© 2009 Microchip Technology Inc. Preliminary DS70265D
dsPIC33FJ12MC201/202
Data Sheet
High-Performance,
16-bit Digital Signal Controllers
DS70265D-page ii Preliminary © 2009 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
Omniscient Code Generation, PICC, PICC-18, PICkit,
PICDEM, PICDEM.net, PICtail, PIC32 logo, REAL ICE, rfLAB,
Select Mode, Total Endurance, TSHARC, WiperLock and
ZENA are trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 1
dsPIC33FJ12MC201/202
Operating Range:
Up to 40 MIPS operation (at 3.0-3.6V):
- Industrial temperature range (-40°C to +85°C)
- Extended temperature range (-40°C to +125°C)
High-Performance DSC CPU:
Modified Harvard architecture
C compiler optimized instruction set
16-bit-wide data path
24-bit-wide instructions
Linear program memory addressing up to 4M
instruction words
Linear data memory addressing up to 64 Kbytes
83 base instructions: mostly one word/one cycle
Two 40-bit accumulators with rounding and
saturation options
Flexible and powerful addressing modes:
-Indirect
- Modulo
- Bit-Reversed
Software stack
16 x 16 fractional/integer multiply operations
32/16 and 16/16 divide operations
Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
Up to ±16-bit shifts for up to 40-bit data
Timers/Capture/Compare/PWM:
Timer/Counters, up to three 16-bit timers
- Can pair up to make one 32-bit timer
- One timer runs as Real-Time Clock with
external 32.768 kHz oscillator
- Programmable prescaler
Input Capture (up to four channels):
- Capture on up, down, or both edges
- 16-bit capture input functions
- 4-deep FIFO on each capture
Output Compare (up to two channels):
- Single or Dual 16-bit Compare mode
- 16-bit Glitchless PWM mode
Interrupt Controller:
5-cycle latency
Up to 26 available interrupt sources
Up to three external interrupts
Seven programmable priority levels
Four processor exceptions
Digital I/O:
Peripheral pin Select functionality
Up to 21 programmable digital I/O pins
Wake-up/Interrupt-on-Change for up to 21 pins
Output pins can drive from 3.0V to 3.6V
Up to 5V output with open drain configuration
All digital input pins are 5V tolerant
4 mA sink on all I/O pins
On-Chip Flash and SRAM:
Flash program memory (12 Kbytes)
Data SRAM (1024 bytes)
Boot and General Security for program Flash
System Management:
Flexible clock options:
- External, crystal, resonator, internal RC
- Fully integrated Phase-Locked Loop (PLL)
- Extremely low-jitter PLL
Power-up Timer
Oscillator Start-up Timer/Stabilizer
Watchdog Timer with its own RC oscillator
Fail-Safe Clock Monitor
Reset by multiple sources
Power Management:
On-chip 2.5V voltage regulator
Switch between clock sources in real time
Idle, Sleep, and Doze modes with fast wake-up
High-Performance, 16-bit Digital Signal Controllers
dsPIC33FJ12MC201/202
DS70265D-page 2 Preliminary © 2009 Microchip Technology Inc.
Motor Control Peripherals:
6-channel 16-bit Motor Control PWM:
- Three duty cycle generators
- Independent or Complementary mode
- Programmable dead time and output polarity
- Edge-aligned or center-aligned
- Manual output override control
- One Fault input
- Trigger for ADC conversions
- PWM frequency for 16-bit resolution
(@ 40 MIPS) = 1220 Hz for Edge-Aligned
mode, 610 Hz for Center-Aligned mode
- PWM frequency for 11-bit resolution
(@ 40 MIPS) = 39.1 kHz for Edge-Aligned
mode, 19.55 kHz for Center-Aligned mode
2-channel 16-bit Motor Control PWM:
- One duty cycle generator
- Independent or Complementary mode
- Programmable dead time and output polarity
- Edge-aligned or center-aligned
- Manual output override control
- One Fault input
- Trigger for ADC conversions
- PWM frequency for 16-bit resolution
(@ 40 MIPS) = 1220 Hz for Edge-Aligned
mode, 610 Hz for Center-Aligned mode
- PWM frequency for 11-bit resolution
(@ 40 MIPS) = 39.1 kHz for Edge-Aligned
mode, 19.55 kHz for Center-Aligned mode
Quadrature Encoder Interface module:
- Phase A, Phase B, and index pulse input
- 16-bit up/down position counter
- Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Interrupt on position counter rollover/underflow
Analog-to-Digital Converters (ADCs):
10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:
- Two and four simultaneous samples (10-bit ADC)
- Up to six input channels with auto-scanning
- Conversion start can be manual or
synchronized with one of four trigger sources
- Conversion possible in Sleep mode
- ±2 LSb max integral nonlinearity
- ±1 LSb max differential nonlinearity
CMOS Flash Technology:
Low-power, high-speed Flash technology
Fully static design
3.3V (±10%) operating voltage
Industrial and Extended temperature
Low power consumption
Communication Modules:
4-wire SPI:
- Framing supports I/O interface to simple
codecs
- Supports 8-bit and 16-bit data
- Supports all serial clock formats and
sampling modes
•I
2C™:
- Full Multi-Master Slave mode support
- 7-bit and 10-bit addressing
- Bus collision detection and arbitration
- Integrated signal conditioning
- Slave address masking
•UART:
- Interrupt on address bit detect
- Interrupt on UART error
- Wake-up on Start bit from Sleep mode
- 4-character TX and RX FIFO buffers
- LIN bus support
-IrDA
® encoding and decoding in hardware
- High-Speed Baud mode
- Hardware Flow Control with CTS and RTS
Packaging:
20-pin SDIP/SOIC/SSOP
28-pin SDIP/SOIC/SSOP/QFN
Note: See Table 1 for the exact peripheral
features per device.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 3
dsPIC33FJ12MC201/202
dsPIC33FJ12MC201/202 PRODUCT
FAMILIES
The device names, pin counts, memory sizes, and
peripheral availability of each device are listed in
Table 1. The following pages show their pinout
diagrams.
TABLE 1: dsPIC33FJ12MC201/202 CONTROLLER FAMILIES
Device Pins
Program Flash Memory
(Kbyte)
RAM (Kbyte)
Remappable Peripherals
10-Bit/12-Bit ADC
I2C™
I/O Pins
Packages
Remappable Pins
16-bit Timer
Input Capture
Output Compare
Standard PWM
Motor Control PWM
Quadrature Encoder
Interface
UART
External Interrupts(3)
SPI
dsPIC33FJ12MC201 20 12 1 10 3(1) 424ch
(2)
2ch(2)
11
31 1ADC,
4 ch
115SDIP
SOIC
SSOP
dsPIC33FJ12MC202 28 12 1 16 3(1) 426ch
(2)
2ch(2)
11
31 1ADC.
6 ch
121SDIP
SOIC
SSOP
QFN
Note 1: Only two out of three timers are remappable.
2: Only PWM fault inputs are remappable.
3: Only two out of three interrupts are remappable.
dsPIC33FJ12MC201/202
DS70265D-page 4 Preliminary © 2009 Microchip Technology Inc.
Pin Diagrams
20-PIN SDIP, SOIC, SSOP
INT0/RP7(1)/CN23/RB7
MCLR
VSS
PWM1H1/RP14(1)/CN12/RB14
VCAP/VDDCORE
PWM2H1/SCL1/RP8(1)/CN22/RB8
PWM2L1/SDA1/RP9(1)/CN21/RB9
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
PGED2/AN0/VREF+/CN2/RA0
PGEC2/AN1/VREF-/CN3/RA1
PGED1/AN2/RP0(1)/CN4/RB0
PGEC3/SOSCO/T1CK/CN0/RA4
OSC2/CLKO/CN29/RA3
OSC1/CLKI/CN30/RA2
PGED3/SOSCI/RP4(1)/CN1/RB4
PGEC1/AN3/RP1(1)/CN5/RB1 PWM1L2/RP13(1)/CN13/RB13
PWM1L1/RP15(1)/CN11/RB15
PWM1H2/RP12(1)/CN14/RB12
V
SS
dsPIC33FJ12MC201
VDD
28-PIN SDIP, SOIC, SSOP
INT0/RP7(1)/CN23/RB7
MCLR
AVSS
PWM1H1/RP14(1)/CN12/RB14
VCAP/VDDCORE
ASCL1/RP6(1)/CN24/RB6
TDO/PWM2L1/SDA1/RP9(1)/CN21/RB9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
AN5/RP3(1)/CN7/RB3
PGED2/AN0/VREF+/CN2/RA0
PGEC2/AN1/VREF-/CN3/RA1
PGED1/AN2/RP0(1)/CN4/RB0
PGEC3/SOSCO/T1CK/CN0/RA4
OSC1/CLKI/CN30/RA2
AN4/RP2(1)/CN6/RB2
PGED3/SOSCI/RP4(1)/CN1/RB4
PGEC1/AN3/RP1(1)/CN5/RB1 PWM1L2/RP13(1)/CN13/RB13
PWM1L1/RP15(1)/CN11/RB15
PWM1H2/RP12(1)/CN14/RB12
ASDA1/RP5(1)/CN27/RB5
VSS
OSC2/CLKO/CN29/RA3
VDD
TMS/PWM1L3/RP11(1)/CN15/RB11
TDI/PWM1H3/RP10(1)/CN16/RB10
VSS
TCK/PWM2H1/SCL1/RP8(1)/CN22/RB8
28
27
26
25
24
23
22
21
20
19
18
17
16
15
dsPIC33FJ12MC202
AVDD
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available
peripherals.
= Pins are up to 5V tolerant
= Pins are up to 5V tolerant
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 5
dsPIC33FJ12MC201/202
Pin Diagrams (Continued)
28-Pin QFN
(2)
1
2
3
4
5
6
7
21
20
19
18
17
16
15
8 9 10 11 12 13 14
dsPIC33FJ12MC202
PGED1/AN2/RP0(1)/CN4/RB0
PGEC1/AN3/RP1(1)/CN5/RB1
AN4/RP2(1)/CN6/RB2
AN5/RP3(1)/CN7/RB3
OSC1/CLKI/CN30/RA2
OSC2/CLKO/CN29/RA3
VSS
VCAP/VDDCORE
TDI/PWM1H3/RP10(1)/CN16/RB10
TMS/PWM1L3/RP11(1)/CN15/RB11
PWM1H2/RP12(1)/CN14/RB12
TDO/PWM2L1/SDA1/RP9(1)/CN21/RB9
PWM1L2/RP13(1)/CN13/RB13
PGEC3/SOSCO/T1CK/CN0/RA4
PGED3/SOSCI/RP4/CN1/RB4
VDD
ASDA1/RP5(1)/CN27/RB5
ASCL1/RP6(1)/CN24/RB6
INT0/RP7(1)/CN23/RB7
TCK/PWM2H1/SCL1/RP8(1)/CN22/RB8
PGEC2/AN1/VREF-/CN3/RA1
PGED2/AN0/VREF+/CN2/RA0
MCLR
AVDD
AVSS
PWM1L1/RP15(1)/CN11/RB15
PWM1H1/ RP14(1)/CN12/RB14
28 27 26 25 24 23 22
VSS
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available
peripherals.
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to
be connected to VSS externally.
= Pins are up to 5V tolerant
dsPIC33FJ12MC201/202
DS70265D-page 6 Preliminary © 2009 Microchip Technology Inc.
Table of Contents
dsPIC33FJ12MC201/202 Product Families ........................................................................................................................................... 3
1.0 Device Overview .......................................................................................................................................................................... 7
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 11
3.0 CPU............................................................................................................................................................................................ 15
4.0 Memory Organization ................................................................................................................................................................. 27
5.0 Flash Program Memory.............................................................................................................................................................. 53
6.0 Resets ....................................................................................................................................................................................... 59
7.0 Interrupt Controller ..................................................................................................................................................................... 67
8.0 Oscillator Configuration .............................................................................................................................................................. 99
9.0 Power-Saving Features............................................................................................................................................................ 109
10.0 I/O Ports ................................................................................................................................................................................... 115
11.0 Timer1 ...................................................................................................................................................................................... 137
12.0 Timer2/3 feature ...................................................................................................................................................................... 139
13.0 Input Capture............................................................................................................................................................................ 145
14.0 Output Compare ....................................................................................................................................................................... 147
15.0 Motor Control PWM Module ..................................................................................................................................................... 151
16.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 165
17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 169
18.0 Inter-Integrated Circuit™ (I2C™) .............................................................................................................................................. 175
19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 183
20.0 10-bit/12-bit Analog-to-Digital Converter (ADC) ....................................................................................................................... 189
21.0 Special Features ...................................................................................................................................................................... 202
22.0 Instruction Set Summary .......................................................................................................................................................... 209
23.0 Development Support............................................................................................................................................................... 217
24.0 Electrical Characteristics .......................................................................................................................................................... 221
25.0 Packaging Information.............................................................................................................................................................. 261
Appendix A: Revision History............................................................................................................................................................. 271
Index ................................................................................................................................................................................................. 279
The Microchip Web Site ..................................................................................................................................................................... 283
Customer Change Notification Service .............................................................................................................................................. 283
Customer Support .............................................................................................................................................................................. 283
Reader Response .............................................................................................................................................................................. 284
Product Identification System............................................................................................................................................................. 285
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
Microchip’s Worldwide Web site; http://www.microchip.com
Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 7
dsPIC33FJ12MC201/202
1.0 DEVICE OVERVIEW
This document contains device specific information for
the dsPIC33FJ12MC201/202 Digital Signal Controller
(DSC) Devices. The dsPIC33F devices contain
extensive Digital Signal Processor (DSP) functionality
with a high-performance, 16-bit microcontroller (MCU)
architecture.
Figure 1-1 shows a general block diagram of the core
and peripheral modules in the dsPIC33FJ12MC201/
202 family of devices. Table 1-1 lists the functions of
the various pins shown in the pinout diagrams.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 devices.
It is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to the
“dsPIC33F Family Reference Manual”.
Please see the Microchip web site
(www.microchip.com) for the latest family
reference manual sections.
dsPIC33FJ12MC201/202
DS70265D-page 8 Preliminary © 2009 Microchip Technology Inc.
FIGURE 1-1: dsPIC33FJ12MC201/202 BLOCK DIAGRAM
16
OSC1/CLKI
OSC2/CLKO
VDD, VSS
Timing
Generation
MCLR
Power-up
Timer
Oscillator
Start-up Timer
Power-on
Reset
Watchdog
Timer
Brown-out
Reset
Precision
Reference
Band Gap
FRC/LPRC
Oscillators
Regulator
Voltage
VCAP/VDDCORE
IC1,2,7,8 I2C1
PORTA
Note: Not all pins or features are implemented on all device pinout configurations. See “Pin Diagrams” for the specific pins
and features present on each device.
Instruction
Decode and
Control
PCH PCL
16
Program Counter
16-bit ALU
23
23
24
23
Instruction Reg
PCU
16 x 16
W Register Array
ROM Latch
16
EA MUX
16
16
8
Interrupt
Controller
PSV & Table
Data Access
Control Block
Stack
Control
Logic
Loop
Control
Logic
Data Latch
Address
Latch
Address Latch
Program Memory
Data Latch
Literal Data
16 16
16
16
Data Latch
Address
Latch
16
X RAM Y RAM
16
Y Data Bus
X Data Bus
DSP Engine
Divide Support
16
Control Signals
to Various Blocks
ADC1
Timers
PORTB
Address Generator Units
1-3
CNx
UART1 OC/
PWM1-2
QEI
PWM
2 Ch
PWM
6 Ch
Remappable
Pins
SPI1
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 9
dsPIC33FJ12MC201/202
TABLE 1-1: PINOUT I/O DESCRIPTIONS
Pin Name Pin
Type
Buffer
Type PPS Description
AN0-AN5 I Analog No Analog input channels.
CLKI
CLKO
I
O
ST/CMOS
No
No
External clock source input. Always associated with OSC1 pin function.
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes. Always associated
with OSC2 pin function.
OSC1
OSC2
I
I/O
ST/CMOS
No
No
Oscillator crystal input. ST buffer when configured in RC mode; CMOS
otherwise.
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes.
SOSCI
SOSCO
I
O
ST/CMOS
No
No
32.768 kHz low-power oscillator crystal input; CMOS otherwise.
32.768 kHz low-power oscillator crystal output.
CN0-CN7
CN11-CN16
CN21-CN24
CN27
CN29-CN30
ISTNo
No
No
No
No
Change notification inputs.
Can be software programmed for internal weak pull-ups on all inputs.
IC1-IC2
IC7-IC8
I
I
ST
ST
Yes
Yes
Capture inputs 1/2
Capture inputs 7/8.
OCFA
OC1-OC2
I
O
ST
Yes
Yes
Compare Fault A input (for Compare Channels 1 and 2).
Compare outputs 1 through 2.
INT0
INT1
INT2
I
I
I
ST
ST
ST
No
Yes
Yes
External interrupt 0.
External interrupt 1.
External interrupt 2.
RA0-RA4 I/O ST No PORTA is a bidirectional I/O port.
RB0-RB15 I/O ST No PORTB is a bidirectional I/O port.
T1CK
T2CK
T3CK
I
I
I
ST
ST
ST
No
Yes
Yes
Timer1 external clock input.
Timer2 external clock input.
Timer3 external clock input.
U1CTS
U1RTS
U1RX
U1TX
I
O
I
O
ST
ST
Yes
Yes
Yes
Yes
UART1 clear to send.
UART1 ready to send.
UART1 receive.
UART1 transmit.
SCK1
SDI1
SDO1
SS1
I/O
I
O
I/O
ST
ST
ST
Yes
Yes
Yes
Yes
Synchronous serial clock input/output for SPI1.
SPI1 data in.
SPI1 data out.
SPI1 slave synchronization or frame pulse I/O.
SCL1
SDA1
ASCL1
ASDA1
I/O
I/O
I/O
I/O
ST
ST
ST
ST
No
No
No
No
Synchronous serial clock input/output for I2C1.
Synchronous serial data input/output for I2C1.
Alternate synchronous serial clock input/output for I2C1.
Alternate synchronous serial data input/output for I2C1.
TMS
TCK
TDI
TDO
I
I
I
O
ST
ST
ST
No
No
No
No
JTAG Test mode select pin.
JTAG test clock input pin.
JTAG test data input pin.
JTAG test data output pin.
INDX
QEA
QEB
UPDN
I
I
I
O
ST
ST
ST
CMOS
Yes
Yes
Yes
Yes
Quadrature Encoder Index Pulse input.
Quadrature Encoder Phase A input in QEI mode.
Auxiliary Timer External Clock/Gate input in Timer mode.
Quadrature Encoder Phase A input in QEI mode.
Auxiliary Timer External Clock/Gate input in Timer mode.
Position Up/Down Counter Direction State.
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
ST = Schmitt Trigger input with CMOS levels O = Output I = Input
PPS = Peripheral Pin Select
dsPIC33FJ12MC201/202
DS70265D-page 10 Preliminary © 2009 Microchip Technology Inc.
FLTA1
PWM1L1
PWM1H1
PWM1L2
PWM1H2
PWM1L3
PWM1H3
FLTA2
PWM2L1
PWM2H1
I
O
O
O
O
O
O
I
O
O
ST
ST
Yes
No
No
No
No
No
No
Yes
No
No
PWM1 Fault A input.
PWM1 Low output 1
PWM1 High output 1
PWM1 Low output 2
PWM1 High output 2
PWM1 Low output 3
PWM1 High output 3
PWM2 Fault A input.
PWM2 Low output 1
PWM2 High output 1
PGED1
PGEC1
PGED2
PGEC2
PGED3
PGEC3
I/O
I
I/O
I
I/O
I
ST
ST
ST
ST
ST
ST
No
No
No
No
No
No
Data I/O pin for programming/debugging communication channel 1.
Clock input pin for programming/debugging communication channel 1.
Data I/O pin for programming/debugging communication channel 2.
Clock input pin for programming/debugging communication channel 2.
Data I/O pin for programming/debugging communication channel 3.
Clock input pin for programming/debugging communication channel 3.
MCLR I/P ST No Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD P P No Positive supply for analog modules. This pin must be connected at all times.
AVSS P P No Ground reference for analog modules.
VDD P No Positive supply for peripheral logic and I/O pins.
VCAP/
VDDCORE
P No CPU logic filter capacitor connection.
VSS P No Ground reference for logic and I/O pins.
VREF+ I Analog No Analog voltage reference (high) input.
VREF- I Analog No Analog voltage reference (low) input.
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Name Pin
Type
Buffer
Type PPS Description
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
ST = Schmitt Trigger input with CMOS levels O = Output I = Input
PPS = Peripheral Pin Select
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 11
dsPIC33FJ12MC201/202
2.0 GUIDELINES FOR GETTING
STARTED WITH 16-BIT
DIGITAL SIGNAL
CONTROLLERS
2.1 Basic Connection Requirements
Getting started with the dsPIC33FJ12MC201/202
family of 16-bit Digital Signal Controllers (DSC)
requires attention to a minimal set of device pin
connections before proceeding with development. The
following is a list of pin names, which must always be
connected:
All VDD and VSS pins
(see Section 2.2 “Decoupling Capacitors”)
All AVDD and AVSS pins (regardless if ADC module
is not used)
(see Section 2.2 “Decoupling Capacitors”)
•V
CAP/VDDCORE
(see Section 2.3 “Capacitor on Internal Voltage
Regulator (VCAP/VDDCORE)”)
•MCLR
pin
(see Section 2.4 “Master Clear (MCLR) Pin”)
PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
OSC1 and OSC2 pins when external oscillator
source is used
(see Section 2.6 “External Oscillator Pins”)
Additionally, the following pins may be required:
•V
REF+/VREF- pins used when external voltage
reference for ADC module is implemented
2.2 Decoupling Capacitors
The use of decoupling capacitors on every pair of
power supply pins, such as VDD, VSS, AVDD, and
AVSS is required.
Consider the following criteria when using decoupling
capacitors:
Value and type of capacitor: Recommendation
of 0.1 µF (100 nF), 10-20V. This capacitor should
be a low-ESR and have resonance frequency in
the range of 20 MHz and higher. It is
recommended that ceramic capacitors be used.
Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is within
one-quarter inch (6 mm) in length.
Handling high frequency noise: If the board is
experiencing high frequency noise, upward of
tens of MHz, add a second ceramic-type capacitor
in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 µF to 0.001 µF. Place this
second capacitor next to the primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible.
For example, 0.1 µF in parallel with 0.001 µF.
Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum thereby reducing PCB track inductance.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, which is available
from the Microchip web site
(www.microchip.com).
Note: The AVDD and AVSS pins must be
connected independent of the ADC
voltage reference source.
dsPIC33FJ12MC201/202
DS70265D-page 12 Preliminary © 2009 Microchip Technology Inc.
FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTION
2.2.1 TANK CAPACITORS
On boards with power traces running longer than six
inches in length, it is suggested to use a tank capacitor
for integrated circuits including DSCs to supply a local
power source. The value of the tank capacitor should
be determined based on the trace resistance that con-
nects the power supply source to the device, and the
maximum current drawn by the device in the applica-
tion. In other words, select the tank capacitor so that it
meets the acceptable voltage sag at the device. Typical
values range from 4.7 µF to 47 µF.
2.3 Capacitor on Internal Voltage
Regulator (VCAP/VDDCORE)
A low-ESR (< 5 Ohms) capacitor is required on the
VCAP/VDDCORE pin, which is used to stabilize the
voltage regulator output voltage. The VCAP/VDDCORE
pin must not be connected to VDD, and must have a
capacitor between 4.7 µF and 10 µF, 16V connected to
ground. The type can be ceramic or tantalum. Refer to
Section 24.0 “Electrical Characteristics” for
additional information.
The placement of this capacitor should be close to the
VCAP/VDDCORE. It is recommended that the trace
length not exceed one-quarter inch (6 mm). Refer to
Section 21.2 “On-Chip Voltage Regulator” for
details.
2.4 Master Clear (MCLR) Pin
The MCLR pin provides for two specific device
functions:
Device Reset
Device programming and debugging.
During device programming and debugging, the
resistance and capacitance that can be added to the
pin must be considered. Device programmers and
debuggers drive the MCLR pin. Consequently,
specific voltage levels (VIH and VIL) and fast signal
transitions must not be adversely affected. Therefore,
specific values of R and C will need to be adjusted
based on the application and PCB requirements.
For example, as shown in Figure 2-2, it is
recommended that the capacitor C, be isolated from
the MCLR pin during programming and debugging
operations.
Place the components shown in Figure 2-2 within
one-quarter inch (6 mm) from the MCLR pin.
FIGURE 2-2: EXAMPLE OF MCLR PIN
CONNECTIONS
dsPIC33F
VDD
VSS
VDD
VSS
VSS
VDD
AVDD
AVSS
VDD
VSS
0.1 µF
Ceramic
0.1 µF
Ceramic
0.1 µF
Ceramic
0.1 µF
Ceramic
C
R
VDD
MCLR
0.1 µF
Ceramic
VCAP/VDDCORE
10 Ω
R1
Note 1: R 10 kΩ is recommended. A suggested
starting value is 10 kΩ. Ensure that the
MCLR pin VIH and VIL specifications are met.
2: R1 470Ω will limit any current flowing into
MCLR from the external capacitor C, in the
event of MCLR pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS). Ensure that the MCLR pin
VIH and VIL specifications are met.
C
R1
R
VDD
MCLR
dsPIC33F
JP
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 13
dsPIC33FJ12MC201/202
2.5 ICSP Pins
The PGECx and PGEDx pins are used for In-Circuit
Serial Programming™ (ICSP™) and debugging pur-
poses. It is recommended to keep the trace length
between the ICSP connector and the ICSP pins on the
device as short as possible. If the ICSP connector is
expected to experience an ESD event, a series resistor
is recommended, with the value in the range of a few
tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes, and capacitors on the
PGECx and PGEDx pins are not recommended as they
will interfere with the programmer/debugger communi-
cations to the device. If such discrete components are
an application requirement, they should be removed
from the circuit during programming and debugging.
Alternately, refer to the AC/DC characteristics and tim-
ing requirements information in the respective device
Flash programming specification for information on
capacitive loading limits and pin input voltage high (VIH)
and input low (VIL) requirements.
Ensure that the “Communication Channel Select” (i.e.,
PGECx/PGEDx pins) programmed into the device
matches the physical connections for the ICSP to
MPLAB® ICD 2, MPLAB® ICD 3, or MPLAB® REAL
ICE™.
For more information on ICD 2, ICD 3, and REAL ICE
connection requirements, refer to the following
documents that are available on the Microchip web
site.
“MPLAB® ICD 2 In-Circuit Debugger User's
Guide” DS51331
“Using MPLAB® ICD 2” (poster) DS51265
“MPLAB® ICD 2 Design Advisory” DS51566
“Using MPLAB® ICD 3” (poster) DS51765
“MPLAB® ICD 3 Design Advisory” DS51764
“MPLAB® REAL ICE™ In-Circuit Debugger
User's Guide” DS51616
“Using MPLAB® REAL ICE™” (poster) DS51749
2.6 External Oscillator Pins
Many DSCs have options for at least two oscillators: a
high-frequency primary oscillator and a low-frequency
secondary oscillator (refer to Section 8.0 “Oscillator
Configuration” for details).
The oscillator circuit should be placed on the same
side of the board as the device. Also, place the
oscillator circuit close to the respective oscillator pins,
not exceeding one-half inch (12 mm) distance
between them. The load capacitors should be placed
next to the oscillator itself, on the same side of the
board. Use a grounded copper pour around the
oscillator circuit to isolate them from surrounding
circuits. The grounded copper pour should be routed
directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. Also, if
using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. A
suggested layout is shown in Figure 2-3.
FIGURE 2-3: SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT
13
Main Oscillator
Guard Ring
Guard Trace
Secondary
Oscillator
14
15
16
17
18
19
20
dsPIC33FJ12MC201/202
DS70265D-page 14 Preliminary © 2009 Microchip Technology Inc.
2.7 Oscillator Value Conditions on
Device Start-up
If the PLL of the target device is enabled and
configured for the device start-up oscillator, the
maximum oscillator source frequency must be limited
to 4 MHz < FIN < 8 MHz to comply with device PLL
start-up conditions. This means that if the external
oscillator frequency is outside this range, the
application must start-up in the FRC mode first. The
default PLL settings after a POR with an oscillator
frequency outside this range will violate the device
operating speed.
Once the device powers up, the application firmware
can initialize the PLL SFRs, CLKDIV, and PLLDBF to a
suitable value, and then perform a clock switch to the
Oscillator + PLL clock source. Note that clock switching
must be enabled in the device Configuration word.
2.8 Configuration of Analog and
Digital Pins During ICSP
Operations
If MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL ICE
in-circuit emulator is selected as a debugger, it
automatically initializes all of the A/D input pins (ANx)
as “digital” pins, by setting all bits in the AD1PCFGL
register.
The bits in the register that correspond to the A/D pins
that are initialized by MPLAB ICD 2, MPLAB ICD 3, or
MPLAB REAL ICE in-circuit emulator, must not be
cleared by the user application firmware; otherwise,
communication errors will result between the debugger
and the device.
If your application needs to use certain A/D pins as
analog input pins during the debug session, the user
application must clear the corresponding bits in the
AD1PCFGL register during initialization of the ADC
module.
When MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL
ICE in-circuit emulator is used as a programmer, the
user application firmware must correctly configure the
AD1PCFGL register. Automatic initialization of this
register is only done during debugger operation.
Failure to correctly configure the register(s) will result in
all A/D pins being recognized as analog input pins,
resulting in the port value being read as a logic ‘0’,
which may affect user application functionality.
2.9 Unused I/Os
Unused I/O pins should be configured as outputs and
driven to a logic-low state.
Alternately, connect a 1k to 10k resistor to VSS on
unused pins and drive the output to logic low.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 15
dsPIC33FJ12MC201/202
3.0 CPU
The dsPIC33FJ12MC201/202 CPU module has a 16-
bit (data) modified Harvard architecture with an
enhanced instruction set, including significant support
for DSP. The CPU has a 24-bit instruction word with a
variable length opcode field. The Program Counter
(PC) is 23 bits wide and addresses up to 4M x 24 bits
of user program memory space. The actual amount of
program memory implemented varies by device. A
single-cycle instruction prefetch mechanism is used to
help maintain throughput and provides predictable
execution. All instructions execute in a single cycle,
with the exception of instructions that change the
program flow, the double-word move (MOV.D)
instruction and the table instructions. Overhead-free
program loop constructs are supported using the DO
and REPEAT instructions, both of which are
interruptible at any point.
The dsPIC33FJ12MC201/202 devices have sixteen,
16-bit working registers in the programmer’s model.
Each of the working registers can serve as a data,
address, or address offset register. The 16th working
register (W15) operates as a software Stack Pointer
(SP) for interrupts and calls.
There are two classes of instruction in the
dsPIC33FJ12MC201/202 devices: MCU and DSP.
These two instruction classes are seamlessly
integrated into a single CPU. The instruction set
includes many addressing modes and is designed for
optimum C compiler efficiency. For most instructions,
dsPIC33FJ12MC201/202 devices are capable of exe-
cuting a data (or program data) memory read, a work-
ing register (data) read, a data memory write, and a
program (instruction) memory read per instruction
cycle. As a result, three parameter instructions can be
supported, allowing A + B = C operations to be
executed in a single cycle.
A block diagram of the CPU is shown in Figure 3-1, and
the programmer’s model for the dsPIC33FJ12MC201/
202 is shown in Figure 3-2.
3.1 Data Addressing Overview
The data space can be addressed as 32K words or
64 Kbytes and is split into two blocks, referred to as X
and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The
MCU class of instructions operates solely through the
X memory AGU, which accesses the entire memory
map as one linear data space. Certain DSP instructions
operate through the X and Y AGUs to support dual
operand reads, which splits the data address space
into two parts. The X and Y data space boundary is
device-specific.
Overhead-free circular buffers (Modulo Addressing
mode) are supported in both X and Y address spaces.
The Modulo Addressing removes the software
boundary checking overhead for DSP algorithms.
Furthermore, the X AGU circular addressing can be
used with any of the MCU class of instructions. The X
AGU also supports Bit-Reversed Addressing to greatly
simplify input or output data reordering for radix-2 FFT
algorithms.
The upper 32 Kbytes of the data space memory map
can optionally be mapped into program space at any
16K program word boundary defined by the 8-bit
Program Space Visibility Page (PSVPAG) register. The
program-to-data-space mapping feature lets any
instruction access program space as if it were data
space.
3.2 DSP Engine Overview
The DSP engine features a high-speed 17-bit by 17-bit
multiplier, a 40-bit ALU, two 40-bit saturating
accumulators, and a 40-bit bidirectional barrel shifter.
The barrel shifter is capable of shifting a 40-bit value up
to 16 bits right or left, in a single cycle. The DSP instruc-
tions operate seamlessly with all other instructions and
have been designed for optimal real-time performance.
The MAC instruction and other associated instructions
can concurrently fetch two data operands from mem-
ory, while multiplying two W registers and accumulating
and optionally saturating the result in the same cycle.
This instruction functionality requires that the RAM data
space be split for these instructions and linear for all
others. Data space partitioning is achieved in a trans-
parent and flexible manner through dedicating certain
working registers to each address space.
3.3 Special MCU Features
The dsPIC33FJ12MC201/202 features a 17-bit by 17-
bit single-cycle multiplier that is shared by both the
MCU ALU and DSP engine. The multiplier can perform
signed, unsigned and mixed-sign multiplication. Using
a 17-bit by 17-bit multiplier for 16-bit by 16-bit
multiplication not only allows you to perform mixed-sign
multiplication, it also achieves accurate results for
special operations, such as (-1.0) x (-1.0).
The dsPIC33FJ12MC201/202 supports 16/16 and 32/
16 divide operations, both fractional and integer. All
divide instructions are iterative operations. They must
be executed within a REPEAT loop, resulting in a total
execution time of 19 instruction cycles. The divide
operation can be interrupted during any of those
19 cycles without loss of data.
A 40-bit barrel shifter is used to perform up to a 16-bit
left or right shift in a single cycle. The barrel shifter can
be used by both MCU and DSP instructions.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 2. “CPU”
(DS70204), which is available from the
Microchip web site (www.microchip.com).
dsPIC33FJ12MC201/202
DS70265D-page 16 Preliminary © 2009 Microchip Technology Inc.
FIGURE 3-1: dsPIC33FJ12MC201/202 CPU CORE BLOCK DIAGRAM
Instruction
Decode &
Control
PCH PCL
Program Counter
16-bit ALU
24
23
Instruction Reg
PCU
16 x 16
W Register Array
ROM Latch
EA MUX
Interrupt
Controller
Stack
Control
Logic
Loop
Control
Logic
Data Latch
Address
Latch
Control Signals
to Various Blocks
Literal Data
16 16
16
To Peripheral Modules
Data Latch
Address
Latch
16
X RAM Y RAM
Address Generator Units
16
Y Data Bus
X Data Bus
DSP Engine
Divide Support
16
16
23
23
16
8
PSV & Table
Data Access
Control Block
16
16
16
16
Program Memory
Data Latch
Address Latch
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 17
dsPIC33FJ12MC201/202
FIGURE 3-2: dsPIC33FJ12MC201/202 PROGRAMMER’S MODEL
PC22 PC0
7 0
D0D15
Program Counter
Data Table Page Address
STATUS Register
Working Registers
DSP Operand
Registers
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12/DSP Offset
W13/DSP Write Back
W14/Frame Pointer
W15/Stack Pointer
DSP Address
Registers
AD39 AD0AD31
DSP
Accumulators
ACCA
ACCB
7 0
Program Space Visibility Page Address
Z
0
OA OB SA SB
RCOUNT
15 0
REPEAT Loop Counter
DCOUNT
15 0
DO Loop Counter
DOSTART
22 0
DO Loop Start Address
IPL2 IPL1
SPLIM Stack Pointer Limit Register
AD15
SRL
PUSH.S Shadow
DO Shadow
OAB SAB
15 0
Core Configuration Register
Legend
CORCON
DA DC RA N
TBLPAG
PSVPAG
IPL0 OV
W0/WREG
SRH
DO Loop End Address
DOEND
22
C
dsPIC33FJ12MC201/202
DS70265D-page 18 Preliminary © 2009 Microchip Technology Inc.
3.4 CPU Control Registers
REGISTER 3-1: SR: CPU STATUS REGISTER
R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0
OA OB SA(1) SB(1) OAB SAB DA DC
bit 15 bit 8
R/W-0(2) R/W-0(3) R/W-0(3) R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL<2:0>(2) RA N OV Z C
bit 7 bit 0
Legend:
C = Clear only bit R = Readable bit U = Unimplemented bit, read as ‘0’
S = Set only bit W = Writable bit -n = Value at POR
‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 OA: Accumulator A Overflow Status bit
1 = Accumulator A overflowed
0 = Accumulator A has not overflowed
bit 14 OB: Accumulator B Overflow Status bit
1 = Accumulator B overflowed
0 = Accumulator B has not overflowed
bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit(1)
1 = Accumulator A is saturated or has been saturated at some time
0 = Accumulator A is not saturated
bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit(1)
1 = Accumulator B is saturated or has been saturated at some time
0 = Accumulator B is not saturated
bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit
1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed
bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit
1 = Accumulators A or B are saturated or have been saturated at some time in the past
0 = Neither Accumulator A or B are saturated
This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.
bit 9 DA: DO Loop Active bit
1 = DO loop in progress
0 = DO loop not in progress
bit 8 DC: MCU ALU Half Carry/Borrow bit
1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred
0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred
Note 1: This bit can be read or cleared (not set).
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when
IPL<3> = 1.
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 19
dsPIC33FJ12MC201/202
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(2)
111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress
bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)
bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 1 Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)
Note 1: This bit can be read or cleared (not set).
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when
IPL<3> = 1.
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
dsPIC33FJ12MC201/202
DS70265D-page 20 Preliminary © 2009 Microchip Technology Inc.
REGISTER 3-2: CORCON: CORE CONTROL REGISTER
U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0
—USEDT
(1) DL<2:0>
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3(2) PSV RND IF
bit 7 bit 0
Legend: C = Clear only bit
R = Readable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set
0’ = Bit is cleared ‘x = Bit is unknown U = Unimplemented bit, read as ‘0’
bit 15-13 Unimplemented: Read as ‘0
bit 12 US: DSP Multiply Unsigned/Signed Control bit
1 = DSP engine multiplies are unsigned
0 = DSP engine multiplies are signed
bit 11 EDT: Early DO Loop Termination Control bit(1)
1 = Terminate executing DO loop at end of current loop iteration
0 = No effect
bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits
111 = 7 DO loops active
001 = 1 DO loop active
000 = 0 DO loops active
bit 7 SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled
bit 6 SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled
bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(2)
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less
bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space
Note 1: This bit will always read as ‘0’.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 21
dsPIC33FJ12MC201/202
bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled
bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply ops
0 = Fractional mode enabled for DSP multiply ops
REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)
Note 1: This bit will always read as ‘0’.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
dsPIC33FJ12MC201/202
DS70265D-page 22 Preliminary © 2009 Microchip Technology Inc.
3.5 Arithmetic Logic Unit (ALU)
The dsPIC33FJ12MC201/202 ALU is 16 bits wide and
is capable of addition, subtraction, bit shifts, and logic
operations. Unless otherwise mentioned, arithmetic
operations are 2’s complement in nature. Depending
on the operation, the ALU can affect the values of the
Carry (C), Zero (Z), Negative (N), Overflow (OV), and
Digit Carry (DC) Status bits in the SR register. The C
and DC Status bits operate as Borrow and Digit Borrow
bits, respectively, for subtraction operations.
The ALU can perform 8-bit or 16-bit operations,
depending on the mode of the instruction that is used.
Data for the ALU operation can come from the W
register array or data memory, depending on the
addressing mode of the instruction. Likewise, output
data from the ALU can be written to the W register array
or a data memory location.
Refer to the dsPIC30F/33F Programmer’s Reference
Manual (DS70157) for information on the SR bits
affected by each instruction.
The dsPIC33FJ12MC201/202 CPU incorporates hard-
ware support for both multiplication and division. This
includes a dedicated hardware multiplier and support
hardware for 16-bit-divisor division.
3.5.1 MULTIPLIER
Using the high-speed 17-bit x 17-bit multiplier of the
DSP engine, the ALU supports unsigned, signed or
mixed-sign operation in several MCU multiplication
modes:
16-bit x 16-bit signed
16-bit x 16-bit unsigned
16-bit signed x 5-bit (literal) unsigned
16-bit unsigned x 16-bit unsigned
16-bit unsigned x 5-bit (literal) unsigned
16-bit unsigned x 16-bit signed
8-bit unsigned x 8-bit unsigned
3.5.2 DIVIDER
The divide block supports 32-bit/16-bit and 16-bit/16-bit
signed and unsigned integer divide operations with the
following data sizes:
1. 32-bit signed/16-bit signed divide
2. 32-bit unsigned/16-bit unsigned divide
3. 16-bit signed/16-bit signed divide
4. 16-bit unsigned/16-bit unsigned divide
The quotient for all divide instructions ends up in W0
and the remainder in W1. 16-bit signed and unsigned
DIV instructions can specify any W register for both
the 16-bit divisor (Wn) and any W register (aligned)
pair (W(m + 1):Wm) for the 32-bit dividend. The divide
algorithm takes one cycle per bit of divisor, so both
32-bit/16-bit and 16-bit/16-bit instructions take the
same number of cycles to execute.
3.6 DSP Engine
The DSP engine consists of a high-speed 17-bit x
17-bit multiplier, a barrel shifter and a 40-bit adder/
subtracter (with two target accumulators, round and
saturation logic).
The dsPIC33FJ12MC201/202 is a single-cycle instruc-
tion flow architecture; therefore, concurrent operation
of the DSP engine with MCU instruction flow is not pos-
sible. However, some MCU ALU and DSP engine
resources can be used concurrently by the same
instruction (e.g., ED, EDAC).
The DSP engine can also perform inherent accumula-
tor-to-accumulator operations that require no additional
data. These instructions are ADD, SUB, and NEG.
The DSP engine has options selected through bits in
the CPU Core Control register (CORCON), as listed
below:
Fractional or integer DSP multiply (IF)
Signed or unsigned DSP multiply (US)
Conventional or convergent rounding (RND)
Automatic saturation on/off for ACCA (SATA)
Automatic saturation on/off for ACCB (SATB)
Automatic saturation on/off for writes to data
memory (SATDW)
Accumulator Saturation mode selection
(ACCSAT)
A block diagram of the DSP engine is shown in
Figure 3-3.
TABLE 3-1: DSP INSTRUCTIONS
SUMMARY
Instruction Algebraic
Operation
ACC Write
Back
CLR A = 0 Yes
ED A = (x – y)2No
EDAC A = A + (x – y)2No
MAC A = A + (x * y) Yes
MAC A = A + x2No
MOVSAC No change in AYes
MPY A = x * y No
MPY A = x 2No
MPY.N A = – x * y No
MSC A = A – x * y Yes
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 23
dsPIC33FJ12MC201/202
FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM
Zero Backfill
Sign-Extend
Barrel
Shifter
40-bit Accumulator A
40-bit Accumulator B Round
Logic
X Data Bus
To/From W Array
Adder
Saturate
Negate
32
32
33
16
16 16
16
40 40
40 40
S
a
t
u
r
a
t
e
Y Data Bus
40
Carry/Borrow Out
Carry/Borrow In
16
40
Multiplier/Scaler
17-bit
dsPIC33FJ12MC201/202
DS70265D-page 24 Preliminary © 2009 Microchip Technology Inc.
