle.
Summary of Zero Crossing Turn-on Circuits
Zero voltage crossing turn-on opto-drivers are designed to limit
turn-on voltage to less than 20 V. This reduces the amount of RFI
and EMI generated when the thyristor switches on. Because of
this zero turn-on, these devices cannot be used to phase control
loads. Therefore, speed control of a motor and dimming of a
lamp cannot be accomplished with zero turn-on opto-couplers.
Since the voltage is limited to 20 V or less, the series gate resis-
tor that limits the gate drive current has to be much lower with a
zero crossing opto-driver. With typical inhibit voltage of 5 V, an
alternistor triac gate could require a 160 mA at -30 °C (5 V/
0.16 A = 31 gate resistor). If the load has a high inrush current,
then drive the gate of the triac with as much current as reliably
possible but stay under the ITSM rating of the opto-driver. By using
22 for the gate resistor, a current of at least 227 mA is supplied
with only 5 V, but limited to 909 mA if the voltage goes to 20 V. As
shown in Figure AN1007.12, Figure AN1007.13, and Figure
AN1007.14, a 22 gate resistor is a good choice for various
zero crossing controllers.
Figure AN1007.12 Zero Crossing Turn-on Opto Triac Driver
Figure AN1007.13 Zero Crossing Turn-on Non-sensitive SCR Driver
Figure AN1007.14 Zero Crossing Turn-on Opto-sensitive Gate SCR
Driver
Rin
Vcc
1
120 V ac
MT2
MT1
2
3
Load
6
0.1 µF
4
5Hot
Neutral
Zero
Crossing
Circuit
G
100
22
Triac or
Alternistor
MT2
0.1µf
100
Load
MT1
Hot
Neutral
120/240 V ac
G
22
Input
Rin 16
5
4
3
2
Load could be here
instead of lower location
Zero
Crossing
Circuit
Rin 1G
120/240 V ac
2
30.1µF
Load
6
4
5
22
K
A
100
G
A
K
Non-sensitive Gate SCRs
Load could be here
instead of lower location
Zero
Crossing
Circuit
Input
Rin 1G
120/240 V ac
2
30.1 µF
Load
6
4
5
22 K
A
100
G
A
K
Sensitive Gate SCRs
Load could be here
instead of lower location
Zero
Crossing
Circuit
Input
1 K
1 K
*
*
* Gate Diodes to Have
Same PIV as SCRs
AN1007 Application Notes
http://www.teccor.com AN1007 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Time Delay Relay Circuit
By combining a 555 timer IC with a triac, various time delays of
several seconds can be achieved for delayed activation of solid
state relays or switches. Figure AN1007.15 shows a solid state
timer delay relay using a sensitive gate triac and a 555 timer IC.
The 555 timer precisely controls time delay of operation using an
external resistor and capacitor, as illustrated by the resistor and
capacitor combination curves. (Figure AN1007.16)
Figure AN1007.15 555 timer circuit with 10 second delay
Figure AN1007.16 Resistor (R) and capacitor (C) combination curves
IR Motion Control
An example of a more complex triac switch is an infrared (IR)
motion detector controller circuit. Some applications for this cir-
cuit are alarm systems, automatic lighting, and auto doorbells.
Figure AN1007.17 shows an easy- to-implement automatic light-
ing system using an infrared motion detector control circuit. A
commercially available LSI circuit HT761XB, from Holtek, inte-
grates most of the analog functions. This LSI chip, U2, contains
the op amps, comparators, zero crossing detection, oscillators,
and a triac output trigger. An external RC that is connected to the
OSCD pin determines the output trigger pulse width. (Holtek
Semiconductor Inc. is located at No.3, Creation Road II, Science-
Based Industrial Park, Hsinchu, Taiwan, R.O.C.) Device U1 pro-
vides the infrared sensing. Device R13 is a photo sensor that
serves to prevent inadvertent triggering under daylight or other
high light conditions.
Choosing the right triac depends on the load characteristics. For
example, an incandescent lamp operating at 110 V requires a
200 V, 8 A triac. This gives sufficient margin to allow for the high
current state during lamp burn out. U2 provides a minimum out-
put triac negative gate trigger current of 40 mA, thus operating in
QII & QIII. This meets the requirements of a 25 mA gate triac.
Teccor also offers alternistor triacs for inductive load conditions.
This circuit has three operating modes (ON, AUTO, OFF), which
can be set through the mode pin. While the LSI chip is working in
the auto mode, the user can override it and switch to the test
mode, or manual on mode, or return to the auto mode by switch-
ing the power switch. More information on this circuit, such as
mask options for the infrared trigger pulse and flash options, are
available in the Holtek HT761X General Purpose PIR Controller
specifications.
Figure AN1007.17 I R motion control circuit
555
10 K
0.1 µF 0.01 µF
1 µF
1 K
LOAD
MT2
MT1
G
10 M
1N4740 3.5 K 10 µF
+
_
1N4003
-10 V
250 V
120 V
60 Hz
4
38
2
5
1
6
7
R
C
10ms 100ms 1ms 10ms 100ms 1.0 10 100
0.001
0.01
0.1
1.0
10
100
td TIME DELAY (s)
C, (CAPACITANCE) (µF)
1 K
10 K
100 K
1 M
10 M
SG
D
U1
PIR
SD622
(Nippon
Ceramic)
1
3
C4
100µF
56K
R3
2
C13
0.02µF
C12
22µF R12
22K
C9
10µF
C2
0.02µF
R4
1M
C1
100µF
Q1
TRIAC
Q2008L4
AC
LP1
Lamp
60 to
600
Watt
C8
0.1µF
D3
1N4002
SW1
ON/OFF
OVERRIDE
AC+
110
R9
1M
R7
1M
R8 569K
C3
100pF
C7
3900pF
U2
VSS
TRIAC
OSCD
OSCS
ZC
CDS
MODE
VDD
OP20
OP2N
OP2P
OP10
OP1N
OP1P
RSTB
VEE
1
2
3
4
5
6
7
8
HT761XB
-16 DIP/SOP
9
10
11
12
13
14
15
16
R6
1M
0.02µF
C5
C6
22µF R5
22K
SW2
Mode
OFF
AUTO
ON
R2
2.4M
D4
1N4002
*R10
D1
12V R13
CDS
C11
330µF
D2
1N4002
C10
0.33µF
350V
R14
68W 2W
R9
1M
D5
1N4002
©2002 Teccor Electronics AN1008 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
8
Explanation of Maximum Ratings and
Characteristics for Thyristors
Introduction
Data sheets for SCRs and triacs give vital information regarding
maximum ratings and characteristics of thyristors. If the maxi-
mum ratings of the thyristors are surpassed, possible irrevers-
ible damage may occur. The characteristics describe various
pertinent device parameters which are guaranteed as either min-
imums or maximums. Some of these characteristics relate to the
ratings but are not ratings in themselves. The characteristic does
not define what the circuit must provide or be restricted to, but
defines the device characteristic. For example, a minimum value
is indicated for the dv/dt because this value depicts the guaran-
teed worst-case limit for all devices of the specific type. This min-
imum dv/dt value represents the maximum limit that the circuit
should allow.
Maximum Ratings
VRRM: Peak Repetitive Reverse Voltage — SCR
The peak repetitive reverse voltage rating is the maximum peak
reverse voltage that may be continuously applied to the main ter-
minals (anode, cathode) of an SCR. (Figure AN1008.1) An open-
gate condition and gate resistance termination is designated for
this rating. An increased reverse leakage can result due to a pos-
itive gate bias during the reverse voltage exposure time of the
SCR. The repetitive peak reverse voltage rating relates to case
temperatures up to the maximum rated junction temperature.
Figure AN1008.1 V-I Characteristics of SCR Device
VDRM: Peak Repetitive Forward (Off-state) Voltage
SCR
The peak repetitive forward (off-state) voltage rating (Figure
AN1008.1) refers to the maximum peak forward voltage which
may be applied continuously to the main terminals (anode, cath-
ode) of an SCR. This rating represents the maximum voltage the
SCR should be required to block in the forward direction. The
SCR may or may not go into conduction at voltages above the
VDRM rating. This rating is specified for an open-gate condition
and gate resistance termination. A positive gate bias should be
avoided since it will reduce the forward-voltage blocking capabil-
ity. The peak repetitive forward (off-state) voltage rating applies
for case temperatures up to the maximum rated junction temper-
ature.
Triac
The peak repetitive off-state voltage rating should not be sur-
passed on a typical, non-transient, working basis. (Figure
AN1008.2) VDRM should not be exceeded even instantaneously.
This rating applies for either positive or negative bias on main
terminal 2 at the rated junction temperature. This voltage is less
than the minimum breakover voltage so that breakover will not
occur during operation. Leakage current is controlled at this volt-
age so that the temperature rise due to leakage power does not
contribute significantly to the total temperature rise at rated cur-
rent.
Figure AN1008.2 V-I Characteristics of Triac Device
Reverse
Breakdown
Voltage
Forward
Breakover
Voltage
Specified Minimum
Off - State
Blocking
Voltage (V
DRM
)
+I
-I
+V
-V
Minimum Holding
Current (I
H
)
Voltage Drop (V
T
) at
Specified Current (i
T
)
Latching Current (I
L
)
Off - State Leakage
Current - (I
DRM
) at
Specified V
DRM
Specified Minimum
Reverse Blocking
Voltage (V
RRM
)
Reverse Leakage
Current - (I
RRM
) at
Specified V
RRM
Breakover
Voltage
Specified Minimum
Off-state
Blocking
Voltage (VDRM)
+I
-I
+V
-V
Minimum Holding
Current (IH)
Voltage Drop (VT) at
Specified Current (iT)Latching Current (IL)
Off-state Leakage
Current – (IDRM) at
Specified VDRM
AN1008
AN1008 Application Notes
http://www.teccor.com AN1008 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
IT
: Current Rating
SCR
For RMS and average currents, the restricting factor is usually
confined so that the power dissipated during the on state and as
a result of the junction-to-case thermal resistance will not pro-
duce a junction temperature in excess of the maximum junction
temperature rating. Power dissipation is changed to RMS and
average current ratings for a 60 Hz sine wave with a 180° con-
duction angle. The average current for conduction angles less
than 180° is derated because of the higher RMS current con-
nected with high peak currents. The DC current rating is higher
than the average value for 180° conduction since no RMS com-
ponent is present.
The dissipation for non-sinusoidal waveshapes can be deter-
mined in several ways. Graphically plotting instantaneous dissi-
pation as a function of time is one method. The total maximum
allowable power dissipation (PD) may be determined using the
following equation for temperature rise:
where TJ(max) is the maximum rated junction temperature (at
zero rated current), TC is the actual operating case temperature,
and RθJC is the published junction-to-case thermal resistance.
Transient thermal resistance curves are required for short inter-
val pulses.
Triac
The limiting factor for RMS current is determined by multiplying
power dissipation by thermal resistance. The resulting current
value will ensure an operating junction temperature within maxi-
mum value. For convenience, dissipation is converted to RMS
current at a 360° conduction angle. The same RMS current can
be used at a conduction angle of less than 360°. For information
on non-sinusoidal waveshapes and a discussion of dissipation,
refer to the preceding description of SCR current rating.
ITSM: Peak Surge (Non-repetitive) On-state
Current — SCR and Triac
The peak surge current is the maximum peak current that may be
applied to the device for one full cycle of conduction without
device degradation. The maximum peak current is usually speci-
fied as sinusoidal at 50 Hz or 60 Hz. This rating applies when the
device is conducting rated current before the surge and, thus,
with the junction temperature at rated values before the surge.
The junction temperature will surpass the rated operating tem-
perature during the surge, and the blocking capacity may be
decreased until the device reverts to thermal equilibrium.
The surge-current curve in Figure AN1008.3 illustrates the peak
current that may be applied as a function of surge duration. This
surge curve is not intended to depict an exponential current
decay as a function of applied overload. Instead, the peak current
shown for a given number of cycles is the maximum peak surge
permitted for that time period. The current must be derated so
that the peak junction temperature during the surge overload
does not exceed maximum rated junction temperature if blocking
is to be retained after a surge.
Figure AN1008.3 Peak Surge Current versus Surge Current Duration
ITM: Peak Repetitive On-state Current — SCR and Triac
The ITM rating specifies the maximum peak current that may be
applied to the device during brief pulses. When the device oper-
ates under these circumstances, blocking capability is main-
tained. The minimum pulse duration and shape are defined and
control the applied di/dt. The operating voltage, the duty factor,
the case temperature, and the gate waveform are also defined.
This rating must be followed when high repetitive peak currents
are employed, such as in pulse modulators, capacitive-discharge
circuits, and other applications where snubbers are required.
di/dt: Rate-of-change of On-state Current — SCR and Triac
The di/dt rating specifies the maximum rate-of-rise of current
through a thyristor device during turn-on. The value of principal
voltage prior to turn-on and the magnitude and rise time of the
gate trigger waveform during turn-on are among the conditions
under which the rating applies. If the rate-of-change of current
(di/dt) exceeds this maximum value, or if turn-on with high di/dt
during minimum gate drive occurs (such as dv/dt or overvoltage
events), then localized heating may cause device degradation.
During the first few microseconds of initial turn-on, the effect of
di/dt is more pronounced. The di/dt capability of the thyristor is
greatly increased as soon as the total area of the pellet is in full
conduction.
The di/dt effects that can occur as a result of voltage or transient
turn-on (non-gated) is not related to this rating. The di/dt rating is
specified for maximum junction temperature.
As shown in Figure AN1008.4, the di/dt of a surge current can be
calculated by means of the following equation.
As an example, surge current of 400 A at 60 Hz has a di/dt of
π400/8.3 or 151.4 A/ms.
PD
TJMAX()
TC
RθJC
-----------------------------------=
110
100 1000
10
20
30
40
50
60
80
100
120
150
250
300
400
1000
Sur
g
e Current Duration – Full C
y
cles
Peak Surge (Non-repetitive)
On-state Current (I
TSM
) – Amps
40 A TO-218
25 A T0-220
15 A TO-220
1) Gate control may be lost
during and immediately
following surge current interval.
2) Overload may not be repeated
until junction temperature has
returned to steady-state
rated value.
SUPPLY FREQUENCY: 60 Hz Sinusoidal
LOAD: Resistive
RMS ON-STATE CURRENT [IT(RMS)]:
Maximum Rated Value at Specified
Case Temperature
Notes:
di
dt
-----πITM
()
t
------------------=
Application Notes AN1008
©2002 Teccor Electronics AN1008 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1008.4 Relationship of Maximum Current Rating to Time
I2t Rating — SCR and Triac
The I2t rating gives an indication of the energy-absorbing capabil-
ity of the thyristor device during surge-overload conditions. The
rating is the product of the square of the RMS current (IRMS)2 that
flows through the device and the time during which the current is
present and is expressed in A2s. This rating is given for fuse
selection purposes. It is important that the I2t rating of the fuse is
less than that of the thyristor device. Without proper fuse or cur-
rent limit, overload or surge current will permanently damage the
device due to excessive junction heating.
PG: Gate Power Dissipation — SCR and Triac
Gate power dissipation ratings define both the peak power (PGM)
forward or reverse and the average power (PG(AV)) that may be
applied to the gate. Damage to the gate can occur if these ratings
are not observed. The width of the applied gate pulses must be
considered in calculating the voltage and current allowed since
the peak power allowed is a function of time. The peak power
that results from a given signal source relies on the gate charac-
teristics of the specific unit. The average power resulting from
high peak powers must not exceed the average-power rating.
TS, TJ: Temperature Range — SCR and Triac
The maximum storage temperature (TS) is greater than the maxi-
mum operating temperature (actually maximum junction temper-
ature). Maximum storage temperature is restricted by material
limits defined not so much by the silicon but by peripheral materi-
als such as solders used on the chip/die and lead attachments as
well as the encapsulating epoxy. The forward and off-state block-
ing capability of the device determines the maximum junction (TJ)
temperature. Maximum blocking voltage and leakage current rat-
ings are established at elevated temperatures near maximum
junction temperature; therefore, operation in excess of these lim-
its may result in unreliable operation of the thyristor.
Characteristics
VBO: Instantaneous Breakover Voltage — SCR and Triac
Breakover voltage is the voltage at which a device turns on
(switches to on state by voltage breakover). (Figure AN1008.1)
This value applies for open-gate or gate-resistance termination.
Positive gate bias lowers the breakover voltage. Breakover is
temperature sensitive and will occur at a higher voltage if the
junction temperature is kept below maximum TJ value. If SCRs
and triacs are turned on as a result of an excess of breakover
voltage, instantaneous power dissipations may be produced that
can damage the chip or die.
IDRM: Peak Repetitive Off-state (Blocking) Current
SCR
IDRM is the maximum leakage current permitted through the SCR
when the device is forward biased with rated positive voltage on
the anode (DC or instantaneous) at rated junction temperature
and with the gate open or gate resistance termination. A 1000
resistor connected between gate and cathode is required on all
sensitive SCRs. Leakage current decreases with decreasing
junction temperatures. Effects of the off-state leakage currents
on the load and other circuitry must be considered for each cir-
cuit application. Leakage currents can usually be ignored in
applications that control high power.
Triac
The description of peak off-state (blocking/leakage) current for
the triac is the same as for the SCR except that it applies with
either positive or negative bias on main terminal 2.
(Figure AN1008.2)
IRRM: Peak Repetitive Reverse Current — SCR
This characteristic is essentially the same as the peak forward
off-state (blocking/leakage) current except negative voltage
is applied to the anode (reverse biased).
VTM: Peak On-State Voltage — SCR and Triac
The instantaneous on-state voltage (forward drop) is the
principal voltage at a specified instantaneous current and
case temperature when the thyristor is in the conducting state.
To prevent heating of the junction, this characteristic is mea-
sured with a short current pulse. The current pulse should be
at least 100 µs duration to ensure the device is in full conduc-
tion. The forward-drop characteristic determines the on-state
dissipation. See Figure AN1008.5, and refer to “IT: Current
Rating” on page AN1008-2.
Figure AN1008.5 On-state Current versus On-state Voltage (Typical)
I
I
TM
di/dt
Time
0t
t = 8.3 ms for 60 Hz
10 ms for 50 Hz
di
dt
(I
TM
)
t
=
15 and 25 A TO-220
TC = 25 ˚C
40 A TO-218
00.6 0.8 1.0 1.2 1.4 1.6 1.8
Positive or Negative
Instantaneous On-state Voltage (v
T
) – Volts
0
10
20
30
40
50
60
70
80
90
Positive or Negative
Instantaneous On-state Current (i
T
) – Amps
AN1008 Application Notes
http://www.teccor.com AN1008 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
IGT: DC Gate Trigger Current
SCR
IGT is the minimum DC gate current required to cause the thyris-
tor to switch from the non-conducting to the conducting state for
a specified load voltage and current as well as case temperature.
The characteristic curve illustrated in Figure AN1008.6 shows
that trigger current is temperature dependent. The thyristor
becomes less sensitive (requires more gate current) with
decreasing junction temperatures. The gate current should be
increased by a factor of two to five times the minimum threshold
DC trigger current for best operation. Where fast turn-on is
demanded and high di/dt is present or low temperatures are
expected, the gate pulse may be 10 times the minimum IGT, plus
it must be fast-rising and of sufficient duration in order to properly
turn on the thyristor.
Figure AN1008.6 Normalized DC Gate Trigger Current for All
Quadrants versus Case Temperature
Triac
The description for the SCR applies as well to the triac with the
addition that the triac can be fired in four possible modes (Figure
AN1008.7):
Quadrant I (main terminal 2 positive, gate positive)
Quadrant II (main terminal 2 positive, gate negative)
Quadrant III (main terminal 2 negative, gate negative)
Quadrant IV (main terminal 2 negative, gate positive)
Figure AN1008.7 Definition of Operating Quadrants
VGT: DC Gate Trigger Voltage
SCR
VGT is the DC gate-cathode voltage that is present just prior to
triggering when the gate current equals the DC trigger current. As
shown in the characteristic curve in Figure AN1008.8, the gate
trigger voltage is higher at lower temperatures. The gate-cathode
voltage drop can be higher than the DC trigger level if the gate is
driven by a current higher than the trigger current.
Triac
The difference in VGT for the SCR and the triac is that the triac
can be fired in four possible modes. The threshold trigger voltage
can be slightly different, depending on which of the four operating
modes is actually used.
Figure AN1008.8 Normalized DC Gate Trigger Voltage for All
Quadrants versus Case Temperature
IL: Latching Current
SCR
Latching current is the DC anode current above which the gate
signal can be withdrawn and the device stays on. It is related to,
has the same temperature dependence as, and is somewhat
greater than the DC gate trigger current. (Figure AN1008.1 and
Figure AN1008.2) Latching current is at least equal to or much
greater than the holding current, depending on the thyristor type.
Latching current is greater for fast-rise-time anode currents since
not all of the chip/die is in conduction. It is this dynamic latching
current that determines whether a device will stay on when the
gate signal is replaced with very short gate pulses. The dynamic
latching current varies with the magnitude of the gate drive cur-
rent and pulse duration. In some circuits, the anode current may
oscillate and drop back below the holding level or may even go
negative; hence, the unit may turn off and not latch if the gate sig-
nal is removed too quickly.
Triac
The description of this characteristic for the triac is the same as
for the SCR, with the addition that the triac can be latched on in
four possible modes (quadrants). Also, the required latching is
significantly different depending on which gating quadrants are
used. Figure AN1008.9 illustrates typical latching current require-
ments for the four possible quadrants of operation.
0
1.0
2.0
3.0
4.0
-65 -15 +65+25 +125
-40
Case Temperature (T
C
) – ˚C
Ratio of
I
GT
I
GT
(T
C
= 25 ˚C)
MT2 POSITIVE
(Positive Half Cycle)
MT2 NEGATIVE
(Negative Half Cycle)
MT1
MT2
+ I
GT
REF
QII
MT1
I
GT
GATE
MT2
REF
MT1
MT2
REF
MT1
MT2
REF
QI
QIV
QIII
ALL POLARITIES ARE REFERENCED TO MT1
(
-
)
I
GT
GATE
(+)
I
GT
-
I
GT
GATE
(
-
)
I
GT
GATE
(+)
+
-
NOTE: Alternistors will not operate in Q IV
0
.5
1.0
1.5
2.0
-65 -15 +65
+25 +125-40
Case Temperature (TC) – ˚C
V
GT
(T
C
= 25 ˚C)
Ratio of
V
GT
Application Notes AN1008
©2002 Teccor Electronics AN1008 - 5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1008.9 Typical Triac Latching (IL) Requirements for Four
Quadrants versus Gate Current (IGT)
IH: Holding Current — SCR and Triac
The holding current is the DC principal on-state current below
which the device will not stay in regeneration/on state after latch-
ing and gate signal is removed. This current is equal to or lower
in value than the latching current (Figure AN1008.1 and Figure
AN1008.2) and is related to and has the same temperature
dependence as the DC gate trigger current shown in Figure
AN1008.10. Both minimum and maximum holding current may be
important. If the device is to stay in conduction at low-anode cur-
rents, the maximum holding current of a device for a given circuit
must be considered. The minimum holding current of a device
must be considered if the device is expected to turn off at a low
DC anode current. Note that the low DC principal current condi-
tion is a DC turn-off mode, and that an initial on-state current
(latching current) is required to ensure that the thyristor has been
fully turned on prior to a holding current measurement.
Figure AN1008.10 Normalized DC Holding Current versus
Case Temperature
dv/dt, Static: Critical Rate-of-rise of Off-state Voltage
SCR and Triac
Static dv/dt is the minimum rate-of-rise of off-state voltage that
a device will hold off, with gate open, without turning on.
Figure AN1008.11 illustrates the exponential definition. This
value will be reduced by a positive gate signal. This charac-
teristic is temperature-dependent and is lowest at the maxi-
mum-rated junction temperature. Therefore, the characteristic
is determined at rated junction temperature and at rated
forward off-state voltage which is also a worst-case situation.
Line or other transients which might be applied to the thyristor
in the off state must be reduced, so that neither the rate-of-
rise nor the peak voltage are above specifications if false firing
is to be prevented. Turn-on as result of dv/dt is non-destructive
as long as the follow current remains within current ratings of
the device being used.
Figure AN1008.11 Exponential Rate-of-rise of Off-state Voltage
Defining dv/dt
dv/dt, Commutating: Critical Rate-of-rise of
Commutation Voltage — Triac
Commutating dv/dt is the rate-of-rise of voltage across the main
terminals that a triac can support (block without switching back
on) when commutating from the on state in one half cycle to the
off state in the opposite half cycle. This parameter is specified at
maximum rated case temperature (equal to TJ) since it is temper-
ature-dependent. It is also dependent on current (commutating
di/dt) and peak reapplied voltage (line voltage) and is specified at
rated current and voltage. All devices are guaranteed to commu-
tate rated current with a resistive load at 50 Hz to 60 Hz. Com-
mutation of rated current is not guaranteed at higher frequencies,
and no direct relationship can be made with regard to current/
temperature derating for higher-frequency operation. With induc-
tive loading, when the voltage is out of phase with the load cur-
rent, a voltage stress (dv/dt) occurs across the main terminals of
the triac during the zero-current crossing. (Figure AN1008.12) A
snubber (series RC across the triac) should be used with induc-
tive loads to decrease the applied dv/dt to an amount below the
minimum value which the triac can be guaranteed to commutate
off each half cycle.
II
III
IV
I
0 1.0 2.0 3.0 4.0 5.0 6.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
I
L
— mA
I
GT
— mA
0
1.0
2.0
3.0
4.0
-65 -15 +65+25 +125
-40
Case Temperature (TC) – ˚C
IH (TC = 25 ˚C)
Ratio of IH
INITIAL ON-STATE CURRENT
= 400 mA dc
Critical dv/dt
dv = 0.63 V
D
t
t = RC
0
dt
t
63% of V
D
V
D
AN1008 Application Notes
http://www.teccor.com AN1008 - 6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Commutating dv/dt is specified for a half sinewave current at
60 Hz which fixes the di/dt of the commutating current. The com-
mutating di/dt for 50 Hz is approximately 20% lower while IRMS
rating remains the same. (Figure AN1008.4)
Figure AN1008.12 Waveshapes of Commutating dv/dt and
Associated Conditions
tgt: Gate-controlled Turn-on Time — SCR and Triac
The tgt is the time interval between the application of a gate pulse
and the on-state current reaching 90% of its steady-state value.
(Figure AN1008.13) As would be expected, turn-on time is a
function of gate drive. Shorter turn-on times occur for increased
gate drives. This turn-on time is actually only valid for resistive
loading. For example, inductive loading would restrict the rate-of-
rise of anode current. For this reason, this parameter does not
indicate the time that must be allowed for the device to stay on if
the gate signal is removed. (Refer to the description of “IL: Latch-
ing Current” on page AN1008-4.) However, if the load was resis-
tive and equal to the rated load current value, the device
definitely would be operating at a current above the dynamic
latching current in the turn-on time interval since current through
the device is at 90% of its peak value during this interval.
Figure AN1008.13 Waveshapes for Turn-on Time and
Associated Conditions
tq: Circuit-commutated Turn-off Time — SCR
The circuit-commutated turn-off time of the device is the time dur-
ing which the circuit provides reverse bias to the device (negative
anode) to commutate it off. The turn-off time occurs between the
time when the anode current goes negative and when the anode
positive voltage may be reapplied. (Figure AN1008.14) Turn-off
time is a function of many parameters and very dependent on
temperature and gate bias during the turn-off interval. Turn-off
time is lengthened for higher temperature so a high junction tem-
perature is specified. The gate is open during the turn-off interval.
Positive bias on the gate will lengthen the turn-off time; negative
bias on the gate will shorten it.
Figure AN1008.14 Waveshapes of tq Rating Test and
Associated Conditions
RθJC, RθJA: Thermal Resistance (Junction-to-case,
Junction-to-ambient) — SCR and Triac
The thermal-resistance characteristic defines the steady-state
temperature difference between two points at a given rate of
heat-energy transfer (dissipation) between the points. The ther-
mal-resistance system is an analog to an electrical circuit where
thermal resistance is equivalent to electrical resistance, tempera-
ture difference is equivalent to voltage difference, and rate of
heat-energy transfer (dissipation) is equivalent to current. Dissi-
pation is represented by a constant current generator since gen-
erated heat must flow (steady-state) no matter what the
resistance in its path. Junction-to-case thermal resistance estab-
lishes the maximum case temperature at maximum rated steady-
state current. The case temperature must be held to the maxi-
mum at maximum ambient temperature when the device is oper-
ating at rated current. Junction-to-ambient thermal resistance is
established at a lower steady-state current, where the device is in
free air with only the external heat sinking offered by the device
package itself. For RθJA, power dissipation is limited by what the
device package can dissipate in free air without any additional
heat sink:
IG
IT
TIME
di/dt
(di/dt) C
C
E
M
10%
63%
V
DRM
(dv/dt)
Voltage across Triac
E
SOURCE
I
TRM
90%
90%
10%
50% 50%
10%
On-state Current
Rise
Time
Gate
Trigger
Pulse
Delay
Time
Turn-on
Time
Gate Pulse Width
Off-state Voltage
10%
ITM
50% ITM
50% IRM i
RReverse Current
IDOff-State Leakage
VDOff-State Voltage
di/dt
dv/dt
trr
tq
t1
VT
RθJC
T
J
T
C
PAV()
---------------------=
RθJA
T
J
T
A
PAV
()
---------------------=
©2002 Teccor Electronics AN1009 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
9
Miscellaneous Design Tips and Facts
Introduction
This application note presents design tips and facts on the follow-
ing topics:
Relationship of IAV, IRMS, and IPK
dv/dt Definitions
Examples of gate terminations
Curves for Average Current at Various Conduction Angles
Double-exponential Impulse Waveform
Failure Modes of Thyristor
Characteristics Formulas for Phase Control Circuits
Relationship of IAV, IRMS, and IPK
Since a single rectifier or SCR passes current in one direction
only, it conducts for only half of each cycle of an AC sinewave.
The average current (IAV ) then becomes half of the value deter-
mined for full-cycle conduction, and the RMS current (IRMS) is
equal to the square root of half the mean-square value for full-
cycle conduction or half the peak current (IPK). In terms of half-
cycle sinewave conduction (as in a single-phase half-wave cir-
cuit), the relationships of the rectifier currents can be shown as
follows:
IPK = π IAV = 3.14 IAV
IAV = (1) IPK = 0.32 IPK
IPK = 2 IRMS
IRMS = 0.5 IPK
IAV = (2) IRMS = 0.64 IRMS
IRMS = /2) IAV = 1.57 IAV
When two identically rated SCRs are connected inverse parallel
for full-wave operation, as shown in Figure AN1009.1, they can
handle 1.41 times the RMS current rating of either single SCR.
Therefore, the RMS value of two half sinewave current pulses in
one cycle is 2 times the RMS value of one such pulse per cycle.
Figure AN1009.1 SCR Anti-parallel Circuit
dv/dt Definitions
The rate-of-rise of voltage (dv/dt) of an exponential waveform is
63% of peak voltage (excluding any overshoots) divided by the
time at 63% minus 10% peak voltage. (Figure AN1009.2)
Exponential dv/dt = =
Resistor Capacitor circuit t = RC =
Resistor Capacitor circuit
Figure AN1009.2 Exponential dv/dt Waveform
The rate-of-rise of voltage (dv/dt) of a linear waveform is 80% of
peak voltage (excluding any overshoots) divided by the time at
90% minus 10% peak voltage. (Figure AN1009.3)
Linear dv/dt = =
Linear dv/dt = =
Figure AN1009.3 Linear dv/dt Waveform
0.63 VPK
[]t2t1
()
t2t1
()
4RC
t3t2
()=
(Peak Value)
100%
0%
63%
t1t2
t0t3
Percent of Voltage
Time
Numerical dv/dt
10%
0.8 VPK
[]t2t1
()
0.9 VPK
0.1 VPK
[]t2t1
()
90%
0%
10%
t1t2
t0
Percent of Voltage
Time
AN1009
AN1009 Application Notes
http://www.teccor.com AN1009 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Examples of Gate Terminations
Primary Purpose
(1) Increase dv/dt capability
(2) Keep gate clamped to ensure VDRM
capability
(3) Lower tq time
Related Effect — Raises the device latching
and holding current
Primary Purpose
(1) Increase dv/dt capability
(2) Remove high frequency noise
Related Effects
(1) Increases delay time
(2) Increases turn-on interval
(3) Lowers gate signal rise time
(4) Lowers di/dt capability
(5) Increases tq time
Primary Purpose
(1) Decrease DC gate sensitivity
(2) Decrease tq time
Related Effects
(1) Negative gate current increases holding
current and causes gate area to drop out of
conduction
(2) In pulse gating gate signal tail may
cause device to drop out of conduction
Primary Purpose — Select frequency
Related Effects Unless circuit is
“damped,” positive and negative gate current
may inhibit conduction or bring about spo-
radic anode current
Primary Purpose
(1) Supply reverse bias in off period
(2) Protect gate and gate supply for reverse
transients
(3) Lower tq time
Related Effects Isolates the gate if high
impedance signal source is used without
sustained diode current in the negative cycle
Primary Purpose — Decrease threshold
sensitivity
Related Effects
(1) Affects gate signal rise time and di/dt
rating
(2) Isolates the gate
Primary Purpose Isolate gate circuit DC
component
Related Effects In narrow gate pulses
and low impedance sources, Igt followed by
reverse gate signals which may inhibit con-
duction
Curves for Average Current at Various
Conduction Angles
SCR maximum average current curves for various conduction
angles can be established using the factors for maximum aver-
age current at conduction angle of:
30° = 0.40 x Avg 180°
60° = 0.56 x Avg 180°
90° = 0.70 x Avg 180°
120° = 0.84 x Avg 180°
The reason for different ratings is that the average current for
conduction angles less than 180° is derated because of the
higher RMS current connected with high peak currents.
Note that maximum allowable case temperature (TC) remains the
same for each conduction angle curve but is established from
average current rating at 180° conduction as given in the data
sheet for any particular device type. The maximum TC curve is
then derated down to the maximum junction (TJ). The curves
illustrated in Figure AN1009.4 are derated to 125 °C since the
maximum TJ for the non-sensitive SCR series is 125 °C.
