INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGB4061DPbF
1www.irf.com
09/06/07
E
G
n-channel
C
VCES = 600V
IC = 18A, TC = 100°C
tSC 5μs, TJ(max) = 175°C
VCE(on) typ. = 1.65V
Features
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
•5 μS short circuit SOA
Square RBSOA
100% of the parts tested for 4X rated current (ILM)
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
Benefits
High Efficiency in a wide range of applications
Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
Rugged transient Performance for increased reliability
Excellent Current sharing in parallel operation
Low EMI
GC E
Gate Collector Emitter
TO-220AB
GCE
C
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 36
IC @ TC = 100°C Continuous Collector Current 18
ICM Pulse Collector Current 72
ILM Clamped Inductive Load Current
c
72 A
IF @ TC = 25°C Diode Continous Forward Current 36
IF @ TC = 100°C Diode Continous Forward Current 18
IFM Diode Maximum Forward Current
e
72
VGE Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
PD @ TC = 25°C Maximum Power Dissipation 206 W
PD @ TC = 100°C Maximum Power Dissipation 103
TJOperating Junction and -55 to +175
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– ––– 0.73 °C/W
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 2.00
RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 –––
RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 –––
PD - 97189B
IRGB4061DPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 100μH, RG = 22Ω.
This is only applied to TO-220AB package.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 100μA
f
CT6
ΔV(BR)CES/ΔTJTemperature Coeff. of Breakdown Voltage —0.40—V/°C
VGE = 0V, IC = 1mA (25°C-175°C) CT6
—1.651.95 IC = 18A, VGE = 15V, TJ = 25°C 5,6,7
VCE(on) Collector-to-Emitter Saturation Voltage 2.05 V IC = 18A, VGE = 15V, TJ = 150°C 9,10,11
—2.15— IC = 18A, VGE = 15V, TJ = 175°C
VGE(th) Gate Threshold Voltage 4.0 6.5 V VCE = VGE, IC = 500μA9, 10,
ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient -18 mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 11, 12
gfe Forward Transconductance 12 S VCE = 50V, IC = 18A, PW = 80μs
ICES Collector-to-Emitter Leakage Current 2.0 25 μAVGE = 0V, VCE = 600V
550 VGE = 0V, VCE = 600V, TJ = 175°C
VFM Diode Forward Voltage Drop 2.30 3.30 V IF = 18A 8
—1.6— IF = 18A, TJ = 175°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
QgTotal Gate Charge (turn-on) 35 55 IC = 18A 24
Qge Gate-to-Emitter Charge (turn-on) 10 15 nC VGE = 15V CT1
Qgc Gate-to-Collector Charge (turn-on) 15 25 VCC = 400V
Eon Turn-On Switching Loss 95 140 IC = 18A, VCC = 400V, VGE = 15V CT4
Eoff Turn-Off Switching Loss 350 405 μJRG = 22Ω, L = 200μH, LS = 150nH
Etotal Total Switching Loss 445 545 Energy losses include tail & diode reverse recovery
td(on) Turn-On delay time 40 55 IC = 18A, VCC = 400V, VGE = 15V CT4
trRise time 25 35 ns RG = 22Ω, L = 200μH, LS = 150nH
td(off) Turn-Off delay time 105 120
tfFall time 25 35
Eon Turn-On Switching Loss 285 IC = 18A, VCC = 400V, VGE=15V 13, 15
Eoff Turn-Off Switching Loss 570 μJRG=22Ω, L=200μH, LS=150nH, TJ = 175°C
f
CT4
Etotal Total Switching Loss 855 Energy losses include tail & diode reverse recovery WF1, WF2
td(on) Turn-On delay time 40 IC = 18A, VCC = 400V, VGE = 15V 14, 16
trRise time 25 ns RG = 22Ω, L = 200μH, LS = 150nH CT4
td(off) Turn-Off delay time 120 TJ = 175°C WF1
tfFall time 40 WF2
Cies Input Capacitance 1043 pF VGE = 0V 23
Coes Output Capacitance 87 VCC = 30V
Cres Reverse Transfer Capacitance 32 f = 1.0Mhz
TJ = 175°C, IC = 72A 4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
Rg = 22Ω, VGE = +15V to 0V
SCSOA Short Circuit Safe Operating Area 5 μsVCC = 400V, Vp =600V 22, CT3
Rg = 22Ω, VGE = +15V to 0V WF4
Erec Reverse Recovery Energy of the Diode 260 μJTJ = 175°C 17, 18, 19
trr Diode Reverse Recovery Time 100 ns VCC = 400V, IF = 18A 20, 21
Irr Peak Reverse Recovery Current 23 A VGE = 15V, Rg = 22Ω, L =200μH, Ls = 150nH WF3
Conditions
IRGB4061DPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
020 40 60 80 100 120 140 160 180