3.6.1 MULTIPLIER
The 17-bit x 17-bit multiplier is capable of signed or
unsigned operation and can multiplex its output using a
scaler to support either 1.31 fractional (Q31) or 32-bit
integer results. Unsigned operands are zero-extended
into the 17th bit of the multiplier input value. Signed
operands are sign-extended into the 17th bit of the
multiplier input value. The output of the 17-bit x 17-bit
multiplier/scaler is a 33-bit value that is sign-extended
to 40 bits. Integer data is inherently represented as a
signed 2’s complement value, where the Most Signifi-
cant bit (MSb) is defined as a sign bit. The range of an
N-bit 2’s complement integer is -2N-1 to 2N-1 – 1.
For a 16-bit integer, the data range is -32768
(0x8000) to 32767 (0x7FFF) including 0.
For a 32-bit integer, the data range is
-2,147,483,648 (0x8000 0000) to 2,147,483,647
(0x7FFF FFFF).
When the multiplier is configured for fractional
multiplication, the data is represented as a 2’s
complement fraction, where the MSb is defined as a
sign bit and the radix point is implied to lie just after the
sign bit (QX format). The range of an N-bit 2’s
complement fraction with this implied radix point is -1.0
to (1 – 21-N). For a 16-bit fraction, the Q15 data range
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0
and has a precision of 3.01518x10-5. In Fractional
mode, the 16 x 16 multiply operation generates a 1.31
product that has a precision of 4.65661 x 10-10.
The same multiplier is used to support the MCU
multiply instructions, which include integer 16-bit
signed, unsigned and mixed sign multiply operations.
The MUL instruction can be directed to use byte- or
word-sized operands. Byte operands will direct a 16-bit
result, and word operands will direct a 32-bit result to
the specified register(s) in the W array.
3.6.2 DATA ACCUMULATORS AND
ADDER/SUBTRACTER
The data accumulator consists of a 40-bit adder/
subtracter with automatic sign extension logic. It can
select one of two accumulators (A or B) as its pre-
accumulation source and post-accumulation
destination. For the ADD and LAC instructions, the data
to be accumulated or loaded can be optionally scaled
using the barrel shifter prior to accumulation.
3.6.2.1 Adder/Subtracter, Overflow and
Saturation
The adder/subtracter is a 40-bit adder with an optional
zero input into one side, and either true or complement
data into the other input.
In the case of addition, the Carry/Borrow input is
active-high and the other input is true data (not
complemented).
In the case of subtraction, the Carry/Borrow input
is active-low and the other input is complemented.
The adder/subtracter generates Overflow Status bits,
SA/SB and OA/OB, which are latched and reflected in
the STATUS register:
Overflow from bit 39: this is a catastrophic
overflow in which the sign of the accumulator is
destroyed.
Overflow into guard bits 32 through 39: this is a
recoverable overflow. This bit is set whenever all
the guard bits are not identical to each other.
The adder has an additional saturation block that
controls accumulator data saturation, if selected. It
uses the result of the adder, the Overflow Status bits
described previously and the SAT<A:B>
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode
control bits to determine when and to what value, to
saturate.
Six STATUS register bits support saturation and
overflow:
OA: ACCA overflowed into guard bits
OB: ACCB overflowed into guard bits
SA: ACCA saturated (bit 31 overflow and
saturation)
or
ACCA overflowed into guard bits and
saturated (bit 39 overflow and saturation)
SB: ACCB saturated (bit 31 overflow and
saturation)
or
ACCB overflowed into guard bits and
saturated (bit 39 overflow and saturation)
OAB: Logical OR of OA and OB
SAB: Logical OR of SA and SB
The OA and OB bits are modified each time data
passes through the adder/subtracter. When set, they
indicate that the most recent operation has overflowed
into the accumulator guard bits (bits 32 through 39).
The OA and OB bits can also optionally generate an
arithmetic warning trap when OA and OB are set and
the corresponding Overflow Trap Flag Enable bits
(OVATE, OVBTE) in the INTCON1 register are set
(refer to Section 7.0 “Interrupt Controller”). This
allows the user application to take immediate action; for
example, to correct system gain.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 25
dsPIC33FJ12MC201/202
The SA and SB bits are modified each time data
passes through the adder/subtracter, but can only be
cleared by the user application. When set, they indicate
that the accumulator has overflowed its maximum
range (bit 31 for 32-bit saturation or bit 39 for 40-bit
saturation) and will be saturated (if saturation is
enabled). When saturation is not enabled, SA and SB
default to bit 39 overflow, and therefore, indicate that a
catastrophic overflow has occurred. If the COVTE bit in
the INTCON1 register is set, the SA and SB bits will
generate an arithmetic warning trap when saturation is
disabled.
The Overflow and Saturation Status bits can optionally
be viewed in the STATUS Register (SR) as the logical
OR of OA and OB (in bit OAB) and the logical OR of SA
and SB (in bit SAB). Programmers can check one bit in
the STATUS register to determine whether either
accumulator has overflowed, or one bit to determine
whether either accumulator has saturated. This is
useful for complex number arithmetic, which typically
uses both accumulators.
The device supports three Saturation and Overflow
modes:
Bit 39 Overflow and Saturation:
When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive 9.31
value (0x7FFFFFFFFF) or maximally negative 9.31
value (0x8000000000) into the target accumulator.
The SA or SB bit is set and remains set until
cleared by the user application. This condition is
referred to as ‘super saturation’ and provides pro-
tection against erroneous data or unexpected algo-
rithm problems (such as gain calculations).
Bit 31 Overflow and Saturation:
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally positive
1.31 value (0x007FFFFFFF) or maximally nega-
tive 1.31 value (0x0080000000) into the target
accumulator. The SA or SB bit is set and remains
set until cleared by the user application. When
this Saturation mode is in effect, the guard bits are
not used, so the OA, OB or OAB bits are never
set.
Bit 39 Catastrophic Overflow:
The bit 39 Overflow Status bit from the adder is
used to set the SA or SB bit, which remains set
until cleared by the user application. No saturation
operation is performed, and the accumulator is
allowed to overflow, destroying its sign. If the
COVTE bit in the INTCON1 register is set, a
catastrophic overflow can initiate a trap exception.
3.6.3 ACCUMULATOR ‘WRITE BACK’
The MAC class of instructions (with the exception of
MPY, MPY.N, ED, and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator which is not targeted by the instruc-
tion into data space memory. The write is performed
across the X bus into combined X and Y address
space. The following addressing modes are supported:
W13, Register Direct:
The rounded contents of the non-target
accumulator are written into W13 as a
1.15 fraction.
[W13] + = 2, Register Indirect with Post-Increment:
The rounded contents of the non-target accumu-
lator are written into the address pointed to by
W13 as a 1.15 fraction. W13 is then incremented
by 2 (for a word write).
dsPIC33FJ12MC201/202
DS70265D-page 26 Preliminary © 2009 Microchip Technology Inc.
3.6.3.1 Round Logic
The round logic is a combinational block that performs
a conventional (biased) or convergent (unbiased)
round function during an accumulator write (store). The
Round mode is determined by the state of the RND bit
in the CORCON register. It generates a 16-bit, 1.15
data value that is passed to the data space write
saturation logic. If rounding is not indicated by the
instruction, a truncated 1.15 data value is stored and
the least significant word (lsw) is simply discarded.
Conventional rounding will zero-extend bit 15 of the
accumulator and will add it to the ACCxH word (bits 16
through 31 of the accumulator).
If the ACCxL word (bits 0 through 15 of the accu-
mulator) is between 0x8000 and 0xFFFF (0x8000
included), ACCxH is incremented.
If ACCxL is between 0x0000 and 0x7FFF, ACCxH
is left unchanged.
A consequence of this algorithm is that over a succes-
sion of random rounding operations, the value tends to
be biased slightly positive.
Convergent (or unbiased) rounding operates in the
same manner as conventional rounding, except when
ACCxL equals 0x8000. In this case, the Least
Significant bit (LSb), bit 16 of the accumulator, of
ACCxH is examined:
If it is ‘1’, ACCxH is incremented.
If it is ‘0’, ACCxH is not modified.
Assuming that bit 16 is effectively random in nature,
this scheme removes any rounding bias that may
accumulate.
The SAC and SAC.R instructions store either a
truncated (SAC), or rounded (SAC.R) version of the
contents of the target accumulator to data memory via
the X bus, subject to data saturation (see
Section 3.6.3.2 “Data Space Write Saturation”). For
the MAC class of instructions, the accumulator write-
back operation functions in the same manner,
addressing combined MCU (X and Y) data space
though the X bus. For this class of instructions, the data
is always subject to rounding.
3.6.3.2 Data Space Write Saturation
In addition to adder/subtracter saturation, writes to data
space can also be saturated, but without affecting the
contents of the source accumulator. The data space
write saturation logic block accepts a 16-bit, 1.15
fractional value from the round logic block as its input,
together with overflow status from the original source
(accumulator) and the 16-bit round adder. These inputs
are combined and used to select the appropriate 1.15
fractional value as output to write to data space
memory.
If the SATDW bit in the CORCON register is set, data
(after rounding or truncation) is tested for overflow and
adjusted accordingly:
For input data greater than 0x007FFF, data
written to memory is forced to the maximum
positive 1.15 value, 0x7FFF.
For input data less than 0xFF8000, data written to
memory is forced to the maximum negative 1.15
value, 0x8000.
The MSb of the source (bit 39) is used to determine the
sign of the operand being tested.
If the SATDW bit in the CORCON register is not set, the
input data is always passed through unmodified under
all conditions.
3.6.4 BARREL SHIFTER
The barrel shifter can perform up to 16-bit arithmetic or
logic right shifts, or up to 16-bit left shifts, in a single
cycle. The source can be either of the two DSP
accumulators or the X bus (to support multi-bit shifts of
register or memory data).
The shifter requires a signed binary value to determine
both the magnitude (number of bits) and direction of the
shift operation. A positive value shifts the operand right.
A negative value shifts the operand left. A value of ‘0
does not modify the operand.
The barrel shifter is 40 bits wide, thereby obtaining a
40-bit result for DSP shift operations and a 16-bit result
for MCU shift operations. Data from the X bus is
presented to the barrel shifter between bit positions 16
and 31 for right shifts, and between bit positions 0 and
16 for left shifts.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 27
dsPIC33FJ12MC201/202
4.0 MEMORY ORGANIZATION
The dsPIC33FJ12MC201/202 architecture features
separate program and data memory spaces and
buses. This architecture also allows the direct access
of program memory from the data space during code
execution.
4.1 Program Address Space
The program address memory space of the
dsPIC33FJ12MC201/202 devices is 4M instructions.
The space is addressable by a 24-bit value derived
either from the 23-bit Program Counter (PC) during
program execution, or from table operation or data
space remapping as described in Section 4.6
“Interfacing Program and Data Memory Spaces”.
User application access to the program memory space
is restricted to the lower half of the address range
(0x000000 to 0x7FFFFF). The exception is the use of
TBLRD/TBLWT operations, which use TBLPAG<7> to
permit access to the Configuration bits and Device ID
sections of the configuration memory space.
The memory map for the dsPIC33FJ12MC201/202
family of devices is shown in Figure 4-1.
FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ12MC201/202 DEVICES
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 4. “Program
Memory” (DS70202), which is available
from the Microchip web site
(www.microchip.com).
Reset Address
0x000000
0x0000FE
0x000002
0x000100
Device Configuration
User Program
Flash Memory
0x002000
0x001FFE
(4K instructions)
0x800000
0xF80000
Registers
0xF80017
0xF80018
DEVID (2)
0xFEFFFE
0xFF0000
0xFFFFFE
0xF7FFFE
Unimplemented
(Read ‘
0
’s)
GOTO
Instruction
0x000004
Reserved
0x7FFFFE
Reserved
0x000200
0x0001FE
0x000104
Alternate Vector Table
Reserved
Interrupt Vector Table
dsPIC33FJ12MC201/202
Configuration Memory Space User Memory Space
dsPIC33FJ12MC201/202
DS70265D-page 28 Preliminary © 2009 Microchip Technology Inc.
4.1.1 PROGRAM MEMORY
ORGANIZATION
The program memory space is organized in word-
addressable blocks. Although it is treated as 24 bits
wide, it is more appropriate to think of each address of
the program memory as a lower and upper word, with
the upper byte of the upper word being unimplemented.
The lower word always has an even address, while the
upper word has an odd address (Figure 4-2).
Program memory addresses are always word-aligned
on the lower word, and addresses are incremented or
decremented by two during code execution. This
arrangement provides compatibility with data memory
space addressing and makes data in the program
memory space accessible.
4.1.2 INTERRUPT AND TRAP VECTORS
All dsPIC33FJ12MC201/202 devices reserve the
addresses between 0x00000 and 0x000200 for hard-
coded program execution vectors. A hardware Reset
vector is provided to redirect code execution from the
default value of the PC on device Reset to the actual
start of code. A GOTO instruction is programmed by the
user application at 0x000000, with the actual address
for the start of code at 0x000002.
dsPIC33FJ12MC201/202 devices also have two
interrupt vector tables, located from 0x000004 to
0x0000FF and 0x000100 to 0x0001FF. These vector
tables allow each of the device interrupt sources to be
handled by separate Interrupt Service Routines (ISRs).
A more detailed discussion of the interrupt vector
tables is provided in Section 7.1 “Interrupt Vector
Table.
FIGURE 4-2: PROGRAM MEMORY ORGANIZATION
0816
PC Address
0x000000
0x000002
0x000004
0x000006
23
00000000
00000000
00000000
00000000
Program Memory
‘Phantom’ Byte
(read as ‘0’)
least significant word (lsw)
most significant word (msw)
Instruction Width
0x000001
0x000003
0x000005
0x000007
msw
Address (lsw Address)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 29
dsPIC33FJ12MC201/202
4.2 Data Address Space
The dsPIC33FJ12MC201/202 CPU has a separate 16-
bit-wide data memory space. The data space is
accessed using separate Address Generation Units
(AGUs) for read and write operations. The data
memory maps is shown in Figure 4-3.
All Effective Addresses (EAs) in the data memory space
are 16 bits wide and point to bytes within the data space.
This arrangement gives a data space address range of
64 Kbytes or 32K words. The lower half of the data
memory space (that is, when EA<15> = 0) is used for
implemented memory addresses, while the upper half
(EA<15> = 1) is reserved for the Program Space
Visibility area (see Section 4.6.3 “Reading Data from
Program Memory Using Program Space Visibility”).
Microchip dsPIC33FJ12MC201/202 devices imple-
ment up to 30 Kbytes of data memory. Should an EA
point to a location outside of this area, an all-zero word
or byte will be returned.
4.2.1 DATA SPACE WIDTH
The data memory space is organized in byte
addressable, 16-bit wide blocks. Data is aligned in data
memory and registers as 16-bit words, but all data
space EAs resolve to bytes. The Least Significant
Bytes (LSBs) of each word have even addresses, while
the Most Significant Bytes (MSBs) have odd
addresses.
4.2.2 DATA MEMORY ORGANIZATION
AND ALIGNMENT
To maintain backward compatibility with PIC® MCU
devices and improve data space memory usage
efficiency, the dsPIC33FJ12MC201/202 instruction set
supports both word and byte operations. As a
consequence of byte accessibility, all effective address
calculations are internally scaled to step through word-
aligned memory. For example, the core recognizes that
Post-Modified Register Indirect Addressing mode
[Ws++] will result in a value of Ws + 1 for byte
operations and Ws + 2 for word operations.
Data byte reads will read the complete word that
contains the byte, using the LSB of any EA to
determine which byte to select. The selected byte is
placed onto the LSB of the data path. That is, data
memory and registers are organized as two parallel
byte-wide entities with shared (word) address decoding
but separate write lines. Data byte writes only write to
the corresponding side of the array or register that
matches the byte address.
All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported, so
care must be taken when mixing byte and word
operations, or translating from 8-bit MCU code. If a
misaligned read or write is attempted, an address error
trap is generated. If the error occurred on a read, the
instruction in progress is completed. If the error
occurred on a write, the instruction is executed but the
write does not occur. In either case, a trap is then exe-
cuted, allowing the system and/or user application to
examine the machine state prior to execution of the
address Fault.
All byte loads into any W register are loaded into the
LSB. The MSB is not modified.
A sign-extend instruction (SE) is provided to allow user
applications to translate 8-bit signed data to 16-bit
signed values. Alternately, for 16-bit unsigned data,
user applications can clear the MSB of any W register
by executing a zero-extend (ZE) instruction on the
appropriate address.
4.2.3 SFR SPACE
The first 2 Kbytes of the Near Data Space, from 0x0000
to 0x07FF, is primarily occupied by Special Function
Registers (SFRs). These are used by the
dsPIC33FJ12MC201/202 core and peripheral modules
for controlling the operation of the device.
SFRs are distributed among the modules that they
control, and are generally grouped together by module.
Much of the SFR space contains unused addresses;
these are read as ‘0’.
4.2.4 NEAR DATA SPACE
The 8-Kbyte area between 0x0000 and 0x1FFF is
referred to as the near data space. Locations in this
space are directly addressable via a 13-bit absolute
address field within all memory direct instructions.
Additionally, the whole data space is addressable using
MOV class of instructions, which support Memory Direct
Addressing mode with a 16-bit address field, or by
using Indirect Addressing mode with a working register
as an address pointer.
Note: The actual set of peripheral features and
interrupts varies by the device. Refer to
the corresponding device tables and pin-
out diagrams for device-specific
information.
dsPIC33FJ12MC201/202
DS70265D-page 30 Preliminary © 2009 Microchip Technology Inc.
FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ12MC201/202 DEVICES WITH 1 KB RAM
0x0000
0x07FE
0x0BFE
0xFFFE
LSB
Address
16 bits
LSbMSb
MSB
Address
0x0001
0x07FF
0xFFFF
Optionally
Mapped
into Program
Memory
0x0801 0x0800
0x0C00
2 Kbyte
SFR Space
1 Kbyte
SRAM Space
0x8001 0x8000
SFR Space
X Data RAM (X)
X Data
Unimplemented (X)
Y Data RAM (Y)
0x09FE
0x0A00
0x09FF
0x0A01
0x0BFF
0x0C01
0x1FFF 0x1FFE
0x2001 0x2000
8 Kbyte
Near Data
Space
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 31
dsPIC33FJ12MC201/202
4.2.5 X AND Y DATA SPACES
The core has two data spaces, X and Y. These data
spaces can be considered either separate (for some
DSP instructions), or as one unified linear address
range (for MCU instructions). The data spaces are
accessed using two Address Generation Units (AGUs)
and separate data paths. This feature allows certain
instructions to concurrently fetch two words from RAM,
thereby enabling efficient execution of DSP algorithms
such as Finite Impulse Response (FIR) filtering and
fast Fourier transform (FFT).
The X data space is used by all instructions and
supports all addressing modes. X data space has
separate read and write data buses. The X read data
bus is the read data path for all instructions that view
data space as combined X and Y address space. It is
also the X data prefetch path for the dual operand DSP
instructions (MAC class).
The Y data space is used in concert with the X data
space by the MAC class of instructions (CLR, ED,
EDAC, MAC, MOVSAC, MPY, MPY.N, and MSC) to provide
two concurrent data read paths.
Both the X and Y data spaces support Modulo
Addressing mode for all instructions, subject to
addressing mode restrictions. Bit-Reversed Addressing
mode is only supported for writes to X data space.
All data memory writes, including in DSP instructions,
view data space as combined X and Y address space.
The boundary between the X and Y data spaces is
device-dependent and is not user-programmable.
All effective addresses are 16 bits wide and point to
bytes within the data space. Therefore, the data space
address range is 64 Kbytes, or 32K words, although the
implemented memory locations vary by device.
dsPIC33FJ12MC201/202
DS70265D-page 32 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-1: CPU CORE REGISTERS MAP
SFR Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
WREG0 0000 Working Register 0
0000
WREG1 0002 Working Register 1
0000
WREG2 0004 Working Register 2
0000
WREG3 0006 Working Register 3
0000
WREG4 0008 Working Register 4
0000
WREG5 000A Working Register 5
0000
WREG6 000C Working Register 6
0000
WREG7 000E Working Register 7
0000
WREG8 0010 Working Register 8
0000
WREG9 0012 Working Register 9
0000
WREG10 0014 Working Register 10
0000
WREG11 0016 Working Register 11
0000
WREG12 0018 Working Register 12
0000
WREG13 001A Working Register 13
0000
WREG14 001C Working Register 14
0000
WREG15 001E Working Register 15
0800
SPLIM 0020 Stack Pointer Limit Register
xxxx
ACCAL 0022 Accumulator A Low Word Register
0000
ACCAH 0024 Accumulator A High Word Register
0000
ACCAU 0026 Accumulator A Upper Word Register
0000
ACCBL 0028 Accumulator B Low Word Register
0000
ACCBH 002A Accumulator B High Word Register
0000
ACCBU 002C Accumulator B Upper Word Register
0000
PCL 002E Program Counter Low Word Register
0000
PCH 0030 Program Counter High Byte Register
0000
TBLPAG 0032 Table Page Address Pointer Register
0000
PSVPAG 0034 Program Memory Visibility Page Address Pointer Register
0000
RCOUNT 0036 Repeat Loop Counter Register
xxxx
DCOUNT 0038 DCOUNT<15:0> xxxx
DOSTARTL 003A DOSTARTL<15:1> 0xxxx
DOSTARTH 003C
DOSTARTH<5:0> 00xx
DOENDL 003E DOENDL<15:1> 0xxxx
DOENDH 0040
DOENDH 00xx
SR 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C
0000
CORCON 0044 US EDT DL<2:0>
SATA SATB SATDW ACCSAT IPL3 PSV RND IF
0020
MODCON 0046 XMODEN YMODEN
BWM<3:0> YWM<3:0> XWM<3:0> 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 33
dsPIC33FJ12MC201/202
XMODSRT 0048 XS<15:1> 0xxxx
XMODEND 004A XE<15:1> 1xxxx
YMODSRT 004C YS<15:1> 0xxxx
YMODEND 004E YE<15:1> 1xxxx
XBREV 0050 BREN XB<14:0> xxxx
DISICNT 0052
Disable Interrupts Counter
Register
xxxx
TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)
SFR Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ12MC202
SFR
Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
CNEN1
0060 CN15IE CN14IE CN13IE CN12IE CN11IE
CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE
0000
CNEN2
0062
CN30IE CN29IE
CN27IE
CN24IE CN23IE CN22IE CN21IE
————
CN16IE
0000
CNPU1
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE
0000
CNPU2
006A
CN30PUE CN29PUE
CN27PUE
CN24PUE CN23PUE CN22PUE CN21PUE
————
CN16PUE
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ12MC201
SFR
Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
CNEN1 0060 CN14IE CN13IE CN12IE CN11IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE
0000
CNEN2 00C2 CN30IE CN29IE CN23IE CN22IE CN21IE
0000
CNPU1 0068 CN14PUE CN13PUE CN12PUE CN11PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE
0000
CNPU2 006A CN30PUE CN29PUE CN23PUE CN22PUE CN21PUE
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
dsPIC33FJ12MC201/202
DS70265D-page 34 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP
SFR
Name
SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR MATHERR ADDRERR STKERR OSCFAIL 0000
INTCON2 0082 ALTIVT DISI INT2EP INT1EP INT0EP 0000
IFS0 0084 AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF 0000
IFS1 0086 —INT2IF —IC8IFIC7IF—INT1IFCNIF—MI2C1IFSI2C1IF0000
IFS3 008A FLTA1IF QEIIF PWM1IF 0000
IFS4 008C FLTA2IF PWM2IF —U1EIF0000
IEC0 0094 AD1IE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE 0000
IEC1 0096 —INT2IE —IC8IEIC7IE INT1IE CNIE MI2C1IE SI2C1IE 0000
IEC3 009A FLTA1IE —QEIIEPWM1IE 0000
IEC4 009C FLTA2IE PWM2IE —U1EIE0000
IPC0 00A4 T1IP<2:0> OC1IP<2:0> IC1IP<2:0> INT0IP<2:0> 4444
IPC1 00A6 T2IP<2:0> OC2IP<2:0> IC2IP<2:0> 4440
IPC2 00A8 U1RXIP<2:0> SPI1IP<2:0> SPI1EIP<2:0> T3IP<2:0> 4444
IPC3 00AA AD1IP<2:0> U1TXIP<2:0> 0044
IPC4 00AC CNIP<2:0> MI2C1IP<2:0> SI2C1IP<2:0> 4044
IPC5 00AE —IC8IP<2:0> —IC7IP<2:0> INT1IP<2:0> 4404
IPC7 00B2 INT2IP<2:0> 0040
IPC14 00C0 —QEIIP<2:0> PWM1IP<2:0> 0440
IPC15 00C2 —FLTA1IP<2:0> 4000
IPC16 00C4 U1EIP<2:0> 0040
IPC18 00C8 —FLTA2IP<2:0> PWM2IP<2:0> 0440
INTTREG 00E0 ILR<3:0>> VECNUM<6:0> 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 35
dsPIC33FJ12MC201/202
TABLE 4-5: TIMER REGISTER MAP
SFR
Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
TMR1 0100 Timer1 Register
xxxx
PR1 0102 Period Register 1
FFFF
T1CON 0104 TON
TSIDL
TGATE TCKPS<1:0>
TSYNC TCS
0000
TMR2 0106 Timer2 Register
xxxx
TMR3HLD 0108 Timer3 Holding Register (for 32-bit timer operations only)
xxxx
TMR3 010A Timer3 Register
xxxx
PR2 010C Period Register 2
FFFF
PR3 010E Period Register 3
FFFF
T2CON 0110 TON
TSIDL
TGATE TCKPS<1:0> T32
TCS
0000
T3CON 0112 TON
TSIDL
TGATE TCKPS<1:0>
TCS
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-6: INPUT CAPTURE REGISTER MAP
SFR Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
IC1BUF 0140 Input 1 Capture Register
xxxx
IC1CON 0142
ICSIDL
ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
0000
IC2BUF 0144 Input 2 Capture Register
xxxx
IC2CON 0146
ICSIDL
ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
0000
IC7BUF 0158 Input 7 Capture Register
xxxx
IC7CON 015A
ICSIDL
ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
0000
IC8BUF 015C Input 8Capture Register
xxxx
IC8CON 015E
ICSIDL
ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-7: OUTPUT COMPARE REGISTER MAP
SFR Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
OC1RS 0180 Output Compare 1 Secondary Register
xxxx
OC1R 0182 Output Compare 1 Register
xxxx
OC1CON 0184
OCSIDL
OCFLT OCTSEL OCM<2:0>
0000
OC2RS 0186 Output Compare 2 Secondary Register
xxxx
OC2R 0188 Output Compare 2 Register
xxxx
OC2CON 018A
OCSIDL
OCFLT OCTSEL OCM<2:0>
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
dsPIC33FJ12MC201/202
DS70265D-page 36 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-8: 6-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJ12MC202
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
P1TCON 01C0 PTEN —PTSIDL PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0>
0000 0000 0000 0000
P1TMR 01C2 PTDIR PWM Timer Count Value Register
0000 0000 0000 0000
P1TPER 01C4 PWM Time Base Period Register
0000 0000 0000 0000
P1SECMP 01C6 SEVTDIR PWM Special Event Compare Register
0000 0000 0000 0000
PWM1CON1
01C8 —PMOD3PMOD2PMOD1 PEN3H PEN2H PEN1H PEN3L PEN2L PEN1L
0000 0000 1111 1111
PWM1CON2
01CA SEVOPS<3:0> IUE OSYNC UDIS
0000 0000 0000 0000
P1DTCON1 01CC DTBPS<1:0> DTB<5:0> DTAPS<1:0> DTA<5:0>
0000 0000 0000 0000
P1DTCON2 01CE DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I
0000 0000 0000 0000
P1FLTACON 01D0 FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM FAEN3 FAEN2 FAEN1
0000 0000 0000 0000
P1OVDCON 01D4 POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L
1111 1111 0000 0000
P1DC1 01D6 PWM Duty Cycle 1 Register
0000 0000 0000 0000
P1DC2 01D8 PWM Duty Cycle 2 Register
0000 0000 0000 0000
P1DC3 01DA PWM Duty Cycle 3 Register
0000 0000 0000 0000
Legend: u = uninitialized bit, — = unimplemented, read as ‘0
TABLE 4-9: 4-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJ12MC201
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
P1TCON 01C0 PTEN —PTSIDL PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0>
0000 0000 0000 0000
P1TMR 01C2 PTDIR PWM Timer Count Value Register
0000 0000 0000 0000
P1TPER 01C4 PWM Time Base Period Register
0000 0000 0000 0000
P1SECMP 01C6 SEVTDIR PWM Special Event Compare Register
0000 0000 0000 0000
PWM1CON1
01C8 —PMOD2PMOD1 —PEN2HPEN1H PEN2L PEN1L
0000 0000 1111 1111
PWM1CON2
01CA —SEVOPS<3:0> IUE OSYNC UDIS
0000 0000 0000 0000
P1DTCON1 01CC DTBPS<1:0> DTB<5:0> DTAPS<1:0> DTA<5:0>
0000 0000 0000 0000
P1DTCON2 01CE DTS2A DTS2I DTS1A DTS1I
0000 0000 0000 0000
P1FLTACON 01D0 FAOV2H FAOV2L FAOV1H FAOV1L FLTAM FAEN2 FAEN1
0000 0000 0000 0000
P1OVDCON 01D4 POVD2H POVD2L POVD1H POVD1L POUT2H POUT2L POUT1H POUT1L
1111 1111 0000 0000
P1DC1 01D6 PWM Duty Cycle 1 Register
0000 0000 0000 0000
P1DC2 01D8 PWM Duty Cycle 2 Register
0000 0000 0000 0000
Legend: u = uninitialized bit, — = unimplemented, read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 37
dsPIC33FJ12MC201/202
TABLE 4-10: 2-OUTPUT PWM2 REGISTER MAP
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
P2TCON 05C0 PTEN —PTSIDL PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0> 0000 0000 0000 0000
P2TMR 05C2 PTDIR PWM Timer Count Value Register 0000 0000 0000 0000
P2TPER 05C4 PWM Time Base Period Register 0000 0000 0000 0000
P2SECMP 05C6 SEVTDIR PWM Special Event Compare Register 0000 0000 0000 0000
PWM2CON1 05C8 —PMOD1———PEN1H PEN1L 0000 0000 1111 1111
PWM2CON2 05CA SEVOPS<3:0> IUE OSYNC UDIS 0000 0000 0000 0000
P2DTCON1 05CC DTBPS<1:0> DTB<5:0> DTAPS<1:0> DTA<5:0> 0000 0000 0000 0000
P2DTCON2 05CE —DTS1ADTS1I0000 0000 0000 0000
P2FLTACON 05D0 FAOV1H FAOV1L FLTAM —FAEN10000 0000 0000 0000
P2OVDCON 05D4 POVD1H POVD1L ——— POUT1H POUT1L 1111 1111 0000 0000
P2DC1 05D6 PWM Duty Cycle 1 Register 0000 0000 0000 0000
Legend: u = uninitialized bit, — = unimplemented, read as ‘0
TABLE 4-11: QEI1 REGISTER MAP
SFR
Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
QEI1CON 01E0 CNTERR QEISIDL INDX UPDN QEIM<2:0> SWPAB PCDOUT TQGATE TQCKPS<1:0> POSRES TQCS UPDN_SRC 0000 0000 0000 0000
DFLT1CON 01E2 IMV<1:0> CEID QEOUT QECK<2:0> 0000 0000 0000 0000
POS1CNT 01E4 Position Counter<15:0> 0000 0000 0000 0000
MAX1CNT 01E6 Maximum Count<15:0> 1111 1111 1111 1111
Legend: u = uninitialized bit, — = unimplemented, read as ‘0
TABLE 4-12: I2C1 REGISTER MAP
SFR Name SFR
Addr Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0 All
Resets
I2C1RCV 0200 —————— Receive Register
0000
I2C1TRN 0202 —————— Transmit Register
00FF
I2C1BRG 0204 ————— Baud Rate Generator Register
0000
I2C1CON 0206 I2CEN I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN
1000
I2C1STAT 0208 ACKSTAT TRSTAT —— BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF
0000
I2C1ADD 020A ———— Address Register
0000
I2C1MSK 020C ———— Address Mask Register
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
dsPIC33FJ12MC201/202
DS70265D-page 38 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-13: UART1 REGISTER MAP
SFR Name SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
U1MODE 0220 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE LPBACK ABAUD URXINV BRGH PDSEL<1:0> STSEL
0000
U1STA 0222 UTXISEL1 UTXINV UTXISEL0 UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA
0110
U1TXREG 0224 UART Transmit Register
xxxx
U1RXREG 0226 UART Receive Register
0000
U1BRG 0228 Baud Rate Generator Prescaler
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-14: SPI1 REGISTER MAP
SFR
Name
SFR
Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
SPI1STAT 0240 SPIEN SPISIDL ——————SPIROV——— SPITBF SPIRBF
0000
SPI1CON1 0242 DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE<2:0> PPRE<1:0>
0000
SPI1CON2 0244 FRMEN SPIFSD FRMPOL —————————— FRMDLY
0000
SPI1BUF 0248 SPI1 Transmit and Receive Buffer Register
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 39
dsPIC33FJ12MC201/202
TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJ12MC202
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
ADC1BUF0 0300 ADC Data Buffer 0 xxxx
ADC1BUF1 0302 ADC Data Buffer 1 xxxx
ADC1BUF2 0304 ADC Data Buffer 2 xxxx
ADC1BUF3 0306 ADC Data Buffer 3 xxxx
ADC1BUF4 0308 ADC Data Buffer 4 xxxx
ADC1BUF5 030A ADC Data Buffer 5 xxxx
ADC1BUF6 030C ADC Data Buffer 6 xxxx
ADC1BUF7 030E ADC Data Buffer 7 xxxx
ADC1BUF8 0310 ADC Data Buffer 8 xxxx
ADC1BUF9 0312 ADC Data Buffer 9 xxxx
ADC1BUFA 0314 ADC Data Buffer 10 xxxx
ADC1BUFB 0316 ADC Data Buffer 11 xxxx
ADC1BUFC 0318 ADC Data Buffer 12 xxxx
ADC1BUFD 031A ADC Data Buffer 13 xxxx
ADC1BUFE 031C ADC Data Buffer 14 xxxx
ADC1BUFF 031E ADC Data Buffer 15 xxxx
AD1CON1 0320 ADON —ADSIDL AD12B FORM<1:0> SSRC<2:0> SIMSAM ASAM SAMP DONE 0000
AD1CON2 0322 VCFG<2:0> CSCNA CHPS<1:0> BUFS —SMPI<3:0>BUFMALTS0000
AD1CON3 0324 ADRC SAMC<4:0> ADCS<7:0> 0000
AD1CHS123 0326 CH123NB<1:0> CH123SB CH123NA<1:0> CH123SA 0000
AD1CHS0 0328 CH0NB CH0SB<4:0> CH0NA CH0SA<4:0> 0000
AD1PCFGL 032C PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000
AD1CSSL 0330 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
dsPIC33FJ12MC201/202
DS70265D-page 40 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJ12MC201
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
ADC1BUF0 0300 ADC Data Buffer 0 xxxx
ADC1BUF1 0302 ADC Data Buffer 1 xxxx
ADC1BUF2 0304 ADC Data Buffer 2 xxxx
ADC1BUF3 0306 ADC Data Buffer 3 xxxx
ADC1BUF4 0308 ADC Data Buffer 4 xxxx
ADC1BUF5 030A ADC Data Buffer 5 xxxx
ADC1BUF6 030C ADC Data Buffer 6 xxxx
ADC1BUF7 030E ADC Data Buffer 7 xxxx
ADC1BUF8 0310 ADC Data Buffer 8 xxxx
ADC1BUF9 0312 ADC Data Buffer 9 xxxx
ADC1BUFA 0314 ADC Data Buffer 10 xxxx
ADC1BUFB 0316 ADC Data Buffer 11 xxxx
ADC1BUFC 0318 ADC Data Buffer 12 xxxx
ADC1BUFD 031A ADC Data Buffer 13 xxxx
ADC1BUFE 031C ADC Data Buffer 14 xxxx
ADC1BUFF 031E ADC Data Buffer 15 xxxx
AD1CON1 0320 ADON —ADSIDL AD12B FORM<1:0> SSRC<2:0> SIMSAM ASAM SAMP DONE 0000
AD1CON2 0322 VCFG<2:0> CSCNA CHPS<1:0> BUFS —SMPI<3:0>BUFMALTS0000
AD1CON3 0324 ADRC SAMC<4:0> ADCS<7:0> 0000
AD1CHS123 0326 CH123NB<1:0> CH123SB CH123NA<1:0> CH123SA 0000
AD1CHS0 0328 CH0NB CH0SB<4:0> CH0NA CH0SA<4:0> 0000
AD1PCFGL 032C PCFG3 PCFG2 PCFG1 PCFG0 0000
AD1CSSL 0330 CSS3 CSS2 CSS1 CSS0 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 41
dsPIC33FJ12MC201/202
TABLE 4-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
RPINR0 0680 INT1R<4:0> 1F00
RPINR1 0682 —INT2R<4:0>
001F
RPINR3 0686 —T3CKR<4:0> —T2CKR<4:0>
1F1F
RPINR7 068E IC2R<4:0> IC1R<4:0> 1F1F
RPINR10 0694 IC8R<4:0> IC7R<4:0> 1F1F
RPINR11 0696 —OCFAR<4:0>
001F
RPINR12 0698 FLTA1R<4:0> 001F
RPINR13 069A FLTA2R<4:0> 001F
RPINR14 069C —QEB1R<4:0> QEA1R<4:0> 1F1F
RPINR15 069E INDX1R<4:0> 001F
RPINR18 06A4 U1CTSR<4:0> —U1RXR<4:0>
1F1F
RPINR20 06A8 —SCK1R<4:0> —SDI1R<4:0>
1F1F
RPINR21 06AA SS1R<4:0> 001F
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ12MC202
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
RPOR0 06C0 RP1R<4:0> ——— RP0R<4:0> 0000
RPOR1 06C2 —RP3R<4:0>—— RP2R<4:0> 0000
RPOR2 06C4 —RP5R<4:0>—— RP4R<4:0> 0000
RPOR3 06C6 —RP7R<4:0>—— RP6R<4:0> 0000
RPOR4 06C8 —RP9R<4:0>—— RP8R<4:0> 0000
RPOR5 06CA —RP11R<4:0>———RP10R<4:0>
0000
RPOR6 06CC RP13R<4:0> ———RP12R<4:0>
0000
RPOR7 06CE RP15R<4:0> ———RP14R<4:0>
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
dsPIC33FJ12MC201/202
DS70265D-page 42 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-19: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ12MC201
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets
RPOR0 06C0 RP1R<4:0> RP0R<4:0> 0000
RPOR2 06C4 —RP4R<4:0>
0000
RPOR3 06C6 RP7R<4:0> 0000
RPOR4 06C8 RP9R<4:0> —RP8R<4:0>
0000
RPOR6 06CC —RP13R<4:0> RP12R<4:0> 0000
RPOR7 06CE —RP15R<4:0> RP14R<4:0> 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-20: PORTA REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets
TRISA 02C0
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0
001F
PORTA 02C2
RA4 RA3 RA2 RA1 RA0
xxxx
LATA 02C4
LATA4 LATA3 LATA2 LATA1 LATA0
xxxx
ODCA 02C6
ODCA4 ODCA3 ODCA2 ODCA1 ODCA0
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-21: PORTB REGISTER MAP FOR dsPIC33FJ12MC202
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets
TRISB 02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0
FFFF
PORTB 02CA RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0
xxxx
LATB 02CC LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0
xxxx
ODCB 02CE
ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10 ODCB9 ODCB8 ODCB7 ODCB6 ODCB5 ODCB4 ODCB3 ODCB2 ODCB1 ODCB0
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-22: PORTB REGISTER MAP FOR dsPIC33FJ12MC201
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets
TRISB 02C8 TRISB15 TRISB14 TRISB13 TRISB12
TRISB9 TRISB8 TRISB7
TRISB4
TRISB1 TRISB0 F393
PORTB 02CA RB15 RB14 RB13 RB12
RB9 RB8 RB7
RB4
RB1 RB0 xxxx
LATB 02CC LATB15 LATB14 LATB13 LATB12
LATB9 LATB8 LATB7
LATB4
LATB1 LATB0 xxxx
ODCB 02CE ODCB15 ODCB14 ODCB13 ODCB12
ODCB9 ODCB8 ODCB7
ODCB4
ODCB1 ODCB0 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 43
dsPIC33FJ12MC201/202
TABLE 4-23: SYSTEM CONTROL REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
RCON 0740 TRAPR IOPUWR ——— CM VREGS EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR
xxxx
(1)
OSCCON 0742 —COSC<2:0> NOSC<2:0> CLKLOCK IOLOCK LOCK —CF LPOSCEN OSWEN 0300
(2)
CLKDIV 0744 ROI DOZE<2:0> DOZEN FRCDIV<2:0> PLLPOST<1:0> PLLPRE<4:0> 3040
PLLFBD 0746 PLLDIV<8:0> 0030
OSCTUN 0748 —TUN<5:0>0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: RCON register Reset values dependent on type of Reset.
2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.
TABLE 4-24: NVM REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
NVMCON 0760 WR WREN WRERR ——————ERASE—NVMOP<3:0>
0000
(1)
NVMKEY 0766
——————— NVMKEY<7:0>
0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.
TABLE 4-25: PMD REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
PMD1 0770 T3MD T2MD T1MD QEIMD PWM1MD I2C1MD U1MD SPI1MD AD1MD 0000
PMD2 0772 IC8MD IC7MD —IC2MDIC1MD —OC2MDOC1MD0000
PMD3 0774 —PWM2MD 0000
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
dsPIC33FJ12MC201/202
DS70265D-page 44 Preliminary © 2009 Microchip Technology Inc.
4.2.6 SOFTWARE STACK
In addition to its use as a working register, the W15
register in the dsPIC33FJ12MC201/202 devices is also
used as a software Stack Pointer. The Stack Pointer
always points to the first available free word and grows
from lower to higher addresses. It pre-decrements for
stack pops and post-increments for stack pushes, as
shown in Figure 4-4. For a PC push during any CALL
instruction, the MSb of the PC is zero-extended before
the push, ensuring that the MSb is always clear.
The Stack Pointer Limit register (SPLIM) associated
with the Stack Pointer sets an upper address boundary
for the stack. SPLIM is uninitialized at Reset. As is the
case for the Stack Pointer, SPLIM<0> is forced to ‘0
because all stack operations must be word aligned.
Whenever an EA is generated using W15 as a source
or destination pointer, the resulting address is
compared with the value in SPLIM. If the contents of
the Stack Pointer (W15) and the SPLIM register are
equal and a push operation is performed, a stack error
trap will not occur. However, the stack error trap will
occur on a subsequent push operation. For example, to
cause a stack error trap when the stack grows beyond
address 0x0C00 in RAM, initialize the SPLIM with the
value 0x0BFE.
Similarly, a Stack Pointer underflow (stack error) trap is
generated when the Stack Pointer address is found to
be less than 0x0800. This prevents the stack from
interfering with the SFR space.
A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.
FIGURE 4-4: CALL STACK FRAME
4.2.7 DATA RAM PROTECTION FEATURE
The dsPIC33F product family supports Data RAM
protection features that enable segments of RAM to be
protected when used in conjunction with Boot and
Secure Code Segment Security. BSRAM (Secure RAM
segment for BS) is accessible only from the Boot
Segment Flash code, when enabled. SSRAM (Secure
RAM segment for RAM) is accessible only from the
Secure Segment Flash code, when enabled. See
Table 4-1 for an overview of the BSRAM and SSRAM
SFRs.
4.3 Instruction Addressing Modes
The addressing modes shown in Table 4-26 form the
basis of the addressing modes that are optimized to
support the specific features of individual instructions.
The addressing modes provided in the MAC class of
instructions differ from those provided in other
instruction types.