Figure AN1009.4 Typical Curves for Average On-state Current at
Various Conduction Angles versus TC for a
SXX20L SCR
Zener
optional
˚
80
85
90
95
100
105
110
115
120
125
0246810121416
Average On-state Current [IT(AV)] – Amps
Maximum Allowable Case Temperature (T
C
) –
˚
C
180
˚
90
˚
30
˚
60
˚
120
˚
Current: Halfwave Sinusoidal
Load: Resistive or Inductive
Conduction Angle: As Given Below
Case Temperature: Measured as
Shown on Dimensional Drawings
Conduction Angle
7.2 10.8 12.8
5.1
Application Notes AN1009
©2002 Teccor Electronics AN1009 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Double-exponential Impulse Waveform
A double-exponential impulse waveform or waveshape of current
or voltage is designated by a combination of two numbers (tr/td or
tr x td µs). The first number is an exponential rise time (tr) or wave
front and the second number is an exponential decay time (td) or
wave tail. The rise time (tr) is the maximum rise time permitted.
The decay time (td) is the minimum time permitted. Both the tr and
the td are in the same units of time, typically microseconds, des-
ignated at the end of the waveform description as defined by
ANSI/IEEE C62.1-1989.
The rise time (tr) of a current waveform is 1.25 times the time for
the current to increase from 10% to 90% of peak value. See Fig-
ure AN1009.5.
tr = Rise Time = 1.25 [tc – ta]
tr = 1.25 [t(0.9 IPK) – t(0.1 IPK)] = T1 – T0
The rise time (tr) of a voltage waveform is 1.67 times the time for
the voltage to increase from 30% to 90% of peak value. (Figure
AN1009.5)
tr = Rise Time = 1.67 [tc – tb]
tr = 1.67 [t(0.9 VPK) – t(0.3 VPK)] = T1 – T0
The decay time (td) of a waveform is the time from virtual zero
(10% of peak for current or 30% of peak for voltage) to the time
at which one-half (50%) of the peak value is reached on the wave
tail. (Figure AN1009.5)
Current Waveform td = Decay Time
= [t(0.5 IPK) – t(0.1 IPK)] = T2 – T0
Voltage Waveform td = Decay Time
= [t(0.5 VPK) – t(0.3 VPK)] = T2 – T0
Figure AN1009.5 Double-exponential Impulse Waveform
Failure Modes of Thyristor
Thyristor failures may be broadly classified as either degrading
or catastrophic. A degrading type of failure is defined as a
change in some characteristic which may or may not cause a cat-
astrophic failure, but could show up as a latent failure. Cata-
strophic failure is when a device exhibits a sudden change in
characteristic that renders it inoperable. To minimize degrading
and catastrophic failures, devices must be operated within maxi-
mum ratings at all times.
Degradation Failures
A significant change of on-state, gate, or switching characteris-
tics is quite rare. The most vulnerable characteristic is blocking
voltage. This type of degradation increases with rising operating
voltage and temperature levels.
Catastrophic Failures
A catastrophic failure can occur whenever the thyristor is oper-
ated beyond its published ratings. The most common failure
mode is an electrical short between the main terminals, although
a triac can fail in a half-wave condition. It is possible, but not
probable, that the resulting short-circuit current could melt the
internal parts of the device which could result in an open circuit.
Failure Causes
Most thyristor failures occur due to exceeding the maximum
operating ratings of the device. Overvoltage or overcurrent oper-
ations are the most probable cause for failure. Overvoltage fail-
ures may be due to excessive voltage transients or may also
occur if inadequate cooling allows the operating temperature to
rise above the maximum allowable junction temperature. Over-
current failures are generally caused by improper fusing or circuit
protection, surge current from load initiation, load abuse, or load
failure. Another common cause of device failure is incorrect han-
dling procedures used in the manufacturing process. Mechanical
damage in the form of excessive mounting torque and/or force
applied to the terminals or leads can transmit stresses to the
internal thyristor chip and cause cracks in the chip which may not
show up until the device is thermally cycled.
Prevention of Failures
Careful selection of the correct device for the application’s oper-
ating parameters and environment will go a long way toward
extending the operating life of the thyristor. Good design practice
should also limit the maximum current through the main terminals
to 75% of the device rating. Correct mounting and forming of the
leads also help ensure against infant mortality and latent failures.
The two best ways to ensure long life of a thyristor is by proper
heat sink methods and correct voltage rating selection for worst
case conditions. Overheating, overvoltage, and surge currents
are the main killers of semiconductors.
Most Common Thyristor Failure Mode
When a thyristor is electrically or physically abused and fails either
by degradation or a catastrophic means, it will short (full-wave or
half-wave) as its normal failure mode. Rarely does it fail open
circuit. The circuit designer should add line breaks, fuses, over-
temperature interrupters or whatever is necessary to protect the
end user and property if a shorted or partially shorted thyristor
offers a safety hazard.
Virtual Start of Wavefront
(Peak Value)
100%
90%
50%
0%
10%
30%
tatb
T0tcT1T2
Time
Percent of Current or Voltage
Decay = e -t
1.44 T2
AN1009 Application Notes
http://www.teccor.com AN1009 - 4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Characteristics Formulas for Phase Control Circuits
NOTE: Angle alpha (α) is in radians.
Half-wave Resistive Load – Schematic
Full-wave Bridge – Schematic
Full-wave AC Switch Resistive Load – Schematic
Half-wave Resistive Load – Waveform
Full-wave Bridge – Waveform
Full-wave AC Switch Resistive Load – Waveform
Circuit
Name
Max Thyristor
Voltage
PRV
Max. Load
Voltage
Ed=Avg.
Ea=RMS Load Voltage
with Delayed Firing
Max. Average Thyristor
or Rectifier Current
SCR Avg. Amps Cond. Period
Half-wave
Resistive
Load
1.4 ERMS EP180
Full-wave
Bridge
1.4 ERMS EP180
Full-wave
AC Switch
Resistive
Load
1.4 ERMS EP180
Ed
EP
π
-------=
Ea
EP
2
-------=
Ed
EP
2π
------- 1 αcos+()=
Ea
EP
2π
-----------πα
1
2
---2sin α+
èø
æö
=
EP
πR
--------
Ed
2EP
π
-----------=E
d
EP
2π
-----------1 αcos+()=EP
πR
--------
Ea
EP
1.4
--------=E
a
EP
2π
-----------πα
1
2
---2sin α+
èø
æö
=EP
πR
--------
E
RMS
LoadR
E
Load
R
L
E
RMS
Load
R
0
α
E
P
0
α
EP
0
α
E
P
©2002 Teccor Electronics AN1010 - 1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
10
Thyristors for Ignition of Fluorescent Lamps
Introduction
One of the many applications for Teccor thyristors is in fluores-
cent lighting. Standard conventional and circular fluorescent
lamps with filaments can be ignited easily and much more quickly
by using thyristors instead of the mechanical starter switch, and
solid state thyristors are more reliable. Thyristors produce a pure
solid state igniting circuit with no mechanical parts in the fluores-
cent lamp fixture. Also, because the lamp ignites much faster, the
life of the fluorescent lamp can be increased since the filaments
are activated for less time during the ignition. The thyristor igni-
tion eliminates any audible noise or flashing off and on which
most mechanical starters possess.
Standard Fluorescent Circuit
The standard starter assembly is a glow switch mechanism with
option small capacitor in parallel. (Figure AN1010.1)
Figure AN1010.1 Typical Standard Fluorescent Circuit
The glow switch is made in a small glass bulb containing neon or
argon gas. Inside the bulb is a U-shaped bimetallic strip and a
fixed post. When the line input current is applied, the voltage
between the bimetallic strip and the fixed post is high enough to
ionize and produce a glow similar to a standard neon lamp. The
heat from the ionization causes the bimetallic strip to move and
make contact to the fixed post. At this time the ionization ceases
and current can flow through and pre-heat the filaments of the
fluorescent lamp.
Since ionization (glowing) has ceased, the bimetallic strip begins
to cool down and in a few seconds opens to start ionization
(glowing) again. The instant the bimetallic ceases to make con-
tact (opens), an inductive kick from the ballast produces some
high voltage spikes 400 V to 600 V, which can ignite (strike) the
fluorescent lamp. If the lamp fails to ignite or start, the glow
switch mechanically repeats its igniting cycle over and over until
the lamp ignites, usually within a few seconds.
In this concept the ballast (inductor) is able to produce high volt-
age spikes using a mechanical switch opening and closing, which
is fairly slow.
Since thyristors (solid state switches) do not mechanically open
and close, the conventional fluorescent lighting circuit concept
must be changed in order to use thyristors. In order to ignite
(strike) a fluorescent lamp, a high voltage spike must be pro-
duced. The spike needs to be several hundred volts to quickly ini-
tiate ionization in the fluorescent lamp. A series ballast can only
produce high voltage if a mechanical switch is used in conjunc-
tion with it. Therefore, with a thyristor a standard series ballast
(inductor) is only useful as a current limiter.
Methods for Producing High Voltage
The circuits illustrated in Figure AN1010.2 through Figure
AN1010.5 show various methods for producing high voltage to
ignite fluorescent lamps using thyristors (solid state switches).
Note: Due to many considerations in designing a fluorescent fix-
ture, the illustrated circuits are not necessarily the optimum
design.
One 120 V ac circuit consists of triac and diac thyristors with a
capacitor to ignite the fluorescent lamp. (Figure AN1010.2)
This circuit allows the 5 µF ac capacitor to be charged and added
to the peak line voltage, developing close to 300 V peak or 600 V
peak to peak. This is accomplished by using a triac and diac
phase control network set to fire near the 90° point of the input
line. A capacitor-charging network is added to ensure that the
capacitor is charged immediately, letting tolerances of compo-
nents or temperature changes in the triac and diac circuit to be
less critical. By setting the triac and diac phase control to fire at
near the 90° point of the sinewave, maximum line voltages
appear across the lamp for ignition. As the triac turns on during
each half cycle, the filaments are pre-heated and in less than a
second the lamp is lit. Once the lamp is lit the voltage is clamped
to approximately 60 V peak across the 15 W to 20 W lamp, and
the triac and diac circuit no longer functions until the lamp is
required to be ignited again.
Line
Input
Lamp
Starter Assembly
Ballast
AN1010
AN1010 Application Notes
http://www.teccor.com AN1010 - 2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Figure AN1010.2 120 V ac Triac/Diac Circuit
Figure AN1010.3 illustrates a circuit using a sidac (a simpler thy-
ristor) phase control network to ignite a 120 V ac fluorescent
lamp. As in the triac/diac circuit, the 5 µF ac capacitor is charged
and added to the peak line voltage, developing greater than
200 V peak or 400 V peak to peak. Since the sidac is a voltage
breakover (VBO) activated device with no gate, a charging net-
work is essential in this circuit to charge the capacitor above the
peak of the line in order to break over (turn on) the sidac with a
VBO of 220 V to 250 V.
As the sidac turns on each half cycle, the filaments are pre-
heated and in less than 1.5 seconds the lamp is lit. Once the
lamp is lit, the voltage across it clamps to approximately 60 V
peak (for a 15 W to 20 W lamp), and the sidac ceases to function
until the lamp is required to be ignited again.
Figure AN1010.3 120 V ac Sidac Circuit
The circuits illustrated in Figure AN1010.2 and Figure AN1010.3
use 15 W to 20 W lamps. The same basic circuits can be applied
to higher wattage lamps. However, with higher wattage lamps the
voltage developed to fire (light) the lamp will need to be some-
what higher. For instance, a 40 W lamp is critical on line input
voltage to ignite, and after it is lit the voltage across the lamp will
clamp to approximately 130 V peak. For a given type of lamp, the
current must be limited to constant current regardless of the watt-
age of the lamp.
Figure AN1010.4 shows a circuit for igniting a fluorescent lamp
with 240 V line voltage input using triac and diac networks.
120 V ac
Line
Input
Lamp
15 W - 20 W
Optional
Charging
Network
5 µF
400 V
0.047 µF
50 V
220 k
HT-32
MT1
G
MT2
Q401E4
Ballast
14 W - 22 W
1N4004
47 k
120 V ac
Line
Input
Lamp
15 W - 20W
K2400E
Sidac
Optional
Charging
Network
5 µF
400 V
Ballast
14 W - 22W
1N4004
47 k
Application Notes AN1010
©2002 Teccor Electronics AN1010 - 3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Figure AN1010.4 240 V ac Triac/Diac Circuit
Figure AN1010.5 illustrates a circuit using a sidac phase control
network to ignite a 240 V ac fluorescent lamp. This circuit works
basically the same as the 120 V circuit shown in Figure
AN1010.3, except that component values are changed to com-
pensate for higher voltage. The one major change is that two
K2400E devices in series are used to accomplish high firing volt-
age for a fluorescent lamp.
Figure AN1010.5 240 V ac Sidac Circuit
240 V ac
Line
Input
Lamp
40 W Optional
Charging
Network
3.3 µF
0.047 µF
50 V
470 k
HT-32
MT1
G
MT2
Q601E4
Ballast
47 k
1N4004
Lamp
40 W
3.3 µF
240 V ac
Line
Input
K2400E
Sidac
K2400E
Sidac
Optional
Charging
Network
Ballast
1N4004
47 k
Notes
©2002 Teccor Electronics A-1 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Cross Reference Guide
Triacs, SCRs, Diacs, Sidacs, and Rectifiers
(Suggested Teccor Replacements for JEDEC and
Industry House Numbers)
1
How To Use This Guide
This Cross Reference Guide will help you determine the compet-
itive products that Teccor supplies on either a DIRECT
REPLACEMENT or SUGGESTED REPLACEMENT basis.
Teccor offers replacements for most competitive devices. If you
do not find a desired competitive product type listed, please con-
tact the factory for information on recent additions to this list.
On the following pages, listed in alphanumeric order, you will
find:
Competitive product number
Teccor device part number
“D” indicating the Direct replacement (Teccor device meets or
exceeds the electrical and mechanical specifications of the
competitive device); “S” indicates a Suggested replacement
(The suggested replacements in this guide represent the
nearest Teccor equivalent for the product listed and in most
instances are replacements. However, Teccor assumes no
responsibility and does not guarantee that the replacements
are exact; only that the replacements will meet the terms of
its applicable published written specifications. The pertinent
Teccor specification sheet should be used as the principle
tool for actual replacements.)
Teccor package type
For additional assistance, contact your nearest Teccor distributor,
sales representative, or the factory.
Cross Reference Guide Appendix
http://www.teccor.com A-2 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
40431 Q2006LT STO-220 (ISOL)
03P05M EC103B STO-92 (ISOL)
03P1M EC103B STO-92 (ISOL)
03P2M EC103B STO-92 (ISOL)
03P3M EC103D STO-92 (ISOL)
03P4M EC103D S TO-92 (ISOL)
03P5M EC103M S TO-92 (ISOL)
10TTS08S S8012D S TO-252 (SMDT)
16TTS08 S8016R D TO-220 (N.ISOL)
16TTS08S S8016N S TO-263 (SMT)
25TTS08 S8025R DTO-220 (N.ISOL)
25TTS08FP S8025L DTO-220 (ISOL)
25TTS08S S8025N STO-263 (SMT)
2N1595 S201E STO-92 (ISOL)
2N1596 S201E STO-92 (ISOL)
2N1597 S201E S TO-92 (ISOL)
2N1598 S401E S TO-92 (ISOL)
2N1599 S401E S TO-92 (ISOL)
2N2323 TCR22-4 75 S TO-92 (ISOL)
2N3001 EC103B S TO-92 (ISOL)
2N3002 EC103B STO-92 (ISOL)
2N3003 EC103B STO-92 (ISOL)
2N3004 EC103B STO-92 (ISOL)
2N3005 EC103B DTO-92 (ISOL)
2N3006 EC103B DTO-92 (ISOL)
2N3007 EC103B D TO-92 (ISOL)
2N3008 EC103B D TO-92 (ISOL)
2N3228 S2006R S TO-220 (N.ISOL)
2N3525 S4006R S TO-220 (N.ISOL)
2N3528 S2006F1 S TO-202 (N.ISOL)
2N3529 S4006F1 STO-202 (N.ISOL)
2N4101 S6006L STO-220 (ISOL)
2N4102 S6006F1 STO-202 (N.ISOL)
2N4441 S2008R STO-220 (N.ISOL
2N4442 S2008R STO-220 (N.ISOL)
2N4443 S4008R S TO-220 (N.ISOL)
2N4444 S6008R S TO-220 (N.ISOL)
2N5060 2N5064 D TO-92 (ISOL)
2N5061 2N5064 D TO-92 (ISOL)
2N5062 2N5064 D TO-92 (ISOL)
2N5063 2N5064 DTO-92 (ISOL)
2N5064 2N5064 DTO-92 (ISOL)
2N5754 Q2004F41 STO-202 (N.ISOL)
2N5755 Q2004F41 STO-202 (N.ISOL)
2N5756 Q4004F41 STO-202 (N.ISOL)
2N6068 Q2004F41 S TO-202 (N.ISOL)
2N6068A L2004F51 S TO-202 (N.ISOL)
2N6068B L2004F31 S TO-202 (N.ISOL)
2N6069 Q2004F41 S TO-202 (N.ISOL)
2N6069A L2004F51 S TO-202 (N.ISOL)
2N6069B L2004F31 STO-202 (N.ISOL)
2N6070 Q2004F41 STO-202 (N.ISOL)
2N6070A L2004F51 STO-202 (N.ISOL)
2N6070B L2004F31 STO-202 (N.ISOL)
2N6071 Q2004F41 STO-202 (N.ISOL)
2N6071A L2004F51 S TO-202 (N.ISOL)
2N6071B L2004F31 S TO-202 (N.ISOL)
2N6072 Q4004F41 S TO-202 (N.ISOL)
2N6072A L4004F51 S TO-202 (N.ISOL)
2N6072B L4004F31 S TO-202 (N.ISOL)
2N6073 Q4004F41 STO-202 (N.ISOL)
2N6073A L4004F51 STO-202 (N.ISOL)
2N6073B L4004F31 STO-202 (N.ISOL)
2N6074 Q6004F41 STO-202 (N.ISOL)
2N6074A L6004F51 STO-202 (N.ISOL)
2N6074B L6004F31 S TO-202 (N.ISOL)
2N6075 Q6004F41 S TO-202 (N.ISOL)
2N6075A L6004F51 S TO-202 (N.ISOL)
2N6075B L6004F31 S TO-202 (N.ISOL)
2N6236 T106B1 S TO-202 (N.ISOL)
2N6237 T106B1 STO-202 (N.ISOL)
2N6238 T106B1 STO-202 (N.ISOL)
2N6239 T106B1 STO-202 (N.ISOL)
2N6240 T106D1 STO-202 (N.ISOL)
2N6241 T106M1 STO-202 (N.ISOL)
2N6342 Q2008R4 S TO-220 (N.ISOL)
2N6342A Q2012RH5 S TO-220 (N.ISOL)
2N6343 Q4008R4 S TO-220 (N.ISOL)
2N6343A Q4012RH5 S TO-220 (N.ISOL)
2N6344 Q6008R5 S TO-220 (N.ISOL)
2N6344A Q6012RH5 STO-220 (N.ISOL)
2N6345 Q8008R5 STO-220 (N.ISOL)
2N6345A Q8012RH5 STO-220 (N.ISOL)
2N6346A Q2015R5 STO-220 (N.ISOL)
2N6347A Q4015R5 STO-220 (N.ISOL)
2N6348A Q6015R5 S TO-220 (N.ISOL)
2N6349 Q8010R5 S TO-220 (N.ISOL)
2N6349A Q8015R5 S TO-220 (N.ISOL)
2N6394 S2012R D TO-220 (N.ISOL)
2N6395 S2012R D TO-220 (N.ISOL)
2N6396 S2012R D TO-220 (N.ISOL)
2N6397 S4012R D TO-220 (N.ISOL)
2N6398 S6012R D TO-220 (N.ISOL)
2N6399 S8012R D TO-220 (N.ISOL)
2N6400 S2016R D TO-220 (N.ISOL)
2N6401 S2016R D TO-220 (N.ISOL)
2N6402 S2016R D TO-220 (N.ISOL)
2N6403 S4016R D TO-220 (N.ISOL)
2N6404 S6016R D TO-220 (N.ISOL)
2N6405 S8016R D TO-220 (N.ISOL)
2N6504 S2025R D TO-220 (N.ISOL)
2N6505 S2025R D TO-220 (N.ISOL)
2N6506 S2025R D TO-220 (N.ISOL)
2N6507 S4025R D TO-220 (N.ISOL)
2N6508 S6025R D TO-220 (N.ISOL)
2N6509 S8025R D TO-220 (N.ISOL)
2N6564 2N6565 D TO-92 (ISOL)
2N6564 EC103D S TO-92 (ISOL)
2N6565 2N6565 D TO-92 (ISOL)
2N6565 EC103D S TO-92 (ISOL)
2N877 EC103B S TO-92 (ISOL)
2N878 EC103B S TO-92 (ISOL)
2N879 EC103B S TO-92 (ISOL)
2N880 EC103B S TO-92 (ISOL)
2N881 EC103B S TO-92 (ISOL)
2N885 2N5064 D TO-92 (ISOL)
2N886 2N5064 D TO-92 (ISOL)
2N887 2N5064 D TO-92 (ISOL)
2N888 2N5064 D TO-92 (ISOL)
2N889 2N5064 D TO-92 (ISOL)
2P05M T106B1 STO-202 (N.ISOL)
2P1M T106B1 STO-202 (N.ISOL)
2P2M T106B1 STO-202 (N.ISOL)
2P4M T106D1 STO-202 (N.ISOL)
2P5M T106M1 STO-202 (N.ISOL)
2P6M T106M1 S TO-202 (N.ISOL)
30TPS08 S8035K S TO-218AC (ISOL) "K"
3P4J T106D2 S TO-202 (N.ISOL)
40TPS08 S8035K S TO-218AC (ISOL) "K"
5P05M S2008R S TO-220 (N.ISOL)
5P1M S2008R STO-220 (N.ISOL)
5P2M S2008R STO-220 (N.ISOL)
5P4M S4008R STO-220 (N.ISOL)
5P5M S6008R STO-220 (N.ISOL)
5P6M S6008R STO-220 (N.ISOL)
8T04HA Q2004F41 D TO-202 (N.ISOL)
8T04SH L2004F81 S TO-202 (N.ISOL)
8T14HA Q2004F41 D TO-202 (N.ISOL)
8T14SH L2004F81 S TO-202 (N.ISOL)
8T24HA Q2004F41 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-3 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
8T24SH L2004F81 STO-202 (N.ISOL)
8T34HA Q4004F41 D TO-202 (N.ISOL)
8T34SH L4004F81 STO-202 (N.ISOL)
8T44HA Q4004F41 DTO-202 (N.ISOL)
8T44SH L4004F81 STO-202 (N.ISOL)
8T54HA Q6004F41 D TO-202 (N.ISOL)
8T64HA Q6004F41 D TO-202 (N.ISOL)