TC (°C)
0
5
10
15
20
25
30
35
40
IC (A)
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
50
100
150
200
250
Ptot (W)
10 100 1000
VCE (V)
1
10
100
IC (A)
012345678
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
012345678
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
IC (A)
1msec
10μsec
100μsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
IRGB4061DPbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
012345678
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 9.0A
ICE = 18A
ICE = 36A
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 9.0A
ICE = 18A
ICE = 36A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 9.0A
ICE = 18A
ICE = 36A
0 5 10 15 20
VGE (V)
0
20
40
60
80
100
120
140
160
180
ICE (A)
TJ = 25°C
TJ = 175°C
0.0 1.0 2.0 3.0 4.0 5.0
VF (V)
0
20
40
60
80
100
IF (A)
-40°c
25°C
175°C
IRGB4061DPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 22Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 22Ω; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 18A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 18A; VGE = 15V
5 10152025303540
IC (A)
0
200
400
600
800
1000
1200
1400
Energy (μJ)
EOFF
EON
510 15 20 25 30 35 40 45
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 25 50 75 100 125
Rg (Ω)
0
100
200
300
400
500
600
700
800
900
Energy (μJ)
EOFF
EON
025 50 75 100 125
RG (Ω)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
010 20 30 40
IF (A)
0
5
10
15
20
25
30
35
IRR (A)
RG = 10Ω
RG = 22Ω
RG = 47Ω
RG = 100Ω
025 50 75 100 125
RG (Ω)
0
5
10
15
20
25
30
35
40
IRR (A)
IRGB4061DPbF
6www.irf.com
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 18A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
0500 1000 1500
diF /dt (A/μs)
0
5
10
15
20
25
30
35
40
IRR (A)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 18A; L = 600μH
0 500 1000 1500
diF /dt (A/μs)
400
600
800
1000
1200
1400
1600
QRR (μC)
10Ω
22Ω
100Ω
47Ω
18A
36A
9.0A
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
010 20 30 40
IF (A)
0
50
100
150
200
250
300
350
400
Energy (μJ)
RG = 10Ω
RG = 22Ω
RG = 47Ω
RG = 100Ω
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
8 1012141618
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
Time (μs)
20
30
40
50
60
70
80
90
100
110
120
Current (A)
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 5 10 15 20 25 30 35
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 300V
VCES
= 400V
IRGB4061DPbF
www.irf.com 7
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.244 0.000084
1.102 0.001770
0.655 0.013544
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci τi/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.3193 0.000273
0.4104 0.004525
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGB4061DPbF
8www.irf.com
1K
VC C
DUT
0
L
L
Rg
80 V DUT
4 80V
DC
4x
DUT
360V
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
C f orce
400μH
G force DUT
D1 10K
C sense
0.0075μ
E sense
E force
Fig.C.T.6 - BVCES Filter Circuit
IRGB4061DPbF
www.irf.com 9
-40
-30
-20
-10
0
10
20
3
0
-0.05 0.05 0.15
time (μS)
I
RR
(A)
Peak
I
RR
Q
RR
t
RR
10%
Peak
I
RR
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
-100
0
100
200
300
400
500
600
-5.70 -5.20 -4.70 -4.20
Time(μs)
V
CE
(V)
-5
0
5
10
15
20
25
30
E
OFF
Loss
5% V
CE
5% I
CE
90% I
CE
tf
-100
0
100
200
300
400
500
600
-0.15 -0.05 0.05 0.15 0.25
Time (μs)
V
CE
(V)
-10
0
10
20
30
40
50
60
E
ON
TEST
C
90% test
10% test
5% V
CE
tr
-100
0
100
200
300
400
500
-5.00 0.00 5.00 10.00
time (μS)
V
CE
(V)
-50
0
50
100
150
200
250
I
CE
(A)
V
CE
I
CE
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
IRGB4061DPbF
10 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/07
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
INTERNAT IONAL PART NUMBER
RECTIFIER
LOT CODE
ASSEMBLY
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE: T HIS IS AN IRF1010
Note: "P" in as s embly line pos ition
indi cates "L ead - F r ee"
IN THE ASSEMBLY LINE "C"
AS S EMBLED ON WW 19, 2000
10- For the most current drawing please refer to IR website
at http://www.irf.com/package/pkigbt.html