4.3.1 FILE REGISTER INSTRUCTIONS
Most file register instructions use a 13-bit address field
(f) to directly address data present in the first 8192
bytes of data memory (near data space). Most file
register instructions employ a working register, W0,
which is denoted as WREG in these instructions. The
destination is typically either the same file register or
WREG (with the exception of the MUL instruction),
which writes the result to a register or register pair. The
MOV instruction allows additional flexibility and can
access the entire data space.
4.3.2 MCU INSTRUCTIONS
The three-operand MCU instructions are of the form:
Operand 3 = Operand 1 <function> Operand 2
where Operand 1 is always a working register (that is,
the addressing mode can only be register direct), which
is referred to as Wb. Operand 2 can be a W register,
fetched from data memory, or a 5-bit literal. The result
location can be either a W register or a data memory
location. The following addressing modes are
supported by MCU instructions:
Register Direct
Register Indirect
Register Indirect Post-Modified
Register Indirect Pre-Modified
5-bit or 10-bit Literal
Note: A PC push during exception processing
concatenates the SRL register to the MSb
of the PC prior to the push.
<Free Word>
PC<15:0>
000000000
015
W15 (before CALL)
W15 (after CALL)
Stack Grows Toward
Higher Address
0x0000
PC<22:16>
POP : [--W15]
PUSH : [W15++]
Note: Not all instructions support all the
addressing modes given above. Individual
instructions can support different subsets
of these addressing modes.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 45
dsPIC33FJ12MC201/202
TABLE 4-26: FUNDAMENTAL ADDRESSING MODES SUPPORTED
4.3.3 MOVE AND ACCUMULATOR
INSTRUCTIONS
Move instructions and the DSP accumulator class of
instructions provide a greater degree of addressing
flexibility than other instructions. In addition to the
addressing modes supported by most MCU
instructions, move and accumulator instructions also
support Register Indirect with Register Offset
Addressing mode, also referred to as Register Indexed
mode.
In summary, the following addressing modes are
supported by move and accumulator instructions:
Register Direct
Register Indirect
Register Indirect Post-modified
Register Indirect Pre-modified
Register Indirect with Register Offset (Indexed)
Register Indirect with Literal Offset
8-bit Literal
16-bit Literal
4.3.4 MAC INSTRUCTIONS
The dual source operand DSP instructions (CLR, ED,
EDAC, MAC, MPY, MPY.N, MOVSAC, and MSC), also
referred to as MAC instructions, use a simplified set of
addressing modes to allow the user application to
effectively manipulate the data pointers through register
indirect tables.
The two-source operand prefetch registers must be
members of the set {W8, W9, W10, W11}. For data
reads, W8 and W9 are always directed to the X RAGU,
and W10 and W11 are always directed to the Y AGU.
The effective addresses generated (before and after
modification) must, therefore, be valid addresses within
X data space for W8 and W9 and Y data space for W10
and W11.
In summary, the following addressing modes are
supported by the MAC class of instructions:
Register Indirect
Register Indirect Post-Modified by 2
Register Indirect Post-Modified by 4
Register Indirect Post-Modified by 6
Register Indirect with Register Offset (Indexed)
4.3.5 OTHER INSTRUCTIONS
In addition to the addressing modes outlined previously,
some instructions use literal constants of various sizes.
For example, BRA (branch) instructions use 16-bit signed
literals to specify the branch destination directly, whereas
the DISI instruction uses a 14-bit unsigned literal field. In
some instructions, such as ADD Acc, the source of an
operand or result is implied by the opcode itself. Certain
operations, such as NOP, do not have any operands.
Addressing Mode Description
File Register Direct The address of the file register is specified explicitly.
Register Direct The contents of a register are accessed directly.
Register Indirect The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified The contents of Wn forms the EA. Wn is post-modified (incremented
or decremented) by a constant value.
Register Indirect Pre-Modified Wn is pre-modified (incremented or decremented) by a signed constant value
to form the EA.
Register Indirect with Register Offset
(Register Indexed)
The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset The sum of Wn and a literal forms the EA.
Note: For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA.
However, the 4-bit Wb (Register Offset)
field is shared by both source and
destination (but typically only used by
one).
Note: Not all instructions support all the address-
ing modes given above. Individual instruc-
tions may support different subsets of
these addressing modes.
Note: Register Indirect with Register Offset
Addressing mode is available only for W9
(in X space) and W11 (in Y space).
dsPIC33FJ12MC201/202
DS70265D-page 46 Preliminary © 2009 Microchip Technology Inc.
4.4 Modulo Addressing
Modulo Addressing mode is a method of providing an
automated means to support circular data buffers using
hardware. The objective is to remove the need for
software to perform data address boundary checks
when executing tightly looped code, as is typical in
many DSP algorithms.
Modulo Addressing can operate in either data or program
space (since the data pointer mechanism is essentially
the same for both). One circular buffer can be supported
in each of the X (which also provides the pointers into
program space) and Y data spaces. Modulo Addressing
can operate on any W register pointer. However, it is not
advisable to use W14 or W15 for Modulo Addressing
since these two registers are used as the Stack Frame
Pointer and Stack Pointer, respectively.
In general, any particular circular buffer can be config-
ured to operate in only one direction as there are
certain restrictions on the buffer start address (for incre-
menting buffers), or end address (for decrementing
buffers), based upon the direction of the circular buffer.
The only exception to the usage restrictions is for
buffers that have a power-of-two length. As these
buffers satisfy the start and end address criteria, they
can operate in a bidirectional mode (that is, address
boundary checks are performed on both the lower and
upper address boundaries).
4.4.1 START AND END ADDRESS
The Modulo Addressing scheme requires that a
starting and ending address be specified and loaded
into the 16-bit Modulo Buffer Address registers:
XMODSRT, XMODEND, YMODSRT, and YMODEND
(see Table 4-1).
The length of a circular buffer is not directly specified. It
is determined by the difference between the
corresponding start and end addresses. The maximum
possible length of the circular buffer is 32K words
(64 Kbytes).
4.4.2 W ADDRESS REGISTER
SELECTION
The Modulo and Bit-Reversed Addressing Control
register, MODCON<15:0>, contains enable flags as well
as a W register field to specify the W Address registers.
The XWM and YWM fields select the registers that will
operate with Modulo Addressing:
•If XWM = 15, X RAGU and X WAGU Modulo
Addressing is disabled.
•If YWM = 15, Y AGU Modulo Addressing is
disabled.
The X Address Space Pointer W register (XWM), to
which Modulo Addressing is to be applied, is stored in
MODCON<3:0> (see Table 4-1). Modulo Addressing is
enabled for X data space when XWM is set to any value
other than ‘15’ and the XMODEN bit is set at
MODCON<15>.
The Y Address Space Pointer W register (YWM) to
which Modulo Addressing is to be applied is stored in
MODCON<7:4>. Modulo Addressing is enabled for Y
data space when YWM is set to any value other than
‘15’ and the YMODEN bit is set at MODCON<14>.
FIGURE 4-5: MODULO ADDRESSING OPERATION EXAMPLE
Note: Y space Modulo Addressing EA calcula-
tions assume word-sized data (LSb of
every EA is always clear).
0x1100
0x1163
Start Addr = 0x1100
End Addr = 0x1163
Length = 0x0032 words
Byte
Address
MOV #0x1100, W0
MOV W0, XMODSRT ;set modulo start address
MOV #0x1163, W0
MOV W0, MODEND ;set modulo end address
MOV #0x8001, W0
MOV W0, MODCON ;enable W1, X AGU for modulo
MOV #0x0000, W0 ;W0 holds buffer fill value
MOV #0x1110, W1 ;point W1 to buffer
DO AGAIN, #0x31 ;fill the 50 buffer locations
MOV W0, [W1++] ;fill the next location
AGAIN: INC W0, W0 ;increment the fill value
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 47
dsPIC33FJ12MC201/202
4.4.3 MODULO ADDRESSING
APPLICABILITY
Modulo Addressing can be applied to the Effective
Address (EA) calculation associated with any W
register. Address boundaries check for addresses
equal to:
The upper boundary addresses for incrementing
buffers
The lower boundary addresses for decrementing
buffers
It is important to realize that the address boundaries
check for addresses less than or greater than the upper
(for incrementing buffers) and lower (for decrementing
buffers) boundary addresses (not just equal to).
Address changes can, therefore, jump beyond
boundaries and still be adjusted correctly.
4.5 Bit-Reversed Addressing
Bit-Reversed Addressing mode is intended to simplify
data reordering for radix-2 FFT algorithms. It is
supported by the X AGU for data writes only.
The modifier, which can be a constant value or register
contents, is regarded as having its bit order reversed. The
address source and destination are kept in normal order.
Thus, the only operand requiring reversal is the modifier.
4.5.1 BIT-REVERSED ADDRESSING
IMPLEMENTATION
Bit-Reversed Addressing mode is enabled in any of
these situations:
BWM bits (W register selection) in the MODCON
register are any value other than ‘15’ (the stack
cannot be accessed using Bit-Reversed
Addressing)
The BREN bit is set in the XBREV register
The addressing mode used is Register Indirect
with Pre-Increment or Post-Increment
If the length of a bit-reversed buffer is M = 2N bytes,
the last ‘N’ bits of the data buffer start address must
be zeros.
XB<14:0> is the Bit-Reversed Address modifier, or
‘pivot point,’ which is typically a constant. In the case of
an FFT computation, its value is equal to half of the FFT
data buffer size.
When enabled, Bit-Reversed Addressing is executed
only for Register Indirect with Pre-Increment or Post-
Increment Addressing, and word-sized data writes. It
will not function for any other addressing mode or for
byte-sized data, and normal addresses are generated
instead. When Bit-Reversed Addressing is active, the
W Address Pointer is always added to the address
modifier (XB), and the offset associated with the
Register Indirect Addressing mode is ignored. In
addition, as word-sized data is a requirement, the LSb
of the EA is ignored (and always clear).
If Bit-Reversed Addressing has already been enabled
by setting the BREN (XBREV<15>) bit, a write to the
XBREV register should not be immediately followed by
an indirect read operation using the W register that has
been designated as the bit-reversed pointer.
Note: The modulo corrected effective address is
written back to the register only when Pre-
Modify or Post-Modify Addressing mode is
used to compute the effective address.
When an address offset (such as [W7 +
W2]) is used, Modulo Address correction
is performed, but the contents of the
register remain unchanged.
Note: All bit-reversed EA calculations assume
word-sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.
Note: Modulo Addressing and Bit-Reversed
Addressing should not be enabled
together. If an application attempts to do so,
Bit-Reversed Addressing will assume
priority, when active, for the X WAGU, and
X WAGU, Modulo Addressing will be
disabled. However, Modulo Addressing will
continue to function in the X RAGU.
dsPIC33FJ12MC201/202
DS70265D-page 48 Preliminary © 2009 Microchip Technology Inc.
FIGURE 4-6: BIT-REVERSED ADDRESS EXAMPLE
TABLE 4-27: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)
b3 b2 b1 0
b2 b3 b4 0
Bit Locations Swapped Left-to-Right
Around Center of Binary Value
Bit-Reversed Address
XB = 0x0008 for a 16-Word, Bit-Reversed Buffer
b7 b6 b5 b1
b7 b6 b5 b4
b11 b10 b9 b8
b11 b10 b9 b8
b15 b14 b13 b12
b15 b14 b13 b12
Sequential Address
Pivot Point
Normal Address Bit-Reversed Address
A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal
0000 00000 0
0001 11000 8
0010 20100 4
0011 31100 12
0100 40010 2
0101 51010 10
0110 60110 6
0111 71110 14
1000 80001 1
1001 91001 9
1010 10 0101 5
1011 11 1101 13
1100 12 0011 3
1101 13 1011 11
1110 14 0111 7
1111 15 1111 15
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 49
dsPIC33FJ12MC201/202
4.6 Interfacing Program and Data
Memory Spaces
The dsPIC33FJ12MC201/202 architecture uses a 24-
bit-wide program space and a 16-bit-wide data space.
The architecture is also a modified Harvard scheme,
meaning that data can also be present in the program
space. To use this data successfully, it must be
accessed in a way that preserves the alignment of
information in both spaces.
Aside from normal execution, the dsPIC33FJ12MC201/
202 architecture provides two methods by which
program space can be accessed during operation:
Using table instructions to access individual
bytes, or words, anywhere in the program space
Remapping a portion of the program space into
the data space (Program Space Visibility)
Table instructions allow an application to read or write
to small areas of the program memory. This capability
makes the method ideal for accessing data tables that
need to be updated periodically. It also allows access
to all bytes of the program word. The remapping
method allows an application to access a large block of
data on a read-only basis, which is ideal for lookups
from a large table of static data. The application can
only access the lsw of the program word.
4.6.1 ADDRESSING PROGRAM SPACE
Since the address ranges for the data and program
spaces are 16 and 24 bits, respectively, a method is
needed to create a 23-bit or 24-bit program address
from 16-bit data registers. The solution depends on the
interface method to be used.
For table operations, the 8-bit Table Page register
(TBLPAG) is used to define a 32K word region within
the program space. This is concatenated with a 16-bit
EA to arrive at a full 24-bit program space address. In
this format, the MSb of TBLPAG is used to determine if
the operation occurs in the user memory (TBLPAG<7>
= 0) or the configuration memory (TBLPAG<7> = 1).
For remapping operations, the 8-bit Program Space
Visibility register (PSVPAG) is used to define a
16K word page in the program space. When the MSb
of the EA is ‘1’, PSVPAG is concatenated with the lower
15 bits of the EA to form a 23-bit program space
address. Unlike table operations, this limits remapping
operations strictly to the user memory area.
Table 4-28 and Figure 4-7 show how the program EA is
created for table operations and remapping accesses
from the data EA.
TABLE 4-28: PROGRAM SPACE ADDRESS CONSTRUCTION
Access Type Access
Space
Program Space Address
<23> <22:16> <15> <14:1> <0>
Instruction Access
(Code Execution)
User 0PC<22:1> 0
0xx xxxx xxxx xxxx xxxx xxx0
TBLRD/TBLWT
(Byte/Word Read/Write)
User TBLPAG<7:0> Data EA<15:0>
0xxx xxxx xxxx xxxx xxxx xxxx
Configuration TBLPAG<7:0> Data EA<15:0>
1xxx xxxx xxxx xxxx xxxx xxxx
Program Space Visibility
(Block Remap/Read)
User 0PSVPAG<7:0> Data EA<14:0>(1)
0 xxxx xxxx xxx xxxx xxxx xxxx
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of
the address is PSVPAG<0>.
dsPIC33FJ12MC201/202
DS70265D-page 50 Preliminary © 2009 Microchip Technology Inc.
FIGURE 4-7: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
0Program Counter
23 bits
1
PSVPAG
8 bits
EA
15 bits
Program Counter(1)
Select
TBLPAG
8 bits
EA
16 bits
Byte Select
0
0
1/0
User/Configuration
Table Operations(2)
Program Space Visibility(1)
Space Select
24 bits
23 bits
(Remapping)
1/0
0
Note 1: The Least Significant bit of program space addresses is always fixed as ‘0’ to
maintain word alignment of data in the program and data spaces.
2: Table operations are not required to be word aligned. Table read operations are permitted
in the configuration memory space.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 51
dsPIC33FJ12MC201/202
4.6.2 DATA ACCESS FROM PROGRAM
MEMORY USING TABLE
INSTRUCTIONS
The TBLRDL and TBLWTL instructions offer a direct
method of reading or writing the lower word of any
address within the program space without going
through data space. The TBLRDH and TBLWTH
instructions are the only method to read or write the
upper 8 bits of a program space word as data.
The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit-
wide word address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space that contains the least significant
data word. TBLRDH and TBLWTH access the space that
contains the upper data byte.
Two table instructions are provided to move byte or
word-sized (16-bit) data to and from program space.
Both function as either byte or word operations.
TBLRDL (Table Read Low):
- In Word mode, this instruction maps the
lower word of the program space location
(P<15:0>) to a data address (D<15:0>).
- In Byte mode, either the upper or lower byte
of the lower program word is mapped to the
lower byte of a data address. The upper byte
is selected when Byte Select is ‘1’; the lower
byte is selected when it is ‘0’.
TBLRDH (Table Read High):
- In Word mode, this instruction maps the entire
upper word of a program address (P<23:16>)
to a data address. Note that D<15:8>, the
‘phantom byte’, will always be ‘0’.
- In Byte mode, this instruction maps the upper
or lower byte of the program word to D<7:0>
of the data address, in the TBLRDL instruc-
tion. The data is always ‘0’ when the upper
‘phantom’ byte is selected (Byte Select = 1).
In a similar fashion, two table instructions, TBLWTH
and TBLWTL, are used to write individual bytes or
words to a program space address. The details of
their operation are explained in Section 5.0 “Flash
Program Memory”.
For all table operations, the area of program memory
space to be accessed is determined by the Table Page
register (TBLPAG). TBLPAG covers the entire program
memory space of the device, including user and
configuration spaces. When TBLPAG<7> = 0, the table
page is located in the user memory space. When
TBLPAG<7> = 1, the page is located in configuration
space.
FIGURE 4-8: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
081623
00000000
00000000
00000000
00000000
‘Phantom’ Byte
TBLRDH.B (Wn<0> = 0)
TBLRDL.W
TBLRDL.B (Wn<0> = 1)
TBLRDL.B (Wn<0> = 0)
23 15 0
TBLPAG
02
0x000000
0x800000
0x020000
0x030000
Program Space
The address for the table operation is determined by the data EA
within the page defined by the TBLPAG register.
Only read operations are shown; write operations are also valid in
the user memory area.
dsPIC33FJ12MC201/202
DS70265D-page 52 Preliminary © 2009 Microchip Technology Inc.
4.6.3 READING DATA FROM PROGRAM
MEMORY USING PROGRAM SPACE
VISIBILITY
The upper 32 Kbytes of data space may optionally be
mapped into any 16K word page of the program space.
This option provides transparent access to stored
constant data from the data space without the need to
use special instructions (such as TBLRDL and
TBLRDH).
Program space access through the data space occurs
if the MSb of the data space EA is ‘1’ and program
space visibility is enabled by setting the PSV bit in the
Core Control register (CORCON<2>). The location of
the program memory space to be mapped into the data
space is determined by the Program Space Visibility
Page register (PSVPAG). This 8-bit register defines
any one of 256 possible pages of 16K words in
program space. In effect, PSVPAG functions as the
upper 8 bits of the program memory address, with the
15 bits of the EA functioning as the lower bits. By
incrementing the PC by 2 for each program memory
word, the lower 15 bits of data space addresses directly
map to the lower 15 bits in the corresponding program
space addresses.
Data reads to this area add a cycle to the instruction
being executed, since two program memory fetches
are required.
Although each data space address 8000h and higher
maps directly into a corresponding program memory
address (see Figure 4-9), only the lower 16 bits of the
24-bit program word are used to contain the data. The
upper 8 bits of any program space location used as
data should be programmed with ‘1111 1111’ or
0000 0000’ to force a NOP. This prevents possible
issues should the area of code ever be accidentally
executed.
For operations that use PSV and are executed outside
a REPEAT loop, the MOV and MOV.D instructions
require one instruction cycle in addition to the specified
execution time. All other instructions require two
instruction cycles in addition to the specified execution
time.
For operations that use PSV, and are executed inside
a REPEAT loop, these instances require two instruction
cycles in addition to the specified execution time of the
instruction:
Execution in the first iteration
Execution in the last iteration
Execution prior to exiting the loop due to an
interrupt
Execution upon re-entering the loop after an
interrupt is serviced
Any other iteration of the REPEAT loop will allow the
instruction using PSV to access data, to execute in a
single cycle.
FIGURE 4-9: PROGRAM SPACE VISIBILITY OPERATION
Note: PSV access is temporarily disabled during
table reads/writes.
23 15 0
PSVPAG
Data Space
Program Space
0x0000
0x8000
0xFFFF
02 0x000000
0x800000
0x010000
0x018000
When CORCON<2> = 1 and EA<15> = 1:
The data in the page
designated by PSV-
PAG is mapped into
the upper half of the
data memory
space...
Data EA<14:0>
...while the lower 15 bits
of the EA specify an
exact address within
the PSV area. This
corresponds exactly to
the same lower 15 bits
of the actual program
space address.
PSV Area
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 53
dsPIC33FJ12MC201/202
5.0 FLASH PROGRAM MEMORY
The dsPIC33FJ12MC201/202 devices contain internal
Flash program memory for storing and executing
application code. The memory is readable, writable,
and erasable during normal operation over the entire
VDD range.
Flash memory can be programmed in two ways:
In-Circuit Serial Programming™ (ICSP™)
programming capability
Run-Time Self-Programming (RTSP)
ICSP allows a dsPIC33FJ12MC201/202 device to be
serially programmed while in the end application circuit.
This is done with two lines for programming clock and
programming data (one of the alternate programming
pin pairs: PGECx/PGEDx), and three other lines for
power (VDD), ground (VSS) and Master Clear (MCLR).
This allows users to manufacture boards with
unprogrammed devices, and then program the digital
signal controller just before shipping the product. This
also allows the most recent firmware or a custom
firmware to be programmed.
RTSP is accomplished using TBLRD (table read) and
TBLWT (table write) instructions. With RTSP, the user
application can write program memory data either in
blocks or ‘rows’ of 64 instructions (192 bytes) or a sin-
gle program memory word, and erase program mem-
ory in blocks or ‘pages’ of 512 instructions (1536
bytes).
5.1 Table Instructions and Flash
Programming
Regardless of the method used, all programming of
Flash memory is done with the table-read and table-
write instructions. These allow direct read and write
access to the program memory space from the data
memory while the device is in normal operating mode.
The 24-bit target address in the program memory is
formed using bits <7:0> of the TBLPAG register and the
Effective Address (EA) from a W register specified in
the table instruction, as shown in Figure 5-1.
The TBLRDL and the TBLWTL instructions are used to
read or write to bits <15:0> of program memory.
TBLRDL and TBLWTL can access program memory in
both Word and Byte modes.
The TBLRDH and TBLWTH instructions are used to read
or write to bits <23:16> of program memory. TBLRDH
and TBLWTH can also access program memory in Word
or Byte mode.
FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 5. “Flash Pro-
gramming” (DS70191), which is
available from the Microchip web site
(www.microchip.com).
0
Program Counter
24 bits
Program Counter
TBLPAG Reg
8 bits
Working Reg EA
16 bits
Byte
24-bit EA
0
1/0
Select
Using
Table Instruction
Using
User/Configuration
Space Select
dsPIC33FJ12MC201/202
DS70265D-page 54 Preliminary © 2009 Microchip Technology Inc.
5.2 RTSP Operation
The dsPIC33FJ12MC201/202 Flash program memory
array is organized into rows of 64 instructions or 192
bytes. RTSP allows the user application to erase a
page of memory, which consists of eight rows (512
instructions); and to program one row or one word.
Table 24-12 shows typical erase and programming
times. The 8-row erase pages and single row write
rows are edge-aligned from the beginning of program
memory, on boundaries of 1536 bytes and 192 bytes,
respectively.
The program memory implements holding buffers that
can contain 64 instructions of programming data. Prior
to the actual programming operation, the write data
must be loaded into the buffers sequentially. The
instruction words loaded must always be from a group
of 64 boundary.
The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the buffers. Programming is performed by
setting the control bits in the NVMCON register. A total
of 64 TBLWTL and TBLWTH instructions are required
to load the instructions.
All of the table write operations are single-word writes
(two instruction cycles) because only the buffers are
written. A programming cycle is required for
programming each row.
5.3 Programming Operations
A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode. The processor stalls (waits) until the operation is
finished.
The programming time depends on the FRC accuracy
(see Table 24-18) and the value of the FRC Oscillator
Tuning register (see Register 8-4). Use the following
formula to calculate the minimum and maximum values
for the Row Write Time, Page Erase Time, and Word
Write Cycle Time parameters (see Table 24-12).
EQUATION 5-1: PROGRAMMING TIME
For example, if the device is operating at +125°C,
the FRC accuracy will be ±5%. If the TUN<5:0> bits
(see Register 8-4) are set to ‘b111111, the
Minimum Row Write Time is:
and, the Maximum Row Write Time is:
Setting the WR bit (NVMCON<15>) starts the opera-
tion, and the WR bit is automatically cleared when the
operation is finished.
5.4 Control Registers
Two SFRs are used to read and write the program
Flash memory: NVMCON and NVMKEY.
The NVMCON register (Register 5-1) controls which
blocks are to be erased, which memory type is to be
programmed, and the start of the programming cycle.
NVMKEY is a write-only register that is used for write
protection. To start a programming or erase sequence,
the user application must consecutively write 0x55 and
0xAA to the NVMKEY register. Refer to Section 5.3
“Programming Operations” for further details.
T
7.37 MHz FRC Accuracy()%FRC Tuning()%××
--------------------------------------------------------------------------------------------------------------------------
TRW
11064 Cycles
7.37 MHz 10.05+()1 0.00375()××
---------------------------------------------------------------------------------------------- 1.435ms==
TRW
11064 Cycles
7.37 MHz 10.05()1 0.00375()××
----------------------------------------------------------------------------------------------1.586ms==
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 55
dsPIC33FJ12MC201/202
REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER
R/SO-0(1) R/W-0(1) R/W-0(1) U-0 U-0 U-0 U-0 U-0
WR WREN WRERR
bit 15 bit 8
U-0 R/W-0(1) U-0 U-0 R/W-0(1) R/W-0(1) R/W-0(1) R/W-0(1)
ERASE —NVMOP<3:0>
(2)
bit 7 bit 0
Legend: SO = Satiable only bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 WR: Write Control bit
1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is
cleared by hardware once operation is complete
0 = Program or erase operation is complete and inactive
bit 14 WREN: Write Enable bit
1 = Enable Flash program/erase operations
0 = Inhibit Flash program/erase operations
bit 13 WRERR: Write Sequence Error Flag bit
1 = An improper program or erase sequence attempt or termination has occurred (bit is set
automatically on any set attempt of the WR bit)
0 = The program or erase operation completed normally
bit 12-7 Unimplemented: Read as ‘0
bit 6 ERASE: Erase/Program Enable bit
1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command
0 = Perform the program operation specified by NVMOP<3:0> on the next WR command
bit 5-4 Unimplemented: Read as ‘0
bit 3-0 NVMOP<3:0>: NVM Operation Select bits(2)
If ERASE = 1:
1111 = Memory bulk erase operation
1101 = Erase General Segment
1100 = Erase Secure Segment
0011 = No operation
0010 = Memory page erase operation
0001 = No operation
0000 = Erase a single Configuration register byte
If ERASE = 0:
1111 = No operation
1101 = No operation
1100 = No operation
0011 = Memory word program operation
0010 = No operation
0001 = Memory row program operation
0000 = Program a single Configuration register byte
Note 1: These bits can only be reset on POR.
2: All other combinations of NVMOP<3:0> are unimplemented.
dsPIC33FJ12MC201/202
DS70265D-page 56 Preliminary © 2009 Microchip Technology Inc.
REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
NVMKEY<7:0>
bit 7 bit 0
Legend: SO = Satiable only bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 Unimplemented: Read as ‘0
bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 57
dsPIC33FJ12MC201/202
5.4.1 PROGRAMMING ALGORITHM FOR
FLASH PROGRAM MEMORY
Programmers can program one row of program Flash
memory at a time. To do this, it is necessary to erase
the 8-row erase page that contains the desired row.
The general process is:
1. Read eight rows of program memory
(512 instructions) and store in data RAM.
2. Update the program data in RAM with the
desired new data.
3. Erase the block (see Example 5-1):
a) Set the NVMOP bits (NVMCON<3:0>) to
0010’ to configure for block erase. Set the
ERASE (NVMCON<6>) and WREN
(NVMCON<14>) bits.
b) Write the starting address of the page to be
erased into the TBLPAG and W registers.
c) Write 0x55 to NVMKEY.
d) Write 0xAA to NVMKEY.
e) Set the WR bit (NVMCON<15>). The erase
cycle begins and the CPU stalls for the dura-
tion of the erase cycle. When the erase is
done, the WR bit is cleared automatically.
4. Write the first 64 instructions from data RAM into
the program memory buffers (see Example 5-2).
5. Write the program block to Flash memory:
a) Set the NVMOP bits to ‘0001’ to configure
for row programming. Clear the ERASE bit
and set the WREN bit.
b) Write 0x55 to NVMKEY.
c) Write 0xAA to NVMKEY.
d) Set the WR bit. The programming cycle
begins and the CPU stalls for the duration of
the write cycle. When the write to Flash mem-
ory is done, the WR bit is cleared
automatically.
6. Repeat steps 4 and 5, using the next available
64 instructions from the block in data RAM by
incrementing the value in TBLPAG, until all
512 instructions are written back to Flash memory.
For protection against accidental operations, the write
initiate sequence for NVMKEY must be used to allow
any erase or program operation to proceed. After the
programming command has been executed, the user
application must wait for the programming time until
programming is complete. The two instructions
following the start of the programming sequence
should be NOPs, as shown in Example 5-3.
EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE
; Set up NVMCON for block erase operation
MOV #0x4042, W0 ;
MOV W0, NVMCON ; Initialize NVMCON
; Init pointer to row to be ERASED
MOV #tblpage(PROG_ADDR), W0 ;
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0] ; Set base address of erase block
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions
MOV #0x55, W0
MOV W0, NVMKEY ; Write the 55 key
MOV #0xAA, W1 ;
MOV W1, NVMKEY ; Write the AA key
BSET NVMCON, #WR ; Start the erase sequence
NOP ; Insert two NOPs after the erase
NOP ; command is asserted
dsPIC33FJ12MC201/202
DS70265D-page 58 Preliminary © 2009 Microchip Technology Inc.
EXAMPLE 5-2: LOADING THE WRITE BUFFERS
EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE
; Set up NVMCON for row programming operations
MOV #0x4001, W0 ;
MOV W0, NVMCON ; Initialize NVMCON
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
MOV #0x0000, W0 ;
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
MOV #0x6000, W0 ; An example program memory address
; Perform the TBLWT instructions to write the latches
; 0th_program_word
MOV #LOW_WORD_0, W2 ;
MOV #HIGH_BYTE_0, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; 1st_program_word
MOV #LOW_WORD_1, W2 ;
MOV #HIGH_BYTE_1, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; 2nd_program_word
MOV #LOW_WORD_2, W2 ;
MOV #HIGH_BYTE_2, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; 63rd_program_word
MOV #LOW_WORD_31, W2 ;
MOV #HIGH_BYTE_31, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions
MOV #0x55, W0
MOV W0, NVMKEY ; Write the 55 key
MOV #0xAA, W1 ;
MOV W1, NVMKEY ; Write the AA key
BSET NVMCON, #WR ; Start the erase sequence
NOP ; Insert two NOPs after the
NOP ; erase command is asserted
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 59
dsPIC33FJ12MC201/202
6.0 RESETS
The Reset module combines all Reset sources and
controls the device Master Reset Signal, SYSRST
. The
following is a list of device Reset sources:
POR: Power-on Reset
BOR: Brown-out Reset
•MCLR
: Master Clear Pin Reset
•SWR: RESET Instruction
WDTO: Watchdog Timer Reset
CM: Configuration Mismatch Reset
TRAPR: Trap Conflict Reset
IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset
A simplified block diagram of the Reset module is
shown in Figure 6-1.
Any active source of Reset will make the SYSRST
signal active. On system Reset, some of the registers
associated with the CPU and peripherals are forced to
a known Reset state, and some are unaffected.
All types of device Reset set a corresponding status bit
in the RCON register to indicate the type of Reset (see
Register 6-1).
All bits that are set, with the exception of the POR bit
(RCON<0>), are cleared during a POR event. The user
application can set or clear any bit at any time during
code execution. The RCON bits only serve as status
bits. Setting a particular Reset status bit in software
does not cause a device Reset to occur.
The RCON register also has other bits associated with
the Watchdog Timer and device power-saving states.
The function of these bits is discussed in other sections
of this data sheet.
FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 8. “Reset”
(DS70192), which is available from the
Microchip web site (www.microchip.com).
Note: Refer to the specific peripheral section or
Section 3.0 “CPU” of this manual for
register Reset states.
Note: The status bits in the RCON register
should be cleared after they are read so
that the next RCON register value after a
device Reset is meaningful.
MCLR
VDD
Internal
Regulator
BOR
Sleep or Idle
RESET Instruction
WDT
Module
Glitch Filter
Trap Conflict
Illegal Opcode
Uninitialized W Register
SYSRST
VDD Rise
Detect
POR
Configuration Mismatch
dsPIC33FJ12MC201/202
DS70265D-page 60 Preliminary © 2009 Microchip Technology Inc.
REGISTER 6-1: RCON: RESET CONTROL REGISTER(1)
R/W-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
TRAPR IOPUWR —CMVREGS
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1
EXTR SWR SWDTEN(2) WDTO SLEEP IDLE BOR POR
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TRAPR: Trap Reset Flag bit
1 = A Trap Conflict Reset has occurred
0 = A Trap Conflict Reset has not occurred
bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit
1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an
Address Pointer caused a Reset
0 = An illegal opcode or uninitialized W Reset has not occurred
bit 13-10 Unimplemented: Read as ‘0
bit 9 CM: Configuration Mismatch Flag bit
1 = A configuration mismatch Reset has occurred.
0 = A configuration mismatch Reset has NOT occurred.
bit 8 VREGS: Voltage Regulator Standby During Sleep bit
1 = Voltage regulator is active during Sleep
0 = Voltage regulator goes into Standby mode during Sleep
bit 7 EXTR: External Reset (MCLR) Pin bit
1 = A Master Clear (pin) Reset has occurred
0 = A Master Clear (pin) Reset has not occurred
bit 6 SWR: Software Reset (Instruction) Flag bit
1 = A RESET instruction has been executed
0 = A RESET instruction has not been executed
bit 5 SWDTEN: Software Enable/Disable of WDT bit(2)
1 = WDT is enabled
0 = WDT is disabled
bit 4 WDTO: Watchdog Timer Time-out Flag bit
1 = WDT time-out has occurred
0 = WDT time-out has not occurred
bit 3 SLEEP: Wake-up from Sleep Flag bit
1 = Device has been in Sleep mode
0 = Device has not been in Sleep mode
bit 2 IDLE: Wake-up from Idle Flag bit
1 = Device was in Idle mode
0 = Device was not in Idle mode
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not
cause a device Reset.
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the
SWDTEN bit setting.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 61
dsPIC33FJ12MC201/202
bit 1 BOR: Brown-out Reset Flag bit
1 = A Brown-out Reset has occurred
0 = A Brown-out Reset has not occurred
bit 0 POR: Power-on Reset Flag bit
1 = A Power-up Reset has occurred
0 = A Power-up Reset has not occurred
REGISTER 6-1: RCON: RESET CONTROL REGISTER(1) (CONTINUED)
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not
cause a device Reset.
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the
SWDTEN bit setting.
dsPIC33FJ12MC201/202
DS70265D-page 62 Preliminary © 2009 Microchip Technology Inc.
6.1 System Reset
The dsPIC33FJ12MC201/202 family of devices have
two types of Reset:
Cold Reset
Warm Reset
A cold Reset is the result of a POR or a BOR. On a cold
Reset, the FNOSC configuration bits in the FOSC
device configuration register selects the device clock
source.
A warm Reset is the result of all other Reset sources,
including the RESET instruction. On warm Reset, the
device will continue to operate from the current clock
source as indicated by the Current Oscillator Selection
(COSC<2:0>) bits in the Oscillator Control
(OSCCON<14:12>) register.
The device is kept in a Reset state until the system
power supplies have stabilized at appropriate levels
and the oscillator clock is ready. The sequence in
which this occurs is detailed below and is shown in
Figure 6-2.
1. POR Reset: A POR circuit holds the device in
Reset when the power supply is turned on. The
POR circuit is active until VDD crosses the VPOR
threshold and the delay TPOR has elapsed.
2. BOR Reset: The on-chip voltage regulator has
a BOR circuit that keeps the device in Reset
until VDD crosses the VBOR threshold and the
delay TBOR has elapsed. The delay TBOR
ensures that the voltage regulator output
becomes stable.
3. PWRT Timer: The programmable power-up
timer continues to hold the processor in Reset
for a specific period of time (TPWRT) after a
BOR. The delay TPWRT ensures that the system
power supplies have stabilized at the appropri-
ate level for full-speed operation. After the delay
TPWRT has elapsed, the SYSRST becomes
inactive; which enables the selected oscillator to
start generating clock cycles.
4. Oscillator Delay: The total delay for the clock to
be ready for various clock source selections is
given in Table 6-1. Refer to Section 8.0
“Oscillator Configuration” for more
information.
5. When the oscillator clock is ready, the processor
begins execution from location 0x000000. The
user application programs a GOTO instruction at
the Reset address, which redirects program
execution to the appropriate start-up routine.
6. The Fail-safe clock monitor (FSCM), if enabled,
begins to monitor the system clock when the
system clock is ready and the delay TFSCM
elapsed.
TABLE 6-1: OSCILLATOR DELAY
Oscillator Mode Oscillator
Startup Delay
Oscillator Startup
Timer PLL Lock Time Total Delay
FRC, FRCDIV16,
FRCDIVN
TOSCD ——TOSCD
FRCPLL TOSCD —TLOCK TOSCD + TLOCK
XT TOSCD TOST —TOSCD + TOST
HS TOSCD TOST —TOSCD + TOST
EC ————
XTPLL TOSCD TOST TLOCK TOSCD + TOST + TLOCK
HSPLL TOSCD TOST TLOCK TOSCD + TOST + TLOCK
ECPLL TLOCK TLOCK
SOSC TOSCD TOST —TOSCD + TOST
LPRC TOSCD ——TOSCD
Note 1: TOSCD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up
times vary with crystal characteristics, load capacitance, etc.
2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a
10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.
3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 63
dsPIC33FJ12MC201/202
FIGURE 6-2: SYSTEM RESET TIMING
Reset Run
Device Status
VDD
VPOR
Vbor
VBOR
POR Reset
BOR Reset
SYSRST
TPWRT
TPOR
TBOR
Oscillator Clock
TOSCD TOST TLOCK
Time
FSCM TFSCM
1
2
3
4
5
6
1. POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses
the VPOR threshold and the delay TPOR has elapsed.
2. BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold
and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.
3. PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT)
after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed oper-
ation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start gen-
erating clock cycles.
4. Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in Table 6-1. Refer to
Section 8.0 “Oscillator Configuration” for more information.
5. When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO
instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
6. The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay
TFSCM elapsed.
TABLE 6-2: OSCILLATOR DELAY
Symbol Parameter Value
VPOR POR threshold 1.8V nominal
TPOR POR extension time 30 μs maximum
VBOR BOR threshold 2.5V nominal
TBOR BOR extension time 100 μs maximum
TPWRT Programmable
power-up time delay
0-128 ms nominal
TFSCM Fail-safe Clock
Monitor Delay
900 μs maximum
Note: When the device exits the Reset condi-
tion (begins normal operation), the
device operating parameters (voltage,
frequency, temperature, etc.) must be
within their operating ranges, otherwise
the device may not function correctly.
The user application must ensure that
the delay between the time power is
first applied, and the time SYSRST
becomes inactive, is long enough to get
all operating parameters within
specification.
dsPIC33FJ12MC201/202
DS70265D-page 64 Preliminary © 2009 Microchip Technology Inc.
6.2 POR
A POR circuit ensures the device is reset from power-
on. The POR circuit is active until VDD crosses the
VPOR threshold and the delay TPOR has elapsed. The
delay TPOR ensures the internal device bias circuits
become stable.
The device supply voltage characteristics must meet
the specified starting voltage and rise rate
requirements to generate the POR. Refer to
Section 24.0 “Electrical Characteristics” for details.
The POR status (POR) bit in the Reset Control
(RCON<0>) register is set to indicate the Power-on
Reset.
6.3 BOR and PWRT
The on-chip regulator has a BOR circuit that resets the
device when the VDD is too low (VDD < VBOR) for proper
device operation. The BOR circuit keeps the device in
Reset until VDD crosses the VBOR threshold and the
delay TBOR has elapsed. The delay TBOR ensures the
voltage regulator output becomes stable.
The BOR status (BOR) bit in the Reset Control
(RCON<1>) register is set to indicate the Brown-out
Reset.
The device will not run at full speed after a BOR as the
VDD should rise to acceptable levels for full-speed
operation. The PWRT provides power-up time delay
(TPWRT) to ensure that the system power supplies have
stabilized at the appropriate levels for full-speed
operation before the SYSRST is released.
The power-up timer delay (TPWRT) is programmed by
the Power-on Reset Timer Value Select
(FPWRT<2:0>) bits in the POR Configuration
(FPOR<2:0>) register, which provides eight settings
(from 0 ms to 128 ms). Refer to Section 21.0 “Special
Features” for further details.
Figure 6-3 shows the typical brown-out scenarios. The
Reset delay (TBOR + TPWRT) is initiated each time VDD
rises above the VBOR trip point.
FIGURE 6-3: BROWN-OUT SITUATIONS
VDD
SYSRST
VBOR
VDD
SYSRST
VBOR
VDD
SYSRST
VBOR
TBOR + TPWRT
VDD dips before PWRT expires
TBOR + TPWRT
TBOR + TPWRT
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 65
dsPIC33FJ12MC201/202
6.4 External Reset (EXTR)
The external Reset is generated by driving the MCLR
pin low. The MCLR pin is a Schmitt trigger input with an
additional glitch filter. Reset pulses that are longer than
the minimum pulse width will generate a Reset. Refer
to Section 24.0 “Electrical Characteristics” for
minimum pulse width specifications. The External
Reset (MCLR) Pin (EXTR) bit in the Reset Control
(RCON) register is set to indicate the MCLR Reset.
6.4.0.1 EXTERNAL SUPERVISORY CIRCUIT
Many systems have external supervisory circuits that
generate Reset signals to Reset multiple devices in the
system. This external Reset signal can be directly con-
nected to the MCLR pin to Reset the device when the
rest of system is Reset.
6.4.0.2 INTERNAL SUPERVISORY CIRCUIT
When using the internal power supervisory circuit to
Reset the device, the external Reset pin (MCLR)
should be tied directly or resistively to VDD. In this case,
the MCLR pin will not be used to generate a Reset. The
external Reset pin (MCLR) does not have an internal
pull-up and must not be left unconnected.
6.5 Software RESET Instruction (SWR)
Whenever the RESET instruction is executed, the
device will assert SYSRST, placing the device in a
special Reset state. This Reset state will not re-
initialize the clock. The clock source in effect prior to the
RESET instruction will remain. SYSRST is released at
the next instruction cycle, and the Reset vector fetch
will commence.
The Software Reset (Instruction) Flag (SWR) bit in the
Reset Control (RCON<6>) register is set to indicate
the software Reset.
6.6 Watchdog Time-out Reset (WDTO)
Whenever a Watchdog Time-out occurs, the device
will asynchronously assert SYSRST. The clock source
will remain unchanged. A WDT time-out during Sleep
or Idle mode will wake-up the processor, but will not
reset the processor.
The Watchdog Timer Time-out Flag (WDTO) bit in the
Reset Control (RCON<4>) register is set to indicate
the Watchdog Reset. Refer to Section 21.4
“Watchdog Timer (WDT)” for more information on
Watchdog Reset.
6.7 Trap Conflict Reset
If a lower-priority hard trap occurs while a higher-prior-
ity trap is being processed, a hard trap conflict Reset
occurs. The hard traps include exceptions of priority
level 13 through level 15, inclusive. The address error
(level 13) and oscillator error (level 14) traps fall into
this category.
The Trap Reset Flag (TRAPR) bit in the Reset Control
(RCON<15>) register is set to indicate the Trap Conflict
Reset. Refer to Section 7.0 “Interrupt Controller” for
more information on trap conflict Resets.