8T64SH L6004F81 S TO-202 (N.ISOL)
AC03BGM Q2004F41 S TO-202 (N.ISOL)
AC03DGM Q4004F41 S TO-202 (N.ISOL)
AC03EGM Q5004F41 STO-202 (N.ISOL)
AC03FGM Q6004F41 STO-202 (N.ISOL)
AC08BGM Q2008R5 STO-220 (N.ISOL)
AC08BSM Q2008LH4 STO-220 (ISOL)
AC08DGM Q4008R4 STO-220 (N.ISOL)
AC08DSM Q4008LH4 S TO-220 (ISOL)
AC08EGM Q6008R4 S TO-220 (N.ISOL)
AC08ESM Q6008LH4 S TO-220 (ISOL)
AC08FGM Q6008R5 S TO-220 (N.ISOL)
AC08FSM Q6008LH4 S TO-220 (ISOL)
AC10BGML Q2010RH5 STO-220 (N.ISOL)
AC10BSM Q2010LH5 STO-220 (ISOL)
AC10DGML Q4010RH5 STO-220 (N.ISOL)
AC10DSM Q4010LH5 STO-220 (ISOL)
AC10EGML Q6010RH5 STO-220 (N.ISOL)
AC10ESM Q6010LH5 S TO-220 (ISOL)
AC10FGML Q6010RH5 S TO-220 (N.ISOL)
AC10FSM Q6010LH5 S TO-220 (ISOL)
AC12BGML Q2012RH5 S TO-220 (N.ISOL)
AC12BSM Q2012LH5 S TO-220 (ISOL)
AC12DGML Q4012RH5 STO-220 (N.ISOL)
AC12DSM Q4012LH5 STO-220 (ISOL)
AC12EGML Q6012RH5 STO-220 (N.ISOL)
AC12ESM Q6012LH5 STO-220 (ISOL)
AC12FGML Q6012RH5 STO-220 (N.ISOL)
AC12FSM Q6012LH5 S TO-220 (ISOL)
AC16BGM Q2015R5 S TO-220 (N.ISOL)
AC16BSM Q2015L5 S TO-220 (ISOL)
AC16DGM Q4015R5 S TO-220 (N.ISOL)
AC16DSM Q4015L5 S TO-220 (ISOL)
AC16EGM Q6015R5 STO-220 (N.ISOL)
AC16ESM Q6015L5 STO-220 (ISOL)
AC16FGM Q6015R5 STO-220 (N.ISOL)
AC16FSM Q6015L5 STO-220 (ISOL)
AC25B1FL Q6025P5 SFASTPAK (ISOL)
AC25D1FL Q6025P5 S FASTPAK (ISOL)
AC25E1FL Q6025P5 S FASTPAK (ISOL)
AC25F1FL Q6025P5 S FASTPAK (ISOL)
BCR3AS-12 Q6006DH3 D TO-252 (SMT)
BCR3AS-8 Q4006DH3 D TO-252 (SMT)
BT131W-600 L6N3 SSOT223 / COMPAK
BT136-500 Q6004F41 STO-202 (N.ISOL)
BT136-500D L6004F61 STO-202 (N.ISOL)
BT136-500E L6004F81 STO-202 (N.ISOL)
BT136-500F Q6004F41 STO-202 (N.ISOL)
BT136-500G Q6004F41 S TO-202 (N.ISOL)
BT136-600 Q6004F41 S TO-202 (N.ISOL)
BT136-600D L6004F61 S TO-202 (N.ISOL)
BT136-600E L6004F81 S TO-202 (N.ISOL)
BT136-600F Q6004F41 S TO-202 (N.ISOL)
BT136-600G Q6004F41 STO-202 (N.ISOL)
BT136-800 Q8004L4 STO-220 (ISOL)
BT136-800F Q8004L4 STO-220 (ISOL)
BT136-800G Q8004L4 STO-220 (ISOL)
BT136F-500 Q6004L4 STO-220 (ISOL)
BT136F-500D L6004L6 S TO-220 (ISOL)
BT136F-500E L6004L8 S TO-220 (ISOL)
BT136F-500F Q6004L4 S TO-220 (ISOL)
BT136F-500G Q6004L4 S TO-220 (ISOL)
BT136F-600 Q6004L4 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
BT136F-600D L6004L6 STO-220 (ISOL)
BT136F-600E L6004L8 STO-220 (ISOL)
BT136F-600F Q6004L4 STO-220 (ISOL)
BT136F-600G Q6004L4 STO-220 (ISOL)
BT136F-800 Q8004L4 STO-220 (ISOL)
BT136F-800F Q8004L4 S TO-220 (ISOL)
BT136F-800G Q8004L4 S TO-220 (ISOL)
BT136S-600D L6004D5 S TO-252 (SMT)
BT136S-600E L6004D6 S TO-252 (SMT)
BT136S-600F L6004D8 S TO-252 (SMT)
BT136X-500 Q6004L4 STO-220 (ISOL)
BT136X-500D L6004L6 STO-220 (ISOL)
BT136X-500E L6004L8 STO-220 (ISOL)
BT136X-500F Q6004L4 STO-220 (ISOL)
BT136X-500G Q6004L4 STO-220 (ISOL)
BT136X-600 Q6004L4 S TO-220 (ISOL)
BT136X-600D L6004L6 S TO-220 (ISOL)
BT136X-600E L6004L8 S TO-220 (ISOL)
BT136X-600F Q6004L4 S TO-220 (ISOL)
BT136X-600G Q6004L4 S TO-220 (ISOL)
BT136X-800 Q8004L4 STO-220 (ISOL)
BT136X-800F Q8004L4 STO-220 (ISOL)
BT136X-800G Q8004L4 STO-220 (ISOL)
BT137-500 Q6008R4 STO-220 (N.ISOL)
BT137-500D L6008L6 S TO-220 (ISOL)
BT137-500E L6008L8 S TO-220 (ISOL)
BT137-500F Q6008R4 S TO-220 (N.ISOL)
BT137-500G Q6008R4 S TO-220 (N.ISOL)
BT137-600D L6008L6 S TO-220 (ISOL)
BT137-600E L6008L8 S TO-220 (ISOL)
BT137-600G Q6008R5 STO-220 (N.ISOL)
BT137-800G Q8008R5 STO-220 (N.ISOL)
BT137B-600 Q6010N4 STO-263 (SMT)
BT137B-600F Q6010N4 STO-263 (SMT)
BT137F-500 Q6008L4 STO-220 (ISOL)
BT137F-500D L6008L6 S TO-220 (ISOL)
BT137F-500E L6008L8 S TO-220 (ISOL)
BT137F-500F Q6008L4 S TO-220 (ISOL)
BT137F-500G Q6008L4 S TO-220 (ISOL)
BT137F-600D L6008L6 S TO-220 (ISOL)
BT137F-600E L6008L8 STO-220 (ISOL)
BT137F-600G Q6008L5 STO-220 (ISOL)
BT137F-800G Q8008L5 STO-220 (ISOL)
BT137S-600E L6008D8 STO-252 (SMT)
BT137X-500 Q6008L4 STO-220 (ISOL)
BT137X-500D L6008L6 S TO-220 (ISOL)
BT137X-500E L6008L8 S TO-220 (ISOL)
BT137X-500F Q6008L4 S TO-220 (ISOL)
BT137X-500G Q6008L4 S TO-220 (ISOL)
BT137X-600D L6008L6 S TO-220 (ISOL)
BT137X-600E L6008L8 STO-220 (ISOL)
BT137X-600G Q6008L5 STO-220 (ISOL)
BT137X-800G Q8008L5 STO-220 (ISOL)
BT138-500G Q6015R5 STO-220 (N.ISOL)
BT138-600G Q6015R5 STO-220 (N.ISOL)
BT138-800G Q8015R5 S TO-220 (N.ISOL)
BT138F-500G Q6015L5 S TO-220 (ISOL)
BT138F-600G Q6015L5 S TO-220 (ISOL)
BT138F-800G Q8015L5 S TO-220 (ISOL)
BT138X-500G Q6015L5 S TO-220 (ISOL)
BT138X-600G Q6015L5 STO-220 (ISOL)
BT138X-800G Q8015L5 STO-220 (ISOL)
BT139-500G Q6015R5 STO-220 (N.ISOL)
BT139-600G Q6015R5 STO-220 (N.ISOL)
BT139-800G Q8015R5 STO-220 (N.ISOL)
BT139F-500G Q6015L5 S TO-220 (ISOL)
BT139F-600G Q6015L5 S TO-220 (ISOL)
BT139F-800G Q8015L5 S TO-220 (ISOL)
BT139X-500G Q6015L5 S TO-220 (ISOL)
BT139X-500H Q6015L6 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-4 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
BT139X-600G Q6015L5 STO-220 (ISOL)
BT139X-600H Q6015L6 STO-220 (ISOL)
BT139X-800G Q8015L5 STO-220 (ISOL)
BT139X-800H Q8015L6 STO-220 (ISOL)
BT145-500R Q6025R STO-220 (N.ISOL)
BT145-600R Q6025R S TO-220 (N.ISOL)
BT145-800R Q8025R S TO-220 (N.ISOL)
BT149B EC103B S TO-92 (ISOL)
BT149D EC103D S TO-92 (ISOL)
BT149E EC103M S TO-92 (ISOL)
BT149G EC103M STO-92 (ISOL)
BT150-500R T106M1 STO-202 (N.ISOL)
BT150-600R T106M1 STO-202 (N.ISOL)
BT150S-600R S6004DS2 STO-252 (SMT)
BT151-500R S6010R STO-220 (N.ISOL)
BT151-650R S8010R S TO-220 (N.ISOL)
BT151-800R S8010R S TO-220 (N.ISOL)
BT151S-500R S6012D S TO-252 (SMT)
BT151S-650R S8012D S TO-252 (SMT)
BT151X-500 S6010L S TO-220 (ISOL)
BT151X-650 S8010L STO-220 (ISOL)
BT151X-800 S8010L STO-220 (ISOL)
BT152-400R S4020L STO-220 (ISOL)
BT152-600R S6020L STO-220 (ISOL)
BT152-800R S8020L STO-220 (ISOL)
BT152B-400R S4025N S TO-263 (SMT)
BT152B-600R S6025N S TO-263 (SMT)
BT152B-800R S8025N S TO-263 (SMT)
BT168B EC103B S TO-92 (ISOL)
BT168D EC103D S TO-92 (ISOL)
BT168E EC103M STO-92 (ISOL)
BT168G EC103M STO-92 (ISOL)
BT169B EC103B DTO-92 (ISOL)
BT169D EC103D DTO-92 (ISOL)
BT169E EC103M DTO-92 (ISOL)
BT169G EC103M D TO-92 (ISOL)
BT300-500R S6008R S TO-220 (N.ISOL)
BT300-600R S6008R S TO-220 (N.ISOL)
BT300-800R S8008R S TO-220 (N.ISOL)
BT300S-600R S6008D D TO-252 (SMT)
BTA04-200A L2004L8 DTO-220 (ISOL)
BTA04-200D L2004L6 DTO-220 (ISOL)
BTA04-200GP L2004L6 STO-220 (ISOL)
BTA04-200S L2004L6 DTO-220 (ISOL)
BTA04-200T L2004L5 DTO-220 (ISOL)
BTA04-400A L4004L8 D TO-220 (ISOL)
BTA04-400D L4004L6 D TO-220 (ISOL)
BTA04-400GP L4004L6 S TO-220 (ISOL)
BTA04-400S L4004L6 D TO-220 (ISOL)
BTA04-400T L4004L5 D TO-220 (ISOL)
BTA04-600A L6004L8 DTO-220 (ISOL)
BTA04-600D L6004L6 DTO-220 (ISOL)
BTA04-600GP L6004L6 STO-220 (ISOL)
BTA04-600S L6004L6 DTO-220 (ISOL)
BTA04-600T L6004L5 DTO-220 (ISOL)
BTA06-200A L2006L8 D TO-220 (ISOL)
BTA06-200B Q2006L4 S TO-220 (ISOL)
BTA06-200C Q2006L4 S TO-220 (ISOL)
BTA06-200D L2006L6 D TO-220 (ISOL)
BTA06-200GP L2006L6 S TO-220 (ISOL)
BTA06-200S L2006L6 DTO-220 (ISOL)
BTA06-200SW L2006L8 DTO-220 (ISOL)
BTA06-200T L2006L5 STO-220 (ISOL)
BTA06-200TW L2006L6 DTO-220 (ISOL)
BTA06-400A L4006L8 DTO-220 (ISOL)
BTA06-400B Q4006L4 S TO-220 (ISOL)
BTA06-400BW Q4006LH4 S TO-220 (ISOL)
BTA06-400C Q4006L4 S TO-220 (ISOL)
BTA06-400CW Q4006LH4 D TO-220 (ISOL)
BTA06-400D L4006L6 D TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
BTA06-400GP L4006L6 STO-220 (ISOL)
BTA06-400S L4006L6 DTO-220 (ISOL)
BTA06-400SW L4006L8 DTO-220 (ISOL)
BTA06-400T L4006L5 STO-220 (ISOL)
BTA06-400TW L4006L6 DTO-220 (ISOL)
BTA06-600A L6006L8 D TO-220 (ISOL)
BTA06-600B Q6006L5 S TO-220 (ISOL)
BTA06-600BW Q6006LH4 S TO-220 (ISOL)
BTA06-600C Q6006L5 S TO-220 (ISOL)
BTA06-600CW Q6006LH4 S TO-220 (ISOL)
BTA06-600D L6006L6 DTO-220 (ISOL)
BTA06-600GP L6006L6 STO-220 (ISOL)
BTA06-600S L6006L6 DTO-220 (ISOL)
BTA06-600SW L6006L8 DTO-220 (ISOL)
BTA06-600T L6006L5 STO-220 (ISOL)
BTA06-600TW L6006L6 D TO-220 (ISOL)
BTA06-700B Q8006L5 S TO-220 (ISOL)
BTA06-700BW Q8006LH4 S TO-220 (ISOL)
BTA06-700C Q8006L5 D TO-220 (ISOL)
BTA06-700CW Q7006LH4 D TO-220 (ISOL)
BTA06-800B Q8006L5 STO-220 (ISOL)
BTA06-800BW Q8006LH4 STO-220 (ISOL)
BTA06-800C Q8006L5 STO-220 (ISOL)
BTA06-800CW Q8006LH4 D TO-220 (ISOL)
BTA08-200A L2008L8 D TO-220 (ISOL)
BTA08-200B Q2008L4 S TO-220 (ISOL)
BTA08-200C Q2008L4 S TO-220 (ISOL)
BTA08-200S L2008L6 D TO-220 (ISOL)
BTA08-200SW L2008L8 D TO-220 (ISOL)
BTA08-200TW L2008L6 D TO-220 (ISOL)
BTA08-400A L4008L8 D TO-220 (ISOL)
BTA08-400B Q4008L4 STO-220 (ISOL)
BTA08-400BW Q4008LH4 STO-220 (ISOL)
BTA08-400C Q4008L4 STO-220 (ISOL)
BTA08-400CW Q4008LH4 D TO-220 (ISOL)
BTA08-400S L4008L6 D TO-220 (ISOL)
BTA08-400SW L4008L8 D TO-220 (ISOL)
BTA08-400TW L4008L6 D TO-220 (ISOL)
BTA08-600A L6008L8 D TO-220 (ISOL)
BTA08-600B Q6008L5 S TO-220 (ISOL)
BTA08-600BW Q6008LH4 STO-220 (ISOL)
BTA08-600C Q6008L5 STO-220 (ISOL)
BTA08-600CW Q6008LH4 D TO-220 (ISOL)
BTA08-600S L6008L6 D TO-220 (ISOL)
BTA08-600SW L6008L8 D TO-220 (ISOL)
BTA08-600TW L6008L6 D TO-220 (ISOL)
BTA08-700B Q8008L5 S TO-220 (ISOL)
BTA08-700BW Q8008LH4 S TO-220 (ISOL)
BTA08-700C Q8008L5 S TO-220 (ISOL)
BTA08-700CW Q8008LH4 D TO-220 (ISOL)
BTA08-800B Q8008L5 STO-220 (ISOL)
BTA08-800BW Q8008LH4 STO-220 (ISOL)
BTA08-800C Q8008L5 STO-220 (ISOL)
BTA08-800CW Q8008LH4 D TO-220 (ISOL)
BTA10-200AW Q2010L5 S TO-220 (ISOL)
BTA10-200B Q2010L5 S TO-220 (ISOL)
BTA10-200BW Q2010LH5 D TO-220 (ISOL)
BTA10-200C Q2010L5 S TO-220 (ISOL)
BTA10-200CW Q2010LH5 S TO-220 (ISOL)
BTA10-400AW Q4010L5 S TO-220 (ISOL)
BTA10-400B Q4010L5 STO-220 (ISOL)
BTA10-400BW Q4010LH5 D TO-220 (ISOL)
BTA10-400C Q4010L5 STO-220 (ISOL)
BTA10-400CW Q4010LH5 STO-220 (ISOL)
BTA10-400GP Q4010L4 STO-220 (ISOL)
BTA10-600AW Q6010L5 S TO-220 (ISOL)
BTA10-600B Q6010L5 S TO-220 (ISOL)
BTA10-600BW Q6010LH5 D TO-220 (ISOL)
BTA10-600C Q6010L5 S TO-220 (ISOL)
BTA10-600CW Q6010LH5 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-5 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
BTA10-600GP Q6010L4 STO-220 (ISOL)
BTA10-700AW Q8010L5 S TO-220 (ISOL)
BTA10-700B Q8010L5 STO-220 (ISOL)
BTA10-700BW Q8010LH5 D TO-220 (ISOL)
BTA10-700C Q8010L5 STO-220 (ISOL)
BTA10-700CW Q8010LH5 S TO-220 (ISOL)
BTA10-800B Q8010L5 S TO-220 (ISOL)
BTA10-800BW Q8010LH5 D TO-220 (ISOL)
BTA10-800C Q8010L5 S TO-220 (ISOL)
BTA10-800CW Q8010LH5 S TO-220 (ISOL)
BTA12-200AW Q2012LH5 DTO-220 (ISOL)
BTA12-200B Q2015L5 STO-220 (ISOL)
BTA12-200BW Q4012LH5 D TO-220 (ISOL)
BTA12-200C Q2015L5 STO-220 (ISOL)
BTA12-400AW Q4012LH5 D TO-220 (ISOL)
BTA12-400B Q4015L5 S TO-220 (ISOL)
BTA12-400BW Q4012LH5 D TO-220 (ISOL)
BTA12-400C Q4015L5 S TO-220 (ISOL)
BTA12-400CW Q4012LH5 S TO-220 (ISOL)
BTA12-600AW Q6012LH5 D TO-220 (ISOL)
BTA12-600B Q6015L5 STO-220 (ISOL)
BTA12-600BW Q6012LH5 DTO-220 (ISOL)
BTA12-600C Q6015L5 STO-220 (ISOL)
BTA12-600CW Q6012LH5 STO-220 (ISOL)
BTA12-700AW Q8012LH5 DTO-220 (ISOL)
BTA12-700B Q8015L5 S TO-220 (ISOL)
BTA12-700BW Q8012LH5 D TO-220 (ISOL)
BTA12-700C Q8015L5 S TO-220 (ISOL)
BTA12-700CW Q8012LH5 S TO-220 (ISOL)
BTA12-800B Q8015L5 S TO-220 (ISOL)
BTA12-800BW Q8012LH5 STO-220 (ISOL)
BTA12-800C Q8015L5 STO-220 (ISOL)
BTA12-800CW Q8012LH5 STO-220 (ISOL)
BTA13-200B Q2015L5 STO-220 (ISOL)
BTA13-400B Q4015L5 STO-220 (ISOL)
BTA13-600B Q6015L5 S TO-220 (ISOL)
BTA13-700B Q8015L5 S TO-220 (ISOL)
BTA13-800B Q8015L5 S TO-220 (ISOL)
BTA140-500 Q6025R5 S TO-220 (N.ISOL)
BTA140-600 Q6025R5 S TO-220 (N.ISOL)
BTA140-800 Q8025R5 STO-220 (N.ISOL)
BTA16-200AW Q2016LH6 STO-220 (ISOL)
BTA16-200B Q2015L5 STO-220 (ISOL)
BTA16-200BW Q2016LH4 STO-220 (ISOL)
BTA16-400AW Q2016LH6 STO-220 (ISOL)
BTA16-400B Q2015L5 S TO-220 (ISOL)
BTA16-400BW Q2016LH4 S TO-220 (ISOL)
BTA16-400CW Q4016LH4 S TO-220 (ISOL)
BTA16-600AW Q6016LH6 S TO-220 (ISOL)
BTA16-600B Q6015L5 S TO-220 (ISOL)
BTA16-600BW Q6016LH4 STO-220 (ISOL)
BTA16-600CW Q6016LH4 STO-220 (ISOL)
BTA16-700AW Q8016LH6 STO-220 (ISOL)
BTA16-700B Q8015L5 STO-220 (ISOL)
BTA16-700BW Q8016LH4 STO-220 (ISOL)
BTA16-700CW Q8016LH4 S TO-220 (ISOL)
BTA16-800AW Q8016LH6 S TO-220 (ISOL)
BTA16-800B Q8015L5 S TO-220 (ISOL)
BTA16-800BW Q8016LH4 S TO-220 (ISOL)
BTA16-800CW Q8016LH4 S TO-220 (ISOL)
BTA20-400BW Q4025L6 STO-220 (ISOL)
BTA20-400CW Q4025L6 STO-220 (ISOL)
BTA204S-600C Q6006DH4 DTO-252 (SMT)
BTA204S-600E Q6006DH3 DTO-252 (SMT)
BTA20-600BW Q6025L6 STO-220 (ISOL)
BTA20-600CW Q6025L6 S TO-220 (ISOL)
BTA20-700BW Q8025L6 S TO-220 (ISOL)
BTA20-700CW Q8025L6 S TO-220 (ISOL)
BTA20-800BW Q8025L6 S TO-220 (ISOL)
BTA20-800CW Q8025L6 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
BTA208-600B Q6008RH4 STO-220 (N.ISOL
BTA208-800B Q8008RH4 STO-220 (N.ISOL
BTA208S-600E Q6008DH3 DTO-252 (SMT)
BTA208S-800C Q8008DH4 DTO-252 (SMT)
BTA208X-600B Q6008LH4 STO-220 (ISOL)
BTA208X-800B Q8008LH4 S TO-220 (ISOL)
BTA20C Q4006R4 D TO-220 (N.ISOL)
BTA20D Q4006R4 D TO-220 (N.ISOL)
BTA20E Q6006R4 D TO-220 (N.ISOL)
BTA20M Q6006R5 D TO-220 (N.ISOL)
BTA20N Q8006R5 DTO-220 (N.ISOL)
BTA212-600B Q6012RH5 STO-220 (N.ISOL)
BTA212-800B Q8012RH5 STO-220 (N.ISOL)
BTA212B-600B Q6012NH5 DTO-263 (SMT)
BTA212B-800B Q8012NH5 DTO-263 (SMT)
BTA212X-600B Q6012LH5 S TO-220 (ISOL)
BTA212X-800B Q8012LH5 S TO-220 (ISOL)
BTA216-600B Q6015R6 S TO-220 (N.ISOL)
BTA216-800B Q8015R6 S TO-220 (N.ISOL)
BTA216B-600 Q6016NH4 S TO-263 (SMT)
BTA216X-600B Q6015L6 STO-220 (ISOL)
BTA216X-800B Q8015L6 STO-220 (ISOL)
BTA21C Q4008R4 DTO-220 (N.ISOL)
BTA21D Q4008R4 DTO-220 (N.ISOL)
BTA21E Q6008R4 DTO-220 (N.ISOL)
BTA21M Q6008R5 S TO-220 (N.ISOL)
BTA21N Q8008R5 S TO-220 (N.ISOL)
BTA225-600B Q6025R6 S TO-220 (N.ISOL)
BTA225-800B Q8025R6 S TO-220 (N.ISOL)
BTA225B-600B Q6025NH6 S TO-263 (SMT)
BTA225B-800B Q8025NH6 STO-263 (SMT)
BTA22B Q2010R5 STO-220 (N.ISOL)
BTA22C Q4010R5 STO-220 (N.ISOL)
BTA22D Q4010R5 STO-220 (N.ISOL)
BTA22E Q5010R5 STO-220 (N.ISOL)
BTA22M Q6010R5 S TO-220 (N.ISOL)
BTA23B Q2015R5 S TO-220 (N.ISOL)
BTA23C Q4015R5 S TO-220 (N.ISOL)
BTA23D Q4015R5 S TO-220 (N.ISOL)
BTA23E Q5015R5 S TO-220 (N.ISOL)
BTA23M Q6015R5 S TO-220 (N.ISOL)
BTA24-600BW Q6025L6 STO-220 (ISOL)
BTA24-600CW Q6025L6 STO-220 (ISOL)
BTA24-700BW Q8025L6 STO-220 (ISOL)
BTA24-700CW Q8025L6 STO-220 (ISOL)
BTA24-800BW Q8025L6 S TO-220 (ISOL)
BTA24-800CW Q8025L6 S TO-220 (ISOL)
BTA25-200A Q6025P5 S FASTPAK (ISOL)
BTA25-200B Q6025P5 S FASTPAK (ISOL)
BTA25-400A Q6025P5 S FASTPAK (ISOL)
BTA25-400B Q6025P5 SFASTPAK (ISOL)
BTA25-600A Q6025P5 S FASTPAK (ISOL)
BTA25-600B Q6025P5 SFASTPAK (ISOL)
BTA25-600BW Q6025P5 SFASTPAK (ISOL)
BTA25-600CW Q6025P5 SFASTPAK (ISOL)
BTA25-700A Q8025P5 S FASTPAK (ISOL)
BTA25-700B Q8025P5 S FASTPAK (ISOL)
BTA25-800A Q8025P5 S FASTPAK (ISOL)
BTA25-800B Q8025P5 S FASTPAK (ISOL)
BTA25-800BW Q8025P5 S FASTPAK (ISOL)
BTA25-800CW Q8025P5 SFASTPAK (ISOL)
BTA26-200A Q2025K6 STO-218 (ISOL)
BTA26-200B Q2025K6 S TO-218 (ISOL)
BTA26-400A Q4025K6 STO-218 (ISOL)
BTA26-400B Q4025K6 S TO-218 (ISOL)
BTA26-400BW Q4025K6 S TO-218 (ISOL)
BTA26-400CW Q4025K6 S TO-218 (ISOL)
BTA26-600A Q6025K6 S TO-218 (ISOL)
BTA26-600B Q6025K6 S TO-218 (ISOL)
BTA26-600BW Q6025K6 S TO-218 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-6 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
BTA26-600CW Q6025K6 S TO-218 (ISOL)
BTA26-700A Q8025K6 STO-218 (ISOL)
BTA26-700B Q8025K6 S TO-218 (ISOL)
BTA26-700BW Q8025K6 S TO-218 (ISOL)
BTA26-700CW Q8025K6 S TO-218 (ISOL)
BTA26-800A Q8025K6 S TO-218 (ISOL)
BTA26-800B Q8025K6 S TO-218 (ISOL)
BTA26-800BW Q8025K6 S TO-218 (ISOL)
BTA26-800CW Q8025K6 S TO-218 (ISOL)
BTA40-200A Q6035P5 S FASTPAK (ISOL)
BTA40-200B Q6035P5 S FASTPAK (ISOL)
BTA40-400A Q6035P5 SFASTPAK (ISOL)
BTA40-400B Q6035P5 S FASTPAK (ISOL)
BTA40-600A Q6035P5 SFASTPAK (ISOL)
BTA40-600B Q6035P5 S FASTPAK (ISOL)
BTA40-700A Q8035P5 S FASTPAK (ISOL)
BTA40-700B Q8035P5 S FASTPAK (ISOL)
BTA41-200A Q2040K7 S TO-218 (ISOL)
BTA41-200B Q2040K7 S TO-218 (ISOL)
BTA41-400A Q4040K7 S TO-218 (ISOL)
BTA41-400B Q4040K7 S TO-218 (ISOL)
BTA41-600A Q6040K7 STO-218 (ISOL)
BTA41-600B Q6040K7 S TO-218 (ISOL)
BTA41-700A Q8040K7 STO-218 (ISOL)
BTA41-700B Q8040K7 S TO-218 (ISOL)
BTA41-800A Q8040K7 S TO-218 (ISOL)
BTA41-800B Q8040K7 S TO-218 (ISOL)
BTB04-200A L2004F81 S TO-202 (N.ISOL)
BTB04-200D L2004F61 S TO-202 (N.ISOL)
BTB04-200S L2004F61 S TO-202 (N.ISOL)
BTB04-200T L2004F51 STO-202 (N.ISOL)
BTB04-400A L4004F81 STO-202 (N.ISOL)
BTB04-400D L4004F61 STO-202 (N.ISOL)
BTB04-400S L4004F61 STO-202 (N.ISOL)
BTB04-400T L4004F51 STO-202 (N.ISOL)
BTB04-600A L6004F61 S TO-202 (N.ISOL)
BTB04-600D L6004F61 S TO-202 (N.ISOL)
BTB04-600S L6004F81 S TO-202 (N.ISOL)
BTB04-600T L6004F51 S TO-202 (N.ISOL)
BTB06-200A L2006L8 S TO-220 (ISOL)
BTB06-200B Q2006R4 STO-220 (N.ISOL)
BTB06-200C Q2006R4 STO-220 (N.ISOL)
BTB06-200D L2006L6 STO-220 (ISOL)
BTB06-200S L2006L6 STO-220 (ISOL)
BTB06-200T L2006L5 STO-220 (ISOL)
BTB06-400A L4006L8 S TO-220 (ISOL)
BTB06-400B Q4006R4 S TO-220 (N.ISOL)
BTB06-400BW Q4006RH4 S TO-220 (N.ISOL)
BTB06-400C Q4006R4 S TO-220 (N.ISOL)
BTB06-400CW Q4006RH4 S TO-220 (N.ISOL)
BTB06-400D L4006L6 STO-220 (ISOL)
BTB06-400S L4006L6 STO-220 (ISOL)
BTB06-400T L4006L5 STO-220 (ISOL)
BTB06-600A L6006L8 STO-220 (ISOL)
BTB06-600B Q6006R5 STO-220 (N.ISOL)
BTB06-600BW Q6006RH4 S TO-220 (N.ISOL)
BTB06-600C Q6006R5 S TO-220 (N.ISOL)
BTB06-600CW Q6006RH4 S TO-220 (N.ISOL)
BTB06-600D L6006L6 S TO-220 (ISOL)
BTB06-600S L6006L6 S TO-220 (ISOL)
BTB06-600T L6006L5 STO-220 (ISOL)
BTB06-700B Q8006R5 STO-220 (N.ISOL)
BTB06-700BW Q8006RH4 STO-220 (N.ISOL)
BTB06-700C Q8006R5 STO-220 (N.ISOL)
BTB06-700CW Q8006RH4 STO-220 (N.ISOL)
BTB06-800B Q8006R5 S TO-220 (N.ISOL)
BTB06-800BW Q8006RH4 S TO-220 (N.ISOL)
BTB06-800C Q8006R5 S TO-220 (N.ISOL)
BTB06-800CW Q8006RH4 S TO-220 (N.ISOL)
BTB08-200A L2008L8 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
BTB08-200B Q2008R4 STO-220 (N.ISOL)
BTB08-200C Q2008R4 STO-220 (N.ISOL)
BTB08-200S L2008L6 STO-220 (ISOL)
BTB08-400A L4008L8 STO-220 (ISOL)
BTB08-400B Q4008R4 STO-220 (N.ISOL)
BTB08-400BW Q4008RH4 S TO-220 (N.ISOL)
BTB08-400C Q4008R4 S TO-220 (N.ISOL)
BTB08-400CW Q4008RH4 S TO-220 (N.ISOL)
BTB08-400S L4008L6 S TO-220 (ISOL)
BTB08-600A L6008L8 S TO-220 (ISOL)
BTB08-600B Q6008R5 STO-220 (N.ISOL)
BTB08-600BW Q6008RH4 STO-220 (N.ISOL)
BTB08-600C Q6008R5 STO-220 (N.ISOL)
BTB08-600CW Q6008RH4 STO-220 (N.ISOL)
BTB08-600S L6008L6 STO-220 (ISOL)
BTB08-700B Q8008R5 S TO-220 (N.ISOL)
BTB08-700BW Q8008RH4 S TO-220 (N.ISOL)
BTB08-700C Q8008R5 S TO-220 (N.ISOL)
BTB08-700CW Q8008RH4 S TO-220 (N.ISOL)
BTB08-800B Q8008R5 S TO-220 (N.ISOL)
BTB08-800BW Q8008RH4 STO-220 (N.ISOL)
BTB08-800C Q8008R5 STO-220 (N.ISOL)
BTB08-800CW Q8008RH4 STO-220 (N.ISOL)
BTB10-200B Q2010R5 STO-220 (N.ISOL)
BTB10-200C Q2010R5 STO-220 (N.ISOL)
BTB10-400B Q4010R5 S TO-220 (N.ISOL)
BTB10-400BW Q4010RH5 S TO-220 (N.ISOL)
BTB10-400C Q4010R5 S TO-220 (N.ISOL)
BTB10-400CW Q4010RH5 S TO-220 (N.ISOL)
BTB10-600B Q6010R5 S TO-220 (N.ISOL)
BTB10-600BW Q6010RH5 STO-220 (N.ISOL)
BTB10-600C Q6010R5 STO-220 (N.ISOL)
BTB10-600CW Q6010RH5 STO-220 (N.ISOL)
BTB10-700B Q8010R5 STO-220 (N.ISOL)
BTB10-700BW Q8010RH5 STO-220 (N.ISOL)
BTB10-700C Q8010R5 S TO-220 (N.ISOL)
BTB10-700CW Q8010RH5 S TO-220 (N.ISOL)
BTB10-800B Q8010R5 S TO-220 (N.ISOL)
BTB10-800BW Q8010RH5 S TO-220 (N.ISOL)
BTB10-800C Q8010R5 S TO-220 (N.ISOL)
BTB10-800CW Q8010RH5 STO-220 (N.ISOL)
BTB12-200B Q2015R5 STO-220 (N.ISOL)
BTB12-200C Q2015R5 STO-220 (N.ISOL)
BTB12-400B Q4015R5 STO-220 (N.ISOL)
BTB12-400BW Q4012RH5 STO-220 (N.ISOL)
BTB12-400C Q4015R5 S TO-220 (N.ISOL)
BTB12-400CW Q4012RH5 S TO-220 (N.ISOL)
BTB12-400SW Q4016RH3 S TO-220 (N.ISOL)
BTB12-600B Q6015R5 S TO-220 (N.ISOL)
BTB12-600BW Q6012RH5 S TO-220 (N.ISOL)
BTB12-600C Q6015R5 STO-220 (N.ISOL)
BTB12-600CW Q6012RH5 STO-220 (N.ISOL)
BTB12-600SW Q6016RH3 STO-220 (N.ISOL)
BTB12-700B Q8015R5 STO-220 (N.ISOL)
BTB12-700BW Q8012RH5 STO-220 (N.ISOL)
BTB12-700C Q8015R5 S TO-220 (N.ISOL)
BTB12-700CW Q8012RH5 S TO-220 (N.ISOL)
BTB12-700SW Q8016RH3 S TO-220 (N.ISOL)
BTB12-800B Q8015R5 S TO-220 (N.ISOL)
BTB12-800BW Q8012RH5 S TO-220 (N.ISOL)
BTB12-800C Q8015R5 STO-220 (N.ISOL)
BTB12-800CW Q8012RH5 STO-220 (N.ISOL)
BTB13-200B Q2015R5 STO-220 (N.ISOL)
BTB13-400B Q4015R5 STO-220 (N.ISOL)