6.8 Configuration Mismatch Reset
To maintain the integrity of the peripheral pin select
control registers, they are constantly monitored with
shadow registers in hardware. If an unexpected
change in any of the registers occur (such as cell dis-
turbances caused by ESD or other external events), a
configuration mismatch Reset occurs.
The Configuration Mismatch Flag (CM) bit in the
Reset Control (RCON<9>) register is set to indicate
the configuration mismatch Reset. Refer to
Section 10.0 “I/O Ports” for more information on the
configuration mismatch Reset.
6.9 Illegal Condition Device Reset
An illegal condition device Reset occurs due to the
following sources:
Illegal Opcode Reset
Uninitialized W Register Reset
Security Reset
The Illegal Opcode or Uninitialized W Access Reset
Flag (IOPUWR) bit in the Reset Control (RCON<14>)
register is set to indicate the illegal condition device
Reset.
Note: The configuration mismatch feature and
associated Reset flag is not available on
all devices.
dsPIC33FJ12MC201/202
DS70265D-page 66 Preliminary © 2009 Microchip Technology Inc.
6.9.0.1 ILLEGAL OPCODE RESET
A device Reset is generated if the device attempts to
execute an illegal opcode value that is fetched from
program memory.
The illegal opcode Reset function can prevent the
device from executing program memory sections that
are used to store constant data. To take advantage of
the illegal opcode Reset, use only the lower 16 bits of
each program memory section to store the data values.
The upper 8 bits should be programmed with 3Fh,
which is an illegal opcode value.
6.9.0.2 UNINITIALIZED W REGISTER
RESET
Any attempts to use the uninitialized W register as an
address pointer will Reset the device. The W register
array (with the exception of W15) is cleared during all
Resets and is considered uninitialized until written to.
6.9.0.3 SECURITY RESET
If a Program Flow Change (PFC) or Vector Flow
Change (VFC) targets a restricted location in a
protected segment (Boot and Secure Segment), that
operation will cause a security Reset.
The PFC occurs when the Program Counter is
reloaded as a result of a Call, Jump, Computed Jump,
Return, Return from Subroutine, or other form of
branch instruction.
The VFC occurs when the Program Counter is
reloaded with an Interrupt or Trap vector.
Refer to Section 21.8 “Code Protection and
CodeGuard™ Security for more information on
Security Reset.
6.10 Using the RCON Status Bits
The user application can read the Reset Control
(RCON) register after any device Reset to determine
the cause of the Reset.
Table 6-3 provides a summary of Reset flag bit
operation.
TABLE 6-3: RESET FLAG BIT OPERATION
Note: The status bits in the RCON register
should be cleared after they are read so
that the next RCON register value after a
device Reset will be meaningful.
Flag Bit Set by: Cleared by:
TRAPR (RCON<15>) Trap conflict event POR, BOR
IOPWR (RCON<14>) Illegal opcode or uninitialized
W register access or Security Reset
POR, BOR
CM (RCON<9>) Configuration Mismatch POR, BOR
EXTR (RCON<7>) MCLR Reset POR
SWR (RCON<6>) RESET instruction POR, BOR
WDTO (RCON<4>) WDT Time-out PWRSAV instruction,
CLRWDT instruction, POR, BOR
SLEEP (RCON<3>) PWRSAV #SLEEP instruction POR, BOR
IDLE (RCON<2>) PWRSAV #IDLE instruction POR, BOR
BOR (RCON<1>) POR, BOR
POR (RCON<0>) POR
Note: All Reset flag bits can be set or cleared by user software.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 67
dsPIC33FJ12MC201/202
7.0 INTERRUPT CONTROLLER
The dsPIC33FJ12MC201/202 interrupt controller
reduces the numerous peripheral interrupt request
signals to a single interrupt request signal to the
dsPIC33FJ12MC201/202 CPU. It has the following
features:
Up to eight processor exceptions and software traps
Seven user-selectable priority levels
Interrupt Vector Table (IVT) with up to 118 vectors
A unique vector for each interrupt or exception
source
Fixed priority within a specified user priority level
Alternate Interrupt Vector Table (AIVT) for debug
support
Fixed interrupt entry and return latencies
7.1 Interrupt Vector Table
The Interrupt Vector Table (IVT) is shown in Figure 7-1.
The IVT resides in program memory, starting at location
000004h. The IVT contains 126 vectors consisting of
eight non-maskable trap vectors, plus up to 118
sources of interrupt. In general, each interrupt source
has its own vector. Each interrupt vector contains a 24-
bit-wide address. The value programmed into each
interrupt vector location is the starting address of the
associated Interrupt Service Routine (ISR).
Interrupt vectors are prioritized in terms of their natural
priority. This priority is linked to their position in the
vector table. Lower addresses generally have a higher
natural priority. For example, the interrupt associated
with vector 0 will take priority over interrupts at any
other vector address.
dsPIC33FJ12MC201/202 devices implement up to 26
unique interrupts and 4 nonmaskable traps. These are
summarized in Table 7-1 and Table 7-2.
7.1.1 ALTERNATE INTERRUPT VECTOR
TA B L E
The Alternate Interrupt Vector Table (AIVT) is located
after the IVT, as shown in Figure 7-1. Access to the
AIVT is provided by the ALTIVT control bit
(INTCON2<15>). If the ALTIVT bit is set, all interrupt
and exception processes use the alternate vectors
instead of the default vectors. The alternate vectors are
organized in the same manner as the default vectors.
The AIVT supports debugging by providing a way to
switch between an application and a support
environment without requiring the interrupt vectors to
be reprogrammed. This feature also enables switching
between applications to facilitate evaluation of different
software algorithms at run time. If the AIVT is not
needed, the AIVT should be programmed with the
same addresses used in the IVT.
7.2 Reset Sequence
A device Reset is not a true exception because the
interrupt controller is not involved in the Reset process.
The dsPIC33FJ12MC201/202 device clears its regis-
ters in response to a Reset, forcing the PC to zero. The
digital signal controller then begins program execution
at location 0x000000. A GOTO instruction at the Reset
address can redirect program execution to the
appropriate start-up routine.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, Section 29.
“Interrupts (Part II)” (DS70189), which is
available on the Microchip web site
(www.microchip.com).
Note: Any unimplemented or unused vector
locations in the IVT and AIVT should be
programmed with the address of a default
interrupt handler routine that contains a
RESET instruction.
dsPIC33FJ12MC201/202
DS70265D-page 68 Preliminary © 2009 Microchip Technology Inc.
FIGURE 7-1: dsPIC33FJ12MC201/202 INTERRUPT VECTOR TABLE
Reset – GOTO Instruction 0x000000
Reset – GOTO Address 0x000002
Reserved 0x000004
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
Reserved
Reserved
Reserved
Interrupt Vector 0 0x000014
Interrupt Vector 1
~
~
~
Interrupt Vector 52 0x00007C
Interrupt Vector 53 0x00007E
Interrupt Vector 54 0x000080
~
~
~
Interrupt Vector 116 0x0000FC
Interrupt Vector 117 0x0000FE
Reserved 0x000100
Reserved 0x000102
Reserved
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
Reserved
Reserved
Reserved
Interrupt Vector 0 0x000114
Interrupt Vector 1
~
~
~
Interrupt Vector 52 0x00017C
Interrupt Vector 53 0x00017E
Interrupt Vector 54 0x000180
~
~
~
Interrupt Vector 116
Interrupt Vector 117 0x0001FE
Start of Code 0x000200
Decreasing Natural Order Priority
Interrupt Vector Table (IVT)(1)
Alternate Interrupt Vector Table (AIVT)(1)
Note 1: See Table 7-1 for the list of implemented interrupt vectors.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 69
dsPIC33FJ12MC201/202
TABLE 7-1: INTERRUPT VECTORS
Vector
Number
Interrupt
Request (IRQ)
Number
IVT Address AIVT Address Interrupt Source
8 0 0x000014 0x000114 INT0 – External Interrupt 0
9 1 0x000016 0x000116 IC1 – Input Compare 1
10 2 0x000018 0x000118 OC1 – Output Compare 1
11 3 0x00001A 0x00011A T1 – Timer1
12 4 0x00001C 0x00011C Reserved
13 5 0x00001E 0x00011E IC2 – Input Capture 2
14 6 0x000020 0x000120 OC2 – Output Compare 2
15 7 0x000022 0x000122 T2 – Timer2
16 8 0x000024 0x000124 T3 – Timer3
17 9 0x000026 0x000126 SPI1E – SPI1 Error
18 10 0x000028 0x000128 SPI1 – SPI1 Transfer Done
19 11 0x00002A 0x00012A U1RX – UART1 Receiver
20 12 0x00002C 0x00012C U1TX – UART1 Transmitter
21 13 0x00002E 0x00012E ADC1 – ADC1
22 14 0x000030 0x000130 Reserved
23 15 0x000032 0x000132 Reserved
24 16 0x000034 0x000134 SI2C1 – I2C1 Slave Events
25 17 0x000036 0x000136 MI2C1 – I2C1 Master Events
26 18 0x000038 0x000138 Reserved
27 19 0x00003A 0x00013A Change Notification Interrupt
28 20 0x00003C 0x00013C INT1 – External Interrupt 1
29 21 0x00003E 0x00013E Reserved
30 22 0x000040 0x000140 IC7 – Input Capture 7
31 23 0x000042 0x000142 IC8 – Input Capture 8
32 24 0x000044 0x000144 Reserved
33 25 0x000046 0x000146 Reserved
34 26 0x000048 0x000148 Reserved
35 27 0x00004A 0x00014A Reserved
36 28 0x00004C 0x00014C Reserved
37 29 0x00004E 0x00014E INT2 – External Interrupt 2
38 30 0x000050 0x000150 Reserved
39 31 0x000052 0x000152 Reserved
40 32 0x000054 0x000154 Reserved
41 33 0x000056 0x000156 Reserved
42 34 0x000058 0x000158 Reserved
43 35 0x00005A 0x00015A Reserved
44 36 0x00005C 0x00015C Reserved
45 37 0x00005E 0x00015E Reserved
46 38 0x000060 0x000160 Reserved
47 39 0x000062 0x000162 Reserved
48 40 0x000064 0x000164 Reserved
49 41 0x000066 0x000166 Reserved
50 42 0x000068 0x000168 Reserved
51 43 0x00006A 0x00016A Reserved
52 44 0x00006C 0x00016C Reserved
53 45 0x00006E 0x00016E Reserved
dsPIC33FJ12MC201/202
DS70265D-page 70 Preliminary © 2009 Microchip Technology Inc.
TABLE 7-2: TRAP VECTORS
54 46 0x000070 0x000170 Reserved
55 47 0x000072 0x000172 Reserved
56 48 0x000074 0x000174 Reserved
57 49 0x000076 0x000176 Reserved
58 50 0x000078 0x000178 Reserved
59 51 0x00007A 0x00017A Reserved
60 52 0x00007C 0x00017C Reserved
61 53 0x00007E 0x00017E Reserved
62 54 0x000080 0x000180 Reserved
63 55 0x000082 0x000182 Reserved
64 56 0x000084 0x000184 Reserved
65 57 0x000086 0x000186 PWM1 – PWM1 Period Match
66 58 0x000088 0x000188 QEI – Position Counter Compare
67 59 0x00008A 0x00018A Reserved
68 60 0x00008C 0x00018C Reserved
69 61 0x00008E 0x00018E Reserved
70 62 0x000090 0x000190 Reserved
71 63 0x000092 0x000192 FLTA1 – PWM1 Fault A
72 64 0x000094 0x000194 Reserved
73 65 0x000096 0x000196 U1E – UART1 Error
74 66 0x000098 0x000198 Reserved
75 67 0x00009A 0x00019A Reserved
76 68 0x00009C 0x00019C Reserved
77 69 0x00009E 0x00019E Reserved
78 70 0x0000A0 0x0001A0 Reserved
79 71 0x0000A2 0x0001A2 Reserved
80 72 0x0000A4 0x0001A4 Reserved
81 73 0x0000A6 0x0001A6 PWM2 – PWM2 Period Match
82 74 0x0000A8 0x0001A8 FLTA2 – PWM2 Fault A
83-125 75-117 0x0000AA-
0x0000FE
0x0001AA-
0x0001FE
Reserved
Vector Number IVT Address AIVT Address Trap Source
0 0x000004 0x000104 Reserved
1 0x000006 0x000106 Oscillator Failure
2 0x000008 0x000108 Address Error
3 0x00000A 0x00010A Stack Error
4 0x00000C 0x00010C Math Error
5 0x00000E 0x00010E Reserved
6 0x000010 0x000110 Reserved
7 0x000012 0x000112 Reserved
TABLE 7-1: INTERRUPT VECTORS (CONTINUED)
Vector
Number
Interrupt
Request (IRQ)
Number
IVT Address AIVT Address Interrupt Source
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 71
dsPIC33FJ12MC201/202
7.3 Interrupt Control and Status
Registers
The dsPIC33FJ12MC201/202 devices implement a
total of 22 registers for the interrupt controller:
INTCON1
INTCON2
•IFSx
•IECx
•IPCx
•INTTREG
7.3.1 INTCON1 AND INTCON2
Global interrupt control functions are controlled from
INTCON1 and INTCON2. INTCON1 contains the
Interrupt Nesting Disable (NSTDIS) bit as well as the
control and status flags for the processor trap sources.
The INTCON2 register controls the external interrupt
request signal behavior and the use of the Alternate
Interrupt Vector Table.
7.3.2 IFSx
The IFS registers maintain all of the interrupt request
flags. Each source of interrupt has a status bit, which is
set by the respective peripherals or external signal and
is cleared via software.
7.3.3 IECx
The IEC registers maintain all of the interrupt enable
bits. These control bits are used to individually enable
interrupts from the peripherals or external signals.
7.3.4 IPCx
The IPC registers are used to set the interrupt priority
level for each source of interrupt. Each user interrupt
source can be assigned to one of eight priority levels.
7.3.5 INTTREG
The INTTREG register contains the associated
interrupt vector number and the new CPU interrupt
priority level, which are latched into vector number
(VECNUM<6:0>) and interrupt level (ILR<3:0>) bit
fields in the INTTREG register. The new interrupt
priority level is the priority of the pending interrupt.
The interrupt sources are assigned to the IFSx, IECx
and IPCx registers in the same sequence that they are
listed in Table 7-1. For example, the INT0 (External
Interrupt 0) is shown as having vector number 8 and a
natural order priority of 0. Thus, the INT0IF bit is found
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP
bits in the first positions of IPC0 (IPC0<2:0>).
7.3.6 STATUS/CONTROL REGISTERS
Although they are not specifically part of the interrupt
control hardware, two of the CPU Control registers
contain bits that control interrupt functionality.
The CPU STATUS register, SR, contains the
IPL<2:0> bits (SR<7:5>). These bits indicate the
current CPU interrupt priority level. The user
application can change the current CPU priority
level by writing to the IPL bits.
The CORCON register contains the IPL3 bit
which, together with IPL<2:0>, also indicates the
current CPU priority level. IPL3 is a read-only bit
so that trap events cannot be masked by the user
software.
All Interrupt registers are described in Register 7-1
through Register 7-24 in the following pages.
dsPIC33FJ12MC201/202
DS70265D-page 72 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-1: SR: CPU STATUS REGISTER(1)
R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0
OA OB SA SB OAB SAB DA DC
bit 15 bit 8
R/W-0(3) R/W-0(3) R/W-0(3) R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2(2) IPL1(2) IPL0(2) RA N OV Z C
bit 7 bit 0
Legend:
C = Clear only bit R = Readable bit U = Unimplemented bit, read as ‘0’
S = Set only bit W = Writable bit -n = Value at POR
‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1)
111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
Note 1: For complete register details, see Register 3-1: “SR: CPU Status Register”.
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when
IPL<3> = 1.
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
REGISTER 7-2: CORCON: CORE CONTROL REGISTER(1)
U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0
—USEDT DL<2:0>
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3(2) PSV RND IF
bit 7 bit 0
Legend: C = Clear only bit
R = Readable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set
0’ = Bit is cleared ‘x = Bit is unknown U = Unimplemented bit, read as ‘0’
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(2)
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less
Note 1: For complete register details, see Register 3-2: “CORCON: Core Control Register”.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 73
dsPIC33FJ12MC201/202
REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE
bit 15 bit 8
R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
SFTACERR DIV0ERR MATHERR ADDRERR STKERR OSCFAIL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 NSTDIS: Interrupt Nesting Disable bit
1 = Interrupt nesting is disabled
0 = Interrupt nesting is enabled
bit 14 OVAERR: Accumulator A Overflow Trap Flag bit
1 = Trap was caused by overflow of Accumulator A
0 = Trap was not caused by overflow of Accumulator A
bit 13 OVBERR: Accumulator B Overflow Trap Flag bit
1 = Trap was caused by overflow of Accumulator B
0 = Trap was not caused by overflow of Accumulator B
bit 12 COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit
1 = Trap was caused by catastrophic overflow of Accumulator A
0 = Trap was not caused by catastrophic overflow of Accumulator A
bit 11 COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit
1 = Trap was caused by catastrophic overflow of Accumulator B
0 = Trap was not caused by catastrophic overflow of Accumulator B
bit 10 OVATE: Accumulator A Overflow Trap Enable bit
1 = Trap overflow of Accumulator A
0 = Trap disabled
bit 9 OVBTE: Accumulator B Overflow Trap Enable bit
1 = Trap overflow of Accumulator B
0 = Trap disabled
bit 8 COVTE: Catastrophic Overflow Trap Enable bit
1 = Trap on catastrophic overflow of Accumulator A or B enabled
0 = Trap disabled
bit 7 SFTACERR: Shift Accumulator Error Status bit
1 = Math error trap was caused by an invalid accumulator shift
0 = Math error trap was not caused by an invalid accumulator shift
bit 6 DIV0ERR: Arithmetic Error Status bit
1 = Math error trap was caused by a divide by zero
0 = Math error trap was not caused by a divide by zero
bit 5 Unimplemented: Read as ‘0
bit 4 MATHERR: Arithmetic Error Status bit
1 = Math error trap has occurred
0 = Math error trap has not occurred
bit 3 ADDRERR: Address Error Trap Status bit
1 = Address error trap has occurred
0 = Address error trap has not occurred
dsPIC33FJ12MC201/202
DS70265D-page 74 Preliminary © 2009 Microchip Technology Inc.
bit 2 STKERR: Stack Error Trap Status bit
1 = Stack error trap has occurred
0 = Stack error trap has not occurred
bit 1 OSCFAIL: Oscillator Failure Trap Status bit
1 = Oscillator failure trap has occurred
0 = Oscillator failure trap has not occurred
bit 0 Unimplemented: Read as ‘0
REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 75
dsPIC33FJ12MC201/202
REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2
R/W-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0
ALTIVT DISI
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
INT2EP INT1EP INT0EP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit
1 = Use alternate vector table
0 = Use standard (default) vector table
bit 14 DISI: DISI Instruction Status bit
1 = DISI instruction is active
0 = DISI instruction is not active
bit 13-3 Unimplemented: Read as ‘0
bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
dsPIC33FJ12MC201/202
DS70265D-page 76 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 12 U1TXIF: UART1 Transmitter Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 11 U1RXIF: UART1 Receiver Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 9 SPI1EIF: SPI1 Fault Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8 T3IF: Timer3 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 7 T2IF: Timer2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 4 Unimplemented: Read as ‘0
bit 3 T1IF: Timer1 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 77
dsPIC33FJ12MC201/202
bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 INT0IF: External Interrupt 0 Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)
dsPIC33FJ12MC201/202
DS70265D-page 78 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1
U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
—INT2IF
bit 15 bit 8
R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0
IC8IF IC7IF INT1IF CNIF —MI2C1IFSI2C1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 INT2IF: External Interrupt 2 Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 12-8 Unimplemented: Read as ‘0
bit 7 IC8IF: Input Capture Channel 8 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 6 IC7IF: Input Capture Channel 7 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 5 Unimplemented: Read as ‘0
bit 4 INT1IF: External Interrupt 1 Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 2 Unimplemented: Read as ‘0
bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 79
dsPIC33FJ12MC201/202
REGISTER 7-7: IFS3: INTERRUPT FLAG STATUS REGISTER 3
R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0
FLTA1IF QEIIF PWM1IF
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FLTA1IF: PWM1 Fault A Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 14-11 Unimplemented: Read as ‘0
bit 10 QEIIF: QEI Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 9 PWM1IF: PWM1 Error Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8-0 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 80 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0
FLTA2IF PWM2IF
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
—U1EIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10 FLTA2IF: PWM2 Fault A Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 9 PWM2IF: PWM2 Error Interrupt Enable bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8-2 Unimplemented: Read as ‘0
bit 1 U1EIF: UART1 Error Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 81
dsPIC33FJ12MC201/202
REGISTER 7-9: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AD1IE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 AD1IE: ADC1 Conversion Complete Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 12 U1TXIE: UART1 Transmitter Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 11 U1RXIE: UART1 Receiver Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 10 SPI1IE: SPI1 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 9 SPI1EIE: SPI1 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 8 T3IE: Timer3 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 7 T2IE: Timer2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 5 IC2IE: Input Capture Channel 2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 4 Unimplemented: Read as ‘0
bit 3 T1IE: Timer1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
dsPIC33FJ12MC201/202
DS70265D-page 82 Preliminary © 2009 Microchip Technology Inc.
bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 INT0IE: External Interrupt 0 Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
REGISTER 7-9: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 83
dsPIC33FJ12MC201/202
REGISTER 7-10: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1
U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
—INT2IE
bit 15 bit 8
R/W-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
IC8IE IC7IE INT1IE CNIE —MI2C1IESI2C1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 INT2IE: External Interrupt 2 Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 12-8 Unimplemented: Read as ‘0
bit 7 IC8IE: Input Capture Channel 8 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 6 IC7IE: Input Capture Channel 7 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 5 Unimplemented: Read as ‘0
bit 4 INT1IE: External Interrupt 1 Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 3 CNIE: Input Change Notification Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 2 Unimplemented: Read as ‘0
bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
dsPIC33FJ12MC201/202
DS70265D-page 84 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-11: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3
R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0
FLTA1IE QEIIE PWM1IE
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FLTA1IE: PWM1 Fault A Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 14-11 Unimplemented: Read as ‘0
bit 10 QEIIE: QEI Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 9 PWM1IE: PWM1 Error Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 8-0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 85
dsPIC33FJ12MC201/202
REGISTER 7-12: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0
FLA2IE PWM2IE
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0
—U1EIE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10 FLA2IE: PWM2 Fault A Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 9 PWM2IE: PWM2 Error Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 8-2 Unimplemented: Read as ‘0
bit 1 U1EIE: UART1 Error Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 86 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-13: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
T1IP<2:0> —OC1IP<2:0>
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
—IC1IP<2:0> INT0IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as ‘0
bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as ‘0
bit 2-0 INT0IP<2:0>: External Interrupt 0 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 87
dsPIC33FJ12MC201/202
REGISTER 7-14: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
T2IP<2:0> —OC2IP<2:0>
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-1 U-0 U-0
—IC2IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as ‘0
bit 6-4 IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 88 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-15: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
U1RXIP<2:0> SPI1IP<2:0>
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
SPI1EIP<2:0> T3IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as ‘0
bit 6-4 SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as ‘0
bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 89
dsPIC33FJ12MC201/202
REGISTER 7-16: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
—AD1IP<2:0> U1TXIP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as ‘0
bit 2-0 U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
dsPIC33FJ12MC201/202
DS70265D-page 90 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-17: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
CNIP<2:0>
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
MI2C1IP<2:0> SI2C1IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11-7 Unimplemented: Read as ‘0
bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as ‘0
bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 91
dsPIC33FJ12MC201/202
REGISTER 7-18: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
—IC8IP<2:0> IC7IP<2:0>
bit 15 bit 8
U-0 U-1 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
INT1IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7-3 Unimplemented: Read as ‘0
bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
dsPIC33FJ12MC201/202
DS70265D-page 92 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-19: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7
U-0 U-1 U-0 U-0 U-0 U-1 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
INT2IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 93
dsPIC33FJ12MC201/202
REGISTER 7-20: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
—QEIIP<2:0>
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
PWM1IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 Unimplemented: Read as ‘0
bit 10-8 QEIIP<2:0>: QEI Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as ‘0
bit 6-4 PWM1IP<2:0>: PWM1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 94 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-21: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
—FLTA1IP<2:0>
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 FLTA1IP<2:0>: PWM1 Fault A Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11-0 Unimplemented: Read as ‘0
REGISTER 7-22: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
—U1EIP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 95
dsPIC33FJ12MC201/202
REGISTER 7-23: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
FLTA2IP<2:0>
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
PWM2IP<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 8-10 FLTA2IP<2:0>: PWM2 Fault A Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 6-4 PWM2IP<2:0>: PWM2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 96 Preliminary © 2009 Microchip Technology Inc.
REGISTER 7-24: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER
U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0
—ILR<3:0>
bit 15 bit 8
U-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
VECNUM<6:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 Unimplemented: Read as ‘0
bit 11-8 ILR: New CPU Interrupt Priority Level bits
1111 = CPU Interrupt Priority Level is 15
0001 = CPU Interrupt Priority Level is 1
0000 = CPU Interrupt Priority Level is 0
bit 7 Unimplemented: Read as ‘0
bit 6-0 VECNUM: Vector Number of Pending Interrupt bits
0111111 = Interrupt Vector pending is number 135
0000001 = Interrupt Vector pending is number 9
0000000 = Interrupt Vector pending is number 8
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 97
dsPIC33FJ12MC201/202
7.4 Interrupt Setup Procedures
7.4.1 INITIALIZATION
To configure an interrupt source at initialization:
1. Set the NSTDIS bit (INTCON1<15>) if nested
interrupts are not desired.
2. Select the user-assigned priority level for the
interrupt source by writing the control bits into
the appropriate IPCx register. The priority level
will depend on the specific application and type
of interrupt source. If multiple priority levels are
not desired, the IPCx register control bits for all
enabled interrupt sources can be programmed
to the same non-zero value.
3. Clear the interrupt flag status bit associated with
the peripheral in the associated IFSx register.
4. Enable the interrupt source by setting the inter-
rupt enable control bit associated with the
source in the appropriate IECx register.
7.4.2 INTERRUPT SERVICE ROUTINE
The method used to declare an ISR and initialize the
IVT with the correct vector address depends on the
programming language (C or assembler) and the
language development tool suite used to develop the
application.
In general, the user application must clear the interrupt
flag in the appropriate IFSx register for the source of
interrupt that the ISR handles. Otherwise, program will
re-enter the ISR immediately after exiting the routine. If
the ISR is coded in assembly language, it must be
terminated using a RETFIE instruction to unstack the
saved PC value, SRL value and old CPU priority level.
7.4.3 TRAP SERVICE ROUTINE
A Trap Service Routine (TSR) is coded like an ISR,
except that the appropriate trap status flag in the
INTCON1 register must be cleared to avoid re-entry
into the TSR.
7.4.4 INTERRUPT DISABLE
All user interrupts can be disabled using this
procedure:
1. Push the current SR value onto the software
stack using the PUSH instruction.
2. Force the CPU to priority level 7 by inclusive
ORing the value OEh with SRL.
To enable user interrupts, the POP instruction can be
used to restore the previous SR value.
The DISI instruction provides a convenient way to
disable interrupts of priority levels 1-6 for a fixed period
of time. Level 7 interrupt sources are not disabled by
the DISI instruction.
Note: At a device Reset, the IPCx registers
are initialized such that all user inter-
rupt sources are assigned to priority
level 4.
Note: Only user interrupts with a priority level of
7 or lower can be disabled. Trap sources
(level 8-level 15) cannot be disabled.
dsPIC33FJ12MC201/202
DS70265D-page 98 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 99
dsPIC33FJ12MC201/202
8.0 OSCILLATOR
CONFIGURATION
The dsPIC33FJ12MC201/202 oscillator system
provides:
External and internal oscillator options as clock
sources
An on-chip Phase-Locked Loop (PLL) to scale the
internal operating frequency to the required
system clock frequency
An internal FRC oscillator that can also be used
with the PLL, thereby allowing full-speed
operation without any external clock generation
hardware
Clock switching between various clock sources
Programmable clock postscaler for system power
savings
A Fail-Safe Clock Monitor (FSCM) that detects
clock failure and takes fail-safe measures
A Clock Control register (OSCCON)
Nonvolatile Configuration bits for main oscillator
selection
A simplified diagram of the oscillator system is shown
in Figure 8-1.
FIGURE 8-1: dsPIC33FJ12MC201/202 OSCILLATOR SYSTEM DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, Section 7.
“Oscillator” (DS70186), which is
available from the Microchip web site
(www.microchip.com).
Note 1: See Figure 8-2 for PLL details.
2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 MΩ must be connected.
dsPIC33F
Secondary Oscillator
LPOSCEN
SOSCO
SOSCI
Timer 1
XTPLL, HSPLL,
XT, HS, EC
FRCDIV<2:0>
WDT, PWRT,
FSCM
FRCDIVN
SOSC
FRCDIV16
ECPLL, FRCPLL
NOSC<2:0> FNOSC<2:0>
Reset
FRC
Oscillator
LPRC
Oscillator
DOZE<2:0>
S3
S1
S2
S1/S3
S7
S6
FRC
LPRC
S0
S5
S4
÷16
Clock Switch
S7
Clock Fail
÷2
TUN<5:0>
PLL(1) FCY
FOSC
FRCDIV
DOZE
OSC2
OSC1 Primary Oscillator
R(2)
POSCMD<1:0>
FP
dsPIC33FJ12MC201/202
DS70265D-page 100 Preliminary © 2009 Microchip Technology Inc.
8.1 CPU Clocking System
The dsPIC33FJ12MC201/202 devices provide seven
system clock options:
Fast RC (FRC) Oscillator
FRC Oscillator with PLL
Primary (XT, HS or EC) Oscillator
Primary Oscillator with PLL
Secondary (LP) Oscillator
Low-Power RC (LPRC) Oscillator
FRC Oscillator with postscaler
8.1.1 SYSTEM CLOCK SOURCES
8.1.1.1 Fast RC
The Fast RC (FRC) internal oscillator runs at a nominal
frequency of 7.37 MHz. User software can tune the
FRC frequency. User software can optionally specify a
factor (ranging from 1:2 to 1:256) by which the FRC
clock frequency is divided. This factor is selected using
the FRCDIV<2:0> (CLKDIV<10:8>) bits.
8.1.1.2 Primary
The primary oscillator can use one of the following as
its clock source:
XT (Crystal): Crystals and ceramic resonators in
the range of 3 MHz to 10 MHz. The crystal is
connected to the OSC1 and OSC2 pins.
HS (High-Speed Crystal): Crystals in the range of
10 MHz to 40 MHz. The crystal is connected to
the OSC1 and OSC2 pins.
EC (External Clock): The external clock signal is
directly applied to the OSC1 pin.
8.1.1.3 Secondary
The secondary (LP) oscillator is designed for low power
and uses a 32.768 kHz crystal or ceramic resonator.
The LP oscillator uses the SOSCI and SOSCO pins.
8.1.1.4 Low-Power RC
The Low-Power RC (LPRC) internal oscIllator runs at a
nominal frequency of 32.768 kHz. It is also used as a
reference clock by the Watchdog Timer (WDT) and
Fail-Safe Clock Monitor (FSCM).
8.1.1.5 FRC
The clock signals generated by the FRC and primary
oscillators can be optionally applied to an on-chip
Phase-Locked Loop (PLL) to provide a wide range of
output frequencies for device operation. PLL
configuration is described in Section 8.1.3 “PLL
Configuration”.
The FRC frequency depends on the FRC accuracy
(see Table 24-18) and the value of the FRC Oscillator
Tuning register (see Register 8-4).
8.1.2 SYSTEM CLOCK SELECTION
The oscillator source used at a device Power-on
Reset event is selected using Configuration bit
settings. The oscillator Configuration bit settings are
located in the Configuration registers in the program
memory. (Refer to Section 21.1 “Configuration
Bits” for further details.) The Initial Oscillator
Selection Configuration bits, FNOSC<2:0>
(FOSCSEL<2:0>), and the Primary Oscillator Mode
Select Configuration bits, POSCMD<1:0>
(FOSC<1:0>), select the oscillator source that is used
at a Power-on Reset. The FRC primary oscillator is
the default (unprogrammed) selection.
The Configuration bits allow users to choose among 12
different clock modes, shown in Table 8-1.
The output of the oscillator (or the output of the PLL if
a PLL mode has been selected) FOSC is divided by 2 to
generate the device instruction clock (FCY) and the
peripheral clock time base (FP). FCY defines the
operating speed of the device, and speeds up to 40
MHz are supported by the dsPIC33FJ12MC201/202
architecture.
Instruction execution speed or device operating
frequency, FCY, is given by:
EQUATION 8-1: DEVICE OPERATING
FREQUENCY
FCY FOSC
2
-------------
=
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 101
dsPIC33FJ12MC201/202
8.1.3 PLL CONFIGURATION
The primary oscillator and internal FRC oscillator can
optionally use an on-chip PLL to obtain higher speeds
of operation. The PLL provides significant flexibility in
selecting the device operating speed. A block diagram
of the PLL is shown in Figure 8-2.
The output of the primary oscillator or FRC, denoted as
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,
... or 33 before being provided to the PLL’s Voltage
Controlled Oscillator (VCO). The input to the VCO must
be selected in the range of 0.8 MHz to 8 MHz. The
prescale factor ‘N1’ is selected using the
PLLPRE<4:0> bits (CLKDIV<4:0>).
The PLL Feedback Divisor, selected using the
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M,’
by which the input to the VCO is multiplied. This factor
must be selected such that the resulting VCO output
frequency is in the range of 100 MHz to 200 MHz.
The VCO output is further divided by a postscale factor
‘N2.’ This factor is selected using the PLLPOST<1:0>
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4, or 8, and
must be selected such that the PLL output frequency
(FOSC) is in the range of 12.5 MHz to 80 MHz, which
generates device operating speeds of 6.25 to 40 MIPS.
For output ‘FIN’ on a primary oscillator, or FRC oscilla-
tor, the PLL output ‘FOSC’ is given by Equation 8-2.
EQUATION 8-2: FOSC CALCULATION
For example, suppose a 10 MHz crystal is being used
with the selected oscillator mode of XT with PLL.
If PLLPRE<4:0> = 0, then N1 = 2. This yields a
VCO input of 10/2 = 5 MHz, which is within the
acceptable range of 0.8-8 MHz.
If PLLDIV<8:0> = 0x1E, then
M = 32. This yields a VCO output of 5 x 32 = 160
MHz, which is within the 100-200 MHz ranged
needed.
If PLLPOST<1:0> = 0, then N2 = 2. This provides
a Fosc of 160/2 = 80 MHz. The resultant device
operating speed is 80/2 = 40 MIPS.
EQUATION 8-3: XT WITH PLL MODE
EXAMPLE
FIGURE 8-2: dsPIC33FJ12MC201/202 PLL BLOCK DIAGRAM
FOSC FIN M
N1N2
-------------------
⎝⎠
⎛⎞
=
FCY FOSC
2
------------- 1
2
---10000000 32
22
----------------------------------
⎝⎠
⎛⎞
40 MIPS== =
0.8-8.0 MHz
Here(1) 100-200 MHz
Here(1)
Divide by
2, 4, 8
Divide by
2-513
Divide by
2-33
Source (Crystal, External Clock PLLPRE XVCO
PLLDIV
PLLPOST
or Internal RC)
12.5-80 MHz
Here(1)
FOSC
Note 1: This frequency range must be satisfied at all times.
FVCO
N1
M
N2
dsPIC33FJ12MC201/202
DS70265D-page 102 Preliminary © 2009 Microchip Technology Inc.
TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION
Oscillator Mode Oscillator
Source POSCMD<1:0> FNOSC<2:0> Note
Fast RC Oscillator with Divide-by-N (FRCDIVN) Internal xx 111 1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16) Internal xx 110 1
Low-Power RC Oscillator (LPRC) Internal xx 101 1
Secondary (Timer1) Oscillator (SOSC) Secondary xx 100 1
Primary Oscillator (HS) with PLL (HSPLL) Primary 10 011
Primary Oscillator (XT) with PLL (XTPLL) Primary 01 011
Primary Oscillator (EC) with PLL (ECPLL) Primary 00 011 1
Primary Oscillator (HS) Primary 10 010
Primary Oscillator (XT) Primary 01 010
Primary Oscillator (EC) Primary 00 010 1
Fast RC Oscillator with PLL (FRCPLL) Internal xx 001 1
Fast RC Oscillator (FRC) Internal xx 000 1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.
2: This is the default oscillator mode for an unprogrammed (erased) device.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 103
dsPIC33FJ12MC201/202
REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER(1)
U-0 R-0 R-0 R-0 U-0 R/W-y R/W-y R/W-y
COSC<2:0> NOSC<2:0>(2)
bit 15 bit 8
R/W-0 R/W-0 R-0 U-0 R/C-0 U-0 R/W-0 R/W-0
CLKLOCK IOLOCK LOCK —CF LPOSCEN OSWEN
bit 7 bit 0
Legend: y = Value set from Configuration bits on POR
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only)
000 = Fast RC oscillator (FRC)
001 = Fast RC oscillator (FRC) with PLL
010 = Primary oscillator (XT, HS, EC)
011 = Primary oscillator (XT, HS, EC) with PLL
100 = Secondary oscillator (SOSC)
101 = Low-Power RC oscillator (LPRC)
110 = Fast RC oscillator (FRC) with Divide-by-16
111 = Fast RC oscillator (FRC) with Divide-by-n
bit 11 Unimplemented: Read as ‘0
bit 10-8 NOSC<2:0>: New Oscillator Selection bits (2)
000 = Fast RC oscillator (FRC)
001 = Fast RC oscillator (FRC) with PLL
010 = Primary oscillator (XT, HS, EC)
011 = Primary oscillator (XT, HS, EC) with PLL
100 = Secondary oscillator (SOSC)
101 = Low-Power RC oscillator (LPRC)
110 = Fast RC oscillator (FRC) with Divide-by-16
111 = Fast RC oscillator (FRC) with Divide-by-n
bit 7 CLKLOCK: Clock Lock Enable bit
If clock switching is enabled and FSCM is disabled, (FOSC<FCKSM> = 0b01)
1 = Clock switching is disabled, system clock source is locked
0 = Clock switching is enabled, system clock source can be modified by clock switching
bit 6 IOLOCK: Peripheral Pin Select Lock bit
1 = Peripherial pin select is locked, write to peripheral pin select registers not allowed
0 = Peripherial pin select is not locked, write to peripheral pin select registers allowed
bit 5 LOCK: PLL Lock Status bit (read-only)
1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied
0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4 Unimplemented: Read as ‘0
bit 3 CF: Clock Fail Detect bit (read/clear by application)
1 = FSCM has detected clock failure
0 = FSCM has not detected clock failure
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70227) in the
“PIC24H Family Reference Manual” (available from the Microchip web site) for details.
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.
This applies to clock switches in either direction. In these instances, the application must switch to FRC mode
as a transition clock source between the two PLL modes.
dsPIC33FJ12MC201/202
DS70265D-page 104 Preliminary © 2009 Microchip Technology Inc.
bit 2 Unimplemented: Read as ‘0
bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
1 = Enable secondary oscillator
0 = Disable secondary oscillator
bit 0 OSWEN: Oscillator Switch Enable bit
1 = Request oscillator switch to selection specified by NOSC<2:0> bits
0 = Oscillator switch is complete
REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER(1) (CONTINUED)
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70227) in the
“PIC24H Family Reference Manual” (available from the Microchip web site) for details.
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.
This applies to clock switches in either direction. In these instances, the application must switch to FRC mode
as a transition clock source between the two PLL modes.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 105
dsPIC33FJ12MC201/202
REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER
R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
ROI DOZE<2:0> DOZEN(1) FRCDIV<2:0>
bit 15 bit 8
R/W-0 R/W-1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PLLPOST<1:0> PLLPRE<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ROI: Recover on Interrupt bit
1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1
0 = Interrupts have no effect on the DOZEN bit
bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits
000 = FCY/1
001 = FCY/2
010 = FCY/4
011 = FCY/8 (default)
100 = FCY/16
101 = FCY/32
110 = FCY/64
111 = FCY/128
bit 11 DOZEN: DOZE Mode Enable bit(1)
1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks
0 = Processor clock/peripheral clock ratio forced to 1:1
bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits
000 = FRC divide by 1 (default)
001 = FRC divide by 2
010 = FRC divide by 4
011 = FRC divide by 8
100 = FRC divide by 16
101 = FRC divide by 32
110 = FRC divide by 64
111 = FRC divide by 256
bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)
00 = Output/2
01 = Output/4 (default)
10 = Reserved
11 = Output/8
bit 5 Unimplemented: Read as ‘0
bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)
00000 = Input/2 (default)
00001 = Input/3
11111 = Input/33
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
dsPIC33FJ12MC201/202
DS70265D-page 106 Preliminary © 2009 Microchip Technology Inc.
REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0(1)
—PLLDIV<8>
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
PLLDIV<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-9 Unimplemented: Read as ‘0
bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)
000000000 = 2
000000001 = 3
000000010 = 4
000110000 = 50 (default)
111111111 = 513
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 107
dsPIC33FJ12MC201/202
REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TUN<5:0>(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-6 Unimplemented: Read as ‘0
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits(1)
011111 = Center frequency +11.625% (8.23 MHz)
011110 = Center frequency +11.25% (8.20 MHz)
000001 = Center frequency +0.375% (7.40 MHz)
000000 = Center frequency (7.37 MHz nominal)
111111 = Center frequency -0.375% (7.345 MHz)
100001 = Center frequency -11.625% (6.52 MHz)
100000 = Center frequency -12% (6.49 MHz)
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither
characterized nor tested.
dsPIC33FJ12MC201/202
DS70265D-page 108 Preliminary © 2009 Microchip Technology Inc.
8.2 Clock Switching Operation
Applications are free to switch among any of the four
clock sources (Primary, LP, FRC, and LPRC) under
software control at any time. To limit the possible side
effects of this flexibility, dsPIC33FJ12MC201/202
devices have a safeguard lock built into the switch
process.
8.2.1 ENABLING CLOCK SWITCHING
To enable clock switching, the FCKSM1 Configuration
bit in the Configuration register must be programmed to
0’. (Refer to Section 21.1 “Configuration Bits” for
further details.) If the FCKSM1 Configuration bit is
unprogrammed (‘1’), the clock switching function and
Fail-Safe Clock Monitor function are disabled. This is
the default setting.
The NOSC control bits (OSCCON<10:8>) do not
control the clock selection when clock switching is
disabled. However, the COSC bits (OSCCON<14:12>)
reflect the clock source selected by the FNOSC
Configuration bits.
The OSWEN control bit (OSCCON<0>) has no effect
when clock switching is disabled. It is held at ‘0’ at all
times.
8.2.2 OSCILLATOR SWITCHING SEQUENCE
Performing a clock switch requires this basic
sequence:
1. If desired, read the COSC bits
(OSCCON<14:12>) to determine the current
oscillator source.
2. Perform the unlock sequence to allow a write to
the OSCCON register high byte.
3. Write the appropriate value to the NOSC control
bits (OSCCON<10:8>) for the new oscillator
source.
4. Perform the unlock sequence to allow a write to
the OSCCON register low byte.
5. Set the OSWEN bit (OSCCON<0>) to initiate
the oscillator switch.
Once the basic sequence is completed, the system
clock hardware responds automatically as follows:
1. The clock switching hardware compares the
COSC status bits with the new value of the
NOSC control bits. If they are the same, the
clock switch is a redundant operation. In this
case, the OSWEN bit is cleared automatically
and the clock switch is aborted.
2. If a valid clock switch has been initiated, the
LOCK (OSCCON<5>) and the CF
(OSCCON<3>) status bits are cleared.
3. The new oscillator is turned on by the hardware
if it is not currently running. If a crystal oscillator
must be turned on, the hardware waits until the
Oscillator Start-up Timer (OST) expires. If the
new source is using the PLL, the hardware waits
until a PLL lock is detected (LOCK = 1).
4. The hardware waits for 10 clock cycles from the
new clock source and then performs the clock
switch.
5. The hardware clears the OSWEN bit to indicate a
successful clock transition. In addition, the NOSC
bit values are transferred to the COSC status bits.
6. The old clock source is turned off at this time,
with the exception of LPRC (if WDT or FSCM
are enabled) or LP (if LPOSCEN remains set).
8.3 Fail-Safe Clock Monitor (FSCM)
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue to operate even in the event of an oscillator
failure. The FSCM function is enabled by programming.
If the FSCM function is enabled, the LPRC internal
oscillator runs at all times (except during Sleep mode)
and is not subject to control by the Watchdog Timer.
In the event of an oscillator failure, the FSCM
generates a clock failure trap event and switches the
system clock over to the FRC oscillator. Then the
application program can either attempt to restart the
oscillator or execute a controlled shutdown. The trap
can be treated as a warm Reset by simply loading the
Reset address into the oscillator fail trap vector.
If the PLL multiplier is used to scale the system clock,
the internal FRC is also multiplied by the same factor
on clock failure. Essentially, the device switches to
FRC with PLL on a clock failure.
Note: Primary Oscillator mode has three different
submodes (XT, HS, and EC), which are
determined by the POSCMD<1:0> Config-
uration bits. While an application can
switch to and from Primary Oscillator
mode in software, it cannot switch among
the different primary submodes without
reprogramming the device.
Note 1: The processor continues to execute code
throughout the clock switching sequence.
Timing-sensitive code should not be
executed during this time.
2: Direct clock switches between any primary
oscillator mode with PLL and FRCPLL
mode are not permitted. This applies to
clock switches in either direction. In these
instances, the application must switch to
FRC mode as a transition clock source
between the two PLL modes.
3: Refer to Section 7. “Oscillator”
(DS70186) in the “dsPIC33F Family
Reference Manual” for details.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 109
dsPIC33FJ12MC201/202
9.0 POWER-SAVING FEATURES
The dsPIC33FJ12MC201/202 devices provide the
ability to manage power consumption by selectively
managing clocking to the CPU and the peripherals. In
general, a lower clock frequency and a reduction in the
number of circuits being clocked constitutes lower
consumed power. dsPIC33FJ12MC201/202 devices
can manage power consumption in four different ways:
Clock frequency
Instruction-based Sleep and Idle modes
Software-controlled Doze mode
Selective peripheral control in software
Combinations of these methods can be used to selec-
tively tailor an application’s power consumption while
still maintaining critical application features, such as
timing-sensitive communications.
9.1 Clock Frequency and Clock
Switching
dsPIC33FJ12MC201/202 devices allow a wide range
of clock frequencies to be selected under application
control. If the system clock configuration is not locked,
users can choose low-power or high-precision
oscillators by simply changing the NOSC bits
(OSCCON<10:8>). The process of changing a system
clock during operation, as well as limitations to the
process, are discussed in more detail in Section 8.0
“Oscillator Configuration”.
9.2 Instruction-Based Power-Saving
Modes
dsPIC33FJ12MC201/202 devices have two special
power-saving modes that are entered through the
execution of a special PWRSAV instruction. Sleep mode
stops clock operation and halts all code execution. Idle
mode halts the CPU and code execution, but allows
peripheral modules to continue operation. The
assembler syntax of the PWRSAV instruction is shown in
Example 9-1.
Sleep and Idle modes can be exited as a result of an
enabled interrupt, WDT time-out or a device Reset. When
the device exits these modes, it is said to wake-up.
9.2.1 SLEEP MODE
The following occur in Sleep mode:
The system clock source is shut down. If an
on-chip oscillator is used, it is turned off.
The device current consumption is reduced to a
minimum, provided that no I/O pin is sourcing
current
The Fail-Safe Clock Monitor does not operate,
since the system clock source is disabled
The LPRC clock continues to run in Sleep mode if
the WDT is enabled
The WDT, if enabled, is automatically cleared
prior to entering Sleep mode
Some device features or peripherals may continue
to operate. This includes items such as the input
change notification on the I/O ports, or peripherals
that use an external clock input.
Any peripheral that requires the system clock
source for its operation is disabled
The device will wake-up from Sleep mode on any of the
these events:
Any interrupt source that is individually enabled
Any form of device Reset
A WDT time-out
On wake-up from Sleep mode, the processor restarts
with the same clock source that was active when Sleep
mode was entered.
EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 9. “Watchdog
Timer and Power-Saving Modes”
(DS70196), which is available from the
Microchip web site (www.microchip.com). Note: SLEEP_MODE and IDLE_MODE are
constants defined in the assembler
include file for the selected device.
PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode
dsPIC33FJ12MC201/202
DS70265D-page 110 Preliminary © 2009 Microchip Technology Inc.
9.2.2 IDLE MODE
The following occur in Idle mode:
The CPU stops executing instructions
The WDT is automatically cleared
The system clock source remains active. By
default, all peripheral modules continue to operate
normally from the system clock source, but can
also be selectively disabled (see Section 9.4
“Peripheral Module Disable”).
If the WDT or FSCM is enabled, the LPRC also
remains active.
The device will wake from Idle mode on any of these
events:
Any interrupt that is individually enabled
Any device Reset
A WDT time-out
On wake-up from Idle mode, the clock is reapplied to
the CPU and instruction execution will begin (2-4 clock
cycles later), starting with the instruction following the
PWRSAV instruction, or the first instruction in the ISR.
9.2.3 INTERRUPTS COINCIDENT WITH
POWER-SAVE INSTRUCTIONS
Any interrupt that coincides with the execution of a
PWRSAV instruction is held off until entry into Sleep or
Idle mode has completed. The device then wakes up
from Sleep or Idle mode.
9.3 Doze Mode
The preferred strategies for reducing power
consumption are changing clock speed and invoking
one of the power-saving modes. In some
circumstances, this may not be practical. For example,
it may be necessary for an application to maintain
uninterrupted synchronous communication, even while
it is doing nothing else. Reducing system clock speed
can introduce communication errors, while using a
power-saving mode can stop communications
completely.
Doze mode is a simple and effective alternative method
to reduce power consumption while the device is still
executing code. In this mode, the system clock
continues to operate from the same source and at the
same speed. Peripheral modules continue to be
clocked at the same speed, while the CPU clock speed
is reduced. Synchronization between the two clock
domains is maintained, allowing the peripherals to
access the SFRs while the CPU executes code at a
slower rate.
Doze mode is enabled by setting the DOZEN bit
(CLKDIV<11>). The ratio between peripheral and core
clock speed is determined by the DOZE<2:0> bits
(CLKDIV<14:12>). There are eight possible
configurations, from 1:1 to 1:128, with 1:1 being the
default setting.
Programs can use Doze mode to selectively reduce
power consumption in event-driven applications. This
allows clock-sensitive functions, such as synchronous
communications, to continue without interruption while
the CPU idles, waiting for something to invoke an
interrupt routine. An automatic return to full-speed CPU
operation on interrupts can be enabled by setting the
ROI bit (CLKDIV<15>). By default, interrupt events
have no effect on Doze mode operation.
For example, suppose the device is operating at
20 MIPS and the UART module has been configured
for 500 kbps based on this device operating speed. If
the device is placed in Doze mode with a clock
frequency ratio of 1:4, the UART module continues to
communicate at the required bit rate of 500 kbps, but
the CPU now starts executing instructions at a
frequency of 5 MIPS.
9.4 Peripheral Module Disable
The Peripheral Module Disable (PMD) registers
provide a method to disable a peripheral module by
stopping all clock sources supplied to that module.
When a peripheral is disabled using the appropriate
PMD control bit, the peripheral is in a minimum power
consumption state. The control and status registers
associated with the peripheral are also disabled, so
writes to those registers will have no effect and read
values will be invalid.
A peripheral module is enabled only if both the
associated bit in the PMD register is cleared and the
peripheral is supported by the specific dsPIC® DSC
variant. If the peripheral is present in the device, it is
enabled in the PMD register by default.
Note: If a PMD bit is set, the corresponding mod-
ule is disabled after a delay of one instruc-
tion cycle. Similarly, if a PMD bit is cleared,
the corresponding module is enabled after
a delay of one instruction cycle (assuming
the module control registers are already
configured to enable module operation).
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 111
dsPIC33FJ12MC201/202
REGISTER 9-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
T3MD T2MD T1MD QEIMD PWM1MD
bit 15 bit 8
R/W-0 U-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0
I2C1MD —U1MD—SPI1MD—AD1MD
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 T3MD: Timer3 Module Disable bit
1 = Timer3 module is disabled
0 = Timer3 module is enabled
bit 12 T2MD: Timer2 Module Disable bit
1 = Timer2 module is disabled
0 = Timer2 module is enabled
bit 11 T1MD: Timer1 Module Disable bit
1 = Timer1 module is disabled
0 = Timer1 module is enabled
bit 10 QEIMD: QEI Module Disable bit
1 = QEI module is disabled
0 = QEI module is enabled
bit 9 PWM1MD: PWM1 Module Disable bit
1 = PWM1 module is disabled
0 = PWM1 module is enabled
bit 18 Unimplemented: Read as ‘0
bit 7 I2C1MD: I2C1 Module Disable bit
1 = I2C1 module is disabled
0 = I2C1 module is enabled
bit 6 Unimplemented: Read as ‘0
bit 5 U1MD: UART1 Module Disable bit
1 = UART1 module is disabled
0 = UART1 module is enabled
bit 4 Unimplemented: Read as ‘0
bit 3 SPI1MD: SPI1 Module Disable bit
1 = SPI1 module is disabled
0 = SPI1 module is enabled
bit 2-1 Unimplemented: Read as ‘0
bit 0 AD1MD: ADC1 Module Disable bit(1)
1 = ADC1 module is disabled
0 = ADC1 module is enabled
Note 1: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port
pins that have been multiplexed with ANx will be in Digital mode.
dsPIC33FJ12MC201/202
DS70265D-page 112 Preliminary © 2009 Microchip Technology Inc.
REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2
R/W-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
IC8MD IC7MD ————IC2MDIC1MD
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
——————OC2MDOC1MD
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 IC8MD: Input Capture 8 Module Disable bit
1 = Input Capture 8 module is disabled
0 = Input Capture 8 module is enabled
bit 14 IC7MD: Input Capture 2 Module Disable bit
1 = Input Capture 7 module is disabled
0 = Input Capture 7 module is enabled
bit 13-10 Unimplemented: Read as ‘0
bit 9 IC2MD: Input Capture 2 Module Disable bit
1 = Input Capture 2 module is disabled
0 = Input Capture 2 module is enabled
bit 8 IC1MD: Input Capture 1 Module Disable bit
1 = Input Capture 1 module is disabled
0 = Input Capture 1 module is enabled
bit 7-2 Unimplemented: Read as ‘0
bit 1 OC2MD: Output Compare 2 Module Disable bit
1 = Output Compare 2 module is disabled
0 = Output Compare 2 module is enabled
bit 0 OC1MD: Output Compare 1 Module Disable bit
1 = Output Compare 1 module is disabled
0 = Output Compare 1 module is enabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 113
dsPIC33FJ12MC201/202
REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0
————————
bit 15 bit 8
U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0
—PWM2MD————
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4 PWM2MD: PWM2 Module Disable bit
1 = PWM2 module is disabled
0 = PWM2 module is enabled
bit 3-0 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 114 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 115
dsPIC33FJ12MC201/202
10.0 I/O PORTS
All of the device pins (except VDD, VSS, MCLR, and
OSC1/CLKI) are shared among the peripherals and the
parallel I/O ports. All I/O input ports feature Schmitt
Trigger inputs for improved noise immunity.
10.1 Parallel I/O (PIO) Ports
Generally a parallel I/O port that shares a pin with a
peripheral is subservient to the peripheral. The
peripheral’s output buffer data and control signals are
provided to a pair of multiplexers. The multiplexers
select whether the peripheral or the associated port
has ownership of the output data and control signals of
the I/O pin. The logic also prevents “loop through,” in
which a port’s digital output can drive the input of a
peripheral that shares the same pin. Figure 10-1 shows
how ports are shared with other peripherals and the
associated I/O pin to which they are connected.
When a peripheral is enabled and the peripheral is
actively driving an associated pin, the use of the pin as
a general purpose output pin is disabled. The I/O pin
can be read, but the output driver for the parallel port bit
is disabled. If a peripheral is enabled, but the peripheral
is not actively driving a pin, that pin can be driven by a
port.
All port pins have three registers directly associated
with their operation as digital I/O. The data direction
register (TRISx) determines whether the pin is an input
or an output. If the data direction bit is a ‘1’, the pin is
an input. All port pins are defined as inputs after a
Reset. Reads from the latch (LATx) read the latch.
Writes to the latch write the latch. Reads from the port
(PORTx) read the port pins, while writes to the port pins
write the latch.
Any bit and its associated data and control registers
that are not valid for a particular device will be
disabled. This means the corresponding LATx and
TRISx registers and the port pin will read as zeros.
When a pin is shared with another peripheral or
function that is defined as an input only, it is
nevertheless regarded as a dedicated port because
there is no other competing source of outputs.
FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, Section 30. “I/O
Ports with Peripheral Pin Select”
(DS70190), which is available on
Microchip web site (www.microchip.com).
QD
CK
WR LAT +
TRIS Latch
I/O Pin
WR Port
Data Bus
QD
CK
Data Latch
Read Port
Read TRIS
1
0
1
0
WR TRIS
Peripheral Output Data
Output Enable
Peripheral Input Data
I/O
Peripheral Module
Peripheral Output Enable
PIO Module
Output Multiplexers
Output Data
Input Data
Peripheral Module Enable
Read LAT
dsPIC33FJ12MC201/202
DS70265D-page 116 Preliminary © 2009 Microchip Technology Inc.
10.1.1 OPEN-DRAIN CONFIGURATION
In addition to the PORT, LAT, and TRIS registers for
data control, some port pins can also be individually
configured for either digital or open-drain output. This
is controlled by the Open-Drain Control register,
ODCx, associated with each port. Setting any of the
bits configures the corresponding pin to act as an
open-drain output.
The open-drain feature allows the generation of
outputs higher than VDD (e.g., 5V) on any desired
digital-only pins by using external pull-up resistors.
The maximum open-drain voltage allowed is the same
as the maximum VIH specification.
See “Pin Diagrams” for the available pins and their
functionality.
10.2 Configuring Analog Port Pins
The AD1PCFG and TRIS registers control the opera-
tion of the analog-to-digital (A/D) port pins. The port
pins that are to function as analog inputs must have
their corresponding TRIS bit set (input). If the TRIS bit
is cleared (output), the digital output level (VOH or VOL)
will be converted.
The AD1PCFGL register has a default value of 0x0000;
therefore, all pins that share ANx functions are analog
(not digital) by default.
When the PORT register is read, all pins configured as
analog input channels will read as cleared (a low level).
Pins configured as digital inputs will not convert an
analog input. Analog levels on any pin defined as a
digital input (including the ANx pins) can cause the
input buffer to consume current that exceeds the
device specifications.
10.2.1 I/O PORT WRITE/READ TIMING
One instruction cycle is required between a port
direction change or port write operation and a read
operation of the same port. Typically this instruction
would be an NOP. An demonstration is shown in
Example 10-1.
10.3 Input Change Notification
The input change notification function of the I/O ports
allows the dsPIC33FJ12MC201/202 devices to gener-
ate interrupt requests to the processor in response to a
change-of-state on selected input pins. This feature
can detect input change-of-states even in Sleep mode,
when the clocks are disabled. Depending on the device
pin count, up to 21 external signals (CNx pin) can be
selected (enabled) for generating an interrupt request
on a change-of-state.
Four control registers are associated with the CN mod-
ule. The CNEN1 and CNEN2 registers contain the
interrupt enable control bits for each of the CN input
pins. Setting any of these bits enables a CN interrupt
for the corresponding pins.
Each CN pin also has a weak pull-up connected to it.
The pull-ups act as a current source connected to the
pin, and eliminate the need for external resistors when
push-button or keypad devices are connected. The
pull-ups are enabled separately using the CNPU1 and
CNPU2 registers, which contain the control bits for
each of the CN pins. Setting any of the control bits
enables the weak pull-ups for the corresponding pins.
EXAMPLE 10-1: PORT WRITE/READ EXAMPLE
Note: Pull-ups on change notification pins
should always be disabled when the port
pin is configured as a digital output.
MOV 0xFF00, W0 ; Configure PORTB<15:8> as inputs
MOV W0, TRISBB ; and PORTB<7:0> as outputs
NOP ; Delay 1 cycle
btss PORTB, #13 ; Next Instruction
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 117
dsPIC33FJ12MC201/202
10.4 Peripheral Pin Select
Peripheral pin select configuration enables peripheral
set selection and placement on a wide range of I/O
pins. By increasing the pinout options available on a
particular device, programmers can better tailor the
microcontroller to their entire application, rather than
trimming the application to fit the device.
The peripheral pin select configuration feature oper-
ates over a fixed subset of digital I/O pins. Program-
mers can independently map the input and/or output
of most digital peripherals to any one of these I/O
pins. Peripheral pin select is performed in software,
and generally does not require the device to be
reprogrammed. Hardware safeguards are included
that prevent accidental or spurious changes to the
peripheral mapping, once it has been established.
10.4.1 AVAILABLE PINS
The peripheral pin select feature is used with a range
of up to 16 pins. The number of available pins depends
on the particular device and its pin count. Pins that
support the peripheral pin select feature include the
designation “RPn” in their full pin designation, where
“RP” designates a remappable peripheral and “n” is the
remappable pin number.
10.4.2 CONTROLLING PERIPHERAL PIN
SELECT
Peripheral pin select features are controlled through
two sets of special function registers: one to map
peripheral inputs, and one to map outputs. Because
they are separately controlled, a particular peripheral’s
input and output (if the peripheral has both) can be
placed on any selectable function pin without
constraint.
The association of a peripheral to a peripheral select-
able pin is handled in two different ways, depending on
whether an input or output is being mapped.
10.4.2.1 Input Mapping
The inputs of the peripheral pin select options are
mapped on the basis of the peripheral. A control
register associated with a peripheral dictates the pin it
will be mapped to. The RPINRx registers are used to
configure peripheral input mapping (see Register 10-1
through Register 10-13). Each register contains sets
of 5-bit fields, with each set associated with one of the
remappable peripherals. Programming a given
peripheral’s bit field with an appropriate 5-bit value
maps the RPn pin with that value to that peripheral.
For any given device, the valid range of values for any
bit field corresponds to the maximum number of
peripheral pin selections supported by the device.
Figure 10-2 Illustrates remappable pin selection for
U1RX input.
FIGURE 10-2: REMAPPABLE MUX
INPUT FOR U1RX
Note: For input mapping only, the Peripheral Pin
Select (PPS) functionality does not have
priority over the TRISx settings. Therefore,
when configuring the RPx pin for input, the
corresponding bit in the TRISx register
must also be configured for input (i.e., set
to ‘1’).
RP0
RP1
RP2
RP
15
0
15
1
2
U1RX input
U1RXR<4:0>
to peripheral
dsPIC33FJ12MC201/202
DS70265D-page 118 Preliminary © 2009 Microchip Technology Inc.
TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)
10.4.2.2 Output Mapping
In contrast to inputs, the outputs of the peripheral pin
select options are mapped on the basis of the pin. In
this case, a control register associated with a particular
pin dictates the peripheral output to be mapped. The
RPORx registers are used to control output mapping.
Like the RPINRx registers, each register contains sets
of 5-bit fields, with each set associated with one RPn
pin (see Register 10-14 through Register 10-21). The
value of the bit field corresponds to one of the periph-
erals, and that peripheral’s output is mapped to the pin
(see Table 10-2 and Figure 10-3).
The list of peripherals for output mapping also includes
a null value of ‘00000 because of the mapping
technique. This permits any given pin to remain
unconnected from the output of any of the pin
selectable peripherals.
FIGURE 10-3: MULTIPLEXING OF
REMAPPABLE OUTPUT
FOR RPn
Input Name Function Name Register Configuration
Bits
External Interrupt 1 INT1 RPINR0 INT1R<4:0>
External Interrupt 2 INT2 RPINR1 INT2R<4:0>
Timer2 External Clock T2CK RPINR3 T2CKR<4:0>
Timer3 External Clock T3CK RPINR3 T3CKR<4:0>
Input Capture 1 IC1 RPINR7 IC1R<4:0>
Input Capture 2 IC2 RPINR7 IC2R<4:0>
Input Capture 7 IC7 RPINR10 IC7R<4:0>
Input Capture 8 IC8 RPINR10 IC8R<4:0>
Output Compare Fault A OCFA RPINR11 OCFAR<4:0>
PWM1 Fault FLTA1 RPINR12 FLTA1R<4:0>
PWM2 Fault FLTA2 RPINR13 FLTA2R<4:0>
QEI1 Phase A QEA RPINR14 QEA1R<4:0>
QEI1 Phase B QEB RPINR14 QEB1R<4:0>
QEI1 Index INDX RPINR15 INDX1R<4:0>
UART1 Receive U1RX RPINR18 U1RXR<4:0>
UART1 Clear To Send U1CTS RPINR18 U1CTSR<4:0>
SPI1 Data Input SDI1 RPINR20 SDI1R<4:0>
SPI1 Clock Input SCK1 RPINR20 SCK1R<4:0>
SPI1 Slave Select Input SS1 RPINR21 SS1R<4:0>
Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.
0
26
3
RPnR<4:0>
default
U1TX Output enable
U1RTS Output enable 4
UPDN Output enable
19
OC2 Output enable
0
26
3
default
U1TX Output
U1RTS Output 4
UPDN Output
19
OC2 Output
Output enable
Output Data
RPn
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 119
dsPIC33FJ12MC201/202
TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)
10.4.3 CONTROLLING CONFIGURATION
CHANGES
Because peripheral remapping can be changed during
run time, some restrictions on peripheral remapping
are needed to prevent accidental configuration
changes. dsPIC33FJ12MC201/202 devices include
three features to prevent alterations to the peripheral
map:
Control register lock sequence
Continuous state monitoring
Configuration bit pin select lock
10.4.3.1 Control Register Lock
Under normal operation, writes to the RPINRx and
RPORx registers are not allowed. Attempted writes
appear to execute normally, but the contents of the
registers remain unchanged. To change these
registers, they must be unlocked in hardware. The
register lock is controlled by the IOLOCK bit
(OSCCON<6>). Setting IOLOCK prevents writes to the
control registers; clearing IOLOCK allows writes.
To set or clear IOLOCK, a specific command sequence
must be executed:
1. Write 0x46 to OSCCON<7:0>.
2. Write 0x57 to OSCCON<7:0>.
3. Clear (or set) IOLOCK as a single operation.
Unlike the similar sequence with the oscillator’s LOCK
bit, IOLOCK remains in one state until changed. This
allows all of the peripheral pin selects to be configured
with a single unlock sequence followed by an update to
all control registers, then locked with a second lock
sequence.
10.4.3.2 Continuous State Monitoring
In addition to being protected from direct writes, the
contents of the RPINRx and RPORx registers are
constantly monitored in hardware by shadow registers.
If an unexpected change in any of the registers occurs
(such as cell disturbances caused by ESD or other
external events), a configuration mismatch Reset will
be triggered.
10.4.3.3 Configuration Bit Pin Select Lock
As an additional level of safety, the device can be
configured to prevent more than one write session to
the RPINRx and RPORx registers. The IOL1WAY
(FOSC<IOL1WAY>) configuration bit blocks the
IOLOCK bit from being cleared after it has been set
once. If IOLOCK remains set, the register unlock
procedure will not execute, and the peripheral pin
select control registers cannot be written to. The only
way to clear the bit and re-enable peripheral remapping
is to perform a device Reset.
In the default (unprogrammed) state, IOL1WAY is set,
restricting users to one write session. Programming
IOL1WAY allows user applications unlimited access
(with the proper use of the unlock sequence) to the
peripheral pin select registers.
10.5 Peripheral Pin Select Registers
The dsPIC33FJ12MC201/202 family of devices
implement 21 registers for remappable peripheral
configuration:
Input Remappable Peripheral Registers (13)
Output Remappable Peripheral Registers (8)
Function RPnR<4:0> Output Name
NULL 00000 RPn tied to default port pin
U1TX 00011 RPn tied to UART1 Transmit
U1RTS 00100 RPn tied to UART1 Ready To Send
SDO1 00111 RPn tied to SPI1 Data Output
SCK1OUT 01000 RPn tied to SPI1 Clock Output
SS1OUT 01001 RPn tied to SPI1 Slave Select Output
OC1 10010 RPn tied to Output Compare 1
OC2 10011 RPn tied to Output Compare 2
UPDN 11010 RPn tied to QEI direction (UPDN) status
Note: MPLAB® C30 provides built-in C language
functions for unlocking the OSCCON
register:
__builtin_write_OSCCONL(value)
__builtin_write_OSCCONH(value)
See MPLAB IDE Help for more
information. Note: Input and Output Register values can only
be changed if OSCCON<IOLOCK> = 0.
See Section 10.4.3.1 “Control Register
Lock” for a specific command sequence.
dsPIC33FJ12MC201/202
DS70265D-page 120 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—INT1R<4:0>
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 121
dsPIC33FJ12MC201/202
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—INT2R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
dsPIC33FJ12MC201/202
DS70265D-page 122 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—T3CKR<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—T2CKR<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 123
dsPIC33FJ12MC201/202
REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC2R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC1R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
dsPIC33FJ12MC201/202
DS70265D-page 124 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-5: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC8R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC7R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 IC8R<4:0>: Assign Input Capture 8 (IC8) to the corresponding pin RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 IC7R<4:0>: Assign Input Capture 7 (IC7) to the corresponding pin RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 125
dsPIC33FJ12MC201/202
REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—OCFAR<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
REGISTER 10-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—FLTA1R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 FLTA1R<4:0>: Assign PWM1 Fault (FLTA1) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
dsPIC33FJ12MC201/202
DS70265D-page 126 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-8: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—FLTA2R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 FLTA2R<4:0>: Assign PWM2 Fault (FLTA2) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 127
dsPIC33FJ12MC201/202
REGISTER 10-9: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—QEB1R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—QEA1R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 QEB1R<4:0>: Assign B (QEB) to the corresponding pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 QEA1R<4:0>: Assign A (QEA) to the corresponding pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
dsPIC33FJ12MC201/202
DS70265D-page 128 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-10: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
INDX1R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 INDX1R<4:0>: Assign QEI1 INDEX (INDX1) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 129
dsPIC33FJ12MC201/202
REGISTER 10-11: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
U1CTSR<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—U1RXR<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
dsPIC33FJ12MC201/202
DS70265D-page 130 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—SCK1R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
—SDI1R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 131
dsPIC33FJ12MC201/202
REGISTER 10-13: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SS1R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the corresponding RPn pin
11111 = Input tied VSS
01111 = Input tied to RP15
.
.
.
00001 = Input tied to RP1
00000 = Input tied to RP0
dsPIC33FJ12MC201/202
DS70265D-page 132 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-14: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP1R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP0R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for
peripheral function numbers)
REGISTER 10-15: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP3R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP2R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for
peripheral function numbers)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 133
dsPIC33FJ12MC201/202
REGISTER 10-16: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
—RP5R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
—RP4R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-2 for
peripheral function numbers)
REGISTER 10-17: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
—RP7R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
—RP6R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP6R<4:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for
peripheral function numbers)
dsPIC33FJ12MC201/202
DS70265D-page 134 Preliminary © 2009 Microchip Technology Inc.
REGISTER 10-18: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP9R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP8R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-2 for
peripheral function numbers)
REGISTER 10-19: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
—RP11R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP10R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP10R<4:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for
peripheral function numbers)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 135
dsPIC33FJ12MC201/202
REGISTER 10-20: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP13R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP12R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for
peripheral function numbers)
REGISTER 10-21: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP15R<4:0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP14R<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP15R<4:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for
peripheral function numbers)
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-2 for
peripheral function numbers)
dsPIC33FJ12MC201/202
DS70265D-page 136 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 137
dsPIC33FJ12MC201/202
11.0 TIMER1
The Timer1 module is a 16-bit timer, which can serve
as the time counter for the real-time clock, or operate
as a free-running interval timer/counter. Timer1 can
operate in three modes:
16-bit Timer
16-bit Synchronous Counter
16-bit Asynchronous Counter
Timer1 also supports these features:
Timer gate operation
Selectable prescaler settings
Timer operation during CPU Idle and Sleep
modes
Interrupt on 16-bit Period register match or falling
edge of external gate signal
Figure 11-1 presents a block diagram of the 16-bit timer
module.
To configure Timer1 for operation:
1. Set the TON bit (= 1) in the T1CON register.
2. Select the timer prescaler ratio using the
TCKPS<1:0> bits in the T1CON register.
3. Set the Clock and Gating modes using the TCS
and TGATE bits in the T1CON register.
4. Set or clear the TSYNC bit in T1CON to select
synchronous or asynchronous operation.
5. Load the timer period value into the PR1
register.
6. If interrupts are required, set the interrupt enable
bit, T1IE. Use the priority bits, T1IP<2:0>, to set
the interrupt priority.
FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 11. “Timers”
(DS70205), which is available from the
Microchip web site (www.microchip.com).
TON
SOSCI
SOSCO/
PR1
Set T1IF
Equal
Comparator
TMR1
Reset
SOSCEN
1
0
TSYNC
Q
QD
CK
TCKPS<1:0>
Prescaler
1, 8, 64, 256
2
TGATE
TCY
1
0
T1CK
TCS
1x
01
TGATE
00
Sync
Gate
Sync
dsPIC33FJ12MC201/202
DS70265D-page 138 Preliminary © 2009 Microchip Technology Inc.
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON —TSIDL
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0
TGATE TCKPS<1:0> —TSYNCTCS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TON: Timer1 On bit
1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1
bit 14 Unimplemented: Read as ‘0
bit 13 TSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit
When T1CS = 1:
This bit is ignored.
When T1CS = 0:
1 = Gated time accumulation enabled
0 = Gated time accumulation disabled
bit 5-4 TCKPS<1:0> Timer1 Input Clock Prescale Select bits
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1
bit 3 Unimplemented: Read as ‘0
bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit
When TCS = 1:
1 = Synchronize external clock input
0 = Do not synchronize external clock input
When TCS = 0:
This bit is ignored.
bit 1 TCS: Timer1 Clock Source Select bit
1 = External clock from pin T1CK (on the rising edge)
0 = Internal clock (FCY)
bit 0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 139
dsPIC33FJ12MC201/202
12.0 TIMER2/3 FEATURE
The Timer2/3 feature has three 2-bit timers that can
also be configured as two independent 16-bit timers
with selectable operating modes.
As a 32-bit timer, the Timer2/3 feature permits
operation in three modes:
Two Independent 16-bit timers (e.g., Timer2 and
Timer3) with all 16-bit operating modes (except
Asynchronous Counter mode)
Single 32-bit timer (Timer2/3)
Single 32-bit synchronous counter (Timer2/3)
The Timer2/3 feature also supports:
Timer gate operation
Selectable prescaler settings
Timer operation during Idle and Sleep modes
Interrupt on a 32-bit period register match
Time base for Input Capture and Output Compare
modules (Timer2 and Timer3 only)
ADC1 event trigger (Timer2/3 only)
Individually, all eight of the 16-bit timers can function as
synchronous timers or counters. They also offer the
features listed above, except for the event trigger. The
operating modes and enabled features are determined
by setting the appropriate bit(s) in the T2CON, T3CON
registers. T2CON registers are shown in generic form
in Register 12-1. T3CON registers are shown in
Register 12-2.
For 32-bit timer/counter operation, Timer2 is the least
significant word, and Timer3 is the msw of the 32-bit
timers.
12.1 32-bit Operation
To configure the Timer2/3 feature timers for 32-bit
operation:
1. Set the T32 control bit.
2. Select the prescaler ratio for Timer2 using the
TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the
corresponding TCS and TGATE bits.
4. Load the timer period value. PR3 contains the
msw of the value, while PR2 contains the least
significant word.
5. If interrupts are required, set the interrupt enable
bit, T3IE. Use the priority bits, T3IP<2:0>, to set
the interrupt priority. While Timer2 controls the
timer, the interrupt appears as a Timer3
interrupt.
6. Set the corresponding TON bit.
The timer value at any point is stored in the register
pair, TMR3:TMR2, which always contains the msw of
the count, while TMR2 contains the least significant
word.
12.2 16-bit Operation
To configure any of the timers for individual 16-bit
operation:
1. Clear the T32 bit corresponding to that timer.
2. Select the timer prescaler ratio using the
TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS
and TGATE bits.
4. Load the timer period value into the PRx
register.
5. If interrupts are required, set the interrupt enable
bit, TxIE. Use the priority bits, TxIP<2:0>, to set
the interrupt priority.
6. Set the TON bit.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 11. “Timers”
(DS70205), which is available from the
Microchip web site (www.microchip.com).
Note: For 32-bit operation, T3CON control bits
are ignored. Only T2CON control bits are
used for setup and control. Timer2 clock
and gate inputs are used for the 32-bit
timer modules, but an interrupt is
generated with the Timer3 interrupt flags.
dsPIC33FJ12MC201/202
DS70265D-page 140 Preliminary © 2009 Microchip Technology Inc.
FIGURE 12-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM(1)
Set T3IF
Equal Comparator
PR3 PR2
Reset
LSbMSb
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective
to the T2CON register.
2: The ADC event trigger is available only on Timer2/3.
Data Bus<15:0>
TMR3HLD
Read TMR2
Write TMR2 16
16
16
Q
QD
CK
TGATE
0
1
TON
TCKPS<1:0>
2
TCY
TCS
1x
01
TGATE
00
T2CK
ADC Event Trigger(2)
Gate
Sync
Prescaler
1, 8, 64, 256
Sync
TMR3 TMR2
16
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 141
dsPIC33FJ12MC201/202
FIGURE 12-2: TIMER2 (16-BIT) BLOCK DIAGRAM
TON
TCKPS<1:0>
Prescaler
1, 8, 64, 256
2
TCY TCS
TGATE
T2CK
PR2
Set T2IF
Equal
Comparator
TMR2
Reset
Q
QD
CK
TGATE
1
0
Gate
Sync
1x
01
00
Sync
dsPIC33FJ12MC201/202
DS70265D-page 142 Preliminary © 2009 Microchip Technology Inc.
REGISTER 12-1: T2CON CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON —TSIDL
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0
TGATE TCKPS<1:0> T32 —TCS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TON: Timer2 On bit
When T32 = 1:
1 = Starts 32-bit Timer2/3
0 = Stops 32-bit Timer2/3
When T32 = 0:
1 = Starts 16-bit Timer2
0 = Stops 16-bit Timer2
bit 14 Unimplemented: Read as ‘0
bit 13 TSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 TGATE: Timer2 Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation enabled
0 = Gated time accumulation disabled
bit 5-4 TCKPS<1:0>: Timer2 Input Clock Prescale Select bits
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1
bit 3 T32: 32-bit Timer Mode Select bit
1 = Timer2 and Timer3 form a single 32-bit timer
0 = Timer2 and Timer3 act as two 16-bit timers
bit 2 Unimplemented: Read as ‘0
bit 1 TCS: Timer2 Clock Source Select bit
1 = External clock from pin T2CK (on the rising edge)
0 = Internal clock (FCY)
bit 0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 143
dsPIC33FJ12MC201/202
REGISTER 12-2: T3CON CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON(2) —TSIDL
(1)
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0
— TGATE
(2) TCKPS<1:0>(2) —TCS
(2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TON: Timer3 On bit(2)
1 = Starts 16-bit Timer3
0 = Stops 16-bit Timer3
bit 14 Unimplemented: Read as ‘0
bit 13 TSIDL: Stop in Idle Mode bit(1)
1 = Discontinue timer operation when device enters Idle mode
0 = Continue timer operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 TGATE: Timer3 Gated Time Accumulation Enable bit(2)
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation enabled
0 = Gated time accumulation disabled
bit 5-4 TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(2)
11 = 1:256 prescale value
10 = 1:64 prescale value
01 = 1:8 prescale value
00 = 1:1 prescale value
bit 3-2 Unimplemented: Read as ‘0
bit 1 TCS: Timer3 Clock Source Select bit(2)
1 = External clock from T3CK pin
0 = Internal clock (FOSC/2)
bit 0 Unimplemented: Read as ‘0
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), the TSIDL bit
must be cleared to operate the 32-bit timer in Idle mode.
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (T2CON<3>) register, these bits
have no effect.
dsPIC33FJ12MC201/202
DS70265D-page 144 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 145
dsPIC33FJ12MC201/202
13.0 INPUT CAPTURE
The Input Capture module is useful in applications
requiring frequency (period) and pulse measurement.
The dsPIC33FJ12MC201/202 devices support up to
eight input capture channels.
The Input Capture module captures the 16-bit value of
the selected Time Base register when an event occurs
at the ICx pin. The events that cause a capture event
are listed below in three categories:
1. Simple Capture Event modes:
- Capture timer value on every falling edge of
input at ICx pin
- Capture timer value on every rising edge of
input at ICx pin
2. Capture timer value on every edge (rising and
falling)
3. Prescaler Capture Event modes:
- Capture timer value on every 4th rising edge
of input at ICx pin
- Capture timer value on every 16th rising
edge of input at ICx pin
Each Input Capture channel can select one of two
16-bit timers (Timer2 or Timer3) for the time base.
The selected timer can use either an internal or
external clock.
Other operational features include:
Device wake-up from capture pin during CPU
Sleep and Idle modes
Interrupt on Input Capture event
4-word FIFO buffer for capture values
- Interrupt optionally generated after 1, 2, 3, or
4 buffer locations are filled
Use of Input Capture to provide additional
sources of external interrupts
FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 12. “Input Cap-
ture” (DS70198), which is available from
the Microchip web site
(www.microchip.com).
ICxBUF
ICx Pin
ICM<2:0> (ICxCON<2:0>)
Mode Select
3
10
Set Flag ICxIF
(in IFSn Register)
TMR2 TMR3
Edge Detection Logic
16 16
FIFO
R/W
Logic
ICxI<1:0>
ICOV, ICBNE (ICxCON<4:3>)
ICxCON
Interrupt
Logic
System Bus
From 16-bit Timers
ICTMR
(ICxCON<7>)
FIFO
Prescaler
Counter
(1, 4, 16) and
Clock Synchronizer
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.
dsPIC33FJ12MC201/202
DS70265D-page 146 Preliminary © 2009 Microchip Technology Inc.
13.1 Input Capture Registers
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER
U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
—ICSIDL
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0, HC R-0, HC R/W-0 R/W-0 R/W-0
ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 ICSIDL: Input Capture Module Stop in Idle Control bit
1 = Input capture module will halt in CPU Idle mode
0 = Input capture module will continue to operate in CPU Idle mode
bit 12-8 Unimplemented: Read as ‘0
bit 7 ICTMR: Input Capture Timer Select bits
1 = TMR2 contents are captured on capture event
0 = TMR3 contents are captured on capture event
bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits
11 = Interrupt on every fourth capture event
10 = Interrupt on every third capture event
01 = Interrupt on every second capture event
00 = Interrupt on every capture event
bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture overflow occurred
0 = No input capture overflow occurred
bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only)
1 = Input capture buffer is not empty, at least one more capture value can be read
0 = Input capture buffer is empty
bit 2-0 ICM<2:0>: Input Capture Mode Select bits
111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode
(Rising edge detect only, all other control bits are not applicable.)
110 = Unused (module disabled)
101 = Capture mode, every 16th rising edge
100 = Capture mode, every 4th rising edge
011 = Capture mode, every rising edge
010 = Capture mode, every falling edge
001 = Capture mode, every edge (rising and falling)
(ICI<1:0> bits do not control interrupt generation for this mode.)
000 = Input capture module turned off
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 147
dsPIC33FJ12MC201/202
14.0 OUTPUT COMPARE
The Output Compare module can select either Timer2
or Timer3 for its time base. The module compares the
value of the timer with the value of one or two compare
registers depending on the operating mode selected.
The state of the output pin changes when the timer
value matches the compare register value. The Output
Compare module generates either a single output
pulse or a sequence of output pulses, by changing the
state of the output pin on the compare match events.
The Output Compare module can also generate
interrupts on compare match events.
The Output Compare module has multiple operating
modes:
Active-Low One-Shot mode
Active-High One-Shot mode
Toggle mode
Delayed One-Shot mode
Continuous Pulse mode
PWM mode without fault protection
PWM mode with fault protection
FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 13. “Output
Compare” (DS70209), which is available
on the Microchip web site
(www.microchip.com).
OCxR
Comparator
Output
Logic
OCM<2:0>
Output Enable
OCx
Set Flag bit
OCxIF
OCxRS
Mode Select
3
01
OCTSEL 01
16
16
OCFA
TMR2 TMR2
QS
R
TMR3 TMR3
Rollover Rollover
dsPIC33FJ12MC201/202
DS70265D-page 148 Preliminary © 2009 Microchip Technology Inc.
14.1 Output Compare Modes
Configure the Output Compare modes by setting the
appropriate Output Compare Mode (OCM<2:0>) bits in
the Output Compare Control (OCxCON<2:0>) register.
Table 14-1 lists the different bit settings for the Output
Compare modes. Figure 14-2 illustrates the output
compare operation for various modes. The user
application must disable the associated timer when
writing to the output compare control registers to avoid
malfunctions.
TABLE 14-1: OUTPUT COMPARE MODES
Note: See Section 13. “Output Compare” in
the “dsPIC33F Family Reference Manual”
(DS70209) for OCxR and OCxRS register
restrictions.
OCM<2:0> Mode OCx Pin Initial State OCx Interrupt Generation
000 Module Disabled Controlled by GPIO register
001 Active-Low One-Shot 0OCx Rising edge
010 Active-High One-Shot 1OCx Falling edge
011 Toggle Mode Current output is maintained OCx Rising and Falling edge
100 Delayed One-Shot 0OCx Falling edge
101 Continuous Pulse mode 0OCx Falling edge
110 PWM mode without fault
protection
0, if OCxR is zero
1, if OCxR is non-zero
No interrupt
111 PWM mode with fault protection 0, if OCxR is zero
1, if OCxR is non-zero
OCFA Falling edge for OC1 to OC4
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 149
dsPIC33FJ12MC201/202
FIGURE 14-2: OUTPUT COMPARE OPERATION
OCxRS
TMRy
OCxR
Timer is reset on
period match
Continuous Pulse Mode
(OCM = 101)
PWM Mode
(OCM = 110 or 111)
Active-Low One-Shot
(OCM = 001)
Active-High One-Shot
(OCM = 010)
Toggle Mode
(OCM = 011)
Delayed One-Shot
(OCM = 100)
Output Compare
Mode enabled
dsPIC33FJ12MC201/202
DS70265D-page 150 Preliminary © 2009 Microchip Technology Inc.