BTB13-600B Q6015R5 STO-220 (N.ISOL)
BTB13-700B Q8015R5 S TO-220 (N.ISOL)
BTB13-800B Q8015R5 S TO-220 (N.ISOL)
BTB15-200B Q2015R5 S TO-220 (N.ISOL)
BTB15-400B Q4015R5 S TO-220 (N.ISOL)
BTB15-600B Q6015R5 S TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-7 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
BTB15-700B Q8015R5 STO-220 (N.ISOL)
BTB16-200B Q2015R5 STO-220 (N.ISOL)
BTB16-400B Q4015R5 STO-220 (N.ISOL)
BTB16-400CW Q4016RH4 STO-220 (N.ISOL)
BTB16-600B Q6015R5 STO-220 (N.ISOL)
BTB16-600CW Q6016RH4 S TO-220 (N.ISOL)
BTB16-700B Q8015R5 S TO-220 (N.ISOL)
BTB16-700CW Q8016RH4 S TO-220 (N.ISOL)
BTB16-800B Q8015R5 S TO-220 (N.ISOL)
BTB16-800CW Q8016RH4 S TO-220 (N.ISOL)
BTB19-200B Q2025R5 STO-220 (N.ISOL)
BTB19-400B Q4025R5 STO-220 (N.ISOL)
BTB19-600B Q6025R5 STO-220 (N.ISOL)
BTB19-700B Q8025R5 STO-220 (N.ISOL)
BTB20-400BW Q4025R6 STO-220 (N.ISOL)
BTB20-400CW Q4025R6 S TO-220 (N.ISOL)
BTB20-600BW Q6025R6 S TO-220 (N.ISOL)
BTB20-600CW Q6025R6 S TO-220 (N.ISOL)
BTB20-700BW Q8025R6 S TO-220 (N.ISOL)
BTB20-700CW Q8025R6 S TO-220 (N.ISOL)
BTB20-800BW Q8025R6 STO-220 (N.ISOL)
BTB20-800CW Q8025R6 STO-220 (N.ISOL)
BTB24-200B Q2025R5 STO-220 (N.ISOL)
BTB24-400B Q4025R5 STO-220 (N.ISOL)
BTB24-600B Q6025R5 STO-220 (N.ISOL)
BTB24-600BW Q6025R6 S TO-220 (N.ISOL)
BTB24-700B Q8025R5 S TO-220 (N.ISOL)
BTB24-800B Q8025R5 S TO-220 (N.ISOL)
BTB26-200A Q2025K6 S TO-218 (ISOL)
BTB26-200B Q2025K6 S TO-218 (ISOL)
BTB26-400A Q4025K6 STO-218 (ISOL)
BTB26-400B Q4025K6 STO-218 (ISOL)
BTB26-600A Q6025K6 STO-218 (ISOL)
BTB26-600B Q6025K6 STO-218 (ISOL)
BTB26-700A Q8025K6 STO-218 (ISOL)
BTB26-700B Q8025K6 S TO-218 (ISOL)
BTB26-800B Q8025K6 S TO-218 (ISOL)
BTB41-200A Q2040K7 S TO-218 (ISOL)
BTB41-200B Q2040K7 S TO-218 (ISOL)
BTB41-400A Q4040K7 S TO-218 (ISOL)
BTB41-400B Q4040K7 STO-218 (ISOL)
BTB41-600A Q6040K7 STO-218 (ISOL)
BTB41-600B Q6040K7 STO-218 (ISOL)
BTB41-700A Q8040K7 STO-218 (ISOL)
BTB41-700B Q8040K7 STO-218 (ISOL)
BTB41-800A Q8040K7 S TO-218 (ISOL)
BTB41-800B Q8040K7 S TO-218 (ISOL)
BTW41-500G Q6035P5 S FASTPAK (ISOL)
BTW41-600G Q6035P5 S FASTPAK (ISOL)
BTW66-200 S2035J S TO-218 (ISOL)
BTW66-400 S4035J STO-218 (ISOL)
BTW66-600 S6035J STO-218 (ISOL)
BTW66-800 S8035J STO-218 (ISOL)
BTW67-200 S2065J STO-218 (ISOL)
BTW67-400 S4065J STO-218 (ISOL)
BTW67-600 S6065J S TO-218 (ISOL)
BTW67-800 S8065J S TO-218 (ISOL)
BTW68-200 S2035K D TO-218 (ISOL)
BTW68-200N S2035K S TO-218 (ISOL)
BTW68-400 S4035K D TO-218 (ISOL)
BTW68-400N S4035K STO-218 (ISOL)
BTW68-600 S6035K DTO-218 (ISOL)
BTW68-600N S6035K STO-218 (ISOL)
BTW68-800 S8035K DTO-218 (ISOL)
BTW68-800N S8035K STO-218 (ISOL)
BTW69-200 S2065K D TO-218 (ISOL)
BTW69-200N S2055M D TO-218 (N.ISOL)
BTW69-400 S4065K D TO-218 (ISOL)
BTW69-400N S4055M D TO-218 (N.ISOL)
BTW69-600 S6065K D TO-218 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
BTW69-600N S6055M DTO-218 (N.ISOL)
BTW69-800 S8065K DTO-218 (ISOL)
BTW69-800N S8055M DTO-218 (N.ISOL)
BTW70-200N S2070W STO-218 (N.ISOL)
BTW70-400N S4070W STO-218 (N.ISOL)
BTW70-600N S6070W S TO-218 (N.ISOL)
BYW80-100 D2020L S TO-220 (ISOL)
BYW80-150 D2020L S TO-220 (ISOL)
BYW80-200 D2020L S TO-220 (ISOL)
BYW80-50 D2020L S TO-220 (ISOL)
C103A EC103B STO-92 (ISOL)
C103B EC103B STO-92 (ISOL)
C103D EC103D STO-92 (ISOL)
C103E EC103M STO-92 (ISOL)
C103M EC103M STO-92 (ISOL)
C103Y EC103B S TO-92 (ISOL)
C103YY EC103B S TO-92 (ISOL)
C106A T106B1 S TO-202 (N.ISOL)
C106A1 T106B1 S TO-202 (N.ISOL)
C106A11 T106B11 S TO-202 (N.ISOL)
C106A12 T106B12 STO-202 (N.ISOL)
C106A2 T106B2 STO-202 (N.ISOL)
C106A21 T106B21 STO-202 (N.ISOL)
C106A3 T106B3 STO-202 (N.ISOL)
C106A32 T106B32 STO-202 (N.ISOL)
C106A4 T106B4 S TO-202 (N.ISOL)
C106A41 T106B41 S TO-202 (N.ISOL)
C106B T106B1 S TO-202 (N.ISOL)
C106B1 T106B1 S TO-202 (N.ISOL)
C106B11 T106B11 S TO-202 (N.ISOL)
C106B12 T106B12 S TO-202 (N.ISOL)
C106B2 T106B2 S TO-202 (N.ISOL)
C106B21 T106B21 S TO-202 (N.ISOL)
C106B3 T106B3 S TO-202 (N.ISOL)
C106B32 T106B32 S TO-202 (N.ISOL)
C106B4 T106B4 S TO-202 (N.ISOL)
C106B41 T106B41 S TO-202 (N.ISOL)
C106C T106D S TO-202 (N.ISOL)
C106C1 T106D1 S TO-202 (N.ISOL)
C106C11 T106D11 S TO-202 (N.ISOL)
C106C12 T106D12 S TO-202 (N.ISOL)
C106C2 T106D2 S TO-202 (N.ISOL)
C106C21 T106D1 S TO-202 (N.ISOL)
C106C3 T106D3 S TO-202 (N.ISOL)
C106C32 T106D32 S TO-202 (N.ISOL)
C106C4 T106D4 S TO-202 (N.ISOL)
C106C41 T106D41 S TO-202 (N.ISOL)
C106D T106D1 S TO-202 (N.ISOL)
C106D1 T106D1 S TO-202 (N.ISOL)
C106D11 T106D11 S TO-202 (N.ISOL)
C106D12 T106D12 S TO-202 (N.ISOL)
C106D2 T106D2 S TO-202 (N.ISOL)
C106D21 T106D21 S TO-202 (N.ISOL)
C106D3 T106D3 S TO-202 (N.ISOL)
C106D32 T106D32 S TO-202 (N.ISOL)
C106D4 T106D4 S TO-202 (N.ISOL)
C106D41 T106D41 S TO-202 (N.ISOL)
C106E T106M1 S TO-202 (N.ISOL)
C106E1 T106M1 S TO-202 (N.ISOL)
C106E11 T106M11 S TO-202 (N.ISOL)
C106E12 T106M12 S TO-202 (N.ISOL)
C106E2 T106M2 S TO-202 (N.ISOL)
C106E21 T106M21 S TO-202 (N.ISOL)
C106E3 T106M3 S TO-202 (N.ISOL)
C106E32 T106M32 S TO-202 (N.ISOL)
C106E4 T106M4 S TO-202 (N.ISOL)
C106E41 T106M41 S TO-202 (N.ISOL)
C106F T106B1 S TO-202 (N.ISOL)
C106F1 T106B1 S TO-202 (N.ISOL)
C106F11 T106B11 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-8 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
C106F12 T106B12 S TO-202 (N.ISOL)
C106F2 T106B2 S TO-202 (N.ISOL)
C106F21 T106B21 S TO-202 (N.ISOL)
C106F3 T106B3 S TO-202 (N.ISOL)
C106F32 T106B32 S TO-202 (N.ISOL)
C106F4 T106B4 S TO-202 (N.ISOL)
C106F41 T106B41 S TO-202 (N.ISOL)
C106M T106M1 S TO-202 (N.ISOL)
C106M1 T106M1 S TO-202 (N.ISOL)
C106M11 T106M11 S TO-202 (N.ISOL)
C106M12 T106M12 S TO-202 (N.ISOL)
C106M2 T106M2 S TO-202 (N.ISOL)
C106M21 T106M21 S TO-202 (N.ISOL)
C106M3 T106M3 S TO-202 (N.ISOL)
C106M32 T106M32 S TO-202 (N.ISOL)
C106M4 T106M4 S TO-202 (N.ISOL)
C106M41 T106M41 S TO-202 (N.ISOL)
C106Q T106B1 S TO-202 (N.ISOL)
C106Q1 T106B1 S TO-202 (N.ISOL)
C106Q11 T106B11 S TO-202 (N.ISOL)
C106Q12 T106B12 S TO-202 (N.ISOL)
C106Q2 T106B2 S TO-202 (N.ISOL)
C106Q21 T106B21 S TO-202 (N.ISOL)
C106Q3 T106B3 S TO-202 (N.ISOL)
C106Q32 T106B32 S TO-202 (N.ISOL)
C106Q4 T106B4 S TO-202 (N.ISOL)
C106Q41 T106B41 S TO-202 (N.ISOL)
C106Y T106B1 S TO-202 (N.ISOL)
C106Y1 T106B1 S TO-202 (N.ISOL)
C106Y11 T106B11 S TO-202 (N.ISOL)
C106Y12 T106B12 STO-202 (N.ISOL)
C106Y2 T106B2 STO-202 (N.ISOL)
C106Y21 T106B21 STO-202 (N.ISOL)
C106Y3 T106B3 STO-202 (N.ISOL)
C106Y32 T106B32 STO-202 (N.ISOL)
C106Y4 T106B4 S TO-202 (N.ISOL)
C106Y41 T106B41 S TO-202 (N.ISOL)
C107A T107B1 S TO-202 (N.ISOL)
C107A1 T107B1 S TO-202 (N.ISOL)
C107A11 T107B11 S TO-202 (N.ISOL)
C107A12 T107B12 STO-202 (N.ISOL)
C107A2 T107B2 STO-202 (N.ISOL)
C107A21 T107B21 STO-202 (N.ISOL)
C107A3 T107B3 STO-202 (N.ISOL)
C107A32 T107B32 STO-202 (N.ISOL)
C107A4 T107B4 S TO-202 (N.ISOL)
C107A41 T107B41 S TO-202 (N.ISOL)
C107B T107B1 S TO-202 (N.ISOL)
C107B1 T107B1 S TO-202 (N.ISOL)
C107B11 T107B11 S TO-202 (N.ISOL)
C107B12 T107B12 STO-202 (N.ISOL)
C107B2 T107B2 STO-202 (N.ISOL)
C107B21 T107B21 STO-202 (N.ISOL)
C107B3 T107B3 STO-202 (N.ISOL)
C107B32 T107B32 STO-202 (N.ISOL)
C107B4 T107B4 S TO-202 (N.ISOL)
C107B41 T107B41 S TO-202 (N.ISOL)
C107C T107D1 S TO-202 (N.ISOL)
C107C1 T107D1 S TO-202 (N.ISOL)
C107C11 T107D11 S TO-202 (N.ISOL)
C107C12 T107D12 STO-202 (N.ISOL)
C107C2 T107D2 STO-202 (N.ISOL)
C107C21 T107D21 STO-202 (N.ISOL)
C107C3 T107D3 STO-202 (N.ISOL)
C107C32 T107D32 STO-202 (N.ISOL)
C107C4 T107D4 S TO-202 (N.ISOL)
C107C41 T107D41 S TO-202 (N.ISOL)
C107D T107D1 S TO-202 (N.ISOL)
C107D1 T107D1 S TO-202 (N.ISOL)
C107D11 T107D11 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
C107D12 T107D12 STO-202 (N.ISOL)
C107D2 T107D2 STO-202 (N.ISOL)
C107D21 T107D21 STO-202 (N.ISOL)
C107D3 T107D3 STO-202 (N.ISOL)
C107D32 T107D32 STO-202 (N.ISOL)
C107D4 T107D4 S TO-202 (N.ISOL)
C107D41 T107D41 S TO-202 (N.ISOL)
C107E T107M1 S TO-202 (N.ISOL)
C107E1 T107M1 S TO-202 (N.ISOL)
C107E11 T107M11 S TO-202 (N.ISOL)
C107E12 T107M12 STO-202 (N.ISOL)
C107E2 T107M2 STO-202 (N.ISOL)
C107E21 T107M21 STO-202 (N.ISOL)
C107E3 T107M3 STO-202 (N.ISOL)
C107E32 T107M32 STO-202 (N.ISOL)
C107E4 T107M4 S TO-202 (N.ISOL)
C107E41 T107M41 S TO-202 (N.ISOL)
C107F T107B1 S TO-202 (N.ISOL)
C107F1 T107B1 S TO-202 (N.ISOL)
C107F11 T107B11 S TO-202 (N.ISOL)
C107F12 T107B12 STO-202 (N.ISOL)
C107F2 T107B2 STO-202 (N.ISOL)
C107F21 T107B21 STO-202 (N.ISOL)
C107F3 T107B3 STO-202 (N.ISOL)
C107F32 T107B32 STO-202 (N.ISOL)
C107F4 T107B4 S TO-202 (N.ISOL)
C107F41 T107B41 S TO-202 (N.ISOL)
C107M T107M1 S TO-202 (N.ISOL)
C107M1 T107M1 S TO-202 (N.ISOL)
C107M11 T107M11 S TO-202 (N.ISOL)
C107M12 T107M12 S TO-202 (N.ISOL)
C107M2 T107M2 S TO-202 (N.ISOL)
C107M21 T107M21 S TO-202 (N.ISOL)
C107M3 T107M3 S TO-202 (N.ISOL)
C107M32 T107M32 S TO-202 (N.ISOL)
C107M41 T107M41 S TO-202 (N.ISOL)
C107Q T107B1 S TO-202 (N.ISOL)
C107Q1 T107B1 S TO-202 (N.ISOL)
C107Q11 T107B11 S TO-202 (N.ISOL)
C107Q12 T107B12 S TO-202 (N.ISOL)
C107Q2 T107B2 S TO-202 (N.ISOL)
C107Q21 T107B21 S TO-202 (N.ISOL)
C107Q3 T107B3 S TO-202 (N.ISOL)
C107Q32 T107B32 S TO-202 (N.ISOL)
C107Q4 T107B4 S TO-202 (N.ISOL)
C107Q41 T107B41 S TO-202 (N.ISOL)
C107Y T107B1 S TO-202 (N.ISOL)
C107Y1 T107B1 S TO-202 (N.ISOL)
C107Y11 T107B11 S TO-202 (N.ISOL)
C107Y12 T107B12 S TO-202 (N.ISOL)
C107Y2 T107B2 S TO-202 (N.ISOL)
C107Y21 T107B21 S TO-202 (N.ISOL)
C107Y3 T107B3 S TO-202 (N.ISOL)
C107Y32 T107B32 S TO-202 (N.ISOL)
C107Y4 T107B4 S TO-202 (N.ISOL)
C107Y41 T107B41 S TO-202 (N.ISOL)
C108A S2006FS21 S TO-202 (N.ISOL)
C108A1 S2006FS21 S TO-202 (N.ISOL)
C108A11 S2006FS211 S TO-202 (N.ISOL)
C108A12 S2006FS212 S TO-202 (N.ISOL)
C108A2 S2006FS22 S TO-202 (N.ISOL)
C108A21 S2006FS221 S TO-202 (N.ISOL)
C108A3 S2006FS23 S TO-202 (N.ISOL)
C108A32 S2006FS232 S TO-202 (N.ISOL)
C108A4 S2006FS24 S TO-202 (N.ISOL)
C108A41 S2006FS241 S TO-202 (N.ISOL)
C108B S2006FS21 S TO-202 (N.ISOL)
C108B1 S2006FS21 S TO-202 (N.ISOL)
C108B11 S2006FS211 S TO-202 (N.ISOL)
C108B12 S2006FS212 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-9 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
C108B2 S2006FS22 S TO-202 (N.ISOL)
C108B21 S2006FS221 S TO-202 (N.ISOL)
C108B3 S2006FS23 S TO-202 (N.ISOL)
C108B32 S2006FS232 S TO-202 (N.ISOL)
C108B4 S2006FS24 S TO-202 (N.ISOL)
C108B41 S2006FS241 S TO-202 (N.ISOL)
C108C S4006FS21 S TO-202 (N.ISOL)
C108C1 S4006FS21 S TO-202 (N.ISOL)
C108C11 S4006FS211 S TO-202 (N.ISOL)
C108C12 S4006FS212 S TO-202 (N.ISOL)
C108C2 S4006FS22 S TO-202 (N.ISOL)
C108C21 S4006FS221 S TO-202 (N.ISOL)
C108C3 S4006FS23 S TO-202 (N.ISOL)
C108C32 S4006FS232 S TO-202 (N.ISOL)
C108C4 S4006FS24 S TO-202 (N.ISOL)
C108C41 S4006FS241 S TO-202 (N.ISOL)
C108D S4006FS21 S TO-202 (N.ISOL)
C108D1 S4006FS21 S TO-202 (N.ISOL)
C108D11 S4006FS211 S TO-202 (N.ISOL)
C108D12 S4006FS212 S TO-202 (N.ISOL)
C108D2 S4006FS22 STO-202 (N.ISOL)
C108D21 S4006FS221 STO-202 (N.ISOL)
C108D3 S4006FS23 STO-202 (N.ISOL)
C108D32 S4006FS232 STO-202 (N.ISOL)
C108D4 S4006FS24 STO-202 (N.ISOL)
C108D41 S4006FS241 S TO-202 (N.ISOL)
C108E S6006FS21 S TO-202 (N.ISOL)
C108E1 S6006FS21 S TO-202 (N.ISOL)
C108E11 S6006FS211 S TO-202 (N.ISOL)
C108E12 S6006FS212 S TO-202 (N.ISOL)
C108E2 S6006FS22 STO-202 (N.ISOL)
C108E21 S6006FS221 STO-202 (N.ISOL)
C108E3 S6006FS23 STO-202 (N.ISOL)
C108E32 S6006FS232 STO-202 (N.ISOL)
C108E4 S6006FS24 STO-202 (N.ISOL)
C108E41 S6006FS241 S TO-202 (N.ISOL)
C108F S2006FS21 S TO-202 (N.ISOL)
C108F1 S2006FS21 S TO-202 (N.ISOL)
C108F11 S2006FS211 S TO-202 (N.ISOL)
C108F12 S2006FS212 S TO-202 (N.ISOL)
C108F2 S2006FS22 STO-202 (N.ISOL)
C108F21 S2006FS221 STO-202 (N.ISOL)
C108F3 S2006FS23 STO-202 (N.ISOL)
C108F32 S2006FS232 STO-202 (N.ISOL)
C108F4 S2006FS24 STO-202 (N.ISOL)
C108F41 S2006FS241 S TO-202 (N.ISOL)
C108M S6006FS21 S TO-202 (N.ISOL)
C108M1 S6006FS21 S TO-202 (N.ISOL)
C108M11 S6006FS211 S TO-202 (N.ISOL)
C108M12 S6006FS212 S TO-202 (N.ISOL)
C108M2 S6006FS22 STO-202 (N.ISOL)
C108M21 S6006FS221 STO-202 (N.ISOL)
C108M3 S6006FS23 STO-202 (N.ISOL)
C108M32 S6006FS232 STO-202 (N.ISOL)
C108M4 S6006FS24 STO-202 (N.ISOL)
C108M41 S6006FS241 S TO-202 (N.ISOL)
C108Q S2006FS21 S TO-202 (N.ISOL)
C108Q1 S2006FS21 S TO-202 (N.ISOL)
C108Q11 S2006FS211 S TO-202 (N.ISOL)
C108Q12 S2006FS212 S TO-202 (N.ISOL)
C108Q2 S2006FS22 STO-202 (N.ISOL)
C108Q21 S2006FS221 STO-202 (N.ISOL)
C108Q3 S2006FS23 STO-202 (N.ISOL)
C108Q32 S2006FS232 STO-202 (N.ISOL)
C108Q4 S2006FS24 STO-202 (N.ISOL)
C108Q41 S2006FS241 S TO-202 (N.ISOL)
C108Y S2006FS21 S TO-202 (N.ISOL)
C108Y1 S2006FS21 S TO-202 (N.ISOL)
C108Y11 S2006FS211 S TO-202 (N.ISOL)
C108Y12 S2006FS212 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
C108Y2 S2006FS22 STO-202 (N.ISOL)
C108Y21 S2006FS221 STO-202 (N.ISOL)
C108Y3 S2006FS23 STO-202 (N.ISOL)
C108Y32 S2006FS232 STO-202 (N.ISOL)
C108Y4 S2006FS24 STO-202 (N.ISOL)
C108Y41 S2006FS241 S TO-202 (N.ISOL)
C116A1 S2008F1 S TO-202 (N.ISOL)
C116B1 S2008F1 S TO-202 (N.ISOL)
C116C1 S4008F1 S TO-202 (N.ISOL)
C116D1 S4008F1 S TO-202 (N.ISOL)
C116E1 S6008F1 STO-202 (N.ISOL)
C116F1 S2008F1 STO-202 (N.ISOL)
C116M1 S6008F1 STO-202 (N.ISOL)
C122A S2008R STO-220 (N.ISOL)
C122B S2008R STO-220 (N.ISOL)
C122C S4008R S TO-220 (N.ISOL)
C122D S4008R S TO-220 (N.ISOL)
C122E S6008R S TO-220 (N.ISOL)
C122F S2008R S TO-220 (N.ISOL)
C122M S6008R S TO-220 (N.ISOL)
C122N S8008R STO-220 (N.ISOL)
C122S S8008R STO-220 (N.ISOL)
C123A S2008L STO-220 (ISOL)
C123B S2008L STO-220 (ISOL)
C123C S4008L STO-220 (ISOL)
C123D S4008L S TO-220 (ISOL)
C123E S6008L S TO-220 (ISOL)
C123F S2008L S TO-220 (ISOL)
C123M S6008L S TO-220 (ISOL)
C126A S2012R S TO-220 (N.ISOL)
C126B S2012R S TO-220 (N.ISOL)
C126C S4012R S TO-220 (N.ISOL)
C126D S4012R S TO-220 (N.ISOL)
C126E S6012R S TO-220 (N.ISOL)
C126F S2012R S TO-220 (N.ISOL)
C126M S6012R S TO-220 (N.ISOL)
C127A S2016R D TO-220 (N.ISOL)
C127B S2016R D TO-220 (N.ISOL)
C127D S4016R D TO-220 (N.ISOL)
C127E S6016R D TO-220 (N.ISOL)
C127F S2016R D TO-220 (N.ISOL)
C127M S6016R D TO-220 (N.ISOL)
C203A EC103B S TO-92 (ISOL)
C203B EC103B S TO-92 (ISOL)
C203C EC103D S TO-92 (ISOL)
C203D EC103D S TO-92 (ISOL)
C203Y EC103B S TO-92 (ISOL)
C203YY EC103B S TO-92 (ISOL)
C205A EC103B D TO-92 (ISOL)
C205B EC103B D TO-92 (ISOL)
C205C EC103D D TO-92 (ISOL)
C205D EC103D D TO-92 (ISOL)
C205Y EC103B D TO-92 (ISOL)
C205YY EC103B D TO-92 (ISOL)
D30 HT32 D DO-35 (ISOL)
D40 HT40 D DO-35 (ISOL)
DB3 HT32 S DO-35 (ISOL)
DB4 HT40 D DO-35 (ISOL)
DC34 HT32 S DO-35 (ISOL)
DC38 HT40 S DO-35 (ISOL)
DC42 HT40 S DO-35 (ISOL)
DO201YR HT5761 D DO-35 (ISOL)
HI03SC L2004F31 S TO-202 (N.ISOL)
HI03SD L2004F51 S TO-202 (N.ISOL)
HI03SG L2004F61 S TO-202 (N.ISOL)
HI03SH L2004F81 S TO-202 (N.ISOL)
HI03SS L2004F31 S TO-202 (N.ISOL)
HI13SC L2004F31 S TO-202 (N.ISOL)
HI13SD L2004F51 S TO-202 (N.ISOL)
HI13SG L2004F61 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-10 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
HI13SH L2004F81 S TO-202 (N.ISOL)
HI13SS L2004F31 S TO-202 (N.ISOL)
HI23SC L2004F31 S TO-202 (N.ISOL)
HI23SD L2004F51 S TO-202 (N.ISOL)
HI23SG L2004F61 S TO-202 (N.ISOL)
HI23SH L2004F81 S TO-202 (N.ISOL)
HI23SS L2004F31 S TO-202 (N.ISOL)
HI33SC L4004F31 S TO-202 (N.ISOL)
HI33SD L4004F51 S TO-202 (N.ISOL)
HI33SG L4004F61 S TO-202 (N.ISOL)
HI33SH L4004F81 S TO-202 (N.ISOL)
HI33SS L4004F31 S TO-202 (N.ISOL)
HI43SC L4004F31 S TO-202 (N.ISOL)
HI43SD L4004F51 S TO-202 (N.ISOL)
HI43SG L4004F61 S TO-202 (N.ISOL)
HI43SH L4004F81 S TO-202 (N.ISOL)
HI43SS L4004F31 S TO-202 (N.ISOL)
HI63SC L6004F31 S TO-202 (N.ISOL)
HI63SD L6004F51 S TO-202 (N.ISOL)
HI63SG L6004F61 S TO-202 (N.ISOL)
HI63SH L6004F81 STO-202 (N.ISOL)
HI63SS L6004F31 STO-202 (N.ISOL)
HT06 Q2006F41 STO-202 (N.ISOL)
HT16 Q2006F41 STO-202 (N.ISOL)
HT26 Q2006F41 STO-202 (N.ISOL)
HT36 Q4006F41 S TO-202 (N.ISOL)
HT46 Q4006F41 S TO-202 (N.ISOL)
HT66 Q6006F41 S TO-202 (N.ISOL)
ID100 EC103B S TO-92 (ISOL)
ID101 EC103B S TO-92 (ISOL)
ID102 EC103B STO-92 (ISOL)
ID103 EC103B STO-92 (ISOL)
ID104 EC103B STO-92 (ISOL)
ID105 EC103D STO-92 (ISOL)
ID106 EC103D STO-92 (ISOL)
IP100 2N5064 D TO-92 (ISOL)
IP101 2N5064 D TO-92 (ISOL)
IP102 2N5064 D TO-92 (ISOL)
IP103 2N5064 D TO-92 (ISOL)
IP104 2N5064 D TO-92 (ISOL)
IP105 EC103D DTO-92 (ISOL)
IP106 EC103D DTO-92 (ISOL)
IS010 S2010L DTO-220 (ISOL)
IS010X S2010L DTO-220 (ISOL)
IS020 S2020L STO-220 (ISOL)
IS020X S2020L D TO-220 (ISOL)
IS08 S2008L D TO-220 (ISOL)
IS08X S2008L D TO-220 (ISOL)
IS110 S2010L D TO-220 (ISOL)
IS110X S2010L D TO-220 (ISOL)
IS120 S2020L STO-220 (ISOL)
IS120X S2020L DTO-220 (ISOL)
IS18 S2008L DTO-220 (ISOL)
IS18X S2008L DTO-220 (ISOL)
IS210 S2010L DTO-220 (ISOL)
IS210X S2010L D TO-220 (ISOL)
IS220 S2020L S TO-220 (ISOL)
IS220X S2020L D TO-220 (ISOL)
IS28 S2008L D TO-220 (ISOL)
IS28X S2008L D TO-220 (ISOL)
IS310 S4010L DTO-220 (ISOL)
IS310X S4010L DTO-220 (ISOL)
IS320 S4020L STO-220 (ISOL)
IS320X S4020L DTO-220 (ISOL)
IS38 S4008L DTO-220 (ISOL)
IS38X S4008L D TO-220 (ISOL)
IS410 S4010L D TO-220 (ISOL)
IS410X S4010L D TO-220 (ISOL)
IS420 S4020L S TO-220 (ISOL)
IS420X S4020L D TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
IS48 S4008L DTO-220 (ISOL)
IS48X S4008L DTO-220 (ISOL)
IS510 S6010L DTO-220 (ISOL)
IS510X S6010L DTO-220 (ISOL)
IS520 S6020L STO-220 (ISOL)
IS520X S6020L D TO-220 (ISOL)
IS58 S6008L D TO-220 (ISOL)
IS58X S6008L D TO-220 (ISOL)
IS610 S6010L D TO-220 (ISOL)
IS610X S6010L D TO-220 (ISOL)
IS620 S6020L STO-220 (ISOL)
IS620X S6020L DTO-220 (ISOL)
IS68 S6008L DTO-220 (ISOL)
IS68X S6008L DTO-220 (ISOL)
IT010 Q2010L5 DTO-220 (ISOL)
IT010A Q2010L5 D TO-220 (ISOL)
IT010B Q2010L5 D TO-220 (ISOL)
IT010HA Q2010L5 S TO-220 (ISOL)
IT010HX Q2010L5 S TO-220 (ISOL)
IT015 Q2015L5 D TO-220 (ISOL)
IT015A Q2015L5 D TO-220 (ISOL)
IT015B Q2015L5 D TO-220 (ISOL)
IT015HA Q2015L5 STO-220 (ISOL)
IT015HX Q2015L5 STO-220 (ISOL)
IT06 Q2006L4 D TO-220 (ISOL)
IT08 Q2008L4 D TO-220 (ISOL)
IT08A Q2008L4 D TO-220 (ISOL)
IT08B Q2008L4 D TO-220 (ISOL)
IT08HA Q2008L4 D TO-220 (ISOL)
IT08HX Q2008L4 S TO-220 (ISOL)
IT110 Q2010L5 D TO-220 (ISOL)
IT110A Q2010L5 D TO-220 (ISOL)
IT110B Q2010L5 D TO-220 (ISOL)
IT110HA Q2010L5 S TO-220 (ISOL)
IT110HX Q2010L5 S TO-220 (ISOL)
IT115 Q2015L5 D TO-220 (ISOL)
IT115A Q2015L5 D TO-220 (ISOL)
IT115B Q2015L5 D TO-220 (ISOL)
IT115HA Q2015L5 S TO-220 (ISOL)
IT115HX Q2015L5 S TO-220 (ISOL)
IT16 Q2006L4 D TO-220 (ISOL)
IT18 Q2008L4 D TO-220 (ISOL)
IT18A Q2008L4 D TO-220 (ISOL)
IT18B Q2008L4 D TO-220 (ISOL)
IT18HA Q2008L4 D TO-220 (ISOL)
IT18HX Q2008L4 S TO-220 (ISOL)
IT210 Q2010L5 D TO-220 (ISOL)
IT210A Q2010L5 D TO-220 (ISOL)
IT210B Q2010L5 D TO-220 (ISOL)
IT210HA Q2010L5 S TO-220 (ISOL)
IT210HX Q2010L5 S TO-220 (ISOL)
IT215 Q2015L5 D TO-220 (ISOL)
IT215A Q2015L5 D TO-220 (ISOL)
IT215B Q2015L5 D TO-220 (ISOL)
IT215HA Q2015L5 STO-220 (ISOL)
IT215HX Q2015L5 S TO-220 (ISOL)
IT26 Q2006L4 D TO-220 (ISOL)
IT28 Q2008L4 D TO-220 (ISOL)
IT28A Q2008L4 D TO-220 (ISOL)
IT28B Q2008L4 D TO-220 (ISOL)
IT28HA Q2008L4 D TO-220 (ISOL)
IT28HX Q2008L4 STO-220 (ISOL)
IT310 Q4010L5 D TO-220 (ISOL)
IT310A Q4010L5 D TO-220 (ISOL)
IT310B Q4010L5 D TO-220 (ISOL)
IT310HA Q4010L5 S TO-220 (ISOL)
IT310HX Q4010L5 S TO-220 (ISOL)
IT315 Q4015L5 D TO-220 (ISOL)
IT315A Q4015L5 D TO-220 (ISOL)
IT315B Q4015L5 D TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-11 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
IT315HA Q4015L5 STO-220 (ISOL)
IT315HX Q4015L5 STO-220 (ISOL)
IT36 Q4006L4 D TO-220 (ISOL)
IT38 Q4008L4 D TO-220 (ISOL)
IT38A Q4008L4 D TO-220 (ISOL)
IT38B Q4008L4 D TO-220 (ISOL)
IT38HA Q4008L4 D TO-220 (ISOL)
IT38HX Q4008L4 S TO-220 (ISOL)
IT410 Q4010L5 D TO-220 (ISOL)
IT410A Q4010L5 D TO-220 (ISOL)
IT410B Q4010L5 D TO-220 (ISOL)
IT410HA Q4010L5 STO-220 (ISOL)
IT410HX Q4010L5 STO-220 (ISOL)
IT415 Q4015L5 D TO-220 (ISOL)
IT415A Q4015L5 D TO-220 (ISOL)
IT415B Q4015L5 D TO-220 (ISOL)
IT415HA Q4015L5 S TO-220 (ISOL)
IT415HX Q4015L5 S TO-220 (ISOL)
IT46 Q4006L4 D TO-220 (ISOL)
IT48 Q4008L4 D TO-220 (ISOL)
IT48A Q4008L4 DTO-220 (ISOL)
IT48B Q4008L4 DTO-220 (ISOL)
IT48HA Q4008L4 DTO-220 (ISOL)