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER
U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
—OCSIDL
bit 15 bit 8
U-0 U-0 U-0 R-0 HC R/W-0 R/W-0 R/W-0 R/W-0
OCFLT OCTSEL OCM<2:0>
bit 7 bit 0
Legend: HC = Cleared in Hardware HS = Set in Hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 OCSIDL: Stop Output Compare in Idle Mode Control bit
1 = Output Compare x will halt in CPU Idle mode
0 = Output Compare x will continue to operate in CPU Idle mode
bit 12-5 Unimplemented: Read as ‘0
bit 4 OCFLT: PWM Fault Condition Status bit
1 = PWM Fault condition has occurred (cleared in hardware only)
0 = No PWM Fault condition has occurred
(This bit is only used when OCM<2:0> = 111.)
bit 3 OCTSEL: Output Compare Timer Select bit
1 = Timer3 is the clock source for Compare x
0 = Timer2 is the clock source for Compare x
bit 2-0 OCM<2:0>: Output Compare Mode Select bits
111 = PWM mode on OCx, Fault pin enabled
110 = PWM mode on OCx, Fault pin disabled
101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
100 = Initialize OCx pin low, generate single output pulse on OCx pin
011 = Compare event toggles OCx pin
010 = Initialize OCx pin high, compare event forces OCx pin low
001 = Initialize OCx pin low, compare event forces OCx pin high
000 = Output compare channel is disabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 151
dsPIC33FJ12MC201/202
15.0 MOTOR CONTROL PWM
MODULE
The dsPIC33FJ12MC201/202 device supports up to
two dedicated Pulse Width Modulation (PWM)
modules. The PWM1 module is a 6-channel PWM
generator, and the PWM2 module is a 2-channel PWM
generator.
The PWM module has the following features:
Up to 16-bit resolution
On-the-fly PWM frequency changes
Edge-Aligned and Center-Aligned Output modes
Single Pulse Generation mode
Interrupt support for asymmetrical updates in
Center-Aligned mode
Output override control for Electrically
Commutative Motor (ECM) operation or BLDC
Special Event comparator for scheduling other
peripheral events
Fault pins to optionally drive each of the PWM
output pins to a defined state
Duty cycle updates configurable to be immediate
or synchronized to the PWM time base
15.1 PWM1: 6-Channel PWM Module
This module simplifies the task of generating multiple
synchronized PWM outputs. The following power and
motion control applications are supported by the PWM
module:
3-Phase AC Induction Motor
Switched Reluctance (SR) Motor
Brushless DC (BLDC) Motor
Uninterruptible Power Supply (UPS)
This module contains three duty cycle generators,
numbered 1 through 3. The module has six PWM
output pins, numbered PWM1H1/PWM1L1 through
PWM1H3/PWM1L3. The six I/O pins are grouped into
high/low numbered pairs, denoted by the suffix H or L,
respectively. For complementary loads, the low PWM
pins are always the complement of the corresponding
high I/O pin.
15.2 PWM2: 2-Channel PWM Module
This module provides an additional pair of
complimentary PWM outputs that can be used for:
Independent PFC correction in a motor system
Induction cooking
This module contains a duty cycle generator that
provides two PWM outputs, numbered PWM2H1/
PWM2L1.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, Section 14. “Motor
Control PWM” (DS70187), which is
available from the Microchip web site
(www.microchip.com).
dsPIC33FJ12MC201/202
DS70265D-page 152 Preliminary © 2009 Microchip Technology Inc.
FIGURE 15-1: 6-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM1)
P1DC3
P1DC3 Buffer
PWM1CON1
PWM1CON2
P1TPER
Comparator
Comparator
Channel 3 Dead-Time
Generator and
P1TCON
P1SECMP
Comparator Special Event Trigger
P1OVDCON
PWM Enable and Mode SFRs
PWM Manual
Control SFR
Channel 2 Dead-Time
Generator and
Channel 1 Dead-Time
Generator and
PWM
Generator 2
PWM
Generator 1
PWM Generator 3
SEVTDIR
PTDIR
P1DTCON1
Dead-Time Control SFRs
PWM1L1
PWM1H1
PWM1L2
PWM1H2
Note: Details of PWM Generator 1 and 2 not shown for clarity.
16-bit Data Bus
PWM1L3
PWM1H3
P1DTCON2
P1FLTACON Fault Pin Control SFRs
PWM Time Base
Output
Driver
Block
FLTA1
Override Logic
Override Logic
Override Logic
Special Event
Postscaler
P1TPER Buffer
P1TMR
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 153
dsPIC33FJ12MC201/202
FIGURE 15-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)
P2DC1
P2DC1Buffer
PWM2CON1
PWM2CON2
P2TPER
Comparator
Comparator
Channel 1 Dead-Time
Generator and
P2TCON
P2SECMP
Comparator Special Event Trigger
P2OVDCON
PWM Enable and Mode SFRs
PWM Manual
Control SFR
PWM Generator 1
SEVTDIR
PTDIR
P2DTCON1
Dead-Time Control SFRs
16-bit Data Bus
PWM2L1
PWM2H1
P2DTCON2
P2FLTACON Fault Pin Control SFRs
PWM Time Base
Output
Driver
Block
FLTA2
Override Logic
Special Event
Postscaler
P2TPER Buffer
P2TMR
dsPIC33FJ12MC201/202
DS70265D-page 154 Preliminary © 2009 Microchip Technology Inc.
REGISTER 15-1: PxTCON: PWM TIME BASE CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
PTEN —PTSIDL
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 PTEN: PWM Time Base Timer Enable bit
1 = PWM time base is on
0 = PWM time base is off
bit 14 Unimplemented: Read as ‘0
bit 13 PTSIDL: PWM Time Base Stop in Idle Mode bit
1 = PWM time base halts in CPU Idle mode
0 = PWM time base runs in CPU Idle mode
bit 12-8 Unimplemented: Read as ‘0
bit 7-4 PTOPS<3:0>: PWM Time Base Output Postscale Select bits
1111 = 1:16 postscale
0001 = 1:2 postscale
0000 = 1:1 postscale
bit 3-2 PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits
11 = PWM time base input clock period is 64 TCY (1:64 prescale)
10 = PWM time base input clock period is 16 TCY (1:16 prescale)
01 = PWM time base input clock period is 4 TCY (1:4 prescale)
00 = PWM time base input clock period is TCY (1:1 prescale)
bit 1-0 PTMOD<1:0>: PWM Time Base Mode Select bits
11 = PWM time base operates in a Continuous Up/Down Count mode with interrupts for double
PWM updates
10 = PWM time base operates in a Continuous Up/Down Count mode
01 = PWM time base operates in Single Pulse mode
00 = PWM time base operates in a Free-Running mode
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 155
dsPIC33FJ12MC201/202
REGISTER 15-2: PxTMR: PWM TIMER COUNT VALUE REGISTER
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PTDIR PTMR<14:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PTMR<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 PTDIR: PWM Time Base Count Direction Status bit (read-only)
1 = PWM time base is counting down
0 = PWM time base is counting up
bit 14-0 PTMR <14:0>: PWM Time Base Register Count Value bits
REGISTER 15-3: PxTPER: PWM TIME BASE PERIOD REGISTER
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PTPER<14:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PTPER<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-0 PTPER<14:0>: PWM Time Base Period Value bits
dsPIC33FJ12MC201/202
DS70265D-page 156 Preliminary © 2009 Microchip Technology Inc.
REGISTER 15-4: PxSECMP: SPECIAL EVENT COMPARE REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SEVTDIR(1) SEVTCMP<14:8>(2)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SEVTCMP<7:0>(2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 SEVTDIR: Special Event Trigger Time Base Direction bit(1)
1 = A Special Event Trigger will occur when the PWM time base is counting down
0 = A Special Event Trigger will occur when the PWM time base is counting up
bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits(2)
Note 1: SEVTDIR is compared with PTDIR (PXTMR<15>) to generate the Special Event Trigger.
2: PxSECMP<14:0> is compared with PXTMR<14:0> to generate the Special Event Trigger.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 157
dsPIC33FJ12MC201/202
REGISTER 15-5: PWMxCON1: PWM CONTROL REGISTER 1(2)
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
PMOD3 PMOD2 PMOD1
bit 15 bit 8
U-0 R/W-1 R/W-1 R/W-1 U-0 R/W-1 R/W-1 R/W-1
PEN3H(1) PEN2H(1) PEN1H(1) PEN3L(1) PEN2L(1) PEN1L(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-8 PMOD4:PMOD1: PWM I/O Pair Mode bits
1 = PWM I/O pin pair is in the Independent PWM Output mode
0 = PWM I/O pin pair is in the Complementary Output mode
bit 7 Unimplemented: Read as ‘0
bit 6-4 PEN3H:PEN1H: PWMxH I/O Enable bits(1)
1 = PWMxH pin is enabled for PWM output
0 = PWMxH pin disabled, I/O pin becomes general purpose I/O
bit 3 Unimplemented: Read as ‘0
bit 2-0 PEN3L:PEN1L: PWMxL I/O Enable bits(1)
1 = PWMxL pin is enabled for PWM output
0 = PWMxL pin disabled, I/O pin becomes general purpose I/O
Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in
the FPOR Configuration register.
2: PWM2 supports only one PWM I/O pin pair. PWM1 on dsPIC33FJ12MC201 devices supports only two
PWM I/O pin pairs.
dsPIC33FJ12MC201/202
DS70265D-page 158 Preliminary © 2009 Microchip Technology Inc.
REGISTER 15-6: PWMxCON2: PWM CONTROL REGISTER 2
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
SEVOPS<3:0>
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
IUE OSYNC UDIS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 Unimplemented: Read as ‘0
bit 11-8 SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits
1111 = 1:16 postscale
0001 = 1:2 postscale
0000 = 1:1 postscale
bit 7-3 Unimplemented: Read as ‘0
bit 2 IUE: Immediate Update Enable bit
1 = Updates to the active PxDC registers are immediate
0 = Updates to the active PxDC registers are synchronized to the PWM time base
bit 1 OSYNC: Output Override Synchronization bit
1 = Output overrides via the PxOVDCON register are synchronized to the PWM time base
0 = Output overrides via the PxOVDCON register occur on next T
CY boundary
bit 0 UDIS: PWM Update Disable bit
1 = Updates from Duty Cycle and Period Buffer registers are disabled
0 = Updates from Duty Cycle and Period Buffer registers are enabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 159
dsPIC33FJ12MC201/202
REGISTER 15-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DTBPS<1:0> DTB<5:0>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DTAPS<1:0> DTA<5:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 DTBPS<1:0>: Dead-Time Unit B Prescale Select bits
11 = Clock period for Dead-Time Unit B is 8 TCY
10 = Clock period for Dead-Time Unit B is 4 TCY
01 = Clock period for Dead-Time Unit B is 2 TCY
00 = Clock period for Dead-Time Unit B is TCY
bit 13-8 DTB<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit B bits
bit 7-6 DTAPS<1:0>: Dead-Time Unit A Prescale Select bits
11 = Clock period for Dead-Time Unit A is 8 TCY
10 = Clock period for Dead-Time Unit A is 4 TCY
01 = Clock period for Dead-Time Unit A is 2 TCY
00 = Clock period for Dead-Time Unit A is TCY
bit 5-0 DTA<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit A bits
dsPIC33FJ12MC201/202
DS70265D-page 160 Preliminary © 2009 Microchip Technology Inc.
REGISTER 15-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2 (1)
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-6 Unimplemented: Read as ‘0
bit 5 DTS3A: Dead-Time Select for PWM3 Signal Going Active bit
1 = Dead time provided from Unit B
0 = Dead time provided from Unit A
bit 4 DTS3I: Dead-Time Select for PWM3 Signal Going Inactive bit
1 = Dead time provided from Unit B
0 = Dead time provided from Unit A
bit 3 DTS2A: Dead-Time Select for PWM2 Signal Going Active bit
1 = Dead time provided from Unit B
0 = Dead time provided from Unit A
bit 2 DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit
1 = Dead time provided from Unit B
0 = Dead time provided from Unit A
bit 1 DTS1A: Dead-Time Select for PWM1 Signal Going Active bit
1 = Dead time provided from Unit B
0 = Dead time provided from Unit A
bit 0 DTS1I: Dead-Time Select for PWM1 Signal Going Inactive bit
1 = Dead time provided from Unit B
0 = Dead time provided from Unit A
Note 1: PWM2 supports only one PWM I/O pin pair.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 161
dsPIC33FJ12MC201/202
REGISTER 15-9: PxFLTACON: FAULT A CONTROL REGISTER(1)
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L
bit 15 bit 8
R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
FLTAM FAEN3 FAEN2 FAEN1
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13-8 FAOVxH<3:1>:FAOVxL<3:1>: Fault Input A PWM Override Value bits
1 = The PWM output pin is driven active on an external Fault input event
0 = The PWM output pin is driven inactive on an external Fault input event
bit 7 FLTAM: Fault A Mode bit
1 = The Fault A input pin functions in the Cycle-by-Cycle mode
0 = The Fault A input pin latches all control pins to the programmed states in PxFLTACON<13:8>
bit 6-3 Unimplemented: Read as ‘0
bit 2 FAEN3: Fault Input A Enable bit
1 = PWMxH3/PWMxL3 pin pair is controlled by Fault Input A
0 = PWMxH3/PWMxL3 pin pair is not controlled by Fault Input A
bit 1 FAEN2: Fault Input A Enable bit
1 = PWMxH2/PWMxL2 pin pair is controlled by Fault Input A
0 = PWMxH2/PWMxL2 pin pair is not controlled by Fault Input A
bit 0 FAEN1: Fault Input A Enable bit
1 = PWMxH1/PWMxL1 pin pair is controlled by Fault Input A
0 = PWMxH1/PWMxL1 pin pair is not controlled by Fault Input A
Note 1: PWM2 supports only one PWM I/O pin pair.
dsPIC33FJ12MC201/202
DS70265D-page 162 Preliminary © 2009 Microchip Technology Inc.
REGISTER 15-10: PxOVDCON: OVERRIDE CONTROL REGISTER(1)
U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13-8 POVDxH<3:1>:POVDxL<3:1>: PWM Output Override bits
1 = Output on PWMx I/O pin is controlled by the PWM generator
0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 POUTxH<3:1>:POUTxL<3:1>: PWM Manual Output bits
1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared
0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared
Note 1: PWM2 supports only one PWM I/O pin pair.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 163
dsPIC33FJ12MC201/202
REGISTER 15-11: PxDC1: PWM DUTY CYCLE REGISTER 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDC1<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDC1<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PDC1<15:0>: PWM Duty Cycle 1 Value bits
REGISTER 15-12: P1DC2: PWM DUTY CYCLE REGISTER 2
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDC2<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDC2<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PDC2<15:0>: PWM Duty Cycle 2 Value bits
REGISTER 15-13: P1DC3: PWM DUTY CYCLE REGISTER 3
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDC3<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDC3<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PDC3<15:0>: PWM Duty Cycle 3 Value bits
dsPIC33FJ12MC201/202
DS70265D-page 164 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 165
dsPIC33FJ12MC201/202
16.0 QUADRATURE ENCODER
INTERFACE (QEI) MODULE
This section describes the Quadrature Encoder Inter-
face (QEI) module and associated operational modes.
The QEI module provides the interface to incremental
encoders for obtaining mechanical position data.
The operational features of the QEI include:
Three input channels for two phase signals and
index pulse
16-bit up/down position counter
Count direction status
Position Measurement (x2 and x4) mode
Programmable digital noise filters on inputs
Alternate 16-bit Timer/Counter mode
Quadrature Encoder Interface interrupts
These operating modes are determined by setting the
appropriate bits, QEIM<2:0> in (QEIxCON<10:8>).
Figure 16-1 depicts the Quadrature Encoder Interface
block diagram.
FIGURE 16-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 15. “Quadrature
Encoder Interface (QEI)” (DS70208),
which is available from the Microchip web
site (www.microchip.com).
16-bit Up/Down Counter
Comparator/
Max Count Register
QEAx
INDXx
0
1Up/Down
Existing Pin Logic
UPDNx
3
QEBx
QEIM<2:0>
Mode Select
3
(POSCNT)
(MAXCNT)
PCDOUT
QEIIF
Event
Flag
Reset
Equal
2
TCY
1
0
TQCS
TQCKPS<1:0>
2
Q
Q
D
CK
TQGATE
QEIM<2:0>
1
0
Sleep Input
0
1
UPDN_SRC
QEIxCON<11>
Zero Detect
Synchronize
Det 1, 8, 64, 256
Prescaler
Quadrature
Encoder
Interface Logic
Programmable
Digital Filter
Programmable
Digital Filter
Programmable
Digital Filter
dsPIC33FJ12MC201/202
DS70265D-page 166 Preliminary © 2009 Microchip Technology Inc.
REGISTER 16-1: QEIxCON: QEI CONTROL REGISTER
R/W-0 U-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
CNTERR QEISIDL INDEX UPDN QEIM<2:0>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SWPAB PCDOUT TQGATE TQCKPS<1:0> POSRES TQCS UPDN_SRC
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CNTERR: Count Error Status Flag bit
1 = Position count error has occurred
0 = No position count error has occurred
Note: CNTERR flag only applies when QEIM<2:0> = ‘110’ or ‘100’.
bit 14 Unimplemented: Read as ‘0
bit 13 QEISIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 INDEX: Index Pin State Status bit (Read-Only)
1 = Index pin is High
0 = Index pin is Low
bit 11 UPDN: Position Counter Direction Status bit
1 = Position Counter Direction is positive (+)
0 = Position Counter Direction is negative (-)
(Read-only bit when QEIM<2:0> = ‘1XX’)
(Read/Write bit when QEIM<2:0> = ‘001’)
bit 10-8 QEIM<2:0>: Quadrature Encoder Interface Mode Select bits
111 = Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match
(MAXCNT)
110 = Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter
101 = Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match
(MAXCNT)
100 = Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter
011 = Unused (Module disabled)
010 = Unused (Module disabled)
001 = Starts 16-bit Timer
000 = Quadrature Encoder Interface/Timer off
bit 7 SWPAB: Phase A and Phase B Input Swap Select bit
1 = Phase A and Phase B inputs swapped
0 = Phase A and Phase B inputs not swapped
bit 6 PCDOUT: Position Counter Direction State Output Enable bit
1 = Position Counter Direction Status Output Enable (QEI logic controls state of I/O pin)
0 = Position Counter Direction Status Output Disabled (Normal I/O pin operation)
bit 5 TQGATE: Timer Gated Time Accumulation Enable bit
1 = Timer gated time accumulation enabled
0 = Timer gated time accumulation disabled
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 167
dsPIC33FJ12MC201/202
bit 4-3 TQCKPS<1:0>: Timer Input Clock Prescale Select bits
11 = 1:256 prescale value
10 = 1:64 prescale value
01 = 1:8 prescale value
00 = 1:1 prescale value
(Prescaler utilized for 16-bit Timer mode only)
bit 2 POSRES: Position Counter Reset Enable bit
1 = Index Pulse resets Position Counter
0 = Index Pulse does not reset Position Counter
Note: Bit applies only when QEIM<2:0> = 100 or 110.
bit 1 TQCS: Timer Clock Source Select bit
1 = External clock from pin QEA (on the rising edge)
0 = Internal clock (TCY)
bit 0 UPDN_SRC: Position Counter Direction Selection Control bit
1 = QEB pin state defines position counter direction
0 = Control/Status bit, UPDN (QEICON<11>), defines timer counter (POSCNT) direction
Note: When configured for QEI mode, control bit is a ‘don’t care’.
REGISTER 16-1: QEIxCON: QEI CONTROL REGISTER (CONTINUED)
dsPIC33FJ12MC201/202
DS70265D-page 168 Preliminary © 2009 Microchip Technology Inc.
REGISTER 16-2: DFLTxCON: DIGITAL FILTER CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
—IMV<2:0>CEID
bit 15 bit 8
R/W-0 R/W-0 U-0 U-0 U-0 U-0
QEOUT QECK<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-9 IMV<1:0>: Index Match Value bits – These bits allow the user application to specify the state of the
QEA and QEB input pins during an Index pulse when the POSxCNT register is to be reset.
In x4 Quadrature Count Mode:
IMV1= Required State of Phase B input signal for match on index pulse
IMV0= Required State of Phase A input signal for match on index pulse
In x2 Quadrature Count Mode:
IMV1= Selects Phase input signal for Index state match (0 = Phase A, 1 = Phase B)
IMV0= Required state of the selected Phase input signal for match on index pulse
bit 8 CEID: Count Error Interrupt Disable bit
1 = Interrupts due to count errors are disabled
0 = Interrupts due to count errors are enabled
bit 7 QEOUT: QEA/QEB/INDX Pin Digital Filter Output Enable bit
1 = Digital filter outputs enabled
0 = Digital filter outputs disabled (normal pin operation)
bit 6-4 QECK<2:0>: QEA/QEB/INDX Digital Filter Clock Divide Select Bits
111 = 1:256 Clock Divide
110 = 1:128 Clock Divide
101 = 1:64 Clock Divide
100 = 1:32 Clock Divide
011 = 1:16 Clock Divide
010 = 1:4 Clock Divide
001 = 1:2 Clock Divide
000 = 1:1 Clock Divide
bit 3-0 Unimplemented: Read as ‘0
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 169
dsPIC33FJ12MC201/202
17.0 SERIAL PERIPHERAL
INTERFACE (SPI)
The Serial Peripheral Interface (SPI) module is a syn-
chronous serial interface useful for communicating with
other peripheral or microcontroller devices. These
peripheral devices can be serial EEPROMs, shift regis-
ters, display drivers, analog-to-digital converters, etc.
The SPI module is compatible with SPI and SIOP from
Motorola®.
Each SPI module consists of a 16-bit shift register,
SPIxSR (where x = 1 or 2), used for shifting data in and
out, and a buffer register, SPIxBUF. A control register,
SPIxCON, configures the module. Additionally, a status
register, SPIxSTAT, indicates status conditions.
The serial interface consists of four pins:
SDIx (serial data input)
SDOx (serial data output)
SCKx (shift clock input or output)
•S
Sx (active low slave select).
In Master mode operation, SCK is a clock output. In
Slave mode, it is a clock input.
FIGURE 17-1: SPI MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, Section 18. “Serial
Peripheral Interface (SPI)” (DS70206),
which is available on the Microchip web
site (www.microchip.com).
Internal Data Bus
SDIx
SDOx
SSx
SCKx
SPIxSR
bit 0
Shift Control
Edge
Select
FCY
Primary
1:1/4/16/64
Enable
Prescaler
Sync
SPIxBUF
Control
Transfer
Transfer
Write SPIxBUF
Read SPIxBUF
16
SPIxCON1<1:0>
SPIxCON1<4:2>
Master Clock
Clock
Control
Secondary
Prescaler
1:1 to 1:8
SPIxRXB SPIxTXB
dsPIC33FJ12MC201/202
DS70265D-page 170 Preliminary © 2009 Microchip Technology Inc.
REGISTER 17-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
SPIEN SPISIDL
bit 15 bit 8
U-0 R/C-0 U-0 U-0 U-0 U-0 R-0 R-0
SPIROV SPITBF SPIRBF
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 SPIEN: SPIx Enable bit
1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins
0 = Disables module
bit 14 Unimplemented: Read as ‘0
bit 13 SPISIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 SPIROV: Receive Overflow Flag bit
1 = A new byte/word is completely received and discarded. The user software has not read the
previous data in the SPIxBUF register.
0 = No overflow has occurred.
bit 5-2 Unimplemented: Read as ‘0
bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
1 = Transmit not yet started, SPIxTXB is full
0 = Transmit started, SPIxTXB is empty
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR
bit 0 SPIRBF: SPIx Receive Buffer Full Status bit
1 = Receive complete, SPIxRXB is full
0 = Receive is not complete, SPIxRXB is empty
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 171
dsPIC33FJ12MC201/202
REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DISSCK DISSDO MODE16 SMP CKE(1)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSEN(2) CKP MSTEN SPRE<2:0>(3) PPRE<1:0>(3)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12 DISSCK: Disable SCKx pin bit (SPI Master modes only)
1 = Internal SPI clock is disabled, pin functions as I/O
0 = Internal SPI clock is enabled
bit 11 DISSDO: Disable SDOx pin bit
1 = SDOx pin is not used by module; pin functions as I/O
0 = SDOx pin is controlled by the module
bit 10 MODE16: Word/Byte Communication Select bit
1 = Communication is word-wide (16 bits)
0 = Communication is byte-wide (8 bits)
bit 9 SMP: SPIx Data Input Sample Phase bit
Master mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
Slave mode:
SMP must be cleared when SPIx is used in Slave mode.
bit 8 CKE: SPIx Clock Edge Select bit(1)
1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)
0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)
bit 7 SSEN: Slave Select Enable bit (Slave mode)
1 = SSx pin used for Slave mode
0 = SSx pin not used by module. Pin controlled by port function.
bit 6 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
0 = Idle state for clock is a low level; active state is a high level
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes
(FRMEN = 1).
2: This bit must be cleared when FRMEN = 1.
3: Do not set both Primary and Secondary prescalers to a value of 1:1.
dsPIC33FJ12MC201/202
DS70265D-page 172 Preliminary © 2009 Microchip Technology Inc.
bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)(3)
111 = Secondary prescale 1:1
110 = Secondary prescale 2:1
.
.
.
000 = Secondary prescale 8:1
bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)(3)
11 = Primary prescale 1:1
10 = Primary prescale 4:1
01 = Primary prescale 16:1
00 = Primary prescale 64:1
REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes
(FRMEN = 1).
2: This bit must be cleared when FRMEN = 1.
3: Do not set both Primary and Secondary prescalers to a value of 1:1.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 173
dsPIC33FJ12MC201/202
REGISTER 17-3: SPIxCON2: SPIx CONTROL REGISTER 2
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0
FRMEN SPIFSD FRMPOL
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0
FRMDLY
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FRMEN: Framed SPIx Support bit
1 = Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)
0 = Framed SPIx support disabled
bit 14 SPIFSD: Frame Sync Pulse Direction Control bit
1 = Frame sync pulse input (slave)
0 = Frame sync pulse output (master)
bit 13 FRMPOL: Frame Sync Pulse Polarity bit
1 = Frame sync pulse is active-high
0 = Frame sync pulse is active-low
bit 12-2 Unimplemented: Read as ‘0
bit 1 FRMDLY: Frame Sync Pulse Edge Select bit
1 = Frame sync pulse coincides with first bit clock
0 = Frame sync pulse precedes first bit clock
bit 0 Unimplemented: This bit must not be set to ‘1’ by the user application.
dsPIC33FJ12MC201/202
DS70265D-page 174 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 175
dsPIC33FJ12MC201/202
18.0 INTER-INTEGRATED CIRCUIT™
(I2C™)
The Inter-Integrated Circuit™ (I2C™) module provides
complete hardware support for both Slave and Multi-
Master modes of the I2C serial communication
standard, with a 16-bit interface.
The I2C module has a 2-pin interface:
The SCLx pin is clock
The SDAx pin is data
The I2C module offers the following key features:
•I
2C interface supporting both Master and Slave
modes of operation.
•I
2C Slave mode supports 7-bit and 10-bit addresses
•I
2C Master mode supports 7-bit and 10-bit addresses
•I
2C port allows bidirectional transfers between
master and slaves
Serial clock synchronization for I2C port can be
used as a handshake mechanism to suspend and
resume serial transfer (SCLREL control)
•I
2C supports multi-master operation, detects bus
collision and arbitrates accordingly
18.1 Operating Modes
The hardware fully implements all the master and slave
functions of the I2C Standard and Fast mode
specifications, as well as 7-bit and 10-bit addressing.
The I2C module can operate either as a slave or a
master on an I2C bus.
The following types of I2C operation are supported:
•I
2C slave operation with 7-bit address
•I
2C slave operation with 10-bit address
•I
2C master operation with 7-bit or 10-bit address
For details about the communication sequence in each
of these modes, refer to the Microchip web site
(www.microchip.com) for the latest “dsPIC33F Family
Reference Manual” sections.
18.2 I2C Registers
I2CxCON and I2CxSTAT are control and status
registers, respectively. The I2CxCON register is
readable and writable. The lower six bits of I2CxSTAT
are read-only. The remaining bits of the I2CSTAT are
read/write:
I2CxRSR is the shift register used for shifting data
I2CxRCV is the receive buffer and the register to
which data bytes are written, or from which data
bytes are read
I2CxTRN is the transmit register to which bytes
are written during a transmit operation
I2CxADD register holds the slave address
ADD10 status bit indicates 10-bit Address mode
I2CxBRG acts as the Baud Rate Generator (BRG)
reload value
In receive operations, I2CxRSR and I2CxRCV together
form a double-buffered receiver. When I2CxRSR
receives a complete byte, it is transferred to I2CxRCV,
and an interrupt pulse is generated.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family
Reference Manual”, Section 19. “Inter-
Integrated Circuit™ (I2C™)” (DS70195),
which is available on the Microchip web
site (www.microchip.com).
dsPIC33FJ12MC201/202
DS70265D-page 176 Preliminary © 2009 Microchip Technology Inc.
FIGURE 18-1: I2C™ BLOCK DIAGRAM (X = 1)
Internal
Data Bus
SCLx
SDAx
Shift
Match Detect
I2CxADD
Start and Stop
Bit Detect
Clock
Address Match
Clock
Stretching
I2CxTRN
LSb
Shift Clock
BRG Down Counter
Reload
Control
TCY/2
Start and Stop
Bit Generation
Acknowledge
Generation
Collision
Detect
I2CxCON
I2CxSTAT
Control Logic
Read
LSb
Write
Read
I2CxBRG
I2CxRSR
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
I2CxMSK
I2CxRCV
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 177
dsPIC33FJ12MC201/202
REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER
R/W-0 U-0 R/W-0 R/W-1 HC R/W-0 R/W-0 R/W-0 R/W-0
I2CEN I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC
GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN
bit 7 bit 0
Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit HS = Set in hardware HC = Cleared in hardware
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 I2CEN: I2Cx Enable bit
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
0 = Disables the I2Cx module. All I2C pins are controlled by port functions.
bit 14 Unimplemented: Read as ‘0
bit 13 I2CSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters an Idle mode
0 = Continue module operation in Idle mode
bit 12 SCLREL: SCLx Release Control bit (when operating as I2C slave)
1 = Release SCLx clock
0 = Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear
at beginning of slave transmission. Hardware clear at end of slave reception.
If STREN = 0:
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave
transmission.
bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit
1 = IPMI mode is enabled; all addresses Acknowledged
0 = IPMI mode disabled
bit 10 A10M: 10-bit Slave Address bit
1 = I2CxADD is a 10-bit slave address
0 = I2CxADD is a 7-bit slave address
bit 9 DISSLW: Disable Slew Rate Control bit
1 = Slew rate control disabled
0 = Slew rate control enabled
bit 8 SMEN: SMbus Input Levels bit
1 = Enable I/O pin thresholds compliant with SMbus specification
0 = Disable SMbus input thresholds
bit 7 GCEN: General Call Enable bit (when operating as I2C slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR
(module is enabled for reception)
0 = General call address disabled
bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)
Used in conjunction with SCLREL bit.
1 = Enable software or receive clock stretching
0 = Disable software or receive clock stretching
dsPIC33FJ12MC201/202
DS70265D-page 178 Preliminary © 2009 Microchip Technology Inc.
bit 5 ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)
Value that will be transmitted when the software initiates an Acknowledge sequence.
1 = Send NACK during Acknowledge
0 = Send ACK during Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit
(when operating as I2C master, applicable during master receive)
1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.
Hardware clear at end of master Acknowledge sequence.
0 = Acknowledge sequence not in progress
bit 3 RCEN: Receive Enable bit (when operating as I2C master)
1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.
0 = Receive sequence not in progress
bit 2 PEN: Stop Condition Enable bit (when operating as I2C master)
1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
0 = Stop condition not in progress
bit 1 RSEN: Repeated Start Condition Enable bit (when operating as I2C master)
1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of
master Repeated Start sequence.
0 = Repeated Start condition not in progress
bit 0 SEN: Start Condition Enable bit (when operating as I2C master)
1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.
0 = Start condition not in progress
REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 179
dsPIC33FJ12MC201/202
REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER
R-0 HSC R-0 HSC U-0 U-0 U-0 R/C-0 HS R-0 HSC R-0 HSC
ACKSTAT TRSTAT BCL GCSTAT ADD10
bit 15 bit 8
R/C-0 HS R/C-0 HS R-0 HSC R/C-0 HSC R/C-0 HSC R-0 HSC R-0 HSC R-0 HSC
IWCOL I2COV D_A P S R_W RBF TBF
bit 7 bit 0
Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit HS = Set in hardware HSC = Hardware set/cleared
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ACKSTAT: Acknowledge Status bit
(when operating as I2C master, applicable to master transmit operation)
1 = NACK received from slave
0 = ACK received from slave
Hardware set or clear at end of slave Acknowledge.
bit 14 TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13-11 Unimplemented: Read as ‘0
bit 10 BCL: Master Bus Collision Detect bit
1 = A bus collision has been detected during a master operation
0 = No collision
Hardware set at detection of bus collision.
bit 9 GCSTAT: General Call Status bit
1 = General call address was received
0 = General call address was not received
Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8 ADD10: 10-bit Address Status bit
1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7 IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register failed because the I2C module is busy
0 = No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6 I2COV: Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte
0 = No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5 D_A: Data/Address bit (when operating as I2C slave)
1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was device address
Hardware clear at device address match. Hardware set by reception of slave byte.
bit 4 P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
dsPIC33FJ12MC201/202
DS70265D-page 180 Preliminary © 2009 Microchip Technology Inc.
bit 3 S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2 R_W: Read/Write Information bit (when operating as I2C slave)
1 = Read – indicates data transfer is output from slave
0 = Write – indicates data transfer is input to slave
Hardware set or clear after reception of I2C device address byte.
bit 1 RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
0 = Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software
reads I2CxRCV.
bit 0 TBF: Transmit Buffer Full Status bit
1 = Transmit in progress, I2CxTRN is full
0 = Transmit complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.
REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 181
dsPIC33FJ12MC201/202
REGISTER 18-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
AMSK9 AMSK8
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AMSK7 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 AMSK0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-10 Unimplemented: Read as ‘0
bit 9-0 AMSKx: Mask for Address bit x Select bit
1 = Enable masking for bit x of incoming message address; bit match not required in this position
0 = Disable masking for bit x; bit match required in this position
dsPIC33FJ12MC201/202
DS70265D-page 182 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 183
dsPIC33FJ12MC201/202
19.0 UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)
The Universal Asynchronous Receiver Transmitter
(UART) module is one of the serial I/O modules
available in the dsPIC33FJ12MC201/202 device
family. The UART is a full-duplex asynchronous system
that can communicate with peripheral devices, such as
personal computers, LIN, and RS-232, and RS-485
interfaces. The module also supports a hardware flow
control option with the UxCTS and UxRTS pins and
also includes an IrDA® encoder and decoder.
The primary features of the UART module are:
Full-Duplex, 8-bit or 9-bit Data Transmission
through the UxTX and UxRX pins
Even, Odd, or No Parity Options (for 8-bit data)
One or two stop bits
Hardware flow control option with UxCTS and
UxRTS pins
Fully integrated Baud Rate Generator with 16-bit
prescaler
Baud rates ranging from 1 Mbps to 15 bps at 16x
mode at 40 MIPS
Baud rates ranging from 4 Mbps to 61 bps at 4x
mode at 40 MIPS
4-deep First-In First-Out (FIFO) Transmit Data
buffer
4-deep FIFO Receive Data buffer
Parity, framing and buffer overrun error detection
Support for 9-bit mode with Address Detect
(9th bit = 1)
Transmit and Receive interrupts
A separate interrupt for all UART error conditions
Loopback mode for diagnostic support
Support for sync and break characters
Support for automatic baud rate detection
•IrDA
® encoder and decoder logic
16x baud clock output for IrDA® support
A simplified block diagram of the UART module is
shown in Figure 19-1. The UART module consists of
these key hardware elements:
Baud Rate Generator
Asynchronous Transmitter
Asynchronous Receiver
FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F Family Ref-
erence Manual”, Section 17. “UART”
(DS70188), which is available on the
Microchip web site (www.microchip.com).
UxRX
Hardware Flow Control
UART Receiver
UART Transmitter UxTX
BCLK
Baud Rate Generator
UxRTS
IrDA®
UxCTS
dsPIC33FJ12MC201/202
DS70265D-page 184 Preliminary © 2009 Microchip Technology Inc.
REGISTER 19-1: UxMODE: UARTx MODE REGISTER
R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0
UARTEN(1) USIDL IREN(2) RTSMD —UEN<1:0>
bit 15 bit 8
R/W-0 HC R/W-0 R/W-0 HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
WAKE LPBACK ABAUD URXINV BRGH PDSEL<1:0> STSEL
bit 7 bit 0
Legend: HC = Hardware cleared
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 UARTEN: UARTx Enable bit(1)
1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>
0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption
minimal
bit 14 Unimplemented: Read as ‘0
bit 13 USIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 IREN: IrDA® Encoder and Decoder Enable bit(2)
1 =IrDA
® encoder and decoder enabled
0 =IrDA
® encoder and decoder disabled
bit 11 RTSMD: Mode Selection for UxRTS Pin bit
1 =UxRTS
pin in Simplex mode
0 =UxRTS pin in Flow Control mode
bit 10 Unimplemented: Read as ‘0
bit 9-8 UEN<1:0>: UARTx Enable bits
11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches
10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches
00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by
port latches
bit 7 WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit
1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared
in hardware on following rising edge
0 = No wake-up enabled
bit 6 LPBACK: UARTx Loopback Mode Select bit
1 = Enable Loopback mode
0 = Loopback mode is disabled
bit 5 ABAUD: Auto-Baud Enable bit
1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h)
before other data; cleared in hardware upon completion
0 = Baud rate measurement disabled or completed
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on
enabling the UART module for receive or transmit operation.
2: This feature is only available for the 16x BRG mode (BRGH = 0).
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 185
dsPIC33FJ12MC201/202
bit 4 URXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is ‘0
0 = UxRX Idle state is ‘1
bit 3 BRGH: High Baud Rate Enable bit
1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
10 = 8-bit data, odd parity
01 = 8-bit data, even parity
00 = 8-bit data, no parity
bit 0 STSEL: Stop Bit Selection bit
1 = Two Stop bits
0 = One Stop bit
REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on
enabling the UART module for receive or transmit operation.
2: This feature is only available for the 16x BRG mode (BRGH = 0).
dsPIC33FJ12MC201/202
DS70265D-page 186 Preliminary © 2009 Microchip Technology Inc.
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER
R/W-0 R/W-0 R/W-0 U-0 R/W-0 HC R/W-0 R-0 R-1
UTXISEL1 UTXINV UTXISEL0 UTXBRK UTXEN(1) UTXBF TRMT
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/C-0 R-0
URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA
bit 7 bit 0
Legend: HC = Hardware cleared
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits
11 = Reserved; do not use
10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the
transmit buffer becomes empty
01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit
operations are completed
00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is
at least one character open in the transmit buffer)
bit 14 UTXINV: Transmit Polarity Inversion bit
If IREN = 0:
1 = UxTX Idle state is ‘0
0 = UxTX Idle state is ‘1
If IREN = 1:
1 =IrDA
® encoded UxTX Idle state is ‘1
0 =IrDA
® encoded UxTX Idle state is ‘0
bit 12 Unimplemented: Read as ‘0
bit 11 UTXBRK: Transmit Break bit
1 = Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;
cleared by hardware upon completion
0 = Sync Break transmission disabled or completed
bit 10 UTXEN: Transmit Enable bit(1)
1 = Transmit enabled, UxTX pin controlled by UARTx
0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled
by port.
bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
0 = Transmit buffer is not full, at least one more character can be written
bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)
0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive
buffer. Receive buffer has one or more characters.
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on
enabling the UART module for transmit operation.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 187
dsPIC33FJ12MC201/202
bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1)
1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.
0 = Address Detect mode disabled
bit 4 RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
0 = Receiver is active
bit 3 PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character (character at the top of the receive FIFO)
0 = Parity error has not been detected
bit 2 FERR: Framing Error Status bit (read-only)
1 = Framing error has been detected for the current character (character at the top of the receive
FIFO)
0 = Framing error has not been detected
bit 1 OERR: Receive Buffer Overrun Error Status bit (read-only/clear-only)
1 = Receive buffer has overflowed
0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (10 transition) will reset
the receiver buffer and the UxRSR to the empty state.
bit 0 URXDA: Receive Buffer Data Available bit (read-only)
1 = Receive buffer has data, at least one more character can be read
0 = Receive buffer is empty
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on
enabling the UART module for transmit operation.
dsPIC33FJ12MC201/202
DS70265D-page 188 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 189
dsPIC33FJ12MC201/202
20.0 10-BIT/12-BIT
ANALOG-TO-
DIGITAL
CONVERTER (ADC)
The dsPIC33FJ12MC201/202 devices have up to six
ADC module input channels.
The AD12B bit (ADxCON1<10>) allows each of the
ADC modules to be configured as either a 10-bit, 4-
sample-and-hold ADC (default configuration), or a
12-bit, 1 sample-and-hold ADC.
20.1 Key Features
The 10-bit ADC configuration has the following key
features:
Successive Approximation (SAR) conversion
Conversion speeds of up to 1.1 Msps
Up to six analog input pins
External voltage reference input pins
Simultaneous sampling of up to four analog input
pins
Automatic Channel Scan mode
Selectable conversion trigger source
Selectable Buffer Fill modes
Four result alignment options (signed/unsigned,
fractional/integer)
Operation during CPU Sleep and Idle modes
16-word conversion result buffer
The 12-bit ADC configuration supports all the above
features, except:
In the 12-bit configuration, conversion speeds of
up to 500 ksps are supported
There is only one sample-and-hold amplifier in the
12-bit configuration, so simultaneous sampling of
multiple channels is not supported.
Depending on the particular device pinout, the ADC
can have up to six analog input pins, designated AN0
through AN5. In addition, there are two analog input
pins for external voltage reference connections. These
voltage reference inputs can be shared with other
analog input pins.
The actual number of analog input pins and external
voltage reference input configuration will depend on the
specific device.
Block diagrams of the ADC module are shown in
Figure 20-1 and Figure 20-2.
20.2 ADC Initialization
To configure the ADC module:
1. Select port pins as analog inputs
(ADxPCFGH<15:0> or ADxPCFGL<15:0>).
2. Select voltage reference source to match
expected range on analog inputs
(ADxCON2<15:13>).
3. Select the analog conversion clock to match the
desired data rate with the processor clock
(ADxCON3<7:0>).
4. Determine how many sample-and-hold chan-
nels will be used (ADxCON2<9:8> and
ADxPCFGH<15:0> or ADxPCFGL<15:0>).
5. Select the appropriate sample/conversion
sequence (ADxCON1<7:5> and
ADxCON3<12:8>).
6. Select the way conversion results are presented
in the buffer (ADxCON1<9:8>).
7. Turn on the ADC module (ADxCON1<15>).
8. Configure ADC interrupt (if required):
a) Clear the ADxIF bit.
b) Select the ADC interrupt priority.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 family of
devices. It is not intended to be a compre-
hensive reference source. To complement
the information in this data sheet, refer to
the “dsPIC33F Family Reference Manual”,
Section 28. “Analog-to-Digital Converter
(ADC) without DMA” (DS70210), which is
available on the Microchip web site
(www.microchip.com).
Note: The ADC module must be disabled before
the AD12B bit can be modified.
dsPIC33FJ12MC201/202
DS70265D-page 190 Preliminary © 2009 Microchip Technology Inc.
FIGURE 20-1: ADC1 BLOCK DIAGRAM FOR dsPIC33FJ12MC201 DEVICES
SAR ADC
S/H0
S/H1
ADC1BUF0
ADC1BUF1
ADC1BUF2
ADC1BUFF
ADC1BUFE
AN0
AN3
AN1
VREF-
CH0SB<4:0>
CH0NA CH0NB
+
-
AN0
AN3
CH123SA
VREF-
CH123SB
CH123NA CH123NB
+
-
S/H2
AN1
CH123SA
VREF-
CH123SB
CH123NA CH123NB
+
-
S/H3
AN2
CH123SA
VREF-
CH123SB
CH123NA CH123NB
+
-
CH1(2)
CH0
CH2(2)
CH3(2)
CH0SA<4:0>
CHANNEL
SCAN
CSCNA
Alternate
VREF+(1) AVDD AVSS
VREF-(1)
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.