IT48HX Q4008L4 STO-220 (ISOL)
IT510 Q6010L5 DTO-220 (ISOL)
IT510A Q6010L5 D TO-220 (ISOL)
IT510B Q6010L5 D TO-220 (ISOL)
IT510HA Q6010L5 S TO-220 (ISOL)
IT510HX Q6010L5 S TO-220 (ISOL)
IT515 Q6015L5 D TO-220 (ISOL)
IT515A Q6015L5 DTO-220 (ISOL)
IT515B Q6015L5 DTO-220 (ISOL)
IT515HA Q6015L5 STO-220 (ISOL)
IT515HX Q6015L5 STO-220 (ISOL)
IT56 Q6006L4 DTO-220 (ISOL)
IT58 Q6008L4 D TO-220 (ISOL)
IT58A Q6008L4 D TO-220 (ISOL)
IT58B Q6008L4 D TO-220 (ISOL)
IT58HA Q6008L4 D TO-220 (ISOL)
IT58HX Q6008L4 S TO-220 (ISOL)
IT610 Q6010L5 DTO-220 (ISOL)
IT610A Q6010L5 DTO-220 (ISOL)
IT610B Q6010L5 DTO-220 (ISOL)
IT610HA Q6010L5 STO-220 (ISOL)
IT610HX Q6010L5 STO-220 (ISOL)
IT615 Q6015L5 D TO-220 (ISOL)
IT615A Q6015L5 D TO-220 (ISOL)
IT615B Q6015L5 D TO-220 (ISOL)
IT615HA Q6015L5 S TO-220 (ISOL)
IT615HX Q6015L5 S TO-220 (ISOL)
IT66 Q6006L5 DTO-220 (ISOL)
IT68 Q6008L5 DTO-220 (ISOL)
IT68A Q6008L5 DTO-220 (ISOL)
IT68B Q6008L5 DTO-220 (ISOL)
IT68HA Q6008L5 STO-220 (ISOL)
IT68HX Q6008L5 S TO-220 (ISOL)
K1V10 K1050G S DO-15X
K1V11 K1100G S DO-15X
K1V12 K1200G S DO-15X
K1V14 K1300G S DO-15X
K1V16 K1500G SDO-15X
K1V18 K1500G SDO-15X
K1V22 K2200G SDO-15X
K1V24 K2400G SDO-15X
K1V26 K2500G SDO-15X
K1VA10 K1050E70 S TO-92 (ISOL)
K1VA11 K1100E70 S TO-92 (ISOL)
K1VA12 K1200E70 S TO-92 (ISOL)
K1VA14 K1300E70 S TO-92 (ISOL)
K1VA16 K1500E70 S TO-92 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
L2004L7 L2004L6 DTO-220 (ISOL)
L2004L9 L2004L8 DTO-220 (ISOL)
L2006L7 L2006L6 DTO-220 (ISOL)
L2006L9 L2006L8 DTO-220 (ISOL)
L2008L7 L2008L6 DTO-220 (ISOL)
L2008L9 L2008L8 D TO-220 (ISOL)
L201E7 L201E6 D TO-92 (ISOL)
L201E9 L201E8 D TO-92 (ISOL)
L4004L7 L4004L6 D TO-220 (ISOL)
L4004L9 L4004L8 D TO-220 (ISOL)
L4006L7 L4006L6 DTO-220 (ISOL)
L4006L9 L4006L8 DTO-220 (ISOL)
L4008L7 L4008L6 DTO-220 (ISOL)
L4008L9 L4008L8 DTO-220 (ISOL)
L401E7 L401E6 DTO-92 (ISOL)
L401E9 L401E8 D TO-92 (ISOL)
L6004L7 L6004L6 D TO-220 (ISOL)
L6004L9 L6004L8 D TO-220 (ISOL)
L6006L7 L6006L6 D TO-220 (ISOL)
L6006L9 L6006L8 D TO-220 (ISOL)
L6008L7 L6008L6 D TO-220 (ISOL)
L6008L9 L6008L8 D TO-220 (ISOL)
L601E7 L601E6 D TO-92 (ISOL)
L601E9 L601E8 D TO-92 (ISOL)
MAC08BT1 L2X5 SSOT-223/COMPAK
MAC08DT1 L4X5 S SOT-223/COMPAK
MAC08MT1 L6X5 S SOT-223/COMPAK
MAC12D Q4015R5 S TO-220 (N.ISOL)
MAC12HCD Q4012RH5 S TO-220 (N.ISOL)
MAC12HCM Q6012RH5 S TO-220 (N.ISOL)
MAC12HCN Q8012RH5 STO-220 (N.ISOL)
MAC12M Q6015R5 STO-220 (N.ISOL)
MAC12N Q8015R5 STO-220 (N.ISOL)
MAC15-10 Q8015R5 D TO-220 (N.ISOL)
MAC15-10FP Q8015L5 D TO-220 (ISOL)
MAC15-4 Q2015R5 D TO-220 (N.ISOL)
MAC15-4FP Q2015L5 D TO-220 (ISOL)
MAC15-5 Q4015R5 D TO-220 (N.ISOL)
MAC15-6 Q4015R5 D TO-220 (N.ISOL)
MAC15-6FP Q4015L5 D TO-220 (ISOL)
MAC15-7 Q6015R5 D TO-220 (N.ISOL)
MAC15-8 Q6015R5 D TO-220 (N.ISOL)
MAC15-8FP Q6015L5 D TO-220 (ISOL)
MAC15-9 Q8015R5 D TO-220 (N.ISOL)
MAC15A10 Q8015R5 STO-220 (N.ISOL)
MAC15A10FP Q8015L5 S TO-220 (ISOL)
MAC15A4 Q2015R5 S TO-220 (N.ISOL)
MAC15A4FP Q2015L5 S TO-220 (ISOL)
MAC15A5 Q4015R5 S TO-220 (N.ISOL)
MAC15A5FP Q4015L5 S TO-220 (ISOL)
MAC15A6 Q4015R5 STO-220 (N.ISOL)
MAC15A6FP Q4015L5 STO-220 (ISOL)
MAC15A7 Q6015R5 STO-220 (N.ISOL)
MAC15A7FP Q6015L5 STO-220 (ISOL)
MAC15A8 Q6015R5 STO-220 (N.ISOL)
MAC15A8FP Q6015L5 S TO-220 (ISOL)
MAC15A9 Q8015R5 S TO-220 (N.ISOL)
MAC15A9FP Q8015L5 S TO-220 (ISOL)
MAC15M Q6015R5 D TO-220 (N.ISOL)
MAC15N Q8015R5 D TO-220 (N.ISOL)
MAC16-10 Q8015R6 D TO-220 (N.ISOL)
MAC16-4 Q2015R6 D TO-220 (N.ISOL)
MAC16-6 Q4015R6 D TO-220 (N.ISOL)
MAC16-8 Q6015R6 D TO-220 (N.ISOL)
MAC16CD Q4015R6 STO-220 (N.ISOL)
MAC16CM Q6015R6 S TO-220 (N.ISOL)
MAC16CN Q8015R6 S TO-220 (N.ISOL)
MAC16D Q4015R6 S TO-220 (N.ISOL)
MAC16M Q6015R6 S TO-220 (N.ISOL)
MAC16N Q8015R6 S TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-12 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
MAC20-10 Q8025P5 SFASTPAK (ISOL)
MAC20-4 Q6025P5 SFASTPAK (ISOL)
MAC20-5 Q6025P5 SFASTPAK (ISOL)
MAC20-6 Q6025P5 SFASTPAK (ISOL)
MAC20-7 Q6025P5 SFASTPAK (ISOL)
MAC20-8 Q6025P5 S FASTPAK (ISOL)
MAC20-9 Q8025P5 S FASTPAK (ISOL)
MAC20A10 Q8025P5 S FASTPAK (ISOL)
MAC20A4 Q6025P5 S FASTPAK (ISOL)
MAC20A5 Q6025P5 S FASTPAK (ISOL)
MAC20A6 Q6025P5 SFASTPAK (ISOL)
MAC20A7 Q6025P5 SFASTPAK (ISOL)
MAC20A8 Q6025P5 SFASTPAK (ISOL)
MAC20A9 Q8025P5 SFASTPAK (ISOL)
MAC210-10 Q8010R5 D TO-220 (N.ISOL)
MAC210-10FP Q8010L5 D TO-220 (ISOL)
MAC210-4 Q2010R5 D TO-220 (N.ISOL)
MAC210-4FP Q2010L5 D TO-220 (ISOL)
MAC210-5 Q4010R5 D TO-220 (N.ISOL)
MAC210-6 Q4010R5 D TO-220 (N.ISOL)
MAC210-6FP Q4010L5 DTO-220 (ISOL)
MAC210-7 Q6010R5 DTO-220 (N.ISOL)
MAC210-8 Q6010R5 DTO-220 (N.ISOL)
MAC210-8FP Q6010L5 DTO-220 (ISOL)
MAC210A10 Q8010R5 STO-220 (N.ISOL)
MAC210A10F Q8010L5 S TO-220 (ISOL)
MAC210A4 Q2010R5 S TO-220 (N.ISOL)
MAC210A4FP Q2010L5 S TO-220 (ISOL)
MAC210A5 Q4010R5 S TO-220 (N.ISOL)
MAC210A5FP Q4010L5 S TO-220 (ISOL)
MAC210A6 Q4010R5 STO-220 (N.ISOL)
MAC210A6FP Q4010L5 STO-220 (ISOL)
MAC210A7 Q6010R5 STO-220 (N.ISOL)
MAC210A7FP Q6010L5 STO-220 (ISOL)
MAC210A8 Q6010R5 STO-220 (N.ISOL)
MAC210A8FP Q6010L5 S TO-220 (ISOL)
MAC210A9 Q8010R5 S TO-220 (N.ISOL)
MAC210A9FP Q8010L5 S TO-220 (ISOL)
MAC212-10 Q8012RH5 D TO-220 (N.ISOL)
MAC212-10FP Q8012LH5 D TO-220 (ISOL)
MAC212-4 Q2012RH5 DTO-220 (N.ISOL)
MAC212-4FP Q2012LH5 DTO-220 (ISOL)
MAC212-6 Q4012RH5 DTO-220 (N.ISOL)
MAC212-6FP Q4012LH5 DTO-220 (ISOL)
MAC212-8 Q6012RH5 DTO-220 (N.ISOL)
MAC212-8FP Q6012LH5 D TO-220 (ISOL)
MAC212A10 Q8012RH5 S TO-220 (N.ISOL)
MAC212A10FP Q8012LH5 S TO-220 (ISOL)
MAC212A4 Q2015RH5 S TO-220 (N.ISOL)
MAC212A4FP Q2012LH5 S TO-220 (ISOL)
MAC212A6 Q4012RH5 STO-220 (N.ISOL)
MAC212A6FP Q4012LH5 STO-220 (ISOL)
MAC212A8 Q6012RH5 STO-220 (N.ISOL)
MAC212A8FP Q6012LH5 STO-220 (ISOL)
MAC213-10 Q8012RH5 DTO-220 (N.ISOL)
MAC213-4 Q2012RH5 D TO-220 (N.ISOL)
MAC213-6 Q4012RH5 D TO-220 (N.ISOL)
MAC213-8 Q6012RH5 D TO-220 (N.ISOL)
MAC218-10 Q8008R5 D TO-220 (N.ISOL)
MAC218-10FP Q8008L5 D TO-220 (ISOL)
MAC218-2 Q2008R5 DTO-220 (N.ISOL)
MAC218-3 Q2008R5 DTO-220 (N.ISOL)
MAC218-4 Q2008R5 DTO-220 (N.ISOL)
MAC218-4FP Q2008L5 DTO-220 (ISOL)
MAC218-5 Q4008R4 DTO-220 (N.ISOL)
MAC218-6 Q4008R4 D TO-220 (N.ISOL)
MAC218-6FP Q4008L5 D TO-220 (ISOL)
MAC218-7 Q4008R4 D TO-220 (N.ISOL)
MAC218-8 Q6008R5 D TO-220 (N.ISOL)
MAC218-8FP Q6008L5 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
MAC218-A10 Q8008R5 STO-220 (N.ISOL)
MAC218-A10FP Q8008L5 STO-220 (ISOL)
MAC218-A2 Q2008R4 STO-220 (N.ISOL)
MAC218-A3 Q2008R4 STO-220 (N.ISOL)
MAC218-A4 Q2008R4 STO-220 (N.ISOL)
MAC218-A4FP Q2008L4 S TO-220 (ISOL)
MAC218-A5 Q4008R4 S TO-220 (N.ISOL)
MAC218-A6 Q4008R4 S TO-220 (N.ISOL)
MAC218-A6FP Q4008L4 S TO-220 (ISOL)
MAC218-A7 Q5008R4 S TO-220 (N.ISOL)
MAC218-A8 Q6008R5 STO-220 (N.ISOL)
MAC218-A8FP Q6008L5 STO-220 (ISOL)
MAC219-10 Q8008R5 DTO-220 (N.ISOL)
MAC219-4 Q2008R4 DTO-220 (N.ISOL)
MAC219-6 Q4008R4 DTO-220 (N.ISOL)
MAC219-8 Q6008R5 D TO-220 (N.ISOL)
MAC220-2 Q2008R4 D TO-220 (N.ISOL)
MAC220-3 Q2008R4 D TO-220 (N.ISOL)
MAC220-5 Q4008R4 D TO-220 (N.ISOL)
MAC220-7 Q6008R4 D TO-220 (N.ISOL)
MAC220-9 Q8008R5 D TO-220 (N.ISOL)
MAC221-2 Q2008R4 D TO-220 (N.ISOL)
MAC221-3 Q2008R4 D TO-220 (N.ISOL)
MAC221-5 Q4008R4 D TO-220 (N.ISOL)
MAC221-7 Q6008R4 D TO-220 (N.ISOL)
MAC221-9 Q8008R5 D TO-220 (N.ISOL)
MAC222-1 Q2008R4 D TO-220 (N.ISOL)
MAC222-10 Q8008R5 D TO-220 (N.ISOL)
MAC222-2 Q2008R4 D TO-220 (N.ISOL)
MAC222-3 Q2008R4 D TO-220 (N.ISOL)
MAC222-4 Q2008R4 D TO-220 (N.ISOL)
MAC222-5 Q4008R4 D TO-220 (N.ISOL)
MAC222-6 Q4008R4 D TO-220 (N.ISOL)
MAC222-7 Q6008R4 D TO-220 (N.ISOL)
MAC222-8 Q6008R5 D TO-220 (N.ISOL)
MAC222-9 Q8008R5 D TO-220 (N.ISOL)
MAC222A1 Q2008R4 S TO-220 (N.ISOL)
MAC222A10 Q8008R5 S TO-220 (N.ISOL)
MAC222A2 Q2008R4 S TO-220 (N.ISOL)
MAC222A3 Q2008R4 S TO-220 (N.ISOL)
MAC222A4 Q2008R4 STO-220 (N.ISOL)
MAC222A5 Q4008R4 STO-220 (N.ISOL)
MAC222A6 Q4008R4 STO-220 (N.ISOL)
MAC222A7 Q6008R4 STO-220 (N.ISOL)
MAC222A8 Q6008R5 STO-220 (N.ISOL)
MAC222A9 Q8008R5 S TO-220 (N.ISOL)
MAC223-10 Q8025R5 S TO-220 (N.ISOL)
MAC223-10FP Q8025L6 S TO-220 (ISOL)
MAC223-3 Q2025R5 S TO-220 (N.ISOL)
MAC223-4 Q2025R5 S TO-220 (N.ISOL)
MAC223-4FP Q2025L6 STO-220 (ISOL)
MAC223-5 Q4025R5 STO-220 (N.ISOL)
MAC223-6 Q4025R5 STO-220 (N.ISOL)
MAC223-6FP Q4025L6 STO-220 (ISOL)
MAC223-7 Q6025R5 STO-220 (N.ISOL)
MAC223-8 Q6025R5 S TO-220 (N.ISOL)
MAC223-8FP Q6025L6 S TO-220 (ISOL)
MAC223-9 Q8025R5 S TO-220 (N.ISOL)
MAC223A10 Q8025R5 S TO-220 (N.ISOL)
MAC223A10FP Q8025L6 S TO-220 (ISOL)
MAC223A3 Q4025R5 STO-220 (N.ISOL)
MAC223A4 Q2025R5 STO-220 (N.ISOL)
MAC223A4FP Q2025L6 STO-220 (ISOL)
MAC223A5 Q4025R5 STO-220 (N.ISOL)
MAC223A5FP Q4025L6 STO-220 (ISOL)
MAC223A6 Q4025R5 S TO-220 (N.ISOL)
MAC223A6FP Q4025L6 S TO-220 (ISOL)
MAC223A7 Q6025R5 S TO-220 (N.ISOL)
MAC223A7FP Q6025L6 S TO-220 (ISOL)
MAC223A8 Q6025R5 S TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-13 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
MAC223A8FP Q6025L6 STO-220 (ISOL)
MAC223A9 Q8025R5 STO-220 (N.ISOL)
MAC223A9FP Q8025L6 STO-220 (ISOL)
MAC224-10 Q8040K7 S TO-218 (ISOL)
MAC224-4 Q2040K7 S TO-218 (ISOL)
MAC224-5 Q4040K7 S TO-218 (ISOL)
MAC224-6 Q4040K7 S TO-218 (ISOL)
MAC224-7 Q6040K7 S TO-218 (ISOL)
MAC224-8 Q6040K7 S TO-218 (ISOL)
MAC224A10 Q8040K7 S TO-218 (ISOL)
MAC224A4 Q2040K7 S TO-218 (ISOL)
MAC224A5 Q4040K7 S TO-218 (ISOL)
MAC224A6 Q4040K7 S TO-218 (ISOL)
MAC224A7 Q6040K7 S TO-218 (ISOL)
MAC224A8 Q6040K7 S TO-218 (ISOL)
MAC224A9 Q8040K7 S TO-218 (ISOL)
MAC228-2 L2008L6 S TO-220 (ISOL)
MAC228-3 L2008L6 S TO-220 (ISOL)
MAC228-4 L2008L6 S TO-220 (ISOL)
MAC228-4FP L2008L6 D TO-220 (ISOL)
MAC228-5 L4008L6 STO-220 (ISOL)
MAC228-6 L4008L6 STO-220 (ISOL)
MAC228-6FP L4008L6 DTO-220 (ISOL)
MAC228-7 L6008L6 STO-220 (ISOL)
MAC228-8 L6008L6 STO-220 (ISOL)
MAC228-8FP L6008L6 D TO-220 (ISOL)
MAC228A2 L2008L6 S TO-220 (ISOL)
MAC228A3 L2008L6 S TO-220 (ISOL)
MAC228A4 L2008L6 S TO-220 (ISOL)
MAC228A4FP L2008L6 S TO-220 (ISOL)
MAC228A5 L4008L6 STO-220 (ISOL)
MAC228A6 L4008L6 STO-220 (ISOL)
MAC228A6FP L4008L6 STO-220 (ISOL)
MAC228A7 L6008L6 STO-220 (ISOL)
MAC228A8 L6008L6 STO-220 (ISOL)
MAC228A8FP L6008L6 S TO-220 (ISOL)
MAC229-4 L2008L6 S TO-220 (ISOL)
MAC229-4FP L2008L6 D TO-220 (ISOL)
MAC229-6 L4008L6 S TO-220 (ISOL)
MAC229-6FP L4008L6 D TO-220 (ISOL)
MAC229-8 L6008L6 STO-220 (ISOL)
MAC229-8FP L6008L6 DTO-220 (ISOL)
MAC229A4 L2008L6 STO-220 (ISOL)
MAC229A4FP L2008L6 STO-220 (ISOL)
MAC229A6 L4008L6 STO-220 (ISOL)
MAC229A6FP L4008L6 S TO-220 (ISOL)
MAC229A8 L6008L6 S TO-220 (ISOL)
MAC229A8FP L6008L6 S TO-220 (ISOL)
MAC229A8FP L6008L6 S TO-220 (ISOL)
MAC25-10 Q8025P5 S FASTPAK (ISOL)
MAC25-4 Q6025P5 SFASTPAK (ISOL)
MAC25-5 Q6025P5 SFASTPAK (ISOL)
MAC25-6 Q6025P5 SFASTPAK (ISOL)
MAC25-7 Q6025P5 SFASTPAK (ISOL)
MAC25-8 Q6025P5 SFASTPAK (ISOL)
MAC25-9 Q8025P5 S FASTPAK (ISOL)
MAC25A10 Q8025P5 S FASTPAK (ISOL)
MAC25A4 Q6025P5 S FASTPAK (ISOL)
MAC25A5 Q6025P5 S FASTPAK (ISOL)
MAC25A6 Q6025P5 S FASTPAK (ISOL)
MAC25A7 Q6025P5 SFASTPAK (ISOL)
MAC25A8 Q6025P5 SFASTPAK (ISOL)
MAC25A9 Q8025P5 SFASTPAK (ISOL)
MAC3010-15 Q2015R5 STO-220 (N.ISOL)
MAC3010-25 Q2025R5 STO-220 (N.ISOL)
MAC3010-4 L2004F31 S TO-202 (N.ISOL)
MAC3010-8 Q2008R4 D TO-220 (N.ISOL)
MAC3020-15 Q4015R5 S TO-220 (N.ISOL)
MAC3020-25 Q4025R5 S TO-220 (N.ISOL)
MAC3020-4 L4004F31 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
MAC3020-8 Q4008R4 DTO-220 (N.ISOL)
MAC3030-15 Q2015R5 STO-220 (N.ISOL)
MAC3030-25 Q2025R5 STO-220 (N.ISOL)
MAC3030-4 L4004F41 STO-202 (N.ISOL)
MAC3030-8 Q2008R4 DTO-220 (N.ISOL)
MAC3040-15 Q4015R5 S TO-220 (N.ISOL)
MAC3040-25 Q4025R5 S TO-220 (N.ISOL)
MAC3040-4 L4004F41 S TO-202 (N.ISOL)
MAC3040-8 Q4008R4 D TO-220 (N.ISOL)
MAC320-10 Q8025R5 S TO-220 (N.ISOL)
MAC320-10FP Q8025L6 STO-220 (ISOL)
MAC320-4 Q2025R5 STO-220 (N.ISOL)
MAC320-4FP Q2025L6 STO-220 (ISOL)
MAC320-6 Q4025R5 STO-220 (N.ISOL)
MAC320-6FP Q4025L6 STO-220 (ISOL)
MAC320-8 Q6025R5 S TO-220 (N.ISOL)
MAC320-8FP Q6025L6 S TO-220 (ISOL)
MAC320A10 Q8025R5 S TO-220 (N.ISOL)
MAC320A4 Q2025R5 S TO-220 (N.ISOL)
MAC320A6 Q4025R5 S TO-220 (N.ISOL)
MAC320A8 Q6025R5 STO-220 (N.ISOL)
MAC321-10 Q8025R5 D TO-220 (N.ISOL)
MAC321-4 Q2025R5 D TO-220 (N.ISOL)
MAC321-6 Q4025R5 D TO-220 (N.ISOL)
MAC321-8 Q6025R5 D TO-220 (N.ISOL)
MAC4DCM Q6006DH4 S TO-252 (SMT)
MAC4DCM1 Q6006VH4 S TO-251 (N.ISOL)
MAC4DCN Q8006DH4 S TO-252 (SMT)
MAC4DCN1 Q8006VH4 S TO-251 (N.ISOL)
MAC4DHM L6004D6 S TO-252 (SMT)
MAC4DHM1 L6004V6 STO-251 (N.ISOL)
MAC4DLM L6004D5 STO-252 (SMT)
MAC4DLM1 L6004V5 STO-251 (N.ISOL)
MAC4DSM Q6006DH3 STO-252 (SMT)
MAC4DSM1 Q6006VH3 STO-251 (N.ISOL)
MAC4DSN Q8006DH3 S TO-252 (SMT)
MAC4DSN1 Q8006VH3 S TO-251 (N.ISOL)
MAC50-4 Q6035P5 S FASTPAK (ISOL)
MAC50-5 Q6035P5 S FASTPAK (ISOL)
MAC50-6 Q6035P5 S FASTPAK (ISOL)
MAC50-7 Q6035P5 SFASTPAK (ISOL)
MAC50-8 Q6035P5 SFASTPAK (ISOL)
MAC50-9 Q8035P5 SFASTPAK (ISOL)
MAC50A4 Q6035P5 SFASTPAK (ISOL)
MAC50A5 Q6035P5 SFASTPAK (ISOL)
MAC50A6 Q6035P5 S FASTPAK (ISOL)
MAC50A7 Q6035P5 S FASTPAK (ISOL)
MAC50A8 Q6035P5 S FASTPAK (ISOL)
MAC50A9 Q8035P5 S FASTPAK (ISOL)
MAC515-10 Q8025P5 S FASTPAK (ISOL)
MAC515-4 Q6025P5 SFASTPAK (ISOL)
MAC515-5 Q6025P5 SFASTPAK (ISOL)
MAC515-6 Q6025P5 SFASTPAK (ISOL)
MAC515-7 Q6025P5 SFASTPAK (ISOL)
MAC515-8 Q6025P5 SFASTPAK (ISOL)
MAC515-9 Q8025P5 S FASTPAK (ISOL)
MAC515A10 Q8025P5 S FASTPAK (ISOL)
MAC515A4 Q6025P5 S FASTPAK (ISOL)
MAC515A5 Q6025P5 S FASTPAK (ISOL)
MAC515A6 Q6025P5 S FASTPAK (ISOL)
MAC515A7 Q6025P5 SFASTPAK (ISOL)
MAC515A8 Q6025P5 SFASTPAK (ISOL)
MAC515A9 Q8025P5 SFASTPAK (ISOL)
MAC525-10 Q8025P5 SFASTPAK (ISOL)
MAC525-4 Q6025P5 SFASTPAK (ISOL)
MAC525-5 Q6025P5 S FASTPAK (ISOL)
MAC525-6 Q6025P5 S FASTPAK (ISOL)
MAC525-7 Q6025P5 S FASTPAK (ISOL)
MAC525-8 Q6025P5 S FASTPAK (ISOL)
MAC525-9 Q8025P5 S FASTPAK (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-14 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
MAC525A10 Q8025P5 SFASTPAK (ISOL)
MAC525A4 Q6025P5 SFASTPAK (ISOL)
MAC525A5 Q6025P5 SFASTPAK (ISOL)
MAC525A6 Q6025P5 SFASTPAK (ISOL)
MAC525A7 Q6025P5 SFASTPAK (ISOL)
MAC525A8 Q6025P5 S FASTPAK (ISOL)
MAC525A9 Q8025P5 S FASTPAK (ISOL)
MAC625-4 Q6025P5 S FASTPAK (ISOL)
MAC625-6 Q6025P5 S FASTPAK (ISOL)
MAC625-8 Q6025P5 S FASTPAK (ISOL)
MAC635-4 Q6035P5 SFASTPAK (ISOL)
MAC635-6 Q6035P5 SFASTPAK (ISOL)
MAC635-8 Q6035P5 SFASTPAK (ISOL)
MAC8D Q4008RH4 D TO-220 (N.ISOL)
MAC8M Q6008RH4 D TO-220 (N.ISOL)
MAC8N Q8008RH4 D TO-220 (N.ISOL)
MAC91-1 Q2X8E3 D TO-92 (ISOL)
MAC91-2 Q2X8E3 D TO-92 (ISOL)
MAC91-3 Q2X8E3 D TO-92 (ISOL)
MAC91-4 Q2X8E3 D TO-92 (ISOL)
MAC91-5 Q4X8E3 D TO-92 (ISOL)
MAC91-6 Q4X8E3 D TO-92 (ISOL)
MAC91-7 Q5X8E3 D TO-92 (ISOL)
MAC91-8 Q6X8E3 D TO-92 (ISOL)
MAC91A1 L2X8E6 D TO-92 (ISOL)
MAC91A2 L2X8E6 D TO-92 (ISOL)
MAC91A3 L2X8E6 D TO-92 (ISOL)
MAC91A4 L2X8E6 D TO-92 (ISOL)
MAC91A5 L4X8E6 D TO-92 (ISOL)
MAC91A6 L4X8E6 D TO-92 (ISOL)
MAC91A7 L6X8E6 D TO-92 (ISOL)
MAC91A8 L6X8E6 DTO-92 (ISOL)
MAC92-1 L2X8E5 DTO-92 (ISOL)
MAC92-2 L2X8E5 DTO-92 (ISOL)
MAC92-3 L2X8E5 DTO-92 (ISOL)
MAC92-4 L2X8E5 D TO-92 (ISOL)
MAC92-5 L4X8E5 D TO-92 (ISOL)
MAC92-6 L4X8E5 D TO-92 (ISOL)
MAC92-7 L6X8E5 D TO-92 (ISOL)
MAC92-8 L6X8E5 D TO-92 (ISOL)
MAC92A1 L2X8E5 DTO-92 (ISOL)
MAC92A2 L2X8E5 DTO-92 (ISOL)
MAC92A3 L2X8E5 DTO-92 (ISOL)
MAC92A4 L2X8E5 DTO-92 (ISOL)
MAC92A5 L4X8E5 DTO-92 (ISOL)
MAC92A6 L4X8E5 D TO-92 (ISOL)
MAC92A7 L6X8E5 D TO-92 (ISOL)
MAC92A8 L6X8E5 D TO-92 (ISOL)
MAC93-1 L2X8E3 D TO-92 (ISOL)
MAC93-2 L2X8E3 D TO-92 (ISOL)
MAC93-3 L2X8E3 DTO-92 (ISOL)
MAC93-4 L2X8E3 DTO-92 (ISOL)
MAC93-5 L4X8E3 DTO-92 (ISOL)
MAC93-6 L4X8E3 DTO-92 (ISOL)
MAC93-7 L6X8E3 DTO-92 (ISOL)
MAC93-8 L6X8E3 D TO-92 (ISOL)
MAC93A1 Q2X8E3 D TO-92 (ISOL)
MAC93A2 Q2X8E3 D TO-92 (ISOL)
MAC93A3 Q2X8E3 D TO-92 (ISOL)
MAC93A4 Q2X8E3 D TO-92 (ISOL)
MAC93A5 L4X8E3 DTO-92 (ISOL)
MAC93A6 L4X8E3 DTO-92 (ISOL)
MAC93A7 L6X8E3 DTO-92 (ISOL)
MAC93A8 L6X8E3 DTO-92 (ISOL)
MAC94-1 Q2X8E3 DTO-92 (ISOL)
MAC94-2 Q2X8E3 D TO-92 (ISOL)
MAC94-3 Q2X8E3 D TO-92 (ISOL)
MAC94-4 Q2X8E3 D TO-92 (ISOL)
MAC94-5 Q4X8E3 D TO-92 (ISOL)
MAC94-6 Q4X8E3 D TO-92 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
MAC94-7 Q6X8E3 DTO-92 (ISOL)
MAC94-8 Q6X8E3 DTO-92 (ISOL)
MAC94A1 L2X8E6 DTO-92 (ISOL)
MAC94A2 L2X8E6 DTO-92 (ISOL)
MAC94A3 L2X8E6 DTO-92 (ISOL)
MAC94A4 L2X8E6 D TO-92 (ISOL)
MAC94A5 L4X8E6 D TO-92 (ISOL)
MAC94A6 L4X8E6 D TO-92 (ISOL)
MAC94A7 L6X8E6 D TO-92 (ISOL)
MAC94A8 L6X8E6 D TO-92 (ISOL)
MAC95-1 L2X8E5 DTO-92 (ISOL)
MAC95-2 L2X8E5 DTO-92 (ISOL)
MAC95-3 L2X8E5 DTO-92 (ISOL)
MAC95-4 L2X8E5 DTO-92 (ISOL)
MAC95-5 L4X8E5 DTO-92 (ISOL)
MAC95-6 L4X8E5 D TO-92 (ISOL)
MAC95-7 L6X8E5 D TO-92 (ISOL)
MAC95-8 L6X8E5 D TO-92 (ISOL)
MAC95A1 L2X8E5 D TO-92 (ISOL)
MAC95A2 L2X8E5 D TO-92 (ISOL)
MAC95A3 L2X8E5 DTO-92 (ISOL)
MAC95A4 L2X8E5 DTO-92 (ISOL)
MAC95A5 L4X8E5 DTO-92 (ISOL)
MAC95A6 L4X8E5 DTO-92 (ISOL)
MAC95A7 L6X8E5 DTO-92 (ISOL)
MAC95A8 L6X8E5 D TO-92 (ISOL)
MAC96-1 L2X8E3 D TO-92 (ISOL)
MAC96-2 L2X8E3 D TO-92 (ISOL)
MAC96-3 L2X8E3 D TO-92 (ISOL)
MAC96-4 L2X8E3 D TO-92 (ISOL)
MAC96-5 L4X8E3 DTO-92 (ISOL)
MAC96-6 L4X8E3 D TO-92 (ISOL)
MAC96-7 L6X8E3 D TO-92 (ISOL)
MAC96-8 L6X8E3 D TO-92 (ISOL)
MAC96A1 L2X8E3 D TO-92 (ISOL)
MAC96A2 L2X8E3 D TO-92 (ISOL)
MAC96A3 L2X8E3 D TO-92 (ISOL)
MAC96A4 L2X8E3 D TO-92 (ISOL)
MAC96A5 L4X8E3 D TO-92 (ISOL)
MAC96A6 L4X8E3 D TO-92 (ISOL)
MAC96A7 L6X8E3 D TO-92 (ISOL)
MAC96A8 L6X8E3 D TO-92 (ISOL)
MAC97-2 L2X8E6 D TO-92 (ISOL)
MAC97-3 L2X8E6 D TO-92 (ISOL)
MAC97-4 L2X8E6 D TO-92 (ISOL)
MAC97-5 L4X8E6 D TO-92 (ISOL)
MAC97-6 L4X8E6 D TO-92 (ISOL)
MAC97-7 L6X8E6 D TO-92 (ISOL)
MAC97-8 L6X8E6 D TO-92 (ISOL)
MAC97A2 L2X8E5 D TO-92 (ISOL)
MAC97A3 L2X8E5 D TO-92 (ISOL)
MAC97A4 L2X8E5 D TO-92 (ISOL)
MAC97A5 L4X8E5 D TO-92 (ISOL)
MAC97A6 L4X8E5 D TO-92 (ISOL)
MAC97A7 L6X8E5 D TO-92 (ISOL)
MAC97A8 L6X8E5 D TO-92 (ISOL)
MAC97B2 L2X8E3 D TO-92 (ISOL)
MAC97B3 L2X8E3 D TO-92 (ISOL)
MAC97B4 L2X8E3 D TO-92 (ISOL)
MAC97B5 L4X8E3 D TO-92 (ISOL)
MAC97B6 L4X8E3 D TO-92 (ISOL)
MAC97B7 L6X8E3 D TO-92 (ISOL)
MAC97B8 L6X8E3 D TO-92 (ISOL)
MAC9D Q4008RH4 STO-220 (N.ISOL)
MAC9M Q6008RH4 STO-220 (N.ISOL)
MAC9N Q8008RH4 S TO-220 (N.ISOL)
MCR08BT1 S2S S SOT-223 / COMPAK
MCR08DT1 S4S S SOT-223 / COMPAK
MCR08MT1 S6S S SOT-223 / COMPAK
MCR100-3 EC103B D TO-92 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-15 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
MCR100-4 EC103B D TO-92 (ISOL)
MCR100-5 EC103D D TO-92 (ISOL)
MCR100-6 EC103D D TO-92 (ISOL)
MCR100-7 EC103M D TO-92 (ISOL)
MCR100-8 EC103M D TO-92 (ISOL)
MCR101 EC103B D TO-92 (ISOL)
MCR102 EC103B D TO-92 (ISOL)
MCR103 EC103B D TO-92 (ISOL)
MCR106-1 T106B1 D TO-202 (N.ISOL)
MCR106-2 T106B1 D TO-202 (N.ISOL)
MCR106-3 T106B1 D TO-202 (N.ISOL)
MCR106-4 T106B1 D TO-202 (N.ISOL)
MCR106-5 T106D1 D TO-202 (N.ISOL)
MCR106-6 T106D1 D TO-202 (N.ISOL)
MCR106-7 T106M1 D TO-202 (N.ISOL)
MCR106-8 T106M1 D TO-202 (N.ISOL)
MCR120 EC103B D TO-92 (ISOL)
MCR12DSM S6010DS2 S TO-252 (SMT)
MCR12DSM1 S6010VS2 S TO-251 (N.ISOL)
MCR12M Q6015R S TO-220 (N.ISOL)
MCR12N Q8015R S TO-220 (N.ISOL)
MCR16D Q4015R S TO-220 (N.ISOL)
MCR16M Q6015R S TO-220 (N.ISOL)
MCR16N Q8015R S TO-220 (N.ISOL)
MCR202 EC103B S TO-92 (ISOL)
MCR203 EC103B S TO-92 (ISOL)
MCR204 EC103B S TO-92 (ISOL)
MCR206 EC103B S TO-92 (ISOL)
MCR218-10FP S8008L D TO-220 (ISOL)
MCR218-2 S2008R D TO-220 (N.ISOL)
MCR218-2FP S2008L D TO-220 (ISOL)
MCR218-3 S2008R D TO-220 (N.ISOL)
MCR218-3FP S2008L D TO-220 (ISOL)
MCR218-4 S2008R D TO-220 (N.ISOL)
MCR218-4FP S2008L D TO-220 (ISOL)
MCR218-5 S4008R D TO-220 (N.ISOL)
MCR218-6 S4008R D TO-220 (N.ISOL)
MCR218-6FP S4008L D TO-220 (ISOL)
MCR218-7 S6008R D TO-220 (N.ISOL)
MCR218-8 S6008R D TO-220 (N.ISOL)
MCR218-8FP S6008L DTO-220 (ISOL)
MCR220-5 S4012R DTO-220 (N.ISOL)
MCR220-7 S6012R DTO-220 (N.ISOL)
MCR220-9 S8012R DTO-220 (N.ISOL)
MCR22-1 TCR22-4 STO-92 (ISOL)
MCR221-5 S4016R D TO-220 (N.ISOL)
MCR221-7 S6016R D TO-220 (N.ISOL)
MCR221-9 S8016R D TO-220 (N.ISOL)
MCR22-2 TCR22-4 D TO-92 (ISOL)
MCR22-3 TCR22-4 D TO-92 (ISOL)
MCR22-4 TCR22-4 DTO-92 (ISOL)
MCR225-10FP S8025L STO-220 (ISOL)
MCR225-2FP S2025L STO-220 (ISOL)