2: Channels 1, 2, and 3 are not applicable for the 12-bit mode of operation.
Input Selection
VREFH VREFL
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 191
dsPIC33FJ12MC201/202
FIGURE 20-2: ADC1 BLOCK DIAGRAM FOR dsPIC33FJ12MC202 DEVICES
SAR ADC
S/H0
S/H1
ADC1BUF0
ADC1BUF1
ADC1BUF2
ADC1BUFF
ADC1BUFE
AN0
AN5
AN1
VREF-
CH0SB<4:0>
CH0NA CH0NB
+
-
AN0
AN3
CH123SA
VREF-
CH123SB
CH123NA CH123NB
+
-
S/H2
AN1
AN4
CH123SA
VREF-
CH123SB
CH123NA CH123NB
+
-
S/H3
AN2
AN5
CH123SA
VREF-
CH123SB
CH123NA CH123NB
+
-
CH1(2)
CH0
CH2(2)
CH3(2)
CH0SA<4:0>
CHANNEL
SCAN
CSCNA
Alternate
VREF+(1) AVDD AVSS
VREF-(1)
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.
2: Channels 1, 2, and 3 are not applicable for the 12-bit mode of operation.
Input Selection
VREFH VREFL
dsPIC33FJ12MC201/202
DS70265D-page 192 Preliminary © 2009 Microchip Technology Inc.
FIGURE 20-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM
0
1
ADC Internal
RC Clock(2)
TOSC(1) X2
ADC Conversion
Clock Multiplier
1, 2, 3, 4, 5,..., 64
ADxCON3<15>
TCY
TAD
6
ADxCON3<5:0>
Note 1: Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal
to the clock frequency. TOSC = 1/FOSC.
2: See the ADC Electrical Characteristics for the exact RC clock value.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 193
dsPIC33FJ12MC201/202
REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1
R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0
ADON —ADSIDL AD12B FORM<1:0>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0
HC,HS
R/C-0
HC, HS
SSRC<2:0> SIMSAM ASAM SAMP DONE
bit 7 bit 0
Legend: HC = Cleared by hardware HS = Set by hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ADON: ADC Operating Mode bit
1 = ADC module is operating
0 = ADC is off
bit 14 Unimplemented: Read as ‘0
bit 13 ADSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-11 Unimplemented: Read as ‘0
bit 10 AD12B: 10-bit or 12-bit Operation Mode bit
1 = 12-bit, 1-channel ADC operation
0 = 10-bit, 4-channel ADC operation
bit 9-8 FORM<1:0>: Data Output Format bits
For 10-bit operation:
11 = Signed fractional (DOUT = sddd dddd dd00 0000, where s = .NOT.d<9>)
10 = Fractional (DOUT = dddd dddd dd00 0000)
01 = Signed integer (DOUT = ssss sssd dddd dddd, where s = .NOT.d<9>)
00 = Integer (DOUT = 0000 00dd dddd dddd)
For 12-bit operation:
11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<11>)
10 = Fractional (DOUT = dddd dddd dddd 0000)
01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)
00 = Integer (DOUT = 0000 dddd dddd dddd)
bit 7-5 SSRC<2:0>: Sample Clock Source Select bits
111 = Internal counter ends sampling and starts conversion (auto-convert)
110 = Reserved
101 = Motor Control PWM2 interval ends sampling and starts conversion
100 = Reserved
011 = Motor Control PWM1 interval ends sampling and starts conversion
010 = GP timer 3 compare ends sampling and starts conversion
001 = Active transition on INT0 pin ends sampling and starts conversion
000 = Clearing sample bit ends sampling and starts conversion
bit 4 Unimplemented: Read as ‘0
bit 3 SIMSAM: Simultaneous Sample Select bit (applicable only when CHPS<1:0> = 01 or 1x)
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0
1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)
0 = Samples multiple channels individually in sequence
dsPIC33FJ12MC201/202
DS70265D-page 194 Preliminary © 2009 Microchip Technology Inc.
bit 2 ASAM: ADC Sample Auto-Start bit
1 = Sampling begins immediately after last conversion. SAMP bit is auto-set.
0 = Sampling begins when SAMP bit is set
bit 1 SAMP: ADC Sample Enable bit
1 = ADC sample-and-hold amplifiers are sampling
0 = ADC sample-and-hold amplifiers are holding
If ASAM = 0, software can write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.
If SSRC = 000, software can write ‘0’ to end sampling and start conversion. If SSRC 000,
automatically cleared by hardware to end sampling and start conversion.
bit 0 DONE: ADC Conversion Status bit
1 = ADC conversion cycle is completed
0 = ADC conversion not started or in progress
Automatically set by hardware when ADC conversion is complete. Software can write ‘0’ to clear
DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in prog-
ress. Automatically cleared by hardware at start of a new conversion.
REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 195
dsPIC33FJ12MC201/202
REGISTER 20-2: AD1CON2: ADC1 CONTROL REGISTER 2
R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0
VCFG<2:0> CSCNA CHPS<1:0>
bit 15 bit 8
R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BUFS SMPI<3:0> BUFM ALTS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits
bit 12-11 Unimplemented: Read as ‘0
bit 10 CSCNA: Scan Input Selections for CH0+ during Sample A bit
1 = Scan inputs
0 = Do not scan inputs
bit 9-8 CHPS<1:0>: Select Channels Utilized bits
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0
1x = Converts CH0, CH1, CH2 and CH3
01 = Converts CH0 and CH1
00 = Converts CH0
bit 7 BUFS: Buffer Fill Status bit (valid only when BUFM = 1)
1 = ADC is currently filling second half of buffer, user should access data in the first half
0 = ADC is currently filling first half of buffer, user application should access data in the second half
bit 6 Unimplemented: Read as ‘0
bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
0000 = Interrupts at the completion of conversion for each sample/convert sequence
bit 1 BUFM: Buffer Fill Mode Select bit
1 = Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt
0 = Always starts filling buffer from the beginning
bit 0 ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
0 = Always uses channel input selects for Sample A
ADREF+ ADREF-
000 AVDD AVSS
001 External VREF+AVSS
010 AVDD External VREF-
011 External VREF+ External VREF-
1xx AVDD AVSS
dsPIC33FJ12MC201/202
DS70265D-page 196 Preliminary © 2009 Microchip Technology Inc.
REGISTER 20-3: AD1CON3: ADC1 CONTROL REGISTER 3
R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADRC SAMC<4:0>(1)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADCS<7:0>(2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ADRC: ADC Conversion Clock Source bit
1 = ADC internal RC clock
0 = Clock derived from system clock
bit 14-13 Unimplemented: Read as ‘0
bit 12-8 SAMC<4:0>: Auto Sample Time bits(1)
11111 = 31 TAD
00001 = 1 TAD
00000 = 0 TAD
bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits(2)
11111111 = Reserved
01000000 = Reserved
00111111 = TCY · (ADCS<7:0> + 1) = 64 · TCY = TAD
00000010 = TCY · (ADCS<7:0> + 1) = 3 · TCY = TAD
00000001 = TCY · (ADCS<7:0> + 1) = 2 · TCY = TAD
00000000 = TCY · (ADCS<7:0> + 1) = 1 · TCY = TAD
Note 1: This bit only used if AD1CON1<SSRC> = 1.
2: This bit is not used if AD1CON3<ADRC> = 1.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 197
dsPIC33FJ12MC201/202
REGISTER 20-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
CH123NB<1:0> CH123SB
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
CH123NA<1:0> CH123SA
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits
If AD12B = 1:
11 = Reserved
10 = Reserved
01 = Reserved
00 = Reserved
If AD12B = 0:
11 = Reserved
10 = Reserved
01 = CH1, CH2, CH3 negative input is VREF-
00 = CH1, CH2, CH3 negative input is VREF-
bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit
dsPIC33FJ12MC201 devices only:
If AD12B = 1:
1 = Reserved
0 = Reserved
If AD12B = 0:
1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected
0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2
dsPIC33FJ12MC202 devices only:
If AD12B = 1:
1 = Reserved
0 = Reserved
If AD12B = 0:
1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5
0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2
bit 7-3 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202
DS70265D-page 198 Preliminary © 2009 Microchip Technology Inc.
bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits
If AD12B = 1:
11 = Reserved
10 = Reserved
01 = Reserved
00 = Reserved
If AD12B = 0:
11 = Reserved
10 = Reserved
01 = CH1, CH2, CH3 negative input is VREF-
00 = CH1, CH2, CH3 negative input is VREF-
bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit
dsPIC33FJ12MC201 devices only:
If AD12B = 1:
1 = Reserved
0 = Reserved
If AD12B = 0:
1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected
0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2
dsPIC33FJ12MC202 devices only:
If AD12B = 1:
1 = Reserved
0 = Reserved
If AD12B = 0:
1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5
0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2
REGISTER 20-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 199
dsPIC33FJ12MC201/202
REGISTER 20-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER
R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CH0NB CH0SB<4:0>
bit 15 bit 8
R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CH0NA CH0SA<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CH0NB: Channel 0 Negative Input Select for Sample B bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREF-
bit 14-13 Unimplemented: Read as ‘0
bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits
dsPIC33FJ12MC201 devices only:
00011 = Channel 0 positive input is AN3
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
dsPIC33FJ12MC202 devices only:
00101 = Channel 0 positive input is AN5
00100 = Channel 0 positive input is AN4
00011 = Channel 0 positive input is AN3
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
bit 7 CH0NA: Channel 0 Negative Input Select for Sample A bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREF-
bit 6-5 Unimplemented: Read as ‘0
bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits
dsPIC33FJ12MC201 devices only:
00011 = Channel 0 positive input is AN3
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
dsPIC33FJ12MC202 devices only:
00101 = Channel 0 positive input is AN5
00100 = Channel 0 positive input is AN4
00011 = Channel 0 positive input is AN3
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
dsPIC33FJ12MC201/202
DS70265D-page 200 Preliminary © 2009 Microchip Technology Inc.
,2
REGISTER 20-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW(1,2)
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CSS5 CSS4 CSS3 CSS2 CSS1 CSS0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-6 Unimplemented: Read as ‘0
bit 5-0 CSS<5:0>: ADC Input Scan Selection bits
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1: On devices without 6 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs
selected for scan without a corresponding input on device converts VREFL.
2: CSSx = ANx, where x = 0 through 5.
REGISTER 20-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW(1,2,3)
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-6 Unimplemented: Read as ‘0
bit 5-0 PCFG<5:0>: ADC Port Configuration Control bits
1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVSS
0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
Note 1: On devices without 6 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on
ports without a corresponding input on device.
2: PCFGx = ANx, where x = 0 through 5.
3: PCFGx bits have no effect if the ADC module is disabled by setting ADxMD bit in the PMDx register. When
the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 201
dsPIC33FJ12MC201/202
NOTES:
dsPIC33FJ12MC201/202
DS70265D-page 202 Preliminary © 2009 Microchip Technology Inc.
21.0 SPECIAL FEATURES
dsPIC33FJ12MC201/202 devices include several
features intended to maximize application flexibility and
reliability, and minimize cost through elimination of
external components. These are:
Flexible configuration
Watchdog Timer (WDT)
Code Protection and CodeGuard™ Security
JTAG Boundary Scan Interface
In-Circuit Serial Programming™ (ICSP™)
In-Circuit emulation
21.1 Configuration Bits
The Configuration bits can be programmed (read as
0’), or left unprogrammed (read as ‘1’), to select vari-
ous device configurations. These bits are mapped
starting at program memory location 0xF80000.
The individual Configuration bit descriptions for the
FBS, FGS, FOSCSEL, FOSC, FWDT, FPOR, and
FICD Configuration registers are shown in Table 21-2.
Note that address 0xF80000 is beyond the user program
memory space. It belongs to the configuration memory
space (0x800000-0xFFFFFF), which can only be
accessed using table reads and table writes.
The upper byte of all device Configuration registers
should always be ‘1111 1111’. This makes them
appear to be NOP instructions in the remote event that
their locations are ever executed by accident. Since
Configuration bits are not implemented in the
corresponding locations, writing ‘1’s to these locations
has no effect on device operation.
To prevent inadvertent configuration changes during
code execution, all programmable Configuration bits
are write-once. After a bit is initially programmed during
a power cycle, it cannot be written to again. Changing
a device configuration requires that power to the device
be cycled.
The Device Configuration register map is shown in
Table 21-1.
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 devices.
It is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to the
“dsPIC33F Family Reference Manual”.
Please see the Microchip web site
(www.microchip.com) for the latest family
reference manual sections.
TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0xF80000 FBS BSS<2:0> BWRP
0xF80002 RESERVED Reserved(1)
0xF80004 FGS GSS<1:0> GWRP
0xF80006 FOSCSEL IESO —FNOSC<2:0>
0xF80008 FOSC FCKSM<1:0> IOL1WAY OSCIOFNC POSCMD<1:0>
0xF8000A FWDT FWDTEN WINDIS WDTPRE WDTPOST<3:0>
0xF8000C FPOR PWMPIN HPOL LPOL ALTI2C —FPWRT<2:0>
0xF8000E FICD Reserved(1) JTAGEN —ICS<1:0>
0xF80010 FUID0 User Unit ID Byte 0
0xF80012 FUID1 User Unit ID Byte 1
0xF80014 FUID2 User Unit ID Byte 2
0xF80016 FUID3 User Unit ID Byte 3
Note 1: These reserved bits read as ‘1’ and must be programmed as ‘1’.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 203
dsPIC33FJ12MC201/202
TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION
Bit Field Register Description
BWRP FBS Boot Segment Program Flash Write Protection
1 = Boot segment can be written
0 = Boot segment is write-protected
BSS<2:0> FBS Boot Segment Program Flash Code Protection Size
X11 = No Boot program Flash segment
Boot space is 256 Instruction Words (except interrupt vectors)
110 = Standard security; boot program Flash segment ends at
0x0003FE
010 = High security; boot program Flash segment ends at 0x0003FE
Boot space is 768 Instruction Words (except interrupt vectors)
101 = Standard security; boot program Flash segment, ends at
0x0007FE
001 = High security; boot program Flash segment ends at 0x0007FE
Boot space is 1792 Instruction Words (except interrupt vectors)
100 = Standard security; boot program Flash segment ends at
0x000FFE
000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0> FGS General Segment Code-Protect bit
11 = User program memory is not code-protected
10 = Standard security
0x = High security
GWRP FGS General Segment Write-Protect bit
1 = User program memory is not write-protected
0 = User program memory is write-protected
IESO FOSCSEL Two-speed Oscillator Start-up Enable bit
1 = Start-up device with FRC, then automatically switch to the
user-selected oscillator source when ready
0 = Start-up device with user-selected oscillator source
FNOSC<2:0> FOSCSEL Initial Oscillator Source Selection bits
111 = Internal Fast RC (FRC) oscillator with postscaler
110 = Internal Fast RC (FRC) oscillator with divide-by-16
101 = LPRC oscillator
100 = Secondary (LP) oscillator
011 = Primary (XT, HS, EC) oscillator with PLL
010 = Primary (XT, HS, EC) oscillator
001 = Internal Fast RC (FRC) oscillator with PLL
000 = FRC oscillator
FCKSM<1:0> FOSC Clock Switching Mode bits
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY FOSC Peripheral pin select configuration
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
OSCIOFNC FOSC OSC2 Pin Function bit (except in XT and HS modes)
1 = OSC2 is clock output
0 = OSC2 is general purpose digital I/O pin
dsPIC33FJ12MC201/202
DS70265D-page 204 Preliminary © 2009 Microchip Technology Inc.
POSCMD<1:0> FOSC Primary Oscillator Mode Select bits
11 = Primary oscillator disabled
10 = HS Crystal Oscillator mode
01 = XT Crystal Oscillator mode
00 = EC (External Clock) mode
FWDTEN FWDT Watchdog Timer Enable bit
1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled.
Clearing the SWDTEN bit in the RCON register will have no effect.)
0 = Watchdog Timer enabled/disabled by user software (LPRC can be
disabled by clearing the SWDTEN bit in the RCON register)
WINDIS FWDT Watchdog Timer Window Enable bit
1 = Watchdog Timer in Non-Window mode
0 = Watchdog Timer in Window mode
WDTPRE FWDT Watchdog Timer Prescaler bit
1 = 1:128
0 = 1:32
WDTPOST<3:0> FWDT Watchdog Timer Postscaler bits
1111 = 1:32,768
1110 = 1:16,384
.
.
.
0001 = 1:2
0000 = 1:1
PWMPIN FPOR Motor Control PWM Module Pin Mode bit
1 = PWM module pins controlled by PORT register at device Reset
(tri-stated)
0 = PWM module pins controlled by PWM module at device Reset
(configured as output pins)
HPOL FPOR Motor Control PWM High Side Polarity bit
1 = PWM module high side output pins have active-high output polarity
0 = PWM module high side output pins have active-low output polarity
LPOL FPOR Motor Control PWM Low Side Polarity bit
1 = PWM module low side output pins have active-high output polarity
0 = PWM module low side output pins have active-low output polarity
FPWRT<2:0> FPOR Power-on Reset Timer Value Select bits
111 = PWRT = 128 ms
110 = PWRT = 64 ms
101 = PWRT = 32 ms
100 = PWRT = 16 ms
011 = PWRT = 8 ms
010 = PWRT = 4 ms
001 = PWRT = 2 ms
000 = PWRT = Disabled
ALTI2C FPOR Alternate I2C pins
1 = I2C mapped to SDA1/SCL1 pins
0 = I2C mapped to ASDA1/ASCL1 pins
JTAGEN FICD JTAG Enable bit
1 = JTAG enabled
0 = JTAG disabled
TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field Register Description
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 205
dsPIC33FJ12MC201/202
21.2 On-Chip Voltage Regulator
All of the dsPIC33FJ12MC201/202 devices power their
core digital logic at a nominal 2.5V. This can create a
conflict for designs that are required to operate at a
higher typical voltage, such as 3.3V. To simplify system
design, all devices in the dsPIC33FJ12MC201/202
family incorporate an on-chip regulator that allows the
device to run its core logic from VDD.
The regulator provides power to the core from the other
VDD pins. When the regulator is enabled, a low-ESR
(less than 5 ohms) capacitor (such as tantalum or
ceramic) must be connected to the VCAP/VDDCORE pin
(Figure 21-1). This helps to maintain the stability of the
regulator. The recommended value for the filter capac-
itor is provided in Table 24-13 located in Section 24.1
“DC Characteristics”.
On a POR, it takes approximately 20 μs for the on-chip
voltage regulator to generate an output voltage. During
this time, designated as TSTARTUP, code execution is
disabled. TSTARTUP is applied every time the device
resumes operation after any power-down.
FIGURE 21-1: CONNECTIONS FOR THE
ON-CHIP VOLTAGE
REGULATOR(1)
21.3 BOR: Brown-Out Reset
The Brown-out Reset (BOR) module is based on an
internal voltage reference circuit that monitors the reg-
ulated supply voltage VCAP/VDDCORE. The main pur-
pose of the BOR module is to generate a device Reset
when a brown-out condition occurs. Brown-out condi-
tions are generally caused by glitches on the AC mains
(for example, missing portions of the AC cycle wave-
form due to bad power transmission lines, or voltage
sags due to excessive current draw when a large
inductive load is turned on).
A BOR generates a Reset pulse, which resets the
device. The BOR selects the clock source, based on
the device Configuration bit values (FNOSC<2:0> and
POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the
Oscillator Start-up Timer (OST). The system clock is
held until OST expires. If the PLL is used, the clock is
held until the LOCK bit (OSCCON<5>) is ‘1’.
Concurrently, the PWRT time-out (TPWRT) is applied
before the internal Reset is released. If TPWRT = 0 and
a crystal oscillator is being used, then a nominal delay
of TFSCM = 100 is applied. The total delay in this case
is TFSCM.
The BOR Status bit (RCON<1>) is set to indicate that a
BOR has occurred. The BOR circuit continues to oper-
ate while in Sleep or Idle modes and resets the device
should VDD fall below the BOR threshold voltage.
ICS<1:0> FICD ICD Communication Channel Select bits
11 = Communicate on PGEC1 and PGED1
10 = Communicate on PGEC2 and PGED2
01 = Communicate on PGEC3 and PGED3
00 = Reserved, do not use
TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field Register Description
Note: It is important for low-ESR capacitors to be
placed as close as possible to the VCAP/
VDDCORE pin.
Note 1: These are typical operating voltages. Refer
to Section TABLE 24-13: “Internal Volt-
age Regulator Specifications” located in
Section 24.1 “DC Characteristics” for the
full operating ranges of VDD and VCAP/
VDDCORE.
2: It is important for low-ESR capacitors to be
placed as close as possible to the VCAP/
VDDCORE pin.
VDD
VCAP/VDDCORE
VSS
dsPIC33F
CEFC
3.3V
dsPIC33FJ12MC201/202
DS70265D-page 206 Preliminary © 2009 Microchip Technology Inc.
21.4 Watchdog Timer (WDT)
For dsPIC33FJ12MC201/202 devices, the WDT is
driven by the LPRC oscillator. When the WDT is
enabled, the clock source is also enabled.
21.4.1 PRESCALER/POSTSCALER
The nominal WDT clock source from LPRC is 32 kHz.
This feeds a prescaler than can be configured for either
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.
The prescaler is set by the WDTPRE Configuration bit.
With a 32 kHz input, the prescaler yields a nominal
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or
4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler
output and allows for a wide range of time-out periods.
The postscaler is controlled by the WDTPOST<3:0>
Configuration bits (FWDT<3:0>), which allow the selec-
tion of 16 settings, from 1:1 to 1:32,768. Using the pres-
caler and postscaler, time-out periods ranging from
1 ms to 131 seconds can be achieved.
The WDT, prescaler, and postscaler are reset:
On any device Reset
On the completion of a clock switch, whether
invoked by software (i.e., setting the OSWEN bit
after changing the NOSC bits) or by hardware
(i.e., Fail-Safe Clock Monitor)
When a PWRSAV instruction is executed
(i.e., Sleep or Idle mode is entered)
When the device exits Sleep or Idle mode to
resume normal operation
•By a CLRWDT instruction during normal execution
21.4.2 SLEEP AND IDLE MODES
If the WDT is enabled, it will continue to run during Sleep
or Idle modes. When the WDT time-out occurs, the
device will wake the device and code execution will
continue from where the PWRSAV instruction was
executed. The corresponding SLEEP or IDLE bits
(RCON<3> and RCON<2>, respectively) will need to be
cleared in software after the device wakes up.
21.4.3 ENABLING WDT
The WDT is enabled or disabled by the FWDTEN
Configuration bit in the FWDT Configuration register.
When the FWDTEN Configuration bit is set, the WDT is
always enabled.
The WDT can be optionally controlled in software when
the FWDTEN Configuration bit has been programmed
to ‘0’. The WDT is enabled in software by setting the
SWDTEN control bit (RCON<5>). The SWDTEN con-
trol bit is cleared on any device Reset. The software
WDT option allows the user application to enable the
WDT for critical code segments and disable the WDT
during non-critical segments for maximum power
savings.
The WDT flag bit, WDTO (RCON<4>), is not automatically
cleared following a WDT time-out. To detect subsequent
WDT events, the flag must be cleared in software.
FIGURE 21-2: WDT BLOCK DIAGRAM
Note: The CLRWDT and PWRSAV instructions
clear the prescaler and postscaler counts
when executed.
Note: If the WINDIS bit (FWDT<6>) is cleared, the
CLRWDT instruction should be executed by
the application software only during the last
1/4 of the WDT period. This CLRWDT win-
dow can be determined by using a timer. If
a CLRWDT instruction is executed before
this window, a WDT Reset occurs.
All Device Resets
Transition to New Clock Source
Exit Sleep or Idle Mode
PWRSAV Instruction
CLRWDT Instruction
0
1
WDTPRE WDTPOST<3:0>
Watchdog Timer
Prescaler
(divide by N1)
Postscaler
(divide by N2)
Sleep/Idle
WDT
WDT Window Select
WINDIS
WDT
CLRWDT Instruction
SWDTEN
FWDTEN
LPRC Clock
RS RS
Wake-up
Reset
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 207
dsPIC33FJ12MC201/202
21.5 JTAG Interface
dsPIC33FJ12MC201/202 devices implement a JTAG
interface, which supports boundary scan device test-
ing, as well as in-circuit programming. Detailed infor-
mation on this interface will be provided in future
revisions of the document.
21.6 In-Circuit Serial Programming
The dsPIC33FJ12MC201/202 devices can be serially
programmed while in the end application circuit. This is
done with two lines for clock and data and three other
lines for power, ground and the programming
sequence. Serial programming allows customers to
manufacture boards with unprogrammed devices and
then program the digital signal controller just before
shipping the product. Serial programming also allows
the most recent firmware or a custom firmware to be
programmed. Refer to the dsPIC33F/PIC24H Flash
Programming Specification (DS70152) for details
about In-Circuit Serial Programming (ICSP).
Any of the three pairs of programming clock/data pins
can be used:
PGEC1 and PGED1
PGEC2 and PGED2
PGEC3 and PGED3
21.7 In-Circuit Debugger
When MPLAB® ICD 2 is selected as a debugger, the in-
circuit debugging functionality is enabled. This function
allows simple debugging functions when used with
MPLAB IDE. Debugging functionality is controlled
through the PGECx (Emulation/Debug Clock) and
PGEDx (Emulation/Debug Data) pin functions.
Any of the three pairs of debugging clock/data pins can
be used:
PGEC1 and PGED1
PGEC2 and PGED2
PGEC3 and PGED3
To use the in-circuit debugger function of the device,
the design must implement ICSP connections to
MCLR, VDD, VSS, and the PGECx/PGEDx pin pair. In
addition, when the feature is enabled, some of the
resources are not available for general use. These
resources include the first 80 bytes of data RAM and
two I/O pins.
21.8 Code Protection and
CodeGuard™ Security
The dsPIC33FJ12MC201/202 devices offer the
intermediate implementation of CodeGuard Security.
CodeGuard Security enables multiple parties to
securely share resources (memory, interrupts and
peripherals) on a single chip. This feature helps protect
individual Intellectual Property in collaborative system
designs.
When coupled with software encryption libraries,
CodeGuard Security can be used to securely update
Flash even when multiple IPs reside on the single chip.
The code protection features vary depending on the
actual dsPIC33F implemented. The following sections
provide an overview of these features.
Secure segment and RAM protection is not
implemented in dsPIC33FJ12MC201/202 devices.
TABLE 21-3: CODE FLASH SECURITY
SEGMENT SIZES FOR
12 KBYTE DEVICES
CONFIG BITS
BSS<2:0> = x11
0K
BSS<2:0> = x10
256
BSS<2:0> = x01
768
BSS<2:0> = x00
1792
Note: Refer to Section 23. “CodeGuard™
Security” (DS70199) of the “dsPIC33F
Family Reference Manual” for further
information on usage, configuration and
operation of CodeGuard Security.
dsPIC33FJ12MC201/202
DS70265D-page 208 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 209
dsPIC33FJ12MC201/202
22.0 INSTRUCTION SET SUMMARY
The dsPIC33F instruction set is identical to that of the
dsPIC30F.
Most instructions are a single program memory word
(24 bits). Only three instructions require two program
memory locations.
Each single-word instruction is a 24-bit word, divided
into an 8-bit opcode, which specifies the instruction
type and one or more operands, which further specify
the operation of the instruction.
The instruction set is highly orthogonal and is grouped
into five basic categories:
Word or byte-oriented operations
Bit-oriented operations
Literal operations
DSP operations
Control operations
Table 22-1 shows the general symbols used in
describing the instructions.
The dsPIC33F instruction set summary in Table 22-2
lists all the instructions, along with the status flags
affected by each instruction.
Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands:
The first source operand, which is typically a
register ‘Wb’ without any address modifier
The second source operand, which is typically a
register ‘Ws’ with or without an address modifier
The destination of the result, which is typically a
register ‘Wd’ with or without an address modifier
However, word or byte-oriented file register instructions
have two operands:
The file register specified by the value ‘f’
The destination, which could be either the file
register ‘f’ or the W0 register, which is denoted as
‘WREG’
Most bit-oriented instructions (including simple rotate/
shift instructions) have two operands:
The W register (with or without an address
modifier) or file register (specified by the value of
‘Ws’ or ‘f’)
The bit in the W register or file register (specified
by a literal value or indirectly by the contents of
register ‘Wb’)
The literal instructions that involve data movement can
use some of the following operands:
A literal value to be loaded into a W register or file
register (specified by ‘k’)
The W register or file register where the literal
value is to be loaded (specified by ‘Wb’ or ‘f’)
However, literal instructions that involve arithmetic or
logical operations use some of the following operands:
The first source operand, which is a register ‘Wb’
without any address modifier
The second source operand, which is a literal
value
The destination of the result (only if not the same
as the first source operand), which is typically a
register ‘Wd’ with or without an address modifier
The MAC class of DSP instructions can use some of the
following operands:
The accumulator (A or B) to be used (required
operand)
The W registers to be used as the two operands
The X and Y address space prefetch operations
The X and Y address space prefetch destinations
The accumulator write back destination
The other DSP instructions do not involve any
multiplication and can include:
The accumulator to be used (required)
The source or destination operand (designated as
Wso or Wdo, respectively) with or without an
address modifier
The amount of shift specified by a W register ‘Wn’
or a literal value
The control instructions can use some of the following
operands:
A program memory address
The mode of the table read and table write
instructions
Note: This data sheet summarizes the features
of the dsPIC33FJ12MC201/202 devices.
It is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to the
latest “dsPIC33F Family Reference
Manual” sections, which are available
from the Microchip web site
(www.microchip.com).
dsPIC33FJ12MC201/202
DS70265D-page 210 Preliminary © 2009 Microchip Technology Inc.
Most instructions are a single word. Certain double-
word instructions are designed to provide all the
required information in these 48 bits. In the second
word, the 8 MSbs are ‘0’s. If this second word is exe-
cuted as an instruction (by itself), it will execute as a
NOP.
The double-word instructions execute in two instruction
cycles.
Most single-word instructions are executed in a single
instruction cycle, unless a conditional test is true, or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles with the additional instruction cycle(s) executed
as a NOP. Notable exceptions are the BRA (uncondi-
tional/computed branch), indirect CALL/GOTO, all table
reads and writes and RETURN/RETFIE instructions,
which are single-word instructions but take two or three
cycles. Certain instructions that involve skipping over the
subsequent instruction require either two or three cycles
if the skip is performed, depending on whether the
instruction being skipped is a single-word or two-word
instruction. Moreover, double-word moves require two
cycles.
Note: For more details on the instruction set,
refer to the dsPIC30F/33F Programmer’s
Reference Manual (DS70157).
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS
Field Description
#text Means literal defined by “text
(text) Means “content of text
[text] Means “the location addressed by text
{ } Optional field or operation
<n:m> Register bit field
.b Byte mode selection
.d Double-Word mode selection
.S Shadow register select
.w Word mode selection (default)
Acc One of two accumulators {A, B}
AWB Accumulator write back destination address register {W13, [W13]+ = 2}
bit4 4-bit bit selection field (used in word addressed instructions) {0...15}
C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr Absolute address, label or expression (resolved by the linker)
f File register address {0x0000...0x1FFF}
lit1 1-bit unsigned literal {0,1}
lit4 4-bit unsigned literal {0...15}
lit5 5-bit unsigned literal {0...31}
lit8 8-bit unsigned literal {0...255}
lit10 10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode
lit14 14-bit unsigned literal {0...16384}
lit16 16-bit unsigned literal {0...65535}
lit23 23-bit unsigned literal {0...8388608}; LSb must be ‘0
None Field does not require an entry, can be blank
OA, OB, SA, SB DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC Program Counter
Slit10 10-bit signed literal {-512...511}
Slit16 16-bit signed literal {-32768...32767}
Slit6 6-bit signed literal {-16...16}
Wb Base W register {W0..W15}
Wd Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }
Wdo Destination W register
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }
Wm,Wn Dividend, Divisor working register pair (direct addressing)
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 211
dsPIC33FJ12MC201/202
Wm*Wm Multiplicand and Multiplier working register pair for Square instructions
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn One of 16 working registers {W0..W15}
Wnd One of 16 destination working registers {W0..W15}
Wns One of 16 source working registers {W0..W15}
WREG W0 (working register used in file register instructions)
Ws Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }
Wso Source W register
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }
Wx X data space prefetch address register for DSP instructions
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,
[W9 + W12], none}
Wxd X data space prefetch destination register for DSP instructions {W4..W7}
Wy Y data space prefetch address register for DSP instructions
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,
[W11 + W12], none}
Wyd Y data space prefetch destination register for DSP instructions {W4..W7}
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
Field Description
dsPIC33FJ12MC201/202
DS70265D-page 212 Preliminary © 2009 Microchip Technology Inc.
TABLE 22-2: INSTRUCTION SET OVERVIEW
Base
Instr
#
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
1ADD ADD Acc Add Accumulators 1 1 OA,OB,SA,SB
ADD f f = f + WREG 1 1 C,DC,N,OV,Z
ADD f,WREG WREG = f + WREG 1 1 C,DC,N,OV,Z
ADD #lit10,Wn Wd = lit10 + Wd 1 1 C,DC,N,OV,Z
ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C,DC,N,OV,Z
ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C,DC,N,OV,Z
ADD Wso,#Slit4,Acc 16-bit Signed Add to Accumulator 1 1 OA,OB,SA,SB
2ADDC ADDC f f = f + WREG + (C) 1 1 C,DC,N,OV,Z
ADDC f,WREG WREG = f + WREG + (C) 1 1 C,DC,N,OV,Z
ADDC #lit10,Wn Wd = lit10 + Wd + (C) 1 1 C,DC,N,OV,Z
ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 C,DC,N,OV,Z
ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 C,DC,N,OV,Z
3AND AND f f = f .AND. WREG 1 1 N,Z
AND f,WREG WREG = f .AND. WREG 1 1 N,Z
AND #lit10,Wn Wd = lit10 .AND. Wd 1 1 N,Z
AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 N,Z
AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 N,Z
4ASR ASR f f = Arithmetic Right Shift f 1 1 C,N,OV,Z
ASR f,WREG WREG = Arithmetic Right Shift f 1 1 C,N,OV,Z
ASR Ws,Wd Wd = Arithmetic Right Shift Ws 1 1 C,N,OV,Z
ASR Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns 1 1 N,Z
ASR Wb,#lit5,Wnd Wnd = Arithmetic Right Shift Wb by lit5 1 1 N,Z
5BCLR BCLR f,#bit4 Bit Clear f 1 1 None
BCLR Ws,#bit4 Bit Clear Ws 1 1 None
6BRA BRA C,Expr Branch if Carry 1 1 (2) None
BRA GE,Expr Branch if greater than or equal 1 1 (2) None
BRA GEU,Expr Branch if unsigned greater than or equal 1 1 (2) None
BRA GT,Expr Branch if greater than 1 1 (2) None
BRA GTU,Expr Branch if unsigned greater than 1 1 (2) None
BRA LE,Expr Branch if less than or equal 1 1 (2) None
BRA LEU,Expr Branch if unsigned less than or equal 1 1 (2) None
BRA LT,Expr Branch if less than 1 1 (2) None
BRA LTU,Expr Branch if unsigned less than 1 1 (2) None
BRA N,Expr Branch if Negative 1 1 (2) None
BRA NC,Expr Branch if Not Carry 1 1 (2) None
BRA NN,Expr Branch if Not Negative 1 1 (2) None
BRA NOV,Expr Branch if Not Overflow 1 1 (2) None
BRA NZ,Expr Branch if Not Zero 1 1 (2) None
BRA OA,Expr Branch if Accumulator A overflow 1 1 (2) None
BRA OB,Expr Branch if Accumulator B overflow 1 1 (2) None
BRA OV,Expr Branch if Overflow 1 1 (2) None
BRA SA,Expr Branch if Accumulator A saturated 1 1 (2) None
BRA SB,Expr Branch if Accumulator B saturated 1 1 (2) None
BRA Expr Branch Unconditionally 1 2 None
BRA Z,Expr Branch if Zero 1 1 (2) None
BRA Wn Computed Branch 1 2 None
7BSET BSET f,#bit4 Bit Set f 1 1 None
BSET Ws,#bit4 Bit Set Ws 1 1 None
8BSW BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 None
BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 None
9BTG BTG f,#bit4 Bit Toggle f 1 1 None
BTG Ws,#bit4 Bit Toggle Ws 1 1 None
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 213
dsPIC33FJ12MC201/202
10 BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1
(2 or 3)
None
BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1
(2 or 3)
None
11 BTSS BTSS f,#bit4 Bit Test f, Skip if Set 1 1
(2 or 3)
None
BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1
(2 or 3)
None
12 BTST BTST f,#bit4 Bit Test f 1 1 Z
BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C
BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z
BTST.C Ws,Wb Bit Test Ws<Wb> to C 1 1 C
BTST.Z Ws,Wb Bit Test Ws<Wb> to Z 1 1 Z
13 BTSTS BTSTS f,#bit4 Bit Test then Set f 1 1 Z
BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C
BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z
14 CALL CALL lit23 Call subroutine 2 2 None
CALL Wn Call indirect subroutine 1 2 None
15 CLR CLR f f = 0x0000 1 1 None
CLR WREG WREG = 0x0000 1 1 None
CLR Ws Ws = 0x0000 1 1 None
CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Accumulator 1 1 OA,OB,SA,SB
16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO,Sleep
17 COM COM f f = f 11 N,Z
COM f,WREG WREG = f 11 N,Z
COM Ws,Wd Wd = Ws 11 N,Z
18 CP CP f Compare f with WREG 1 1 C,DC,N,OV,Z
CP Wb,#lit5 Compare Wb with lit5 1 1 C,DC,N,OV,Z
CP Wb,Ws Compare Wb with Ws (Wb – Ws) 1 1 C,DC,N,OV,Z
19 CP0 CP0 f Compare f with 0x0000 1 1 C,DC,N,OV,Z
CP0 Ws Compare Ws with 0x0000 1 1 C,DC,N,OV,Z
20 CPB CPB f Compare f with WREG, with Borrow 1 1 C,DC,N,OV,Z
CPB Wb,#lit5 Compare Wb with lit5, with Borrow 1 1 C,DC,N,OV,Z
CPB Wb,Ws Compare Wb with Ws, with Borrow
(Wb – Ws – C)
1 1 C,DC,N,OV,Z
21 CPSEQ CPSEQ Wb, Wn Compare Wb with Wn, skip if = 1 1
(2 or 3)
None
22 CPSGT CPSGT Wb, Wn Compare Wb with Wn, skip if > 1 1
(2 or 3)
None
23 CPSLT CPSLT Wb, Wn Compare Wb with Wn, skip if < 1 1
(2 or 3)
None
24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, skip if 11
(2 or 3)
None
25 DAW DAW Wn Wn = decimal adjust Wn 1 1 C
26 DEC DEC f f = f – 1 1 1 C,DC,N,OV,Z
DEC f,WREG WREG = f – 1 1 1 C,DC,N,OV,Z
DEC Ws,Wd Wd = Ws – 1 1 1 C,DC,N,OV,Z
27 DEC2 DEC2 f f = f – 2 1 1 C,DC,N,OV,Z
DEC2 f,WREG WREG = f – 2 1 1 C,DC,N,OV,Z
DEC2 Ws,Wd Wd = Ws – 2 1 1 C,DC,N,OV,Z
28 DISI DISI #lit14 Disable Interrupts for k instruction cycles 1 1 None
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr
#
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
dsPIC33FJ12MC201/202
DS70265D-page 214 Preliminary © 2009 Microchip Technology Inc.
29 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV
DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV
DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV
DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV
30 DIVF DIVF Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV
31 DO DO #lit14,Expr Do code to PC + Expr, lit14 + 1 times 2 2 None
DO Wn,Expr Do code to PC + Expr, (Wn) + 1 times 2 2 None
32 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB,
SA,SB,SAB
33 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB,
SA,SB,SAB
34 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None
35 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C
36 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C
37 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C
38 GOTO GOTO Expr Go to address 2 2 None
GOTO Wn Go to indirect 1 2 None
39 INC INC f f = f + 1 1 1 C,DC,N,OV,Z
INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z
INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z
40 INC2 INC2 f f = f + 2 1 1 C,DC,N,OV,Z
INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z
INC2 Ws,Wd Wd = Ws + 2 1 1 C,DC,N,OV,Z
41 IOR IOR f f = f .IOR. WREG 1 1 N,Z
IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z
IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z
IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z
IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z
42 LAC LAC Wso,#Slit4,Acc Load Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB
43 LNK LNK #lit14 Link Frame Pointer 1 1 None
44 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z
LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z
LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z
LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z
LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z
45 MAC MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd
,
AWB
Multiply and Accumulate 1 1 OA,OB,OAB,
SA,SB,SAB
MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB,
SA,SB,SAB
46 MOV MOV f,Wn Move f to Wn 1 1 None
MOV f Move f to f 1 1 N,Z
MOV f,WREG Move f to WREG 1 1 N,Z
MOV #lit16,Wn Move 16-bit literal to Wn 1 1 None
MOV.b #lit8,Wn Move 8-bit literal to Wn 1 1 None
MOV Wn,f Move Wn to f 1 1 None
MOV Wso,Wdo Move Ws to Wd 1 1 None
MOV WREG,f Move WREG to f 1 1 N,Z
MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None
MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None
47 MOVSAC MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Prefetch and store accumulator 1 1 None
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr
#
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 215
dsPIC33FJ12MC201/202
48 MPY MPY
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd
Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB
MPY
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd
Square Wm to Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB
49 MPY.N MPY.N
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd
-(Multiply Wm by Wn) to Accumulator 1 1 None
50 MSC MSC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd
,
AWB
Multiply and Subtract from Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB
51 MUL MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * signed(Ws) 1 1 None
MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 1 None
MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 1 None
MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) *
unsigned(Ws)
1 1 None
MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 None
MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = unsigned(Wb) *
unsigned(lit5)
1 1 None
MUL f W3:W2 = f * WREG 1 1 None
52 NEG NEG Acc Negate Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB
NEG f f = f + 1 1 1 C,DC,N,OV,Z
NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z
NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z
53 NOP NOP No Operation 1 1 None
NOPR No Operation 1 1 None
54 POP POP f Pop f from Top-of-Stack (TOS) 1 1 None
POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None
POP.D Wnd Pop from Top-of-Stack (TOS) to
W(nd):W(nd + 1)
1 2 None
POP.S Pop Shadow Registers 1 1 All
55 PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None
PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None
PUSH.D Wns Push W(ns):W(ns + 1) to Top-of-Stack (TOS) 1 2 None
PUSH.S Push Shadow Registers 1 1 None
56 PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO,Sleep
57 RCALL RCALL Expr Relative Call 1 2 None
RCALL Wn Computed Call 1 2 None
58 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None
REPEAT Wn Repeat Next Instruction (Wn) + 1 times 1 1 None
59 RESET RESET Software device Reset 1 1 None
60 RETFIE RETFIE Return from interrupt 1 3 (2) None
61 RETLW RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None
62 RETURN RETURN Return from Subroutine 1 3 (2) None
63 RLC RLC f f = Rotate Left through Carry f 1 1 C,N,Z
RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z
RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z
64 RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N,Z
RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z
RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z
65 RRC RRC f f = Rotate Right through Carry f 1 1 C,N,Z
RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z
RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr
#
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
dsPIC33FJ12MC201/202
DS70265D-page 216 Preliminary © 2009 Microchip Technology Inc.