MCR225-4FP S2025L STO-220 (ISOL)
MCR225-5 S4025R STO-220 (N.ISOL)
MCR225-6FP S4025L S TO-220 (ISOL)
MCR225-7 S6025R S TO-220 (N.ISOL)
MCR225-8FP S6025L S TO-220 (ISOL)
MCR225-9 S8025R S TO-220 (N.ISOL)
MCR22-6 TCR22-6 D TO-92 (ISOL)
MCR22-7 TCR22-8 DTO-92 (ISOL)
MCR22-8 TCR22-8 DTO-92 (ISOL)
MCR25D S4025R DTO-220 (N.ISOL)
MCR25M S6025R DTO-220 (N.ISOL)
MCR25N S8025R DTO-220 (N.ISOL)
MCR264-10 S8040R D TO-220 (N.ISOL)
MCR264-2 S2040R D TO-220 (N.ISOL)
MCR264-3 S2040R D TO-220 (N.ISOL)
MCR264-4 S2040R D TO-220 (N.ISOL)
MCR264-6 S4040R D TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
MCR264-8 S6040R DTO-220 (N.ISOL)
MCR265-10 S8055R DTO-220 (N.ISOL)
MCR265-2 S2055R DTO-220 (N.ISOL)
MCR265-3 S2055R DTO-220 (N.ISOL)
MCR265-4 S2055R DTO-220 (N.ISOL)
MCR265-6 S4055R D TO-220 (N.ISOL)
MCR265-8 S6055R D TO-220 (N.ISOL)
MCR3000-1 S2008R S TO-220 (N.ISOL)
MCR3000-10 S8008R S TO-220 (N.ISOL)
MCR3000-2 S2008R S TO-220 (N.ISOL)
MCR3000-3 S2008R STO-220 (N.ISOL)
MCR3000-4 S2008R STO-220 (N.ISOL)
MCR3000-5 S4008R STO-220 (N.ISOL)
MCR3000-6 S4008R STO-220 (N.ISOL)
MCR3000-7 S6008R STO-220 (N.ISOL)
MCR3000-8 S6008R S TO-220 (N.ISOL)
MCR3000-9 S8008R S TO-220 (N.ISOL)
MCR310-1 S2010LS2 S TO-220 (ISOL)
MCR310-2 S2010LS2 S TO-220 (ISOL)
MCR310-3 S2010LS2 S TO-220 (ISOL)
MCR310-4 S2010LS2 STO-220 (ISOL)
MCR310-5 S4010LS2 STO-220 (ISOL)
MCR310-6 S4010LS2 STO-220 (ISOL)
MCR310-7 S6010LS2 STO-220 (ISOL)
MCR310-8 S6010LS2 STO-220 (ISOL)
MCR506-1 S2006FS21 S TO-202 (N.ISOL)
MCR506-2 S2006FS21 S TO-202 (N.ISOL)
MCR506-3 S2006FS21 S TO-202 (N.ISOL)
MCR506-4 S2006FS21 S TO-202 (N.ISOL)
MCR506-6 S4006FS21 S TO-202 (N.ISOL)
MCR506-8 S6006FS21 STO-202 (N.ISOL)
MCR525-1 S2035J STO-218 (ISOL)
MCR525-2 S2035J STO-218 (ISOL)
MCR525-3 S2035J STO-218 (ISOL)
MCR525-6 S4035J STO-218 (ISOL)
MCR68-1 S2012R D TO-220 (N.ISOL)
MCR68-2 S2012R D TO-220 (N.ISOL)
MCR68-3 S2012R D TO-220 (N.ISOL)
MCR68-6 S4012R D TO-220 (N.ISOL)
MCR69-1 S2025R D TO-220 (N.ISOL)
MCR69-2 S2025R D TO-220 (N.ISOL)
MCR69-3 S2025R D TO-220 (N.ISOL)
MCR69-6 S4025R D TO-220 (N.ISOL)
MCR704A S2004DS2 STO-252 (SMT)
MCR704A1 S2004VS2 STO-251 (N.ISOL)
MCR706A S4004DS2 S TO-252 (SMT)
MCR706A1 S4004VS2 S TO-251 (N.ISOL)
MCR708A S6004DS2 S TO-252 (SMT)
MCR708A1 S6004VS2 S TO-251 (N.ISOL)
MCR716 S4004DS2 D TO-252 (SMT)
MCR718 S6004DS2 DTO-252 (SMT)
MCR72-1 S2008LS2 S TO-220 (ISOL)
MCR72-2 S2008LS2 S TO-220 (ISOL)
MCR72-3 S2008LS2 S TO-220 (ISOL)
MCR72-4 S2008LS2 S TO-220 (ISOL)
MCR72-5 S4008LS2 S TO-220 (ISOL)
MCR72-6 S4008LS2 S TO-220 (ISOL)
MCR72-7 S6008LS2 S TO-220 (ISOL)
MCR72-8 S6008LS2 S TO-220 (ISOL)
MCR8DCM S6008D D TO-252 (SMT)
MCR8DCM1 S6008V DTO-251 (N.ISOL)
MCR8DCN S8008D DTO-252 (SMT)
MCR8DCN1 S8008V DTO-251 (N.ISOL)
MCR8DSM S6008DS2 DTO-252 (SMT)
MCR8DSM1 S6008VS2 DTO-251 (N.ISOL)
MCR8SD S4008FS21 S TO-202 (N.ISOL)
MCR8SM S6008FS21 S TO-202 (N.ISOL)
MK1V115 K1100G S DO-15X
MK1V125 K1200G S DO-15X
MK1V135 K1300G S DO-15X
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-16 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
MK1V240 K2400G SDO-15X
MK1V260 K2500G SDO-15X
MK1V270 K2500G SDO-15X
MK1V280 K2500G S DO-15X
MKP1V120 K1200E70 STO-92 (ISOL)
MKP1V130 K1300E70 S TO-92 (ISOL)
MKP1V240 K2400E70 S TO-92 (ISOL)
MKP3V110 K1100G S DO-15X
MKP3V120 K1200G S DO-15X
MKP3V130 K1300G S DO-15X
MKP9V120 K1200E70 STO-92 (ISOL)
MKP9V130 K1300E70 STO-92 (ISOL)
MKP9V240 K2400E70 STO-92 (ISOL)
MKP9V260 K2500E70 STO-92 (ISOL)
MKP9V270 K2500E70 STO-92 (ISOL)
MN611A K1050E70 S TO-92 (ISOL)
P0100AA EC103B1 D TO-92 (ISOL)
P0100AB EC103B1 S TO-92 (ISOL)
P0100BA EC103B1 D TO-92 (ISOL)
P0100BB EC103B1 S TO-92 (ISOL)
P0100CA EC103D1 D TO-92 (ISOL)
P0100CB EC103D1 S TO-92 (ISOL)
P0100DA EC103D1 D TO-92 (ISOL)
P0100DB EC103D1 S TO-92 (ISOL)
P0101AA EC103B1 D TO-92 (ISOL)
P0101AB EC103B1 S TO-92 (ISOL)
P0101BA EC103B1 D TO-92 (ISOL)
P0101BB EC103B1 S TO-92 (ISOL)
P0101CA EC103D1 D TO-92 (ISOL)
P0101CB EC103D1 S TO-92 (ISOL)
P0101DA EC103D1 D TO-92 (ISOL)
P0101DB EC103D1 S TO-92 (ISOL)
P0102AA EC103B D TO-92 (ISOL)
P0102AB EC103B S TO-92 (ISOL)
P0102AD EC103B78 S TO-92 (ISOL)
P0102AN S2S S SOT223/COMPAK
P0102BA EC103B D TO-92 (ISOL)
P0102BB EC103B S TO-92 (ISOL)
P0102BD EC103B78 S TO-92 (ISOL)
P0102BN S2S S SOT223/COMPAK
P0102CA EC103D D TO-92 (ISOL)
P0102CB EC103D S TO-92 (ISOL)
P0102CD EC103D78 STO-92 (ISOL)
P0102CN S4S SSOT223/COMPAK
P0102DA EC103D D TO-92 (ISOL)
P0102DB EC103D S TO-92 (ISOL)
P0102DD EC103D78 S TO-92 (ISOL)
P0102DN S4S S SOT223/COMPAK
P0103AA EC103B D TO-92 (ISOL)
P0103AB EC103B S TO-92 (ISOL)
P0103BA EC103B DTO-92 (ISOL)
P0103BB EC103B STO-92 (ISOL)
P0103CA EC103D DTO-92 (ISOL)
P0103CB EC103D STO-92 (ISOL)
P0103DA EC103D DTO-92 (ISOL)
P0103DB EC103D S TO-92 (ISOL)
P0104AA EC103B2 D TO-92 (ISOL)
P0104AB EC103B2 S TO-92 (ISOL)
P0104BA EC103B2 D TO-92 (ISOL)
P0104BB EC103B2 S TO-92 (ISOL)
P0104CA EC103D2 DTO-92 (ISOL)
P0104CB EC103D2 STO-92 (ISOL)
P0104DA EC103D2 DTO-92 (ISOL)
P0104DB EC103D2 STO-92 (ISOL)
P0105AA EC103B2 STO-92 (ISOL)
P0105AB EC103B2 S TO-92 (ISOL)
P0105BA EC103B2 S TO-92 (ISOL)
P0105BB EC103B2 D TO-92 (ISOL)
P0105CA EC103D2 S TO-92 (ISOL)
P0105CB EC103D2 S TO-92 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
P0105DA EC103D2 STO-92 (ISOL)
P0105DB EC103D2 STO-92 (ISOL)
P0110AA EC103B1 STO-92 (ISOL)
P0110AB EC103B1 STO-92 (ISOL)
P0110BA EC103B1 STO-92 (ISOL)
P0110BB EC103B2 S TO-92 (ISOL)
P0110CA EC103D2 S TO-92 (ISOL)
P0110CB EC103D1 S TO-92 (ISOL)
P0110DA EC103D1 S TO-92 (ISOL)
P0110DB EC103D1 S TO-92 (ISOL)
P0111AN S2S1 SSOT223/COMPAK
P0111BN S2S1 SSOT223/COMPAK
P0111CN S4S1 SSOT223/COMPAK
P0111DN S4S1 SSOT223/COMPAK
PT20 D2015L DTO-220 (ISOL)
PT40 D4015L D TO-220 (ISOL)
PT60 D6015L D TO-220 (ISOL)
Q2015L9 Q2016LH6 D TO-220 (ISOL)
Q2015R9 Q2016RH6 D TO-220 (N.ISOL)
Q2025L9 Q2025L6 S TO-220 (ISOL)
Q2025R9 Q2025R6 STO-220 (N.ISOL)
Q2040J9 Q2040J7 DTO-218X (ISOL)
Q2040K9 Q2040K7 DTO-218AC (ISOL)
Q4015L9 Q4016LH6 DTO-220 (ISOL)
Q4015R9 Q4016RH6 DTO-220 (N.ISOL)
Q4025L9 Q4025L6 S TO-220 (ISOL)
Q4025R9 Q4025R6 S TO-220 (N.ISOL)
Q4040J9 Q4040J7 D TO-218X (ISOL)
Q4040K9 Q4040K7 D TO-218AC (ISOL)
Q5015L9 Q6016LH6 D TO-220 (ISOL)
Q5015R9 Q6016RH6 DTO-220 (N.ISOL)
Q5025L9 Q6025L6 STO-220 (ISOL)
Q5025R9 Q6025R6 STO-220 (N.ISOL)
Q5040J9 Q6040J7 DTO-218X (ISOL)
Q5040K9 Q6040K7 DTO-218AC (ISOL)
Q6015L9 Q6016LH6 D TO-220 (ISOL)
Q6015R9 Q6016RH6 D TO-220 (N.ISOL)
Q6025L9 Q6025L6 S TO-220 (ISOL)
Q6025R9 Q6025R6 S TO-220 (N.ISOL)
Q6040J9 Q6040J7 D TO-218X (ISOL)
Q6040K9 Q6040K7 DTO-218AC (ISOL)
Q7015L9 Q8016LH6 DTO-220 (ISOL)
Q7015R9 Q8016RH6 DTO-220 (N.ISOL)
Q7025L9 Q8025L6 STO-220 (ISOL)
Q7025R9 Q8025R6 STO-220 (N.ISOL)
Q7040J9 Q8040J7 D TO-218X (ISOL)
Q7040K9 Q8040K7 D TO-218AC (ISOL)
Q8015L9 Q8016LH6 D TO-220 (ISOL)
Q8015R9 Q8016RH6 D TO-220 (N.ISOL)
Q8025L9 Q8025L6 S TO-220 (ISOL)
Q8025R9 Q8025R6 STO-220 (N.ISOL)
Q8040J9 Q8040J7 D TO-218X (ISOL)
Q8040K9 Q8040K7 D TO-218AC (ISOL)
S0402BH T106B1 S TO-202 (N.ISOL)
S0402DH T106D1 S TO-202 (N.ISOL)
S0402MH T106M1 S TO-202 (N.ISOL)
S0405BH S2006L D TO-220 (ISOL)
S0405DH S4006L D TO-220 (ISOL)
S0405MH S6006L S TO-220 (ISOL)
S0406BH S2006L S TO-220 (ISOL)
S0406DH S4006L STO-220 (ISOL)
S0406MH S6006L STO-220 (ISOL)
S0406NH S8006L STO-220 (ISOL)
S0407BH S2006L S TO-220 (ISOL)
S0407DH S4006L S TO-220 (ISOL)
S0407MH S6006L S TO-220 (ISOL)
S0410BH S2006L S TO-220 (ISOL)
S0410DH S4006L S TO-220 (ISOL)
S0410MH S6006L S TO-220 (ISOL)
S0410NH S8006L S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-17 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
S0417BH S2006L S TO-220 (ISOL)
S0417DH S4006L S TO-220 (ISOL)
S0417MH S6006L S TO-220 (ISOL)
S0417NH S8006L S TO-220 (ISOL)
S0602BH S2006LS2 S TO-220 (ISOL)
S0602DH S4006LS2 S TO-220 (ISOL)
S0602MH S6006LS2 S TO-220 (ISOL)
S0605BH S2006L S TO-220 (ISOL)
S0605DH S4006L S TO-220 (ISOL)
S0605MH S6006L S TO-220 (ISOL)
S0606BH S2006L S TO-220 (ISOL)
S0606DH S4006L S TO-220 (ISOL)
S0606MH S6006L S TO-220 (ISOL)
S0606NH S8006L S TO-220 (ISOL)
S0607BH S2006L S TO-220 (ISOL)
S0607DH S4006L S TO-220 (ISOL)
S0607MH S6006L S TO-220 (ISOL)
S0610BH S2006L S TO-220 (ISOL)
S0610DH S4006L S TO-220 (ISOL)
S0610MH S6006L S TO-220 (ISOL)
S0610NH S8006L S TO-220 (ISOL)
S0617BH S2006L S TO-220 (ISOL)
S0617DH S4006L S TO-220 (ISOL)
S0617MH S6006L S TO-220 (ISOL)
S0617NH S8006L S TO-220 (ISOL)
S0802BH S2008LS2 S TO-220 (ISOL)
S0802DH S4008LS2 S TO-220 (ISOL)
S0802MH S6008LS2 S TO-220 (ISOL)
S0805BH S2006R S TO-220 (N.ISOL)
S0805DH S4006R S TO-220 (N.ISOL)
S0805MH S6008R S TO-220 (N.ISOL)
S0806BH S2008R S TO-220 (N.ISOL)
S0806DH S4008R S TO-220 (N.ISOL)
S0806MH S6008R S TO-220 (N.ISOL)
S0806NH S8008R S TO-220 (N.ISOL)
S0807BH S2008R S TO-220 (N.ISOL)
S0807DH S4008R S TO-220 (N.ISOL)
S0807MH S6008R S TO-220 (N.ISOL)
S0807NH S8008R S TO-220 (N.ISOL)
S0810BH S2008R S TO-220 (N.ISOL)
S0810DH S4008R S TO-220 (N.ISOL)
S0810MH S6008R S TO-220 (N.ISOL)
S0810NH S8008R S TO-220 (N.ISOL)
S0817BH S2008R S TO-220 (N.ISOL)
S0817DH S4008R S TO-220 (N.ISOL)
S0817MH S6008R S TO-220 (N.ISOL)
S0817NH S8008R S TO-220 (N.ISOL)
S1005BH S2010R S TO-220 (N.ISOL)
S1005DH S4010R S TO-220 (N.ISOL)
S1005MH S6010R S TO-220 (N.ISOL)
S1006BH S2010R STO-220 (N.ISOL)
S1006DH S4010R STO-220 (N.ISOL)
S1006MH S6010R STO-220 (N.ISOL)
S1006NH S8010R STO-220 (N.ISOL)
S1007BH S2010R STO-220 (N.ISOL)
S1007DH S4010R S TO-220 (N.ISOL)
S1007MH S6010R S TO-220 (N.ISOL)
S1010BH S2010R S TO-220 (N.ISOL)
S1010DH S4010R S TO-220 (N.ISOL)
S1010MH S6010R S TO-220 (N.ISOL)
S1010NH S8010R STO-220 (N.ISOL)
S1017BH S2010R STO-220 (N.ISOL)
S1017DH S4010R STO-220 (N.ISOL)
S1017MH S6010R STO-220 (N.ISOL)
S1017NH S8010R STO-220 (N.ISOL)
S106A1 T106B1 D TO-202 (N.ISOL)
S106B1 T106B1 D TO-202 (N.ISOL)
S106C1 T106D1 D TO-202 (N.ISOL)
S106D1 T106D1 D TO-202 (N.ISOL)
S106E1 T106M1 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
S106F1 T106B1 DTO-202 (N.ISOL)
S106M1 T106M1 DTO-202 (N.ISOL)
S106Y1 T106B1 DTO-202 (N.ISOL)
S107A1 T107B1 DTO-202 (N.ISOL)
S107B1 T107B1 DTO-202 (N.ISOL)
S107C1 T107D1 D TO-202 (N.ISOL)
S107D1 T107D1 D TO-202 (N.ISOL)
S107E1 T107M1 D TO-202 (N.ISOL)
S107F1 T107B1 D TO-202 (N.ISOL)
S107M1 T107M1 D TO-202 (N.ISOL)
S107Q1 T107B1 DTO-202 (N.ISOL)
S107Y1 T107B1 DTO-202 (N.ISOL)
S1205BH S2012R STO-220 (N.ISOL)
S1205DH S4012R STO-220 (N.ISOL)
S1205MH S6012R STO-220 (N.ISOL)
S1206BH S2012R S TO-220 (N.ISOL)
S1206DH S4012R S TO-220 (N.ISOL)
S1206MH S6012R S TO-220 (N.ISOL)
S1206NH S8012R S TO-220 (N.ISOL)
S1207BH S2012R S TO-220 (N.ISOL)
S1207DH S4012R STO-220 (N.ISOL)
S1207MH S6012R STO-220 (N.ISOL)
S1210BH S2012R STO-220 (N.ISOL)
S1210DH S4012R STO-220 (N.ISOL)
S1210MH S6012R STO-220 (N.ISOL)
S1210NH S8012R S TO-220 (N.ISOL)
S1217BH S2012R S TO-220 (N.ISOL)
S1217DH S4012R S TO-220 (N.ISOL)
S1217MH S6012R S TO-220 (N.ISOL)
S1217NH S8012R S TO-220 (N.ISOL)
S1610BH S2016R STO-220 (N.ISOL)
S1610DH S4016R STO-220 (N.ISOL)
S1610MH S6016R STO-220 (N.ISOL)
S1610NH S8016R STO-220 (N.ISOL)
S1612BH S2016R STO-220 (N.ISOL)
S1612DH S4016R S TO-220 (N.ISOL)
S1612MH S6016R S TO-220 (N.ISOL)
S1612NH S8016R S TO-220 (N.ISOL)
S1616BH S2016R S TO-220 (N.ISOL)
S1616DH S4016R S TO-220 (N.ISOL)
S1616MH S6016R STO-220 (N.ISOL)
S1616NH S8016R STO-220 (N.ISOL)
S1A EC103B DTO-92 (ISOL)
S1B EC103B DTO-92 (ISOL)
S1D EC103D DTO-92 (ISOL)
S1M EC103M D TO-92 (ISOL)
S1Y EC103B S TO-92 (ISOL)
S1YY EC103B D TO-92 (ISOL)
S2060A S2006LS2 S TO-220 (ISOL)
S2060B S2006LS2 S TO-220 (ISOL)
S2060C S4006LS2 S TO-220 (ISOL)
S2060D S4006LS2 S TO-220 (ISOL)
S2060E S6006LS2 S TO-220 (ISOL)
S2060F S2006LS2 S TO-220 (ISOL)
S2060M S6006LS2 S TO-220 (ISOL)
S2060Y S2006LS2 S TO-220 (ISOL)
S2061A S2006LS3 S TO-220 (ISOL)
S2061B S2006LS3 S TO-220 (ISOL)
S2061C S4006LS3 S TO-220 (ISOL)
S2061D S4006LS3 S TO-220 (ISOL)
S2061E S6006LS3 S TO-220 (ISOL)
S2061F S2006LS3 S TO-220 (ISOL)
S2061Q S2006LS3 S TO-220 (ISOL)
S2061Y S2006LS3 S TO-220 (ISOL)
S2062A S2006LS3 S TO-220 (ISOL)
S2062B S2006LS3 S TO-220 (ISOL)
S2062C S4006LS3 S TO-220 (ISOL)
S2062D S4006LS3 S TO-220 (ISOL)
S2062E S6006LS3 S TO-220 (ISOL)
S2062F S2006LS3 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-18 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
S2062M S6006LS3 S TO-220 (ISOL)
S2062Q S2006LS3 S TO-220 (ISOL)
S2062Y S2006LS3 S TO-220 (ISOL)
S2512BH S2025R S TO-220 (N.ISOL)
S2512BK S2035J S TO-218 (ISOL)
S2512DH S4025R S TO-220 (N.ISOL)
S2512DK S4035J S TO-218 (ISOL)
S2512MH S6025R S TO-220 (N.ISOL)
S2512MK S6035J S TO-218 (ISOL)
S2512NH S8025R S TO-220 (N.ISOL)
S2512NK S8035J S TO-218 (ISOL)
S2514BH S2025R S TO-220 (N.ISOL)
S2514BK S2035J S TO-218 (ISOL)
S2514DH S4025R S TO-220 (N.ISOL)
S2514DK S4035J S TO-218 (ISOL)
S2514MH S6025R S TO-220 (N.ISOL)
S2514MK S6035J S TO-218 (ISOL)
S2514NH S8025R S TO-220 (N.ISOL)
S2514NK S8035J S TO-218 (ISOL)
S2516BH S2025R S TO-220 (N.ISOL)
S2516DH S4025R S TO-220 (N.ISOL)
S2516MH S6025R S TO-220 (N.ISOL)
S2516NH S8025R S TO-220 (N.ISOL)
S2600B S2006L S TO-220 (ISOL)
S2600D S4006L S TO-220 (ISOL)
S2600M S6006L S TO-220 (ISOL)
S2800A S2010R D TO-220 (N.ISOL)
S2800B S2010R D TO-220 (N.ISOL)
S2800C S4010R S TO-220 (N.ISOL)
S2800D S4010R D TO-220 (N.ISOL)
S2800E S6010R S TO-220 (N.ISOL)
S2800F S2010R D TO-220 (N.ISOL)
S2800M S6010R D TO-220 (N.ISOL)
S2800N S8010R D TO-220 (N.ISOL)
S3014NH S8040R STO-220 (N.ISOL)
S3016NH S8040R S TO-220 (N.ISOL)
S4012BH S2040R S TO-220 (N.ISOL)
S4012BK S2035J S TO-218 (ISOL)
S4012DH S4040R S TO-220 (N.ISOL)
S4012DK S4035J S TO-218 (ISOL)
S4012MH S6040R S TO-220 (N.ISOL)
S4012MK S6035J S TO-218 (ISOL)
S4012NH S8040R S TO-220 (N.ISOL)
S4012NK S8035J S TO-218 (ISOL)
S4014BH S2040R S TO-220 (N.ISOL)
S4014BK S2035J S TO-218 (ISOL)
S4014DH S4040R S TO-220 (N.ISOL)
S4014DK S4035J S TO-218 (ISOL)
S4014MH S6040R S TO-220 (N.ISOL)
S4014MK S6035J S TO-218 (ISOL)
S4014NH S8040R S TO-220 (N.ISOL)
S4014NK S8065J S TO-218 (ISOL)
S4016BH S2040R S TO-220 (N.ISOL)
S4016DH S4040R S TO-220 (N.ISOL)
S4016MH S6040R S TO-220 (N.ISOL)
S4016NH S8040R S TO-220 (N.ISOL)
S4060A S2010LS2 S TO-220 (ISOL)
S4060B S2010LS2 S TO-220 (ISOL)
S4060C S4010LS2 S TO-220 (ISOL)
S4060D S4010LS2 S TO-220 (ISOL)
S4060F S2010LS2 S TO-220 (ISOL)
S4060U S2010LS2 S TO-220 (ISOL)
S5800B S2008R STO-220 (N.ISOL)
S5800C S4008R STO-220 (N.ISOL)
S5800D S4008R STO-220 (N.ISOL)
S5800E S6008R S TO-220 (N.ISOL)
S5800M S6008R S TO-220 (N.ISOL)
SC129B Q2025R5 D TO-220 (N.ISOL)
SC129D Q4025R5 D TO-220 (N.ISOL)
SC129E Q6025R5 D TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
SC129M Q6025R5 D TO-220 (N.ISOL)
SC136A Q2004F41 S TO-202 (N.ISOL)
SC136B Q2004F41 S TO-202 (N.ISOL)
SC136C Q4004F41 S TO-202 (N.ISOL)
SC136D Q4004F41 S TO-202 (N.ISOL)
SC136E Q5004F41 S TO-202 (N.ISOL)
SC136M Q6004F41 S TO-202 (N.ISOL)
SC140B Q2006L4 D TO-220 (ISOL)
SC140D Q4006L4 D TO-220 (ISOL)
SC140E Q6006L4 D TO-220 (ISOL)
SC140M Q6006L5 D TO-220 (ISOL)
SC141A Q2006R4 S TO-220 (N.ISOL)
SC141B Q2006R4 D TO-220 (N.ISOL)
SC141C Q4006R4 S TO-220 (N.ISOL)
SC141D Q4006R4 D TO-220 (N.ISOL)
SC141E Q6006R4 D TO-220 (N.ISOL)
SC141M Q6006R5 D TO-220 (N.ISOL)
SC141N Q8006R5 D TO-220 (N.ISOL)
SC142B Q2008L4 D TO-220 (ISOL)
SC142D Q4008L4 D TO-220 (ISOL)
SC142E Q6008L4 D TO-220 (ISOL)
SC142M Q6008L5 D TO-220 (ISOL)
SC143B Q2008R4 D TO-220 (N.ISOL)
SC143D Q4008R4 D TO-220 (N.ISOL)
SC143E Q6008R4 D TO-220 (N.ISOL)
SC143M Q6008R5 D TO-220 (N.ISOL)
SC146B Q2010R5 D TO-220 (N.ISOL)
SC146D Q4010R5 D TO-220 (N.ISOL)
SC146E Q6010R5 D TO-220 (N.ISOL)
SC146M Q6010R5 D TO-220 (N.ISOL)
SC146N Q8010R5 D TO-220 (N.ISOL)
SC147B Q2010L5 D TO-220 (ISOL)
SC147D Q4010L5 D TO-220 (ISOL)
SC147E Q6010L5 D TO-220 (ISOL)
SC147M Q6010L5 D TO-220 (ISOL)
SC148B Q2010L5 D TO-220 (ISOL)
SC148D Q4010L5 D TO-220 (ISOL)
SC148E Q6010L5 D TO-220 (ISOL)
SC148M Q6010L5 D TO-220 (ISOL)
SC149B Q2015R5 D TO-220 (N.ISOL)
SC149D Q4015R5 D TO-220 (N.ISOL)
SC149E Q6015R5 D TO-220 (N.ISOL)
SC149M Q6015R5 D TO-220 (N.ISOL)
SC150B Q2015L5 D TO-220 (ISOL)
SC150D Q4015L5 D TO-220 (ISOL)
SC150E Q6015L5 D TO-220 (ISOL)
SC150M Q6015L5 D TO-220 (ISOL)
SC151B Q2015R5 D TO-220 (N.ISOL)
SC151D Q4015R5 D TO-220 (N.ISOL)
SC151E Q6015R5 D TO-220 (N.ISOL)
SC151M Q6015R5 D TO-220 (N.ISOL)
SC160B Q6025P5 SFASTPAK (ISOL)
SC160D Q6025P5 SFASTPAK (ISOL)
SC160E Q6025P5 SFASTPAK (ISOL)
SC160M Q6025P5 SFASTPAK (ISOL)
SC92A Q201E3 D TO-92 (ISOL)
SC92B Q201E3 D TO-92 (ISOL)
SC92D Q401E3 D TO-92 (ISOL)
SC92F Q201E3 D TO-92 (ISOL)
SF0R1A42 EC103B S TO-92 (ISOL)
SF0R1B42 EC103B STO-92 (ISOL)
SF0R1D42 EC103B STO-92 (ISOL)
SF0R1G42 EC103D STO-92 (ISOL)
SF0R3B42 EC103B STO-92 (ISOL)
SF0R3D42 EC103B STO-92 (ISOL)
SF0R3G42 EC103D S TO-92 (ISOL)
SF0R3J42 EC103M S TO-92 (ISOL)
SF0R5B43 EC103B S TO-92 (ISOL)
SF0R5D43 EC103B S TO-92 (ISOL)
SF0R5G43 EC103D S TO-92 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-19 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
SF0R5H43 EC103M STO-92 (ISOL)
SF0R5J43 EC103M STO-92 (ISOL)
SF10D41A S2016R STO-220 (N.ISOL)
SF10G41A S4016R STO-220 (N.ISOL)
SF10J41A S6016R STO-220 (N.ISOL)
SF1B12 TR22-4 S TO-39/TO-92 (ISOL)
SF1D12 TR22-4 S TO-39/TO-92 (ISOL)
SF1G12 TR22-6 S TO-39/TO-92 (ISOL)
SF3B41 S2006F1 S TO-202 (N.ISOL)
SF3B42 T106B1 S TO-202 (N.ISOL)
SF3D41 S2006F1 STO-202 (N.ISOL)
SF3D42 T106B1 STO-202 (N.ISOL)
SF3D42C T106B1 STO-202 (N.ISOL)
SF3G41 S4006F1 STO-202 (N.ISOL)
SF3G42 T106D1 STO-202 (N.ISOL)
SF3G42C T106D1 S TO-202 (N.ISOL)
SF3H42LC2 T106M2 S TO-202 (N.ISOL)
SF3J41 S6006F1 S TO-202 (N.ISOL)
SF3J42 T106M1 S TO-202 (N.ISOL)
SF5B41 S2008R S TO-202 (N.ISOL)
SF5B42 S2008FS21 STO-202 (N.ISOL)
SF5D41 S2008R STO-202 (N.ISOL)
SF5D41A S2012R STO-202 (N.ISOL)
SF5D42 S2008FS21 STO-202 (N.ISOL)
SF5G41 S4008R STO-202 (N.ISOL)
SF5G41A S6012R S TO-202 (N.ISOL)
SF5G42 S4008FS21 S TO-202 (N.ISOL)
SF5J41 S6008R S TO-202 (N.ISOL)
SF5J41A S6012R S TO-202 (N.ISOL)
SF5J42 S6008FS21 S TO-202 (N.ISOL)
SF8B41 S2012R STO-220 (N.ISOL)
SF8D41 S2012R STO-220 (N.ISOL)
SF8D41A S2012R STO-220 (N.ISOL)
SF8G41 S4012R STO-220 (N.ISOL)
SF8G41A S4012R STO-220 (N.ISOL)
SF8J41 S6012R S TO-220 (N.ISOL)
SF8J41A S6012R S TO-220 (N.ISOL)
SM0R5B42 Q2X8E3 S TO-92 (ISOL)
SM0R5D42 Q2X8E3 S TO-92 (ISOL)
SM0R5G42 Q4X8E3 S TO-92 (ISOL)
SM12D41 Q2012RH5 STO-220 (N.ISOL)
SM12G41 Q4012RH5 STO-220 (N.ISOL)
SM12J41 Q6012RH5 STO-220 (N.ISOL)
SM16DZ41 Q2025P5 SFASTPAK (ISOL)
SM16G45 Q4016RH4 STO-220 (N.ISOL)
SM16G45A Q4016RH3 S TO-220 (N.ISOL)
SM16GZ41 Q4025P5 S FASTPAK (ISOL)
SM16GZ47 Q4016LH4 S TO-220 (ISOL)
SM16GZ47A Q4016LH3 S TO-220 (ISOL)
SM16J45 Q6016RH4 S TO-220 (N.ISOL)
SM16J45A Q6016RH3 STO-220 (N.ISOL)
SM16JZ41 Q6025P5 SFASTPAK (ISOL)
SM16JZ47 Q6016LH4 STO-220 (ISOL)
SM16JZ47A Q6016LH3 STO-220 (ISOL)
SM1D43 L201E6 STO-92 (ISOL)
SM1G43 L401E6 S TO-92 (ISOL)
SM25DZ41 Q2025P5 S FASTPAK (ISOL)
SM25GZ41 Q4025P5 S FASTPAK (ISOL)
SM25JZ41 Q6025P5 S FASTPAK (ISOL)
SM2B41 Q2004F31 S TO-202 (N.ISOL)
SM2D41 Q2004F31 STO-202 (N.ISOL)
SM2G41 Q4004F31 STO-202 (N.ISOL)
SM3B41 Q2004F41 STO-202 (N.ISOL)
SM3D41 Q2004F41 STO-202 (N.ISOL)
SM3G41 Q4004F41 STO-202 (N.ISOL)
SM3G45 Q4004L3 D TO-220 (ISOL)
SM3GZ46 Q4004L3 S TO-220 (ISOL)
SM3J41 Q6004F41 S TO-202 (N.ISOL)
SM3J45 Q6004L3 D TO-220 (ISOL)
SM3JZ46 Q6004L3 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
SM6D45 Q2006R4 STO-220 (N.ISOL)
SM6D45A Q2006R4 STO-220 (N.ISOL)
SM6DZ46 Q2006L4 STO-220 (ISOL)
SM6DZ46A Q2006L4 STO-220 (ISOL)
SM6G45 Q4006R4 STO-220 (N.ISOL)
SM6G45A Q4006R4 S TO-220 (N.ISOL)
SM6GZ46 Q4006L4 S TO-220 (ISOL)
SM6GZ46A Q4006L4 S TO-220 (ISOL)
SM6GZ47 Q4006L4 S TO-220 (ISOL)
SM6GZ47A Q4006L4 S TO-220 (ISOL)
SM6J45 Q6006R4 STO-220 (N.ISOL)
SM6J45A Q6006R4 STO-220 (N.ISOL)
SM6JZ46 Q6006L4 STO-220 (ISOL)
SM6JZ46A Q6006L4 STO-220 (ISOL)
SM6JZ47 Q6006L4 STO-220 (ISOL)
SM6JZ47A Q6006L4 S TO-220 (ISOL)
SM8D41 Q2008R4 D TO-220 (N.ISOL)
SM8D45 Q2010R4 S TO-220 (N.ISOL)
SM8D45A L2008L8 S TO-220 (N.ISOL)
SM8DZ46 Q2010L4 S TO-220 (ISOL)
SM8DZ46A L2008L8 STO-220 (ISOL)
SM8G41 Q4008R4 D TO-220 (N.ISOL)
SM8G45 Q4010R4 STO-220 (N.ISOL)
SM8G45A L4008L8 STO-220 (N.ISOL)
SM8GZ46 Q4010L4 STO-220 (ISOL)
SM8GZ46A L4008L8 S TO-220 (ISOL)
SM8GZ47 Q4008LH4 S TO-220 (ISOL)
SM8GZ47A Q4008LH4 S TO-220 (ISOL)
SM8J41 Q6008R5 D TO-220 (N.ISOL)
SM8J45 Q6010R4 S TO-220 (N.ISOL)
SM8J45A L6008L8 STO-220 (N.ISOL)
SM8JZ46 Q6010L4 STO-220 (ISOL)
SM8JZ46A L6008L8 STO-220 (ISOL)
SM8JZ47 Q6008LH4 STO-220 (ISOL)
SM8JZ47A Q6008LH4 STO-220 (ISOL)
ST2 HT32 D DO-35 (ISOL)
T0505MH L6006L5 S TO-220 (ISOL)
T0509MH L6006L6 S TO-220 (ISOL)
T0510DH L4006L8 S TO-220 (ISOL)
T0510MH L6006L8 S TO-220 (ISOL)
T0605DH L4006L5 STO-220 (ISOL)
T0605MH L6006L5 STO-220 (ISOL)
T0609DH L4006L6 STO-220 (ISOL)
T0609MH L6006L6 STO-220 (ISOL)
T0612BH Q2004R4 D TO-220 (N.ISOL)
T0612DH Q4006R4 D TO-220 (N.ISOL)
T0612MH Q6006R5 D TO-220 (N.ISOL)
T0805DH L4008L6 S TO-220 (ISOL)
T0805MH L6008L6 S TO-220 (ISOL)
T0809DH L4008L8 S TO-220 (ISOL)
T0809MH L6008L8 STO-220 (ISOL)
T0810DH Q4008R4 STO-220 (N.ISOL)
T0810MH Q6008R5 STO-220 (N.ISOL)
T0810NH Q8008R5 STO-220 (N.ISOL)
T0810SH Q8008R5 STO-220 (N.ISOL)
T0812DH Q4008R4 S TO-220 (N.ISOL)
T0812MH Q6008R5 S TO-220 (N.ISOL)
T0812NH Q8008R5 S TO-220 (N.ISOL)
T0812SH Q8008R5 S TO-220 (N.ISOL)
T1010BH Q2010R5 S TO-220 (N.ISOL)
T1010BJ Q2010L5 D TO-220 (ISOL)
T1010DH Q4010R5 S TO-220 (N.ISOL)
T1010DJ Q4010L5 D TO-220 (ISOL)
T1010MH Q6010R5 S TO-220 (N.ISOL)
T1010MJ Q6010L5 D TO-220 (ISOL)
T1010NH Q8010R5 S TO-220 (N.ISOL)
T1010NJ Q8010L5 D TO-220 (ISOL)
T1012BH Q2010R5 D TO-220 (N.ISOL)
T1012BJ Q2010L5 D TO-220 (ISOL)
T1012DH Q4010R5 D TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-20 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
T1012DJ Q4010L5 D TO-220 (ISOL)
T1012MH Q6010R5 D TO-220 (N.ISOL)
T1012MJ Q6010L5 D TO-220 (ISOL)
T1012NH Q8010R5 S TO-220 (N.ISOL)
T1012NJ Q8010L5 STO-220 (ISOL)
T1013BH Q2010R5 D TO-220 (N.ISOL)
T1013BJ Q2010L5 D TO-220 (ISOL)
T1013DH Q4010R5 D TO-220 (N.ISOL)
T1013DJ Q4010L5 D TO-220 (ISOL)
T1013MH Q6010R5 D TO-220 (N.ISOL)
T1013MJ Q6010L5 D TO-220 (ISOL)
T1013NH Q8010R5 D TO-220 (N.ISOL)
T1013NJ Q8010L5 D TO-220 (ISOL)
T106A1SC L2004F31 D TO-202 (N.ISOL)
T106A1SD L2004F51 D TO-202 (N.ISOL)
T106A1SG L2004F61 D TO-202 (N.ISOL)
T106A1SH L2004F81 D TO-202 (N.ISOL)
T106A1SHA Q2004F41 D TO-202 (N.ISOL)
T106A1SS L2004F31 D TO-202 (N.ISOL)
T106A2SS L2004F32 D TO-202 (N.ISOL)
T106B1SC L2004F31 D TO-202 (N.ISOL)
T106B1SD L2004F51 D TO-202 (N.ISOL)
T106B1SG L2004F61 D TO-202 (N.ISOL)
T106B1SGA Q2004F31 D TO-202 (N.ISOL)
T106B1SH L2004F81 D TO-202 (N.ISOL)
T106B1SHA Q2004F41 D TO-202 (N.ISOL)
T106B1SS L2004F31 D TO-202 (N.ISOL)
T106B2SD L2004F52 D TO-202 (N.ISOL)
T106B2SG L2004F62 D TO-202 (N.ISOL)
T106B2SGA Q2004F32 D TO-202 (N.ISOL)
T106B2SH L2004F82 D TO-202 (N.ISOL)
T106B2SHA Q2004F42 D TO-202 (N.ISOL)
T106B2SS L2004F32 D TO-202 (N.ISOL)
T106C1SC L4004F31 D TO-202 (N.ISOL)
T106C1SD L4004F51 D TO-202 (N.ISOL)
T106C1SG L4004F61 D TO-202 (N.ISOL)
T106C1SGA Q4004F31 D TO-202 (N.ISOL)
T106C1SH L4004F81 D TO-202 (N.ISOL)
T106C1SHA Q4004F41 D TO-202 (N.ISOL)
T106C1SS L4004F31 D TO-202 (N.ISOL)
T106C2SD L4004F52 D TO-202 (N.ISOL)
T106C2SG L4004F62 D TO-202 (N.ISOL)
T106C2SGA Q4004F32 D TO-202 (N.ISOL)
T106C2SH L4004F82 D TO-202 (N.ISOL)
T106C2SHA Q4004F42 D TO-202 (N.ISOL)
T106C2SS L4004F32 D TO-202 (N.ISOL)
T106D1SC L4004F31 D TO-202 (N.ISOL)
T106D1SD L4004F51 D TO-202 (N.ISOL)
T106D1SG L4004F61 D TO-202 (N.ISOL)
T106D1SGA Q4004F31 D TO-202 (N.ISOL)
T106D1SH L4004F81 D TO-202 (N.ISOL)
T106D1SHA Q4004F41 D TO-202 (N.ISOL)
T106D1SS L4004F31 D TO-202 (N.ISOL)
T106D2SD L4004F52 D TO-202 (N.ISOL)
T106D2SG L4004F62 D TO-202 (N.ISOL)
T106D2SGA Q4004F32 D TO-202 (N.ISOL)
T106D2SH L4004F82 D TO-202 (N.ISOL)
T106D2SHA Q4004F42 D TO-202 (N.ISOL)
T106D2SS L4004F32 D TO-202 (N.ISOL)
T106E1SC L6004F31 D TO-202 (N.ISOL)
T106E1SD L6004F51 D TO-202 (N.ISOL)
T106E1SG L6004F61 D TO-202 (N.ISOL)
T106E1SGA Q6004F31 D TO-202 (N.ISOL)
T106E1SH L6004F81 D TO-202 (N.ISOL)
T106E1SHA Q6004F41 D TO-202 (N.ISOL)
T106E1SS L6004F31 D TO-202 (N.ISOL)
T106E2SD L6004F52 D TO-202 (N.ISOL)
T106E2SG L6004F62 D TO-202 (N.ISOL)
T106E2SGA Q6004F32 D TO-202 (N.ISOL)
T106E2SH L6004F82 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
T106E2SHA Q6004F42 D TO-202 (N.ISOL)
T106E2SS L4004F32 D TO-202 (N.ISOL)
T106F1SC L2004F31 D TO-202 (N.ISOL)
T106F1SD L2004F51 D TO-202 (N.ISOL)
T106F1SG L2004F61 D TO-202 (N.ISOL)
T106F1SGA Q2004F31 D TO-202 (N.ISOL)
T106F1SH L2004F81 D TO-202 (N.ISOL)
T106F1SHA Q2004F41 D TO-202 (N.ISOL)
T106F1SS L2004F31 D TO-202 (N.ISOL)
T106F2SC L2004F32 D TO-202 (N.ISOL)
T106F2SD L2004F52 D TO-202 (N.ISOL)
T106F2SG L2004F62 D TO-202 (N.ISOL)
T106F2SGA Q2004F32 D TO-202 (N.ISOL)
T106F2SH L2004F82 D TO-202 (N.ISOL)
T106F2SHA Q2004F42 D TO-202 (N.ISOL)
T106F2SS L2004F32 D TO-202 (N.ISOL)
T106M1SD L6004F51 D TO-202 (N.ISOL)
T106M1SG L6004F61 D TO-202 (N.ISOL)
T106M1SGA Q6004F31 D TO-202 (N.ISOL)
T106M1SH L6004F81 D TO-202 (N.ISOL)
T106M1SHA Q6004F41 D TO-202 (N.ISOL)
T106M1SS L6004F31 D TO-202 (N.ISOL)
T106M2SD L6004F52 D TO-202 (N.ISOL)
T106M2SG L6004F62 D TO-202 (N.ISOL)
T106M2SGA Q6004F32 D TO-202 (N.ISOL)
T106M2SH L6004F82 D TO-202 (N.ISOL)
T106M2SHA Q6004F42 D TO-202 (N.ISOL)
T106M2SS L6004F32 D TO-202 (N.ISOL)
T1210BH Q2015R5 S TO-220 (N.ISOL)
T1210DH Q4015R5 S TO-220 (N.ISOL)
T1210MH Q6015R5 S TO-220 (N.ISOL)
T1210NH Q8015R5 S TO-220 (N.ISOL)
T1212BH Q2015R5 D TO-220 (N.ISOL)
T1212BJ Q4015L5 D TO-220 (ISOL)
T1212DH Q4015R5 D TO-220 (N.ISOL)
T1212DJ Q4015L5 D TO-220 (ISOL)
T1212MH Q6015R5 D TO-220 (N.ISOL)
T1212MJ Q6015L5 D TO-220 (ISOL)
T1212NH Q8015R5 D TO-220 (N.ISOL)
T1212NJ Q8015L5 D TO-220 (ISOL)
T1213BH Q2015R5 D TO-220 (N.ISOL)
T1213BJ Q4015L5 D TO-220 (ISOL)
T1213DH Q4015R5 D TO-220 (N.ISOL)
T1213DJ Q4015L5 D TO-220 (ISOL)
T1213MH Q6015R5 D TO-220 (N.ISOL)
T1213MJ Q6015L5 D TO-220 (ISOL)
T1213NH Q8015R5 D TO-220 (N.ISOL)
T1213NJ Q8015L5 D TO-220 (ISOL)
T1235-600G Q6012NH5 S TO-263 (SMT)
T1235-800G Q8012NH5 S TO-263 (SMT)
T1512BJ Q2015L5 D TO-220 (ISOL)
T1512DJ Q4015L5 D TO-220 (ISOL)
T1512MJ Q6015L5 D TO-220 (ISOL)
T1512NJ Q8015L5 D TO-220 (ISOL)
T1513BJ Q2015L5 D TO-220 (ISOL)
T1513DJ Q4015L5 D TO-220 (ISOL)
T1513MJ Q6015L5 D TO-220 (ISOL)
T1513NJ Q8015L5 D TO-220 (ISOL)
T1612BH Q2015R5 D TO-220 (N.ISOL)
T1612DH Q4015R5 D TO-220 (N.ISOL)
T1612MH Q6015R5 D TO-220 (N.ISOL)
T1612NH Q8015R5 D TO-220 (N.ISOL)
T1612NJ Q8015L5 D TO-220 (ISOL)
T1613BH Q2015R5 D TO-220 (N.ISOL)
T1613DH Q4015R5 D TO-220 (N.ISOL)
T1613MH Q6015R5 D TO-220 (N.ISOL)
T1613NH Q8015R S TO-220 (N.ISOL)
T1635-600G Q6016NH4 D TO-263 (SMT)
T1635-800G Q8016NH4 D TO-263 (SMT)
T2300A L2004F321 S TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-21 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
T2300B L2004F321 S TO-202 (N.ISOL)
T2300D L4004F321 S TO-202 (N.ISOL)
T2300F L2004F321 S TO-202 (N.ISOL)
T2300PA L2004F31 S TO-202 (N.ISOL)
T2300PB L2004F31 S TO-202 (N.ISOL)
T2300PC L4004F31 S TO-202 (N.ISOL)
T2300PD L4004F31 S TO-202 (N.ISOL)
T2300PE L6004F31 S TO-202 (N.ISOL)
T2300PF L2004F31 S TO-202 (N.ISOL)
T2300PM L6004F31 S TO-202 (N.ISOL)
T2301A L2004F321 S TO-202 (N.ISOL)
T2301B L2004F321 S TO-202 (N.ISOL)
T2301D L4004F321 S TO-202 (N.ISOL)
T2301F L2004F321 S TO-202 (N.ISOL)
T2301PA L2004F31 S TO-202 (N.ISOL)
T2301PB L2004F31 S TO-202 (N.ISOL)
T2301PC L4004F31 S TO-202 (N.ISOL)
T2301PD L4004F31 S TO-202 (N.ISOL)
T2301PE L6004F31 S TO-202 (N.ISOL)
T2301PF L2004F31 S TO-202 (N.ISOL)
T2301PM L6004F31 S TO-202 (N.ISOL)
T2302A L2004F621 S TO-202 (N.ISOL)
T2302B L2004F621 S TO-202 (N.ISOL)
T2302D L4004F621 S TO-202 (N.ISOL)
T2302F L2004F621 S TO-202 (N.ISOL)
T2302PA L2004F61 S TO-202 (N.ISOL)
T2302PB L2004F61 S TO-202 (N.ISOL)
T2302PC L4004F61 S TO-202 (N.ISOL)
T2302PD L4004F61 S TO-202 (N.ISOL)
T2302PE L6004F61 S TO-202 (N.ISOL)
T2302PF L2004F61 S TO-202 (N.ISOL)
T2302PM L6004F61 S TO-202 (N.ISOL)
T2303F Q2004F421 S TO-202 (N.ISOL)
T2306A Q2004F421 S TO-202 (N.ISOL)
T2306B Q2004F421 S TO-202 (N.ISOL)
T2306D Q4004F421 S TO-202 (N.ISOL)
T2310A L2004F321 S TO-202 (N.ISOL)
T2310B L2004F321 S TO-202 (N.ISOL)
T2310D L4004F321 S TO-202 (N.ISOL)
T2310F L2004F321 S TO-202 (N.ISOL)
T2311A L2004F321 S TO-202 (N.ISOL)
T2311B L2004F321 S TO-202 (N.ISOL)
T2311D L4004F321 S TO-202 (N.ISOL)
T2311F L2004F321 S TO-202 (N.ISOL)
T2312A L2004F621 S TO-202 (N.ISOL)
T2312B L2004F621 S TO-202 (N.ISOL)
T2312D L4004F621 S TO-202 (N.ISOL)
T2312F L2004F621 S TO-202 (N.ISOL)
T2313A Q2004F421 S TO-202 (N.ISOL)
T2313B Q2004F421 S TO-202 (N.ISOL)
T2313D Q4004F421 S TO-202 (N.ISOL)
T2313F Q2004F421 S TO-202 (N.ISOL)
T2316A Q2004F421 S TO-202 (N.ISOL)
T2316B Q2004F421 S TO-202 (N.ISOL)
T2316D Q4004F421 S TO-202 (N.ISOL)
T2320A L2004F31 D TO-202 (N.ISOL)
T2320B L2004F31 D TO-202 (N.ISOL)
T2320C L4004F31 D TO-202 (N.ISOL)
T2320D L4004F31 D TO-202 (N.ISOL)
T2320E L6004F31 D TO-202 (N.ISOL)
T2320F L2004F31 D TO-202 (N.ISOL)
T2320M L6004F31 D TO-202 (N.ISOL)
T2322A L2004F61 D TO-202 (N.ISOL)
T2322B L2004F61 D TO-202 (N.ISOL)
T2322C L4004F61 D TO-202 (N.ISOL)
T2322D L4004F61 D TO-202 (N.ISOL)
T2322E L6004F61 D TO-202 (N.ISOL)
T2322F L2004F61 D TO-202 (N.ISOL)
T2322M L6004F61 D TO-202 (N.ISOL)
T2323A L2004F81 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
T2323B L2004F81 D TO-202 (N.ISOL)
T2323C L4004F81 D TO-202 (N.ISOL)
T2323D L4004F81 D TO-202 (N.ISOL)
T2323E L6004F81 D TO-202 (N.ISOL)
T2323F L2004F81 D TO-202 (N.ISOL)
T2323M L6004F81 D TO-202 (N.ISOL)
T2327A L2004F51 D TO-202 (N.ISOL)
T2327B L2004F51 D TO-202 (N.ISOL)
T2327C L4004F51 D TO-202 (N.ISOL)
T2327D L4004F51 D TO-202 (N.ISOL)
T2327E L6004F51 D TO-202 (N.ISOL)
T2327F L2004F51 D TO-202 (N.ISOL)
T2327M L6004F51 D TO-202 (N.ISOL)
T2500A Q2006R4 D TO-220 (N.ISOL)
T2500AFP Q2006L4 D TO-220 (ISOL)
T2500B Q2006R4 D TO-220 (N.ISOL)
T2500BFP Q2006L4 D TO-220 (ISOL)
T2500C Q4006R4 D TO-220 (N.ISOL)
T2500CFP Q4006L4 D TO-220 (ISOL)
T2500D Q4006R4 D TO-220 (N.ISOL)
T2500DFP Q4006L4 D TO-220 (ISOL)
T2500E Q6006R4 D TO-220 (N.ISOL)
T2500EFP Q6006L4 D TO-220 (ISOL)
T2500M Q6006R5 D TO-220 (N.ISOL)
T2500MFP Q6006L5 D TO-220 (ISOL)
T2500N Q8006R5 D TO-220 (N.ISOL)
T2500NFP Q8006L5 D TO-220 (ISOL)
T2500S Q8006R5 D TO-220 (N.ISOL)
T2500SFP Q8006L5 D TO-220 (ISOL)
T2506B Q2006R4 D TO-220 (N.ISOL)
T2506D Q4006R4 D TO-220 (N.ISOL)
T2512BH Q2025R5 S TO-220 (N.ISOL)
T2512BK Q6025P5 SFASTPAK (ISOL)
T2512DH Q4025R5 S TO-220 (N.ISOL)
T2512DK Q6025P5 SFASTPAK (ISOL)
T2512MH Q6025R5 S TO-220 (N.ISOL)
T2512MK Q6025P5 S FASTPAK (ISOL)
T2512NH Q8025R5 S TO-220 (N.ISOL)
T2512NK Q8025P5 S FASTPAK (ISOL)
T2513BH Q2025R5 S TO-220 (N.ISOL)
T2513BK Q6025P5 SFASTPAK (ISOL)
T2513DH Q4025R5 S TO-220 (N.ISOL)
T2513DK Q6025P5 SFASTPAK (ISOL)
T2513MH Q6025R5 S TO-220 (N.ISOL)
T2513MK Q6025P5 SFASTPAK (ISOL)
T2513NH Q8025R5 S TO-220 (N.ISOL)
T2513NK Q8025P5 S FASTPAK (ISOL)
T2535-600G Q6025NH6 S TO-263 (SMT)
T2535-800G Q8025NH6 S TO-263 (SMT)
T2700B Q2006R4 S TO-220 (N.ISOL)
T2700D Q4006R4 S TO-220 (N.ISOL)
T2800A Q2008R4 S TO-220 (N.ISOL)
T2800B Q2008R4 S TO-220 (N.ISOL)
T2800C Q4008R4 S TO-220 (N.ISOL)
T2800D Q4008R4 S TO-220 (N.ISOL)
T2800E Q6008R4 S TO-220 (N.ISOL)
T2800M Q6008R5 S TO-220 (N.ISOL)
T2801A Q2006R4 D TO-220 (N.ISOL)
T2801B Q2006R4 D TO-220 (N.ISOL)
T2801C Q4006R4 D TO-220 (N.ISOL)
T2801D Q4006R4 D TO-220 (N.ISOL)
T2801E Q6006R4 D TO-220 (N.ISOL)
T2801M Q6006R5 D TO-220 (N.ISOL)
T2801N Q8006R5 D TO-220 (N.ISOL)
T2801S Q8006R5 D TO-220 (N.ISOL)
T2802A Q2008R4 S TO-220 (N.ISOL)
T2802B Q2008R4 S TO-220 (N.ISOL)
T2802C Q4008R4 S TO-220 (N.ISOL)
T2802D Q4008R4 S TO-220 (N.ISOL)
T2802E Q6008R4 S TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-22 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
T2802M Q6008R5 S TO-220 (N.ISOL)
T2806B Q2008R4 D TO-220 (N.ISOL)
T2806D Q4008R4 D TO-220 (N.ISOL)
T2806M Q6008R5 STO-220 (N.ISOL)
T2850A Q2008L4 D TO-220 (ISOL)
T2850B Q2008L4 D TO-220 (ISOL)
T2850D Q4008L4 D TO-220 (ISOL)
T2850E Q6008L4 D TO-220 (ISOL)
T2850F Q2008L4 D TO-220 (ISOL)
T2856B Q2008L4 D TO-220 (ISOL)
T2856D Q4008L4 D TO-220 (ISOL)
T4012DKS Q6035P5 SFASTPAK (ISOL)
T4012MKS Q6035P5 SFASTPAK (ISOL)
T4012NKS Q8035P5 SFASTPAK (ISOL)
T4012SKS Q8035P5 SFASTPAK (ISOL)
T4013DKS Q6035P5 S FASTPAK (ISOL)
T4013MKS Q6035P5 S FASTPAK (ISOL)
T4013NKS Q8035P5 S FASTPAK (ISOL)
T4013SKS Q8035P5 S FASTPAK (ISOL)
T405-400T L4004L6 S TO-220 (ISOL)
T405-400W L4004L6 D TO-220 (ISOL)
T405-600B L6004D6 STO-252 (SMT)
T405-600H L6004V6 STO-251 (N.ISOL)
T405-600T L6004L6 S TO-220 (ISOL)
T405-600W L6004L6 D TO-220 (ISOL)
T410-400T L4004L8 S TO-220 (ISOL)
T410-400W L4004L8 D TO-220 (ISOL)
T410-600B L6006DH3 S TO-252 (SMT)
T410-600H L6006VH3 S TO-251 (N.ISOL)
T410-600T L6004L8 S TO-220 (ISOL)
T410-600W L6004L8 D TO-220 (ISOL)
T435-400T Q4006RH4 D TO-220 (N.ISOL)
T435-400W Q4006LH4 D TO-220 (ISOL)
T435-600B Q6006DH4 STO-252 (SMT)
T435-600H Q6006VH4 STO-251 (N.ISOL)
T435-600T Q6006RH4 D TO-220 (N.ISOL)
T435-600W Q6006LH4 D TO-220 (ISOL)
T435-700T Q8006RH4 D TO-220 (N.ISOL)
T435-700W Q8006LH4 D TO-220 (ISOL)
T435-800T Q8006RH4 D TO-220 (N.ISOL)
T435-800W Q8006LH4 D TO-220 (ISOL)
T6000B Q2015R5 D TO-220 (N.ISOL)
T6000D Q4015R5 D TO-220 (N.ISOL)
T6000M Q6015R5 D TO-220 (N.ISOL)
T6001B Q2015R5 D TO-220 (N.ISOL)
T6001D Q4015R5 D TO-220 (N.ISOL)
T6001M Q6015R5 D TO-220 (N.ISOL)
T6006B Q2015R5 S TO-220 (N.ISOL)
T6006D Q4015R5 S TO-220 (N.ISOL)
T6006M Q6015R5 S TO-220 (N.ISOL)
T620-400W Q4006LH4 STO-220 (ISOL)
T620-600W Q6006LH4 STO-220 (ISOL)
T620-700W Q8006LH4 STO-220 (ISOL)
T630-400W Q4006LH4 STO-220 (ISOL)
T630-600W Q6006LH4 STO-220 (ISOL)
T630-700W Q8006LH4 S TO-220 (ISOL)
T810-400B Q4008DH3 D TO-252 (SMT)
T810-600B Q6008DH3 D TO-252 (SMT)
T820-400W Q4008LH4 S TO-220 (ISOL)
T820-600W Q6008LH4 S TO-220 (ISOL)
T820-700W Q8008LH4 STO-220 (ISOL)
T830-400W Q4008LH4 STO-220 (ISOL)
T830-600W Q6008LH4 STO-220 (ISOL)
T830-700W Q8008LH4 STO-220 (ISOL)
T835-600B Q6008DH4 DTO-252 (SMT)
T835-600G Q6008NH4 D TO-263 (SMT)
T850-600G Q6010NH5 D TO-263 (SMT)
TIC106D T106D1 S TO-220 (N.ISOL)
TIC106M T106M1 S TO-220 (N.ISOL)
TIC108D T107D1 S TO-220 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
TIC108M T107M1 STO-220 (N.ISOL)
TIC116D S4008R DTO-220 (N.ISOL)
TIC116M S6008R DTO-220 (N.ISOL)
TIC116N S8008R DTO-220 (N.ISOL)
TIC116S S8008R DTO-220 (N.ISOL)
TIC126D S4012R D TO-220 (N.ISOL)
TIC126M S6012R D TO-220 (N.ISOL)
TIC126N S8012R D TO-220 (N.ISOL)
TIC126S S8012R D TO-220 (N.ISOL)
TIC201D L4004F61 S TO-220 (N.ISOL)
TIC201M L6004F61 STO-220 (N.ISOL)
TIC206D L4004F61 STO-220 (N.ISOL)
TIC206M L6004F61 STO-220 (N.ISOL)
TIC216D L4006F61 STO-220 (N.ISOL)
TIC216M L6006F61 STO-220 (N.ISOL)
TIC225D L4008F61 S TO-220 (N.ISOL)
TIC225M L6008F61 S TO-220 (N.ISOL)
TIC226D Q4008R4 D TO-220 (N.ISOL)
TIC226M Q6008R5 D TO-220 (N.ISOL)
TIC226N Q8008R5 D TO-220 (N.ISOL)
TIC226S Q8008R5 DTO-220 (N.ISOL)
TIC236D Q4015R5 DTO-220 (N.ISOL)
TIC236M Q6015R5 DTO-220 (N.ISOL)
TIC236N Q8015R5 DTO-220 (N.ISOL)
TIC236S Q8015R5 DTO-220 (N.ISOL)
TIC246D Q4015R5 S TO-220 (N.ISOL)
TIC246M Q6015R5 S TO-220 (N.ISOL)
TIC246N Q8015R5 S TO-220 (N.ISOL)
TIC246S Q8015R5 S TO-220 (N.ISOL)
TIC256D Q4025R5 S TO-220 (N.ISOL)
TIC256D Q4025R5 STO-220 (N.ISOL)
TIC256M Q6025R5 STO-220 (N.ISOL)
TIC256N Q8025R5 STO-220 (N.ISOL)
TIC256S Q7025R5 STO-220 (N.ISOL)
TICP106D TCR22-4 STO-92
TICP106M TCR22-8 S TO-92
TL1003 S2006F2 S TO-202 (N.ISOL) ?
TL1006 S2006F2 S TO-202 (N.ISOL)
TL106-05 T106B2 D TO-202 (N.ISOL)
TL106-1 T106B2 D TO-202 (N.ISOL)
TL106-2 T106B2 D TO-202 (N.ISOL)
TL106-4 T106D2 D TO-202 (N.ISOL)
TL106-6 T106M2 D TO-202 (N.ISOL)
TL107-05 T107B2 D TO-202 (N.ISOL)
TL107-1 T107B2 D TO-202 (N.ISOL)
TL107-2 T107B2 D TO-202 (N.ISOL)
TL107-4 T107D2 D TO-202 (N.ISOL)
TL107-6 T107M2 D TO-202 (N.ISOL)
TL2003 S2006F2 S TO-202 (N.ISOL)
TL2006 S2006F2 S TO-202 (N.ISOL)
TL4003 S4006F2 STO-202 (N.ISOL)
TL4006 S4006F2 STO-202 (N.ISOL)
TL6003 S6006F2 STO-202 (N.ISOL)
TL6006 S6006F2 STO-202 (N.ISOL)
TLC111A L2004F62 D TO-202 (N.ISOL)
TLC111B Q2004F42 D TO-202 (N.ISOL)
TLC111D L2004F52 D TO-202 (N.ISOL)
TLC111S L2004F62 D TO-202 (N.ISOL)
TLC111T L2004F52 D TO-202 (N.ISOL)
TLC113B Q2004F42 D TO-202 (N.ISOL)
TLC1165 L2004F62 D TO-202 (N.ISOL)
TLC116A L2004F62 D TO-202 (N.ISOL)
TLC116B Q2004F42 D TO-202 (N.ISOL)
TLC116D L2004F52 D TO-202 (N.ISOL)
TLC116T L2004F52 D TO-202 (N.ISOL)
TLC221A L4004F62 D TO-202 (N.ISOL)
TLC221B Q4004F42 D TO-202 (N.ISOL)
TLC221D L4004F52 D TO-202 (N.ISOL)
TLC221S L4004F62 D TO-202 (N.ISOL)
TLC221T L4004F52 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-23 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
TLC223A L4004F62 D TO-202 (N.ISOL)
TLC223B Q4004F42 D TO-202 (N.ISOL)
TLC223D L4004F52 D TO-202 (N.ISOL)
TLC226A L4004F62 D TO-202 (N.ISOL)
TLC226B Q4004F42 D TO-202 (N.ISOL)
TLC226D L4004F52 D TO-202 (N.ISOL)
TLC226S L4004F62 D TO-202 (N.ISOL)
TLC226T L4004F52 D TO-202 (N.ISOL)
TLC331A L6004F62 D TO-202 (N.ISOL)
TLC331B Q6004F42 D TO-202 (N.ISOL)
TLC331D L6004F52 D TO-202 (N.ISOL)
TLC331S L6004F62 D TO-202 (N.ISOL)
TLC331T L6004F52 D TO-202 (N.ISOL)
TLC333A L6004F62 D TO-202 (N.ISOL)
TLC333B Q6004F42 D TO-202 (N.ISOL)
TLC333D L6004F52 D TO-202 (N.ISOL)
TLC336A L6004F62 D TO-202 (N.ISOL)
TLC336B Q6004F42 D TO-202 (N.ISOL)
TLC336D L6004F52 D TO-202 (N.ISOL)
TLC336S L6004F62 D TO-202 (N.ISOL)
TLC336T L6004F52 D TO-202 (N.ISOL)
TLC386B Q7004F42 D TO-202 (N.ISOL)
TLS106-05 T106B2 D TO-202 (N.ISOL)
TLS106-1 T106B2 D TO-202 (N.ISOL)
TLS106-2 T106B2 D TO-202 (N.ISOL)
TLS106-4 T106D2 D TO-202 (N.ISOL)
TLS106-6 T106M2 D TO-202 (N.ISOL)
TLS107-05 T107B2 D TO-202 (N.ISOL)
TLS107-1 T107B2 D TO-202 (N.ISOL)
TLS107-2 T107B2 D TO-202 (N.ISOL)
TLS107-4 T107D2 D TO-202 (N.ISOL)
TLS107-6 T107M2 D TO-202 (N.ISOL)
TN1215-600B S6012D STO-252 (SMT)
TN1215-600H S6012V STO-251 (N.ISOL)
TN1215-800B S8012D STO-252 (SMT)
TN1215-800H S8012V S TO-251 (N.ISOL)
TN1625-1000G SK016N S TO-263 (SMT)
TN1625-600G S6016N S TO-263 (SMT)
TN1625-800G S8016N S TO-263 (SMT)
TN815-600B S6008D D TO-252 (SMT)
TN815-600H S6008V DTO-251 (N.ISOL)
TN815-800B S8008D DTO-252 (SMT)
TN815-800H S8008V DTO-251 (N.ISOL)
TO1013BJ Q2010L5 D TO-220 (ISOL)
TO1013DJ Q4010L5 D TO-220 (ISOL)
TO1013MJ Q6010L5 D TO-220 (ISOL)
TO1013NJ Q8010L5 D TO-220 (ISOL)
TO409BJ L2004L6 D TO-220 (ISOL)
TO409DJ L4004L6 D TO-220 (ISOL)
TO409MJ L6004L6 D TO-220 (ISOL)
TO410BJ L2004L8 D TO-220 (ISOL)
TO410DJ L4004L8 D TO-220 (ISOL)
TO410MJ L6004L8 D TO-220 (ISOL)
TO505BH L2006L5 S TO-220 (ISOL)
TO505DH L4006L5 S TO-220 (ISOL)
TO509BH L2006L6 S TO-220 (ISOL)
TO509DH L2006L6 S TO-220 (ISOL)
TO510BH L2006L8 S TO-220 (ISOL)
TO512BH Q2006R4 D TO-220 (N.ISOL)
TO512DH Q4006R4 D TO-220 (N.ISOL)
TO512MH Q6006R5 STO-220 (N.ISOL)
TO605BH L2006L5 S TO-220 (ISOL)
TO605DH L4006L5 S TO-220 (ISOL)
TO605MH L6006L5 S TO-220 (ISOL)
TO609BH L2006L6 S TO-220 (ISOL)
TO609BJ L2006L6 D TO-220 (ISOL)
TO609DH L4006L6 S TO-220 (ISOL)
TO609DJ L4006L6 D TO-220 (ISOL)
TO609MH L6006L6 S TO-220 (ISOL)
TO609MJ L6006L6 D TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
TO610BH L2006L8 S TO-220 (ISOL)
TO610BJ L2006L8 D TO-220 (ISOL)
TO610DH L4006L8 S TO-220 (ISOL)
TO610DJ L4006L8 D TO-220 (ISOL)
TO610MH L6006L8 S TO-220 (ISOL)
TO610MJ L6006L8 D TO-220 (ISOL)
TO612BJ Q2006L4 S TO-220 (ISOL)
TO612DJ Q4006L4 S TO-220 (ISOL)
TO612MJ Q6006L5 S TO-220 (ISOL)
TO805BH L2008L6 S TO-220 (ISOL)
TO805DH L4008L6 S TO-220 (ISOL)
TO805MH L6008L6 S TO-220 (ISOL)
TO809BH L2008L6 S TO-220 (ISOL)
TO809DH L4008L6 S TO-220 (ISOL)
TO809MH L6008L6 S TO-220 (ISOL)
TO810BH L2008L8 S TO-220 (ISOL)
TO810BJ L2008L8 D TO-220 (ISOL)
TO810DH L4008L8 S TO-220 (ISOL)
TO810DJ L4008L8 D TO-220 (ISOL)
TO810MH L6008L8 S TO-220 (ISOL)
TO810MJ L6008L8 D TO-220 (ISOL)
TO812BH Q2008R4 STO-220 (N.ISOL)
TO812BJ Q2008L4 STO-220 (ISOL)
TO812DH Q4008R4 STO-220 (N.ISOL)
TO812DJ Q4008L4 STO-220 (ISOL)
TO812MH Q6008R5 S TO-220 (N.ISOL)
TO812MJ Q6008L5 S TO-220 (ISOL)
TO812NH Q8008L5 S TO-220 (ISOL)
TO813BJ Q2008L4 S TO-220 (ISOL)
TO813DJ Q4008L4 S TO-220 (ISOL)
TO813MJ Q6008L5 STO-220 (ISOL)
TO813NJ Q8008L5 STO-220 (ISOL)
TPDV125 Q2025L6 S TO-220 (ISOL)
TPDV140 Q2040K7 D TO-218 (ISOL)
TPDV225 Q2025L6 STO-220 (ISOL)
TPDV240 Q2040K7 D TO-218 (ISOL)
TPDV425 Q4025L6 S TO-220 (ISOL)
TPDV-440 Q4040J7 D TO-218 (ISOL)
TPDV625 Q6025L6 S TO-220 (ISOL)
TPDV-640 Q6040K7 D TO-218 (ISOL)
TPDV825 Q8025L6 STO-220 (ISOL)
TPDV-840 Q8040K7 D TO-218 (ISOL)
TS420-400T T106D1 STO-202 (N.ISOL)
TS420-600B S6004DS2 STO-252 (SMT)
TS420-600H S6004VS2 STO-251 (N.ISOL)
TS420-600T T106M1 S TO-202 (N.ISOL)
TS820-400T S4008FS21 S TO-202 (N.ISOL)
TS820-600B S6008DS2 S TO-252 (SMT)
TS820-600H S6008VS2 S TO-251 (N.ISOL)
TS820-600T S6008FS21 S TO-202 (N.ISOL)
TXDV-212 Q2015L6 D TO-220 (ISOL)
TXDV-412 Q4015L6 D TO-220 (ISOL)
TXDV612 Q6015L6 D TO-220 (ISOL)
TXDV812 Q8015L6 D TO-220 (ISOL)
TXN0510 S2010L D TO-220 (ISOL)
TXN0512 S2015L S TO-220 (ISOL)
TXN056 S2006L D TO-220 (ISOL)
TXN058 S2008L D TO-220 (ISOL)
TXN058G S2008L D TO-220 (ISOL)
TXN106 S2006L D TO-220 (ISOL)
TXN108 S2008L STO-220 (ISOL)
TXN108G S2008L D TO-220 (ISOL)
TXN110 S2010L D TO-220 (ISOL)
TXN112 S2015L STO-220 (ISOL)
TXN204 S2006L STO-220 (ISOL)
TXN206 S2006L D TO-220 (ISOL)
TXN208 S2008L D TO-220 (ISOL)
TXN208G S2008L D TO-220 (ISOL)
TXN210 S2010L D TO-220 (ISOL)
TXN212 S2015L S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Cross Reference Guide Appendix
http://www.teccor.com A-24 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
TXN404 S4006L STO-220 (ISOL)
TXN406 S4006L D TO-220 (ISOL)
TXN408 S4008L D TO-220 (ISOL)
TXN408G S4008L D TO-220 (ISOL)
TXN410 S4010L D TO-220 (ISOL)
TXN412 S4015L S TO-220 (ISOL)
TXN604 S6006L S TO-220 (ISOL)
TXN606 S6006L D TO-220 (ISOL)
TXN608 S6008L D TO-220 (ISOL)
TXN608G S6008L D TO-220 (ISOL)
TXN610 S6010L D TO-220 (ISOL)
TXN612 S6015L STO-220 (ISOL)
TXN812 S8015L STO-220 (ISOL)
TYN0510 S2010R D TO-220 (ISOL)
TYN0512 S2012R D TO-220 (ISOL)
TYN0516 S2016R D TO-220 (ISOL)
TYN054 S2006F1 S TO-202 (N.ISOL)
TYN056 S2006F1 S TO-202 (N.ISOL)
TYN058 S2008R D TO-220 (N.ISOL)
TYN058G S2008R S TO-220 (N.ISOL)
TYN058K S2008R STO-220 (N.ISOL)
TYN104 S2006F1 S TO-202 (N.ISOL)
TYN106 S2006F1 S TO-202 (N.ISOL)
TYN108 S2008R D TO-220 (N.ISOL)
TYN108G S2008R S TO-220 (N.ISOL)
TYN110 S2010R D TO-220 (N.ISOL)
TYN112 S2012R D TO-220 (N.ISOL)
TYN116 S2016R D TO-220 (N.ISOL)
TYN204 S2006F1 S TO-202 (N.ISOL)
TYN206 S2006F1 S TO-202 (N.ISOL)
TYN208 S2008R D TO-220 (N.ISOL)
TYN208G S2008R STO-220 (N.ISOL)
TYN208K S2008R STO-220 (N.ISOL)
TYN210 S2010R D TO-220 (N.ISOL)
TYN212 S2012R D TO-220 (N.ISOL)
TYN216 S2016R D TO-220 (N.ISOL)
TYN404 S4006F1 S TO-202 (N.ISOL)
TYN406 S4006F1 S TO-202 (N.ISOL)
TYN408 S4008R D TO-220 (N.ISOL)
TYN408G S4008R S TO-220 (N.ISOL)
TYN408K S4008R STO-220 (N.ISOL)
TYN410 S4010R D TO-220 (N.ISOL)
TYN412 S4012R S TO-220 (N.ISOL)
TYN416 S4016R D TO-220 (N.ISOL)
TYN604 S6006F1 S TO-202 (N.ISOL)
TYN606 S6006F1 S TO-202 (N.ISOL)
TYN608 S6008R D TO-220 (N.ISOL)
TYN608G S6008R S TO-220 (N.ISOL)
TYN608K S6008R S TO-220 (N.ISOL)
TYN610 S6010R D TO-220 (N.ISOL)
TYN612 S6012R D TO-220 (N.ISOL)
TYN616 S6016R D TO-220 (N.ISOL)
TYN682 S2025R D TO-220 (N.ISOL)
TYN683 S2025R D TO-220 (N.ISOL)
TYN685 S2025R D TO-220 (N.ISOL)
TYN688 S4025R D TO-220 (N.ISOL)
TYN690 S6025R D TO-220 (N.ISOL)
TYN808 S8008R D TO-220 (N.ISOL)
TYN808G S8008R S TO-220 (N.ISOL)
TYN808K S8008R S TO-220 (N.ISOL)
TYN810 S8010R STO-220 (N.ISOL)
TYN812 S8012R D TO-220 (N.ISOL)
TYN816 S8016R D TO-220 (N.ISOL)
TYS1006-05 S2010LS2 S TO-220 (ISOL)
TYS1006-1 S2010LS2 S TO-220 (ISOL)
TYS1006-2 S2010LS2 S TO-220 (ISOL)
TYS1006-4 S4010LS2 S TO-220 (ISOL)
TYS1007-05 S2010LS3 S TO-220 (ISOL)
TYS1007-1 S2010LS2 S TO-220 (ISOL)
TYS1007-2 S2010LS2 S TO-220 (ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
TYS1007-4 S4010LS2 S TO-220 (ISOL)
TYS406-05 T106B1 S TO-202 (N.ISOL)
TYS406-1 T106B1 S TO-202 (N.ISOL)
TYS406-2 T106B1 S TO-202 (N.ISOL)
TYS406-4 T106D1 S TO-202 (N.ISOL)
TYS406-6 T106M1 S TO-202 (N.ISOL)
TYS407-05 T107B1 S TO-202 (N.ISOL)
TYS407-1 T107B1 S TO-202 (N.ISOL)
TYS407-2 T107B1 S TO-202 (N.ISOL)
TYS407-4 T107D1 S TO-202 (N.ISOL)
TYS407-6 T107M1 S TO-202 (N.ISOL)
TYS606-05 S2006LS2 DTO-220 (ISOL)
TYS606-1 S2006LS2 DTO-220 (ISOL)
TYS606-2 S2006LS2 DTO-220 (ISOL)
TYS606-4 S4006LS2 DTO-220 (ISOL)
TYS606-6 S6006LS2 S TO-220 (ISOL)
TYS607-05 S2006LS3 D TO-220 (ISOL)
TYS607-1 S2006LS3 D TO-220 (ISOL)
TYS607-2 S2006LS3 D TO-220 (ISOL)
TYS607-4 S4006LS3 D TO-220 (ISOL)
TYS607-6 S6006LS3 S TO-220 (ISOL)
TYS806-05 S2008LS2 D TO-220 (ISOL)
TYS806-1 S2008LS2 D TO-220 (ISOL)
TYS806-2 S2008LS2 D TO-220 (ISOL)
TYS806-4 S4008LS2 D TO-220 (ISOL)
TYS806-6 S6008LS2 S TO-220 (ISOL)
TYS807-05 S2008LS3 D TO-220 (ISOL)
TYS807-1 S2008LS3 D TO-220 (ISOL)
TYS807-2 S2008LS3 D TO-220 (ISOL)
TYS807-4 S4008LS3 D TO-220 (ISOL)
TYS807-6 S6008LS3 S TO-220 (ISOL)
X0101BA EC103B1 STO-92 (ISOL)
X0101DA EC103D1 STO-92 (ISOL)
X0101MA EC103M1 STO-92 (ISOL)
X0102BA EC103B STO-92 (ISOL)
X0102DA EC103D S TO-92 (ISOL)
X0102MA EC103M S TO-92 (ISOL)
X0103BA EC103B S TO-92 (ISOL)
X0103DA EC103D S TO-92 (ISOL)
X0103MA EC103M S TO-92 (ISOL)
X0104BA EC103B2 DTO-92 (ISOL)
X0104DA EC103D2 DTO-92 (ISOL)
X0104MA EC103M2 DTO-92 (ISOL)
X0105BA EC103B2 S TO-92 (ISOL)
X0105DA EC103D2 S TO-92 (ISOL)
X0105MA EC103M2 S TO-92 (ISOL)
X0106BA EC103B S TO-92 (ISOL)
X0106DA EC103D S TO-92 (ISOL)
X0106MA EC103M S TO-92 (ISOL)
X0110BA EC103B1 S TO-92 (ISOL)
X0110DA EC103D1 S TO-92 (ISOL)
X0110MA EC103M1 S TO-92 (ISOL)
X0202BA TCR22-4 DTO-92 (ISOL)
X0202DA TCR22-6 DTO-92 (ISOL)
X0202MA TCR22-8 DTO-92 (ISOL)
X0203BA TCR22-4 S TO-92 (ISOL)
X0203DA TCR22-6 S TO-92 (ISOL)
X0203MA TCR22-8 S TO-92 (ISOL)
X0204BA TCR22-4 S TO-92 (ISOL)
X0204DA TCR22-6 S TO-92 (ISOL)
X0204MA TCR22-8 S TO-92 (ISOL)
X0205BA EC103B2 S TO-92 (ISOL)
X0205DA EC103D2 S TO-92 (ISOL)
X0205MA EC103M2 STO-92 (ISOL)
X0206BA TCR22-4 STO-92 (ISOL)
X0206DA TCR22-6 S TO-92 (ISOL)
X0402BE T106B1 D TO-202 (N.ISOL)
X0402BF T106B2 D TO-202 (N.ISOL)
X0402DE T106D1 D TO-202 (N.ISOL)
X0402DF T106D2 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Appendix Cross Reference Guide
©2002 Teccor Electronics A-25 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
X0402DG T106D1 S TO-202 (N.ISOL)
X0402ME T106M1 D TO-202 (N.ISOL)
X0402MF T106M2 D TO-202 (N.ISOL)
X0403BE T106B1 S TO-202 (N.ISOL)
X0403BF T106B2 S TO-202 (N.ISOL)
X0403DE T106D1 S TO-202 (N.ISOL)
X0403DF T106D2 S TO-202 (N.ISOL)
X0403ME T106M1 S TO-202 (N.ISOL)
X0403MF T106M2 S TO-202 (N.ISOL)
X0405BE T106B1 S TO-202 (N.ISOL)
X0405BF T106B2 S TO-202 (N.ISOL)
X0405DE T106D1 S TO-202 (N.ISOL)
X0405DF T106D2 S TO-202 (N.ISOL)
X0405ME T106M1 S TO-202 (N.ISOL)
X0405MF T106M2 S TO-202 (N.ISOL)
Z00607DA L4X8E5 S TO-92 (ISOL)
Z00607MA L6X8E5 S TO-92 (ISOL)
Z0102BA L201E3 D TO-92 (ISOL)
Z0102DA L401E3 D TO-92 (ISOL)
Z0102MA L601E3 D TO-92 (ISOL)
Z0103DN L4N3 SSOT223/COMPAK
Z0103MN L6N3 SSOT223/COMPAK
Z0105BA L201E5 DTO-92 (ISOL)
Z0105DA L401E5 DTO-92 (ISOL)
Z0105MA L601E5 D TO-92 (ISOL)
Z0107DN L4N5 S SOT223/COMPAK
Z0107MN L6N5 S SOT223/COMPAK
Z0109BA L201E6 D TO-92 (ISOL)
Z0109DA L401E6 D TO-92 (ISOL)
Z0109MA L601E6 D TO-92 (ISOL)
Z0110DA L401E8 D TO-92 (ISOL)
Z0110MA L601E8 D TO-92 (ISOL)
Z0302BG L2004F321 STO-202 (N.ISOL)
Z0302DG L4004F321 STO-202 (N.ISOL)
Z0302MG L6004L3 STO-220 (ISOL)
Z0305BG L2004F521 S TO-202 (N.ISOL)
Z0305DG L4004F521 S TO-202 (N.ISOL)
Z0309BG L2004F621 S TO-202 (N.ISOL)
Z0309DG L4004F621 S TO-202 (N.ISOL)
Z0310BG L2004F821 S TO-202 (N.ISOL)
Z0310DG L4004F821 S TO-202 (N.ISOL)
Z0310MG L6004L8 S TO-220 (ISOL)
Z0405BE L2004F51 DTO-202 (N.ISOL)
Z0405BF L2004F52 DTO-202 (N.ISOL)
Z0405DE L4004F51 DTO-202 (N.ISOL)
Z0405DF L4004F52 D TO-202 (N.ISOL)
Z0405ME L6004F51 D TO-202 (N.ISOL)
Z0405MF L6004F52 D TO-202 (N.ISOL)
Z0409BE L2004F61 D TO-202 (N.ISOL)
Z0409BF L2004F62 D TO-202 (N.ISOL)
Z0409DE L4004F61 D TO-202 (N.ISOL)
Z0409DF L4004F62 D TO-202 (N.ISOL)
Z0409ME L6004F61 D TO-202 (N.ISOL)
Z0409MF L6004F62 D TO-202 (N.ISOL)
Z0410BE L2004F81 D TO-202 (N.ISOL)
Z0410BE L2004F81 D TO-202 (N.ISOL)
Z0410BF L2004F82 D TO-202 (N.ISOL)
Z0410BF L2004F82 D TO-202 (N.ISOL)
Z0410DE L4004F81 D TO-202 (N.ISOL)
Z0410DE L4004F81 D TO-202 (N.ISOL)
Z0410DF L4004F82 D TO-202 (N.ISOL)
Z0410ME L6004F81 D TO-202 (N.ISOL)
Z0410MF L6004F82 D TO-202 (N.ISOL)
Part Number Teccor Device
Direct or
Suggested
Replacement Teccor Package
Notes
©2002 Teccor Electronics A-27 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
Part Number Index
Part Number Index
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
http://www.teccor.com A-28 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
2N5064 E5-2
2N6565 E5-2
D2015L E7-2
D2020L E7-2
D2025L E7-2
D4015L E7-2
D4020L E7-2
D4025L E7-2
D6015L E7-2
D6020L E7-2
D6025L E7-2
D8015L E7-2
D8020L E7-2
D8025L E7-2
DK015L E7-2
DK020L E7-2
DK025L E7-2
EC103B E5-2
EC103B1 E5-2
EC103B2 E5-2
EC103B3 E5-2
EC103D E5-2
EC103D1 E5-2
EC103D2 E5-2
EC103D3 E5-2
EC103M E5-2
EC103M1 E5-2
EC103M2 E5-2
EC103M3 E5-2
HT-32 E8-2
HT-32A E8-2
HT-32B E8-2
HT-34B E8-2
HT-35 E8-2
HT-36A E8-2
HT-36B E8-2
HT-40 E8-2
HT-5761 E8-2
HT-5761A E8-2
HT-5762 E8-2
K0900E70 E9-2
K0900G E9-2
K0900S E9-2
K1050E70 E9-2
K1050G E9-2
K1050S E9-2
K1100E70 E9-2
K1100G E9-2
K1100S E9-2
K1200E70 E9-2
K1200G E9-2
K1200S E9-2
K1300E70 E9-2
K1300G E9-2
K1300S E9-2
K1400E70 E9-2
K1400G E9-2
K1400S E9-2
K1500E70 E9-2
K1500G E9-2
K1500S E9-2
K2000E70 E9-2
K2000F1 E9-2
K2000G E9-2
K2000S E9-2
K2200E70 E9-2
K2200F1 E9-2
K2200G E9-2
K2200S E9-2
K2400E70 E9-2
K2400F1 E9-2
K2400G E9-2
K2400S E9-2
K2500E70 E9-2
K2500F1 E9-2
K2500G E9-2
K2500S E9-2
K3000F1 E9-2
L2004D3 E1-2
L2004D5 E1-2
L2004D6 E1-2
L2004D8 E1-2
L2004F31 E1-2
L2004F51 E1-2
L2004F61 E1-2
L2004F81 E1-2
L2004L3 E1-2
L2004L5 E1-2
L2004L6 E1-2
L2004L8 E1-2
L2004V3 E1-2
L2004V5 E1-2
L2004V6 E1-2
L2004V8 E1-2
L2006D5 E1-4
L2006D6 E1-4
L2006D8 E1-4
L2006L5 E1-4
L2006L6 E1-4
L2006L8 E1-4
L2006V5 E1-4
L2006V6 E1-4
L2006V8 E1-4
L2008D6 E1-4
L2008D8 E1-4
L2008L6 E1-4
L2008L8 E1-4
L2008V6 E1-4
L2008V8 E1-4
L201E3 E1-2
L201E5 E1-2
L201E6 E1-2
L201E8 E1-2
L2N3 E1-2
L2N5 E1-2
L2X3 E1-2
L2X5 E1-2
L2X8E3 E1-2
L2X8E5 E1-2
L2X8E6 E1-2
L2X8E8 E1-2
L4004D3 E1-2
L4004D5 E1-2
L4004D6 E1-2
L4004D8 E1-2
L4004F31 E1-2
L4004F51 E1-2
L4004F61 E1-2
L4004F81 E1-2
L4004L3 E1-2
L4004L5 E1-2
L4004L6 E1-2
L4004L8 E1-2
L4004V3 E1-2
L4004V5 E1-2
L4004V6 E1-2
L4004V8 E1-2
L4006D5 E1-4
L4006D6 E1-4
L4006D8 E1-4
L4006L5 E1-4
L4006L6 E1-4
L4006L8 E1-4
L4006V5 E1-4
L4006V6 E1-4
L4006V8 E1-4
L4008D6 E1-4
L4008D8 E1-4
L4008L6 E1-4
L4008L8 E1-4
L4008V6 E1-4
L4008V8 E1-4
L401E3 E1-2
L401E5 E1-2
L401E6 E1-2
L401E8 E1-2
L4N3 E1-2
L4N5 E1-2
L4X3 E1-2
L4X5 E1-2
L4X8E3 E1-2
L4X8E5 E1-2
L4X8E6 E1-2
L4X8E8 E1-2
L6004D3 E1-2
L6004D5 E1-2
L6004D6 E1-2
L6004D8 E1-2
L6004F31 E1-2
L6004F51 E1-2
L6004F61 E1-2
L6004F81 E1-2
L6004L3 E1-2
L6004L5 E1-2
L6004L6 E1-2
L6004L8 E1-2
L6004V3 E1-2
L6004V5 E1-2
L6004V6 E1-2
L6004V8 E1-2
L6006D5 E1-4
L6006D6 E1-4
L6006D8 E1-4
L6006L5 E1-4
L6006L6 E1-4
L6006L8 E1-4
L6006V5 E1-4
L6006V6 E1-4
L6006V8 E1-4
L6008D6 E1-4
L6008D8 E1-4
L6008L6 E1-4
L6008L8 E1-4
L6008V6 E1-4
L6008V8 E1-4
L601E3 E1-2
L601E5 E1-2
L601E6 E1-2
L601E8 E1-2
L6N3 E1-2
L6N5 E1-2
L6X3 E1-2
L6X5 E1-2
L6X8E3 E1-2
L6X8E5 E1-2
L6X8E6 E1-2
L6X8E8 E1-2
Q2004D3 E2-2
Q2004D4 E2-2
Q2004F31 E2-2
Q2004F41 E2-2
Q2004L3 E2-2
Q2004L4 E2-2
Q2004LT E3-2
Q2004V3 E2-2
Q2004V4 E2-2
Q2006DH3 E4-2
Q2006DH4 E4-2
Q2006F41 E2-2
Q2006L4 E2-2
Q2006LH4 E4-2
Q2006LT E3-2
Q2006N4 E2-2
Q2006NH4 E4-2
Q2006R4 E2-2
Q2006RH4 E4-2
Q2006VH3 E4-2
Q2006VH4 E4-2
Q2008DH3 E4-2
Q2008DH4 E4-2
Part Number Index
©2002 Teccor Electronics A-29 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
Q2008F41 E2-2
Q2008L4 E2-2
Q2008LH4 E4-2
Q2008LT E3-2
Q2008N4 E2-2
Q2008NH4 E4-2
Q2008R4 E2-2
Q2008RH4 E4-2
Q2008VH3 E4-2
Q2008VH4 E4-2
Q2010F51 E2-4
Q2010L4 E2-4
Q2010L5 E2-4
Q2010LH5 E4-2
Q2010LT E3-2
Q2010N4 E2-4
Q2010N5 E2-4
Q2010NH5 E4-2
Q2010R4 E2-4
Q2010R5 E2-4
Q2010RH5 E4-2
Q2012LH5 E4-2
Q2012NH5 E4-2
Q2012RH5 E4-2
Q2015L5 E2-4
Q2015LT E3-2
Q2015N5 E2-4
Q2015R5 E2-4
Q2016LH3 E4-4
Q2016LH4 E4-4
Q2016LH6 E4-4
Q2016RH3 E4-4
Q2016RH4 E4-4
Q2016RH6 E4-4
Q201E3 E2-2
Q201E4 E2-2
Q2025J6 E4-4
Q2025K6 E4-4
Q2025L6 E4-4
Q2025N5 E2-4
Q2025R5 E2-4
Q2025R6 E4-4
Q2030LH5 E4-4
Q2035NH5 E4-4
Q2035RH5 E4-4
Q2040J7 E4-4
Q2040K7 E4-4
Q2N3 E2-2
Q2N4 E2-2
Q2X3 E2-2
Q2X4 E2-2
Q2X8E3 E2-2
Q2X8E4 E2-2
Q4004D3 E2-2
Q4004D4 E2-2
Q4004F31 E2-2
Q4004F41 E2-2
Q4004L3 E2-2
Q4004L4 E2-2
Q4004LT E3-2
Q4004V3 E2-2
Q4004V4 E2-2
Q4006DH3 E4-2
Q4006DH4 E4-2
Q4006F41 E2-2
Q4006L4 E2-2
Q4006LH4 E4-2
Q4006LT E3-2
Q4006LTH E3-2
Q4006N4 E2-2
Q4006NH4 E4-2
Q4006R4 E2-2
Q4006RH4 E4-2
Q4006VH3 E4-2
Q4006VH4 E4-2
Q4008DH3 E4-2
Q4008DH4 E4-2
Q4008F41 E2-2
Q4008L4 E2-2
Q4008LH4 E4-2
Q4008LT E3-2
Q4008LTH E3-2
Q4008N4 E2-2
Q4008NH4 E4-2
Q4008R4 E2-2
Q4008RH4 E4-2
Q4008VH3 E4-2
Q4008VH4 E4-2
Q4010F51 E2-4
Q4010L4 E2-4
Q4010L5 E2-4
Q4010LH5 E4-2
Q4010LT E3-2
Q4010LTH E3-2
Q4010N4 E2-4
Q4010N5 E2-4
Q4010NH5 E4-2
Q4010R4 E2-4
Q4010R5 E2-4
Q4010RH5 E4-2
Q4012LH5 E4-2
Q4012NH5 E4-2
Q4012RH5 E4-2
Q4015L5 E2-4
Q4015LT E3-2
Q4015LTH E3-2
Q4015N5 E2-4
Q4015R5 E2-4
Q4016LH3 E4-4
Q4016LH4 E4-4
Q4016LH6 E4-4
Q4016RH3 E4-4
Q4016RH4 E4-4
Q4016RH6 E4-4
Q401E3 E2-2
Q401E4 E2-2
Q4025J6 E4-4
Q4025K6 E4-4
Q4025L6 E4-4
Q4025N5 E2-4
Q4025R5 E2-4
Q4025R6 E4-4
Q4030LH5 E4-4
Q4035NH5 E4-4
Q4035RH5 E4-4
Q4040J7 E4-4
Q4040K7 E4-4
Q4N3 E2-2
Q4N4 E2-2
Q4X3 E2-2
Q4X4 E2-2
Q4X8E3 E2-2
Q4X8E4 E2-2
Q6004D3 E2-2
Q6004D4 E2-2
Q6004F31 E2-2
Q6004F41 E2-2
Q6004L3 E2-2
Q6004L4 E2-2
Q6004LT E3-2
Q6004V3 E2-2
Q6004V4 E2-2
Q6006DH3 E4-2
Q6006DH4 E4-2
Q6006F51 E2-2
Q6006L5 E2-2
Q6006LH4 E4-2
Q6006LT E3-2
Q6006LTH E3-2
Q6006N5 E2-2
Q6006NH4 E4-2
Q6006R5 E2-2
Q6006RH4 E4-2
Q6006VH3 E4-2
Q6006VH4 E4-2
Q6008DH3 E4-2
Q6008DH4 E4-2
Q6008F51 E2-2
Q6008L5 E2-2
Q6008LH4 E4-2
Q6008LT E3-2
Q6008LTH E3-2
Q6008N5 E2-2
Q6008NH4 E4-2
Q6008R5 E2-2
Q6008RH4 E4-2
Q6008VH3 E4-2
Q6008VH4 E4-2
Q6010F51 E2-4
Q6010L4 E2-4
Q6010L5 E2-4
Q6010LH5 E4-2
Q6010LT E3-2
Q6010LTH E3-2
Q6010N4 E2-4
Q6010N5 E2-4
Q6010NH5 E4-2
Q6010R4 E2-4
Q6010R5 E2-4
Q6010RH5 E4-2
Q6012LH5 E4-2
Q6012NH5 E4-2
Q6012RH5 E4-2
Q6015L5 E2-4
Q6015LT E3-2
Q6015LTH E3-2
Q6015N5 E2-4
Q6015R5 E2-4
Q6016LH3 E4-4
Q6016LH4 E4-4
Q6016LH6 E4-4
Q6016RH3 E4-4
Q6016RH4 E4-4
Q6016RH6 E4-4
Q601E3 E2-2
Q601E4 E2-2
Q6025J6 E4-4
Q6025K6 E4-4
Q6025L6 E4-4
Q6025N5 E2-4
Q6025P5 E2-4
Q6025R5 E2-4
Q6025R6 E4-4
Q6030LH5 E4-4
Q6035NH5 E4-4
Q6035P5 E2-4
Q6035RH5 E4-4
Q6040J7 E4-4
Q6040K7 E4-4
Q6N3 E2-2
Q6N4 E2-2
Q6X3 E2-2
Q6X4 E2-2
Q6X8E3 E2-2
Q6X8E4 E2-2
Q8004D4 E2-2
Q8004L4 E2-2
Q8004V4 E2-2
Q8006DH3 E4-2
Q8006DH4 E4-2
Q8006L5 E2-2
Q8006LH4 E4-2
Q8006N5 E2-2
Q8006NH4 E4-2
Q8006R5 E2-2
Q8006RH4 E4-2
Q8006VH3 E4-2
Q8006VH4 E4-2
Q8008DH3 E4-2
Q8008DH4 E4-2
Part Number Index
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
http://www.teccor.com A-30 ©2002 Teccor Electronics
+1 972-580-7777 Thyristor Product Catalog
Q8008L5 E2-2
Q8008LH4 E4-2
Q8008N5 E2-2
Q8008NH4 E4-2
Q8008R5 E2-2
Q8008RH4 E4-2
Q8008VH3 E4-2
Q8008VH4 E4-2
Q8010L4 E2-4
Q8010L5 E2-4
Q8010LH5 E4-2
Q8010N4 E2-4
Q8010N5 E2-4
Q8010NH5 E4-2
Q8010R4 E2-4
Q8010R5 E2-4
Q8010RH5 E4-2
Q8012LH5 E4-2
Q8012NH5 E4-2
Q8012RH5 E4-2
Q8015L5 E2-4
Q8015N5 E2-4
Q8015R5 E2-4
Q8016LH3 E4-4
Q8016LH4 E4-4
Q8016LH6 E4-4
Q8016RH3 E4-4
Q8016RH4 E4-4
Q8016RH6 E4-4
Q8025J6 E4-4
Q8025K6 E4-4
Q8025L6 E4-4
Q8025N5 E2-4
Q8025P5 E2-4
Q8025R5 E2-4
Q8025R6 E4-4
Q8035P5 E2-4
Q8040J7 E4-4
Q8040K7 E4-4
QK004D4 E2-2
QK004L4 E2-2
QK004V4 E2-2
QK006DH3 E4-2
QK006DH4 E4-2
QK006L5 E2-2
QK006LH4 E4-2
QK006N5 E2-2
QK006NH4 E4-2
QK006R5 E2-2
QK006RH4 E4-2
QK006VH3 E4-2
QK006VH4 E4-2
QK008DH3 E4-2
QK008DH4 E4-2
QK008L5 E2-2
QK008LH4 E4-2
QK008N5 E2-2
QK008NH4 E4-2
QK008R5 E2-2
QK008RH4 E4-2
QK008VH3 E4-2
QK008VH4 E4-2
QK010L4 E2-4
QK010L5 E2-4
QK010LH5 E4-2
QK010N4 E2-4
QK010N5 E2-4
QK010NH5 E4-2
QK010R4 E2-4
QK010R5 E2-4
QK010RH5 E4-2
QK012LH5 E4-2
QK012NH5 E4-2
QK012RH5 E4-2
QK015L5 E2-4
QK015N5 E2-4
QK015R5 E2-4
QK016LH3 E4-4
QK016LH4 E4-4
QK016LH6 E4-4
QK016NH3 E4-4
QK016NH4 E4-4
QK016NH6 E4-4
QK016RH3 E4-4
QK016RH4 E4-4
QK016RH6 E4-4
QK025K6 E4-4
QK025L6 E4-4
QK025N5 E2-4
QK025N6 E4-4
QK025R5 E2-4
QK025R6 E4-4
QK040K7 E4-4
S2004DS1 E5-2
S2004DS2 E5-2
S2004VS1 E5-2
S2004VS2 E5-2
S2006D E6-2
S2006DS2 E5-4
S2006DS3 E5-4
S2006F1 E6-2
S2006FS21 E5-4
S2006FS31 E5-4
S2006L E6-2
S2006LS2 E5-4
S2006LS3 E5-4
S2006V E6-2
S2006VS2 E5-4
S2006VS3 E5-4
S2008D E6-2
S2008DS2 E5-4
S2008DS3 E5-4
S2008F1 E6-2
S2008FS21 E5-4
S2008FS31 E5-4
S2008L E6-2
S2008LS2 E5-4
S2008LS3 E5-4
S2008R E6-2
S2008V E6-2
S2008VS2 E5-4
S2008VS3 E5-4
S2010D E6-2
S2010DS2 E5-4
S2010DS3 E5-4
S2010F1 E6-2
S2010FS21 E5-4
S2010FS31 E5-4
S2010L E6-2
S2010LS2 E5-4
S2010LS3 E5-4
S2010R E6-2
S2010V E6-2
S2010VS2 E5-4
S2010VS3 E5-4
S2012D E6-2
S2012R E6-2
S2012V E6-2
S2015L E6-4
S2016N E6-4
S2016R E6-4
S201E E6-2
S2020L E6-4
S2025L E6-4
S2025N E6-4
S2025R E6-4
S2035J E6-4
S2035K E6-4
S2040N E6-4
S2040R E6-4
S2055M E6-4
S2055N E6-4
S2055R E6-4
S2055W E6-4
S2065J E6-4
S2065K E6-4
S2070W E6-4
S2N1 E6-2
S2S E5-2
S2S1 E5-2
S2S2 E5-2
S2S3 E5-2
S4004DS1 E5-2
S4004DS2 E5-2
S4004VS1 E5-2
S4004VS2 E5-2
S4006D E6-2
S4006DS2 E5-4
S4006DS3 E5-4
S4006F1 E6-2
S4006FS21 E5-4
S4006FS31 E5-4
S4006L E6-2
S4006LS2 E5-4
S4006LS3 E5-4
S4006V E6-2
S4006VS2 E5-4
S4006VS3 E5-4
S4008D E6-2
S4008DS2 E5-4
S4008DS3 E5-4
S4008F1 E6-2
S4008FS21 E5-4
S4008FS31 E5-4
S4008L E6-2
S4008LS2 E5-4
S4008LS3 E5-4
S4008R E6-2
S4008V E6-2
S4008VS2 E5-4
S4008VS3 E5-4
S4010D E6-2
S4010DS2 E5-4
S4010DS3 E5-4
S4010F1 E6-2
S4010FS21 E5-4
S4010FS31 E5-4
S4010L E6-2
S4010LS2 E5-4
S4010LS3 E5-4
S4010R E6-2
S4010V E6-2
S4010VS2 E5-4
S4010VS3 E5-4
S4012D E6-2
S4012R E6-2
S4012V E6-2
S4015L E6-4
S4016N E6-4
S4016R E6-4
S401E E6-2
S4020L E6-4
S4025L E6-4
S4025N E6-4
S4025R E6-4
S4035J E6-4
S4035K E6-4
S4040N E6-4
S4040R E6-4
S4055M E6-4
S4055N E6-4
S4055R E6-4
S4055W E6-4
S4065J E6-4
S4065K E6-4
S4070W E6-4
S4N1 E6-2
S4S E5-2
S4S1 E5-2
S4S2 E5-2
Part Number Index
©2002 Teccor Electronics A-31 http://www.teccor.com
Thyristor Product Catalog +1 972-580-7777
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
TECCOR PAGE
PART NO. NO.
S4S3 E5-2
S6004DS1 E5-2
S6004DS2 E5-2
S6004VS1 E5-2
S6004VS2 E5-2
S6006D E6-2
S6006DS2 E5-4
S6006DS3 E5-4
S6006F1 E6-2
S6006FS21 E5-4
S6006FS31 E5-4
S6006L E6-2
S6006LS2 E5-4
S6006LS3 E5-4
S6006V E6-2
S6006VS2 E5-4
S6006VS3 E5-4
S6008D E6-2
S6008DS2 E5-4
S6008DS3 E5-4
S6008F1 E6-2
S6008FS21 E5-4
S6008FS31 E5-4
S6008L E6-2
S6008LS2 E5-4
S6008LS3 E5-4
S6008R E6-2
S6008V E6-2
S6008VS2 E5-4
S6008VS3 E5-4
S6010D E6-2
S6010DS2 E5-4
S6010DS3 E5-4
S6010F1 E6-2
S6010FS21 E5-4
S6010FS31 E5-4
S6010L E6-2
S6010LS2 E5-4
S6010LS3 E5-4
S6010R E6-2
S6010V E6-2
S6010VS2 E5-4
S6010VS3 E5-4
S6012D E6-2
S6012R E6-2
S6012V E6-2
S6015L E6-4
S6016N E6-4
S6016R E6-4
S601E E6-2
S6020L E6-4
S6025L E6-4
S6025N E6-4
S6025R E6-4
S6035J E6-4
S6035K E6-4
S6040N E6-4
S6040R E6-4
S6055M E6-4
S6055N E6-4
S6055R E6-4
S6055W E6-4
S6065J E6-4
S6065K E6-4
S6070W E6-4
S6N1 E6-2
S6S E5-2
S6S1 E5-2
S6S2 E5-2
S6S3 E5-2
S8006D E6-2
S8006L E6-2
S8006V E6-2
S8008D E6-2
S8008L E6-2
S8008R E6-2
S8008V E6-2
S8010D E6-2
S8010L E6-2
S8010R E6-2
S8010V E6-2
S8012D E6-2
S8012R E6-2
S8012V E6-2
S8015L E6-4
S8016N E6-4
S8016R E6-4
S8020L E6-4
S8025L E6-4
S8025N E6-4
S8025R E6-4
S8035J E6-4
S8035K E6-4
S8040N E6-4
S8040R E6-4
S8055M E6-4
S8055N E6-4
S8055R E6-4
S8055W E6-4
S8065J E6-4
S8065K E6-4
S8070W E6-4
SK006D E6-2
SK006L E6-2
SK006V E6-2
SK008D E6-2
SK008L E6-2
SK008R E6-2
SK008V E6-2
SK010D E6-2
SK010L E6-2
SK010R E6-2
SK010V E6-2
SK012D E6-2
SK012R E6-2
SK012V E6-2
SK015L E6-4
SK016N E6-4
SK016R E6-4
SK020L E6-4
SK025L E6-4
SK025N E6-4
SK025R E6-4
SK035K E6-4
SK040N E6-4
SK040R E6-4
SK055M E6-4
SK055N E6-4
SK055R E6-4
SK065K E6-4
ST-32 E8-2
ST-32B E8-2
ST-34B E8-2
ST-35 E8-2
ST-36A E8-2
ST-36B E8-2
ST-40 E8-2
T106B1 E5-2
T106D1 E5-2
T106M1 E5-2
T107B1 E5-2
T107D1 E5-2
T107M1 E5-2
TCR22-4 E5-2
TCR22-6 E5-2
TCR22-8 E5-2