66 RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N,Z
RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z
RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z
67 SAC SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None
SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None
68 SE SE Ws,Wnd Wnd = sign-extended Ws 1 1 C,N,Z
69 SETM SETM f f = 0xFFFF 1 1 None
SETM WREG WREG = 0xFFFF 1 1 None
SETM Ws Ws = 0xFFFF 1 1 None
70 SFTAC SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB,
SA,SB,SAB
SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB,
SA,SB,SAB
71 SL SL f f = Left Shift f 1 1 C,N,OV,Z
SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z
SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z
SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z
SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z
72 SUB SUB Acc Subtract Accumulators 1 1 OA,OB,OAB,
SA,SB,SAB
SUB f f = f – WREG 1 1 C,DC,N,OV,Z
SUB f,WREG WREG = f – WREG 1 1 C,DC,N,OV,Z
SUB #lit10,Wn Wn = Wn – lit10 1 1 C,DC,N,OV,Z
SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C,DC,N,OV,Z
SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C,DC,N,OV,Z
73 SUBB SUBB f f = f – WREG – (C) 1 1 C,DC,N,OV,Z
SUBB f,WREG WREG = f – WREG – (C) 1 1 C,DC,N,OV,Z
SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C,DC,N,OV,Z
SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C,DC,N,OV,Z
SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 C,DC,N,OV,Z
74 SUBR SUBR f f = WREG – f 1 1 C,DC,N,OV,Z
SUBR f,WREG WREG = WREG – f 1 1 C,DC,N,OV,Z
SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C,DC,N,OV,Z
SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C,DC,N,OV,Z
75 SUBBR SUBBR f f = WREG – f – (C) 1 1 C,DC,N,OV,Z
SUBBR f,WREG WREG = WREG – f – (C) 1 1 C,DC,N,OV,Z
SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C,DC,N,OV,Z
SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 C,DC,N,OV,Z
76 SWAP SWAP.b Wn Wn = nibble swap Wn 1 1 None
SWAP Wn Wn = byte swap Wn 1 1 None
77 TBLRDH TBLRDH Ws,Wd Read Prog<23:16> to Wd<7:0> 1 2 None
78 TBLRDL TBLRDL Ws,Wd Read Prog<15:0> to Wd 1 2 None
79 TBLWTH TBLWTH Ws,Wd Write Ws<7:0> to Prog<23:16> 1 2 None
80 TBLWTL TBLWTL Ws,Wd Write Ws to Prog<15:0> 1 2 None
81 ULNK ULNK Unlink Frame Pointer 1 1 None
82 XOR XOR f f = f .XOR. WREG 1 1 N,Z
XOR f,WREG WREG = f .XOR. WREG 1 1 N,Z
XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N,Z
XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N,Z
XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N,Z
83 ZE ZE Ws,Wnd Wnd = Zero-extend Ws 1 1 C,Z,N
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr
#
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 217
dsPIC33FJ12MC201/202
23.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers are supported with a full
range of hardware and software development tools:
Integrated Development Environment
- MPLAB® IDE Software
Assemblers/Compilers/Linkers
- MPASMTM Assembler
- MPLAB C18 and MPLAB C30 C Compilers
-MPLINK
TM Object Linker/
MPLIBTM Object Librarian
- MPLAB ASM30 Assembler/Linker/Library
Simulators
- MPLAB SIM Software Simulator
Emulators
- MPLAB ICE 2000 In-Circuit Emulator
- MPLAB REAL ICE™ In-Circuit Emulator
In-Circuit Debugger
- MPLAB ICD 2
Device Programmers
-PICSTART
® Plus Development Programmer
- MPLAB PM3 Device Programmer
- PICkit™ 2 Development Programmer
Low-Cost Demonstration and Development
Boards and Evaluation Kits
23.1 MPLAB Integrated Development
Environment Software
The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16-bit micro-
controller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- Emulator (sold separately)
- In-Circuit Debugger (sold separately)
A full-featured editor with color-coded context
A multiple project manager
Customizable data windows with direct edit of
contents
High-level source code debugging
Visual device initializer for easy register
initialization
Mouse over variable inspection
Drag and drop variables from source to watch
windows
Extensive on-line help
Integration of select third party tools, such as
HI-TECH Software C Compilers and IAR
C Compilers
The MPLAB IDE allows you to:
Edit your source files (either assembly or C)
One touch assemble (or compile) and download
to PIC MCU emulator and simulator tools
(automatically updates all project information)
Debug using:
- Source files (assembly or C)
- Mixed assembly and C
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
dsPIC33FJ12MC201/202
DS70265D-page 218 Preliminary © 2009 Microchip Technology Inc.
23.2 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for all PIC MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:
Integration into MPLAB IDE projects
User-defined macros to streamline
assembly code
Conditional assembly for multi-purpose
source files
Directives that allow complete control over the
assembly process
23.3 MPLAB C18 and MPLAB C30
C Compilers
The MPLAB C18 and MPLAB C30 Code Development
Systems are complete ANSI C compilers for
Microchip’s PIC18 and PIC24 families of microcon-
trollers and the dsPIC30 and dsPIC33 family of digital
signal controllers. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use not found with other compilers.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
23.4 MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
Efficient linking of single libraries instead of many
smaller files
Enhanced code maintainability by grouping
related modules together
Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
23.5 MPLAB ASM30 Assembler, Linker
and Librarian
MPLAB ASM30 Assembler produces relocatable
machine code from symbolic assembly language for
dsPIC30F devices. MPLAB C30 C Compiler uses the
assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:
Support for the entire dsPIC30F instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility
23.6 MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C18 and
MPLAB C30 C Compilers, and the MPASM and
MPLAB ASM30 Assemblers. The software simulator
offers the flexibility to develop and debug code outside
of the hardware laboratory environment, making it an
excellent, economical software development tool.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 219
dsPIC33FJ12MC201/202
23.7 MPLAB ICE 2000
High-Performance
In-Circuit Emulator
The MPLAB ICE 2000 In-Circuit Emulator is intended
to provide the product development engineer with a
complete microcontroller design tool set for PIC
microcontrollers. Software control of the MPLAB ICE
2000 In-Circuit Emulator is advanced by the MPLAB
Integrated Development Environment, which allows
editing, building, downloading and source debugging
from a single environment.
The MPLAB ICE 2000 is a full-featured emulator
system with enhanced trace, trigger and data monitor-
ing features. Interchangeable processor modules allow
the system to be easily reconfigured for emulation of
different processors. The architecture of the MPLAB
ICE 2000 In-Circuit Emulator allows expansion to
support new PIC microcontrollers.
The MPLAB ICE 2000 In-Circuit Emulator system has
been designed as a real-time emulation system with
advanced features that are typically found on more
expensive development tools. The PC platform and
Microsoft® Windows® 32-bit operating system were
chosen to best make these features available in a
simple, unified application.
23.8 MPLAB REAL ICE In-Circuit
Emulator System
MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.
The MPLAB REAL ICE probe is connected to the design
engineer’s PC using a high-speed USB 2.0 interface and
is connected to the target with either a connector
compatible with the popular MPLAB ICD 2 system
(RJ11) or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5).
MPLAB REAL ICE is field upgradeable through future
firmware downloads in MPLAB IDE. In upcoming
releases of MPLAB IDE, new devices will be sup-
ported, and new features will be added, such as soft-
ware breakpoints and assembly code trace. MPLAB
REAL ICE offers significant advantages over competi-
tive emulators including low-cost, full-speed emulation,
real-time variable watches, trace analysis, complex
breakpoints, a ruggedized probe interface and long (up
to three meters) interconnection cables.
23.9 MPLAB ICD 2 In-Circuit Debugger
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a
powerful, low-cost, run-time development tool,
connecting to the host PC via an RS-232 or high-speed
USB interface. This tool is based on the Flash PIC
MCUs and can be used to develop for these and other
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes
the in-circuit debugging capability built into the Flash
devices. This feature, along with Microchip’s In-Circuit
Serial ProgrammingTM (ICSPTM) protocol, offers cost-
effective, in-circuit Flash debugging from the graphical
user interface of the MPLAB Integrated Development
Environment. This enables a designer to develop and
debug source code by setting breakpoints, single step-
ping and watching variables, and CPU status and
peripheral registers. Running at full speed enables
testing hardware and applications in real time. MPLAB
ICD 2 also serves as a development programmer for
selected PIC devices.
23.10 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modu-
lar, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an SD/MMC card for
file storage and secure data applications.
dsPIC33FJ12MC201/202
DS70265D-page 220 Preliminary © 2009 Microchip Technology Inc.
23.11 PICSTART Plus Development
Programmer
The PICSTART Plus Development Programmer is an
easy-to-use, low-cost, prototype programmer. It
connects to the PC via a COM (RS-232) port. MPLAB
Integrated Development Environment software makes
using the programmer simple and efficient. The
PICSTART Plus Development Programmer supports
most PIC devices in DIP packages up to 40 pins.
Larger pin count devices, such as the PIC16C92X and
PIC17C76X, may be supported with an adapter socket.
The PICSTART Plus Development Programmer is CE
compliant.
23.12 PICkit 2 Development Programmer
The PICkit™ 2 Development Programmer is a low-cost
programmer and selected Flash device debugger with
an easy-to-use interface for programming many of
Microchip’s baseline, mid-range and PIC18F families of
Flash memory microcontrollers. The PICkit 2 Starter Kit
includes a prototyping development board, twelve
sequential lessons, software and HI-TECH’s PICC™
Lite C compiler, and is designed to help get up to speed
quickly using PIC® microcontrollers. The kit provides
everything needed to program, evaluate and develop
applications using Microchip’s powerful, mid-range
Flash memory family of microcontrollers.
23.13 Demonstration, Development and
Evaluation Boards
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully func-
tional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demon-
stration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 221
dsPIC33FJ12MC201/202
24.0 ELECTRICAL CHARACTERISTICS
This section provides an overview of dsPIC33FJ12MC201/202 electrical characteristics. Additional information will be
provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the dsPIC33FJ12MC201/202 family are listed below. Exposure to these maximum rating
conditions for extended periods may affect device reliability. Functional operation of the device at these or any other
conditions above the parameters indicated in the operation listings of this specification is not implied.
Absolute Maximum Ratings(1)
Ambient temperature under bias.............................................................................................................-40°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to VSS .................................................................................. -0.3V to +5.6V
Voltage on VCAP/VDDCORE with respect to VSS ....................................................................................... 2.25V to 2.75V
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin(2)...........................................................................................................................250 mA
Maximum output current sunk by any I/O pin(3) ........................................................................................................4 mA
Maximum output current sourced by any I/O pin(3)...................................................................................................4 mA
Maximum current sunk by all ports .......................................................................................................................200 mA
Maximum current sourced by all ports(2)...............................................................................................................200 mA
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only, and functional operation of the device at those or any other conditions
above those indicated in the operation listings of this specification is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx,
and PGEDx pins, which are able to sink/source 12 mA.
dsPIC33FJ12MC201/202
DS70265D-page 222 Preliminary © 2009 Microchip Technology Inc.
24.1 DC Characteristics
TABLE 24-1: OPERATING MIPS VS. VOLTAGE
Characteristic VDD Range
(in Volts)
Temp Range
(in °C)
Max MIPS
dsPIC33FJ12MC201/202
3.0-3.6V -40°C to +85°C 40
3.0-3.6V -40°C to +125°C 40
TABLE 24-2: THERMAL OPERATING CONDITIONS
Rating Symbol Min Typ Max Unit
Industrial Temperature Devices
Operating Junction Temperature Range TJ-40 +125 °C
Operating Ambient Temperature Range TA-40 +85 °C
Extended Temperature Devices
Operating Junction Temperature Range TJ-40 +140 °C
Operating Ambient Temperature Range TA-40 +125 °C
Power Dissipation:
Internal chip power dissipation:
PINT = VDD x (IDDΣ IOH) PDPINT + PI/OW
I/O Pin Power Dissipation:
I/O = Σ ({VDD – VOH} x IOH) + Σ (VOL x IOL)
Maximum Allowed Power Dissipation PDMAX (TJ – TA)/θJA W
TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS
Characteristic Symbol Typ Max Unit Notes
Package Thermal Resistance, 20-pin PDIP θJA 45 °C/W 1
Package Thermal Resistance, 28-pin SPDIP θJA 45 °C/W 1
Package Thermal Resistance, 20-pin SOIC θJA 60 °C/W 1
Package Thermal Resistance, 28-pin SOIC θJA 50 °C/W 1
Package Thermal Resistance, 20-pin SSOP θJA 108 °C/W 1
Package Thermal Resistance, 28-pin SSOP θJA 71 °C/W 1
Package Thermal Resistance, 28-pin QFN θJA 35 °C/W 1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 223
dsPIC33FJ12MC201/202
TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min Typ(1) Max Units Conditions
Operating Voltage
DC10 Supply Voltage
VDD 3.0 3.6 V Industrial and Extended
DC12 VDR RAM Data Retention Voltage(2) 1.8 V
DC16 VPOR VDD Start Voltage(4)
to ensure internal
Power-on Reset signal
——VSS V
DC17 SVDD VDD Rise Rate
to ensure internal
Power-on Reset signal
0.03 V/ms 0-3.0V in 0.1s
DC18 VCORE VDD Core(3)
Internal regulator voltage
2.25 2.75 V Voltage is dependent on
load, temperature and
VDD
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
2: This is the limit to which VDD may be lowered without losing RAM data.
3: These parameters are characterized by similarity, but are not tested in manufacturing.
4: VDD voltage must remain at VSS for a minimum of 200 µs to ensure POR.
dsPIC33FJ12MC201/202
DS70265D-page 224 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Operating Current (IDD)(2)
DC20d 24 30 mA -40°C
3.3V 10 MIPS(3)
DC20a 27 30 mA +25°C
DC20b 27 30 mA +85°C
DC20c 27 35 mA +125°C
DC21d 30 40 mA -40°C
3.3V 16 MIPS(3)
DC21a 31 40 mA +25°C
DC21b 32 45 mA +85°C
DC21c 33 45 mA +125°C
DC22d 35 50 mA -40°C
3.3V 20 MIPS(3)
DC22a 38 50 mA +25°C
DC22b 38 55 mA +85°C
DC22c 39 55 mA +125°C
DC23d 47 70 mA -40°C
3.3V 30 MIPS(3)
DC23a 48 70 mA +25°C
DC23b 48 70 mA +85°C
DC23c 48 70 mA +125°C
DC24d 56 90 mA -40°C
3.3V 40 MIPS
DC24a 56 90 mA +25°C
DC24b 54 90 mA +85°C
DC24c 54 90 mA +125°C
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS.
MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are opera-
tional. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all
zeroed).
3: These parameters are characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 225
dsPIC33FJ12MC201/202
TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Idle Current (IIDLE): Core OFF Clock ON Base Current(2)
DC40d 3 25 mA -40°C
3.3V 10 MIPS(3)
DC40a 3 25 mA +25°C
DC40b 3 25 mA +85°C
DC40c 3 25 mA +125°C
DC41d 4 25 mA -40°C
3.3V 16 MIPS(3)
DC41a 4 25 mA +25°C
DC41b 5 25 mA +85°C
DC41c 5 25 mA +125°C
DC42d 6 25 mA -40°C
3.3V 20 MIPS(3)
DC42a 6 25 mA +25°C
DC42b 7 25 mA +85°C
DC42c 7 25 mA +125°C
DC43a 9 25 mA +25°C
3.3V 30 MIPS(3)
25DC43d 9 mA -40°C
DC43b 9 25 mA +85°C
DC43c 9 25 mA +125°C
DC44d 10 25 mA -40°C
3.3V 40 MIPS
DC44a 10 25 mA +25°C
DC44b 10 25 mA +85°C
DC44c 10 25 mA +125°C
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module
Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS.
3: These parameters are characterized, but not tested in manufacturing.
dsPIC33FJ12MC201/202
DS70265D-page 226 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Power-Down Current (IPD)(2)
DC60d 55 500 μA-40°C
3.3V Base Power-Down Current(3,4)
DC60a 63 500 μA+25°C
DC60b 85 500 μA+85°C
DC60c 146 1000 μA +125°C
DC61d 8 13 μA-40°C
3.3V Watchdog Timer Current: ΔIWDT(3,5)
DC61a 10 15 μA+25°C
DC61b 12 20 μA+85°C
DC61c 13 25 μA +125°C
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.
3: The Δ current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
4: These currents are measured on the device containing the most memory in this family.
5: These parameters are characterized, but not tested in manufacturing.
TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter No. Typical(1) Max Doze
Ratio(2) Units Conditions
DC73a 11 35 1:2 mA
-40°C 3.3V 40 MIPSDC73f 11 30 1:64 mA
DC73g 11 30 1:128 mA
DC70a 11 50 1:2 mA
+25°C 3.3V 40 MIPSDC70f 11 30 1:64 mA
DC70g 11 30 1:128 mA
DC71a 12 50 1:2 mA
+85°C 3.3V 40 MIPSDC71f 12 30 1:64 mA
DC71g 12 30 1:128 mA
DC72a 12 50 1:2 mA
+125°C 3.3V 40 MIPSDC72f 12 30 1:64 mA
DC72g 12 30 1:128 mA
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.
2: Parameters with DOZE ratios of 1:2 and 1:64 are characterized, but are not
tested in manufacturing.
3:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 227
dsPIC33FJ12MC201/202
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA+125°C for Extended
Param
No. Symbol Characteristic Min Typ(1) Max Units Conditions
VIL Input Low Voltage
DI10 I/O pins VSS —0.2VDD V
DI15 MCLR VSS —0.2VDD V
DI16 I/O Pins with OSC1 or SOSCI VSS —0.2VDD V
DI18 I/O Pins with I2CVSS 0.3 VDD V SMbus disabled
DI19 I/O Pins with I2C VSS 0.2 VDD V SMbus enabled
VIH Input High Voltage
DI20 I/O Pins Not 5V Tolerant(4)
I/O Pins 5V Tolerant(4)
0.7 VDD
0.7 VDD
VDD
5.5
V
V
ICNPU CNx Pull-up Current
DI30 50 250 400 μAV
DD = 3.3V, VPIN = VSS
IIL Input Leakage Current(2,3)
DI50 I/O Pins ±2 μAVSS VPIN VDD,
Pin at high-impedance
DI51 I/O Pins Not 5V Tolerant(4) ——±2μAVSS VPIN VDD,
Pin at high-impedance,
-40°C TA +125°C
DI51a I/O Pins Not 5V Tolerant(4 ——±2μA Shared with external reference
pins, -40°C TA +125°C
DI51b I/O Pins Not 5V Tolerant(4 ——±3.5μAVSS VPIN VDD, Pin at
high-impedance,
-40°C TA +125°C
DI51c I/O Pins Not 5V Tolerant(4 ——±8μA Analog pins shared with
external reference pins,
-40°C TA +125°C
DI55 MCLR ——±2μAVSS VPIN VDD
DI56 OSC1 ±2 μAVSS VPIN VDD,
XT and HS modes
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: See “Pin Diagrams” for a list of 5V tolerant pins.
dsPIC33FJ12MC201/202
DS70265D-page 228 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min Typ Max Units Conditions
VOL Output Low Voltage
DO10 I/O ports 0.4 V IOL = 2 mA, VDD = 3.3V
DO16 OSC2/CLKO 0.4 V IOL = 2 mA, VDD = 3.3V
VOH Output High Voltage
DO20 I/O ports 2.40 V IOH = -2.3 mA, VDD = 3.3V
DO26 OSC2/CLKO 2.41 V IOH = -1.3 mA, VDD = 3.3V
TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min(1) Typ Max(1) Units Conditions
BO10 VBOR BOR Event on VDD transition
high-to-low
BOR event is tied to VDD core voltage
decrease
2.40 2.55 V
Note 1: Parameters are for design guidance only and are not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 229
dsPIC33FJ12MC201/202
TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(3) Min Typ(1) Max Units Conditions
Program Flash Memory
D130a EPCell Endurance 10,000 E/W -40°C to +125°C
D131 VPR VDD for Read VMIN —3.6VVMIN = Minimum operating
voltage
D132B VPEW VDD for Self-Timed Write VMIN —3.6 VVMIN = Minimum operating
voltage
D134 TRETD Characteristic Retention 20 Year Provided no other specifications
are violated
D135 IDDP Supply Current during
Programming
—10mA
D136a TRW Row Write Time 1.32 1.74 ms TRW = 11064 FRC cycles,
TA = +85°C, See Note 2
D136b TRW Row Write Time 1.28 1.79 ms TRW = 11064 FRC cycles,
TA = +125°C, See Note 2
D137a TPE Page Erase Time 20.1 26.5 ms TPE = 168517 FRC cycles,
TA = +85°C, See Note 2
D137b TPE Page Erase Time 19.5 27.3 ms TPE = 168517 FRC cycles,
TA = +125°C, See Note 2
D138a TWW Word Write Cycle Time 42.3 55.9 µs TWW = 355 FRC cycles,
TA = +85°C, See Note 2
D138b TWW Word Write Cycle Time 41.1 57.6 µs TWW = 355 FRC cycles,
TA = +125°C, See Note 2
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max).
This parameter depends on the FRC accuracy (see Table 24-18) and the value of the FRC Oscillator
Tuning register (see Register 8-4). For complete details on calculating the Minimum and Maximum time
see Section 5.3 “Programming Operations”.
3: These parameters are ensured by design, but are not characterized or tested in manufacturing.
DC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA+125°C for Extended
Param
No. Symbol Characteristics Min Typ Max Units Comments
CEFC External Filter Capacitor
Value
4.7 10 μF Capacitor must be low
series resistance
(< 5 ohms)
dsPIC33FJ12MC201/202
DS70265D-page 230 Preliminary © 2009 Microchip Technology Inc.
24.2 AC Characteristics and Timing
Parameters
This section defines dsPIC33FJ12MC201/202
AC characteristics and timing parameters.
TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC
FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Operating voltage VDD range as described in Section 24.0 “Electrical
Characteristics”.
Param
No. Symbol Characteristic Min Typ Max Units Conditions
DO50 COSC2 OSC2/SOSC2 pin 15 pF In XT and HS modes when
external clock is used to drive
OSC1
DO56 CIO All I/O pins and OSC2 50 pF EC mode
DO58 CBSCLx, SDAx 400 pF In I2C mode
VDD/2
CL
RL
Pin
Pin
VSS
VSS
CL
RL=464Ω
CL= 50 pF for all pins except OSC2
15 pF for OSC2 output
Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 231
dsPIC33FJ12MC201/202
FIGURE 24-2: EXTERNAL CLOCK TIMING
Q1 Q2 Q3 Q4
OSC1
CLKO
Q1 Q2 Q3 Q4
OS20
OS25
OS30 OS30
OS40
OS41
OS31 OS31
TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symb Characteristic Min Typ(1) Max Units Conditions
OS10 FIN External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes)
DC 40 MHz EC
Oscillator Crystal Frequency 3.5
10
10
40
33
MHz
MHz
kHz
XT
HS
SOSC
OS20 TOSC TOSC = 1/FOSC 12.5 DC ns
OS25 TCY Instruction Cycle Time(2,4) 25 DC ns
OS30 TosL,
Tos H
External Clock in (OSC1)(5)
High or Low Time
0.375 x TOSC 0.625 x TOSC ns EC
OS31 TosR,
Tos F
External Clock in (OSC1)(5)
Rise or Fall Time
——20nsEC
OS40 TckR CLKO Rise Time(3,5) —5.2ns
OS41 TckF CLKO Fall Time(3,5) —5.2ns
OS42 GMExternal Oscillator
Transconductance(4)
14 16 18 mA/V VDD = 3.3V
TA = +25ºC
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values
are based on characterization data for that particular oscillator type under standard operating conditions
with the device executing code. Exceeding these specified limits may result in an unstable oscillator
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the
“max.” cycle time limit is “DC” (no clock) for all devices.
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 40 MHz only.
5: These parameters are characterized by similarity, but are not tested in manufacturing.
6: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.
dsPIC33FJ12MC201/202
DS70265D-page 232 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min Typ(1) Max Units Conditions
OS50 FPLLI PLL Voltage Controlled
Oscillator (VCO) Input
Frequency Range(2)
0.8 8 MHz ECPLL and XTPLL
modes
OS51 FSYS On-Chip VCO System
Frequency(3)
100 200 MHz
OS52 TLOCK PLL Start-up Time (Lock Time)(3) 0.9 1.5 3.1 mS
OS53 DCLK CLKO Stability (Jitter)(3) -3 0.5 3 % Measured over 100 ms
period
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.
3: These parameters are characterized by similarity, but are not tested in manufacturing.
TABLE 24-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Characteristic Min Typ Max Units Conditions
Internal FRC Accuracy @ 7.3728 MHz(1,2)
F20 FRC -2 +2 % -40°C TA +85°C VDD = 3.0-3.6V
FRC -5 +5 % -40°C TA +125°C VDD = 3.0-3.6V
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits may be used to compensate for temperature drift.
2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.
TABLE 24-19: INTERNAL RC ACCURACY
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Characteristic Min Typ Max Units Conditions
LPRC @ 32.768 kHz(1,2)
F21 LPRC -20 ±6 +20 % -40°C TA +85°C VDD = 3.0-3.6V
LPRC -70 +70 % -40°C TA +125°C VDD = 3.0-3.6V
Note 1: Change of LPRC frequency as VDD changes.
2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 21.4 “Watchdog
Timer (WDT)” for more information.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 233
dsPIC33FJ12MC201/202
FIGURE 24-3: CLKO AND I/O TIMING CHARACTERISTICS
Note: Refer to Figure 24-1 for load conditions.
I/O Pin
(Input)
I/O Pin
(Output)
DI35
Old Value New Value
DI40
DO31
DO32
TABLE 24-20: I/O TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(2) Min Typ(1) Max Units Conditions
DO31 TIOR Port Output Rise Time 10 25 ns
DO32 TIOF Port Output Fall Time 10 25 ns
DI35 TINP INTx Pin High or Low Time (output) 25 ns
DI40 TRBP CNx High or Low Time (input) 2 TCY
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
2: These parameters are characterized, but are not tested in manufacturing.
dsPIC33FJ12MC201/202
DS70265D-page 234 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING CHARACTERISTICS
VDD
MCLR
Internal
POR
PWRT
Time-out
OSC
Time-out
Internal
Reset
Watchdog
Timer
Reset
SY11
SY10
SY20
SY13
I/O Pins
SY13
Note: Refer to Figure 24-1 for load conditions.
FSCM
Delay
SY35
SY30
SY12
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 235
dsPIC33FJ12MC201/202
FIGURE 24-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS
TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions
SY10 TMCLMCLR Pulse Width (low) 2 μs -40°C to +85°C
SY11 TPWRT Power-up Timer Period(1) —2
4
8
16
32
64
128
ms -40°C to +85°C
User programmable
SY12 TPOR Power-on Reset Delay(3) 31030μs -40°C to +85°C
SY13 TIOZ I/O High-Impedance from MCLR
Low or Watchdog Timer Reset(1)
0.68 0.72 1.2 μs
SY20 TWDT1 Watchdog Timer Time-out
Period(1)
———msSee Section 21.4 “Watch-
dog Timer (WDT)” and
LPRC parameter F21
(Table 24-19).
SY30 TOST Oscillator Start-up Time 1024
TOSC
——TOSC = OSC1 period
SY35 TFSCM Fail-Safe Clock Monitor Delay(1) 500 900 μs -40°C to +85°C
Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
3: These parameters are characterized, but are not tested in manufacturing.
Note: Refer to Figure 24-1 for load conditions.
Tx11
Tx15
Tx10
Tx20
TMRx
OS60
TxCK
dsPIC33FJ12MC201/202
DS70265D-page 236 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic(2) Min Typ Max Units Conditions
TA10 TTXH TxCK High Time Synchronous,
no prescaler
0.5 TCY + 20 ns Must also meet
parameter TA15
Synchronous,
with prescaler
10 ns
Asynchronous 10 ns
TA11 TTXL TxCK Low Time Synchronous,
no prescaler
0.5 TCY + 20 ns Must also meet
parameter TA15
Synchronous,
with prescaler
10 ns
Asynchronous 10 ns
TA15 TTXP TxCK Input Period Synchronous,
no prescaler
TCY + 40 ns
Synchronous,
with prescaler
Greater of:
20 ns or
(TCY + 40)/N
N = prescale
value
(1, 8, 64, 256)
Asynchronous 20 ns
OS60 Ft1 SOSC1/T1CK Oscillator Input
frequency Range (oscillator enabled
by setting bit TCS (T1CON<1>))
DC 50 kHz
TA20 TCKEXTMRL Delay from External TxCK Clock
Edge to Timer Increment
0.5 TCY —1.5 TCY
Note 1: Timer1 is a Type A.
2: These parameters are characterized by similarity, but are not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 237
dsPIC33FJ12MC201/202
TABLE 24-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ Max Units Conditions
TB10 TtxH TxCK High Time Synchronous,
no prescaler
0.5 TCY + 20 ns Must also meet
parameter TB15
Synchronous,
with prescaler
10 — ns
TB11 TtxL TxCK Low Time Synchronous,
no prescaler
0.5 TCY + 20 ns Must also meet
parameter TB15
Synchronous,
with prescaler
10 ns
TB15 TtxP TxCK Input
Period
Synchronous,
no prescaler
TCY + 40 ns N = prescale
value
(1, 8, 64, 256)
Synchronous,
with prescaler
Greater of:
20 ns or
(TCY + 40)/N
TB20 TCKEXTMRL Delay from External TxCK Clock
Edge to Timer Increment
0.5 TCY 1.5 TCY
Note 1: These parameters are characterized, but are not tested in manufacturing.
TABLE 24-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ Max Units Conditions
TC10 TtxH TxCK High Time Synchronous 0.5 TCY + 20 ns Must also meet
parameter TC15
TC11 TtxL TxCK Low Time Synchronous 0.5 TCY + 20 ns Must also meet
parameter TC15
TC15 TtxP TxCK Input Period Synchronous,
no prescaler
TCY + 40 ns N = prescale
value
(1, 8, 64, 256)
Synchronous,
with prescaler
Greater of:
20 ns or
(TCY + 40)/N
TC20 TCKEXTMRL Delay from External TxCK Clock
Edge to Timer Increment
0.5 TCY —1.5
TCY
Note 1: These parameters are characterized, but are not tested in manufacturing.
dsPIC33FJ12MC201/202
DS70265D-page 238 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-6: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS
FIGURE 24-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS
TQ11
TQ15
TQ10
TQ20
QEB
POSCNT
TABLE 24-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ Max Units Conditions
TQ10 TtQH TQCK High Time Synchronous,
with prescaler
TCY + 20 ns Must also meet
parameter TQ15
TQ11 TtQL TQCK Low Time Synchronous,
with prescaler
TCY + 20 ns Must also meet
parameter TQ15
TQ15 TtQP TQCP Input
Period
Synchronous,
with prescaler
2 * TCY + 40 ns
TQ20 TCKEXTMRL Delay from External TxCK Clock
Edge to Timer Increment
0.5 TCY 1.5 TCY ——
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
ICx
IC10 IC11
IC15
Note: Refer to Figure 24-1 for load conditions.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 239
dsPIC33FJ12MC201/202
FIGURE 24-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS
FIGURE 24-9: OC/PWM MODULE TIMING CHARACTERISTICS
TABLE 24-26: INPUT CAPTURE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Max Units Conditions
IC10 TccL ICx Input Low Time No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
IC11 TccH ICx Input High Time No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
IC15 TccP ICx Input Period (TCY + 40)/N ns N = prescale
value (1, 4, 16)
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
OCx
OC11 OC10
(Output Compare
Note: Refer to Figure 24-1 for load conditions.
or PWM Mode)
TABLE 24-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ Max Units Conditions
OC10 TccF OCx Output Fall Time ns See parameter D032
OC11 TccR OCx Output Rise Time ns See parameter D031
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
OCFA
OCx
OC20
OC15
dsPIC33FJ12MC201/202
DS70265D-page 240 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-10: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS
FIGURE 24-11: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS
TABLE 24-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ Max Units Conditions
OC15 TFD Fault Input to PWM I/O
Change
50 ns
OC20 TFLT Fault Input Pulse Width 50 ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
FLTA
PWMx
MP30
MP20
PWMx
MP11 MP10
Note: Refer to Figure 24-1 for load conditions.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 241
dsPIC33FJ12MC201/202
FIGURE 24-12: QEA/QEB INPUT CHARACTERISTICS
TABLE 24-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ Max Units Conditions
MP10 TFPWM PWM Output Fall Time ns See parameter D032
MP11 TRPWM PWM Output Rise Time ns See parameter D031
MP20 TFD Fault Input to PWM
I/O Change
——50ns
MP30 TFH Minimum Pulse Width 50 ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
TQ30
TQ35
TQ31
QEA
(input)
TQ30
TQ35
TQ31
QEB
(input)
TQ36
QEB
Internal
TQ40TQ41
dsPIC33FJ12MC201/202
DS70265D-page 242 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS
TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic(1) Typ(2) Max Units Conditions
TQ30 TQUL Quadrature Input Low Time 6 TCY —ns
TQ31 TQUH Quadrature Input High Time 6 TCY —ns
TQ35 TQUIN Quadrature Input Period 12 TCY —ns
TQ36 TQUP Quadrature Phase Period 3 TCY —ns
TQ40 TQUFL Filter Time to Recognize Low,
with Digital Filter
3 * N * TCY ns N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 3)
TQ41 TQUFH Filter Time to Recognize High,
with Digital Filter
3 * N * TCY ns N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 3)
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. “Quadrature Encoder
Interface (QEI)” in the dsPIC33F Family Reference Manual. Please see the Microchip
(www.microchip.com) web site for the latest family reference manual chapters.
QEA
(input)
Ungated
Index
QEB
(input)
TQ55
Index Internal
Position Coun-
ter Reset
TQ50
TQ51
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 243
dsPIC33FJ12MC201/202
FIGURE 24-14: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS
TABLE 24-31: QEI INDEX PULSE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Max Units Conditions
TQ50 TqIL Filter Time to Recognize Low,
with Digital Filter
3 * N * TCY ns N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 2)
TQ51 TqiH Filter Time to Recognize High,
with Digital Filter
3 * N * TCY ns N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 2)
TQ55 Tqidxr Index Pulse Recognized to Position
Counter Reset (ungated index)
3 TCY —ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for
forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but
index pulse recognition occurs on falling edge.
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDIx
SP11 SP10
SP40 SP41
SP21
SP20
SP35
SP20
SP21
MSb LSb
Bit 14 - - - - - -1
MSb In LSb In
Bit 14 - - - -1
SP30
SP31
Note: Refer to Figure 24-1 for load conditions.
dsPIC33FJ12MC201/202
DS70265D-page 244 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-15: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS
TABLE 24-32: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions
SP10 TscL SCKx Output Low Time TCY/2 ns See Note 3
SP11 TscH SCKx Output High Time TCY/2 ns See Note 3
SP20 TscF SCKx Output Fall Time ns See parameter D032
and Note 4
SP21 TscR SCKx Output Rise Time ns See parameter D031
and Note 4
SP30 TdoF SDOx Data Output Fall Time ns See parameter D032
and Note 4
SP31 TdoR SDOx Data Output Rise Time ns See parameter D031
and Note 4
SP35 TscH2doV,
TscL2doV
SDOx Data Output Valid after
SCKx Edge
—620ns
SP40 TdiV2scH,
TdiV2scL
Setup Time of SDIx Data Input
to SCKx Edge
23 ns
SP41 TscH2diL,
TscL2diL
Hold Time of SDIx Data Input
to SCKx Edge
30 ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not
violate this specification.
4: Assumes 50 pF load on all SPIx pins.
SCKX
(CKP = 0)
SCKX
(CKP = 1)
SDOX
SDIX
SP36
SP30,SP31
SP35
MSb
MSb In
Bit 14 - - - - - -1
LSb In
Bit 14 - - - -1
LSb
Note: Refer to Figure 24-1 for load conditions.
SP11 SP10 SP20
SP21
SP21
SP20
SP40
SP41
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 245
dsPIC33FJ12MC201/202
TABLE 24-33: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions
SP10 TscL SCKx Output Low Time TCY/2 ns See Note 3
SP11 TscH SCKx Output High Time TCY/2 ns See Note 3
SP20 TscF SCKx Output Fall Time ns See parameter D032
and Note 4
SP21 TscR SCKx Output Rise Time ns See parameter D031
and Note 4
SP30 TdoF SDOx Data Output Fall Time ns See parameter D032
and Note 4
SP31 TdoR SDOx Data Output Rise Time ns See parameter D031
and Note 4
SP35 TscH2doV,
TscL2doV
SDOx Data Output Valid after
SCKx Edge
6 20 ns
SP36 TdoV2sc,
TdoV2scL
SDOx Data Output Setup to
First SCKx Edge
30 ns
SP40 TdiV2scH,
TdiV2scL
Setup Time of SDIx Data
Input to SCKx Edge
23 ns
SP41 TscH2diL,
TscL2diL
Hold Time of SDIx Data Input
to SCKx Edge
30 ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this
specification.
4: Assumes 50 pF load on all SPIx pins.
dsPIC33FJ12MC201/202
DS70265D-page 246 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-16: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS
SSX
SCKX
(CKP =
0
)
SCKX
(CKP =
1
)
SDOX
SP50
SP40
SP41
SP30,SP31 SP51
SP35
MSb LSb
Bit 14 - - - - - -1
MSb In Bit 14 - - - -1 LSb In
SP52
SP73
SP72
SP72
SP73
SP71 SP70
Note: Refer to Figure 24-1 for load conditions.
SDIX
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 247
dsPIC33FJ12MC201/202
TABLE 24-34: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions
SP70 TscL SCKx Input Low Time 30 ns
SP71 TscH SCKx Input High Time 30 ns
SP72 TscF SCKx Input Fall Time 10 25 ns See Note 3
SP73 TscR SCKx Input Rise Time 10 25 ns See Note 3
SP30 TdoF SDOx Data Output Fall Time ns See parameter D032
and Note 3
SP31 TdoR SDOx Data Output Rise Time ns See parameter D031
and Note 3
SP35 TscH2doV,
TscL2doV
SDOx Data Output Valid after
SCKx Edge
30 ns
SP40 TdiV2scH,
TdiV2scL
Setup Time of SDIx Data Input
to SCKx Edge
20 ns
SP41 TscH2diL,
TscL2diL
Hold Time of SDIx Data Input
to SCKx Edge
20 ns
SP50 TssL2scH,
TssL2scL
SSx to SCKx or SCKx Input 120 ns
SP51 TssH2doZ SSx to SDOx Output
High-Impedance(3)
10 50 ns
SP52 TscH2ssH
TscL2ssH
SSx after SCKx Edge 1.5 TCY +40 ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.
3: Assumes 50 pF load on all SPIx pins.
dsPIC33FJ12MC201/202
DS70265D-page 248 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-17: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS
SSx
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDI
SP50
SP60
SDIx
SP30,SP31
MSb Bit 14 - - - - - -1 LSb
SP51
MSb In Bit 14 - - - -1 LSb In
SP35
SP52
SP52
SP73
SP72
SP72
SP73
SP71 SP70
SP40
SP41
Note: Refer to Figure 24-1 for load conditions.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 249
dsPIC33FJ12MC201/202
FIGURE 24-18: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)
TABLE 24-35: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions
SP70 TscL SCKx Input Low Time 30 ns
SP71 TscH SCKx Input High Time 30 ns
SP72 TscF SCKx Input Fall Time 10 25 ns See Note 3
SP73 TscR SCKx Input Rise Time 10 25 ns See Note 3
SP30 TdoF SDOx Data Output Fall Time ns See parameter D032
and Note 3
SP31 TdoR SDOx Data Output Rise Time ns See parameter D031
and Note 3
SP35 TscH2doV,
TscL2doV
SDOx Data Output Valid after
SCKx Edge
30 ns
SP40 TdiV2scH,
TdiV2scL
Setup Time of SDIx Data Input
to SCKx Edge
20 ns
SP41 TscH2diL,
TscL2diL
Hold Time of SDIx Data Input
to SCKx Edge
20 ns
SP50 TssL2scH,
TssL2scL
SSx to SCKx or SCKx
Input
120 ns
SP51 TssH2doZ SSx to SDOX Output
High-Impedance
10 50 ns See Note 4
SP52 TscH2ssH
TscL2ssH
SSx after SCKx Edge 1.5 TCY + 40 ns
SP60 TssL2doV SDOx Data Output Valid after
SSx Edge
50 ns
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this
specification.
4: Assumes 50 pF load on all SPIx pins.
IM31 IM34
SCLx
SDAx
Start
Condition
Stop
Condition
IM30 IM33
Note: Refer to Figure 24-1 for load conditions.
dsPIC33FJ12MC201/202
DS70265D-page 250 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-19: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)
IM11 IM10 IM33
IM11
IM10
IM20
IM26 IM25
IM40 IM40 IM45
IM21
SCLx
SDAx
In
SDAx
Out
Note: Refer to Figure 24-1 for load conditions.
TABLE 24-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(3) Min(1) Max Units Conditions
IM10 TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1) μs—
400 kHz mode TCY/2 (BRG + 1) μs—
1 MHz mode(2) TCY/2 (BRG + 1) μs—
IM11 THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1) μs—
400 kHz mode TCY/2 (BRG + 1) μs—
1 MHz mode(2) TCY/2 (BRG + 1) μs—
IM20 TF:SCL SDAx and SCLx
Fall Time
100 kHz mode 300 ns CB is specified to be
from 10 to 400 pF
400 kHz mode 20 + 0.1 CB300 ns
1 MHz mode(2) 100 ns
IM21 TR:SCL SDAx and SCLx
Rise Time
100 kHz mode 1000 ns CB is specified to be
from 10 to 400 pF
400 kHz mode 20 + 0.1 CB300 ns
1 MHz mode(2) 300 ns
IM25 TSU:DAT Data Input
Setup Time
100 kHz mode 250 ns
400 kHz mode 100 ns
1 MHz mode(2) 40 — ns
IM26 THD:DAT Data Input
Hold Time
100 kHz mode 0 μs—
400 kHz mode 0 0.9 μs
1 MHz mode(2) 0.2 — μs
IM30 TSU:STA Start Condition
Setup Time
100 kHz mode TCY/2 (BRG + 1) μs Only relevant for
Repeated Start
condition
400 kHz mode TCY/2 (BRG + 1) μs
1 MHz mode(2) TCY/2 (BRG + 1) μs
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”
(DS70195) in the “dsPIC33F Family Reference Manual”. Please see the Microchip web site
(www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
3: These parameters are characterized by similarity, but are not tested in manufacturing.
4: Typical value for this parameter is 130 ns.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 251
dsPIC33FJ12MC201/202
FIGURE 24-20: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)
IM31 THD:STA Start Condition
Hold Time
100 kHz mode TCY/2 (BRG + 1) μs After this period the
first clock pulse is
generated
400 kHz mode TCY/2 (BRG + 1) μs
1 MHz mode(2) TCY/2 (BRG + 1) μs
IM33 TSU:STO Stop Condition
Setup Time
100 kHz mode TCY/2 (BRG + 1) μs—
400 kHz mode TCY/2 (BRG + 1) μs
1 MHz mode(2) TCY/2 (BRG + 1) μs
IM34 THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) ns
Hold Time 400 kHz mode TCY/2 (BRG + 1) ns
1 MHz mode(2) TCY/2 (BRG + 1) ns
IM40 TAA:SCL Output Valid
From Clock
100 kHz mode 3500 ns
400 kHz mode 1000 ns
1 MHz mode(2) 400 ns
IM45 TBF:SDA Bus Free Time 100 kHz mode 4.7 μs Time the bus must be
free before a new
transmission can start
400 kHz mode 1.3 μs
1 MHz mode(2) 0.5 μs
IM50 CBBus Capacitive Loading 400 pF
IM51 PGD Pulse Gubler Delay 65 390 ns See Note 4
TABLE 24-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic(3) Min(1) Max Units Conditions
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”
(DS70195) in the “dsPIC33F Family Reference Manual”. Please see the Microchip web site
(www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
3: These parameters are characterized by similarity, but are not tested in manufacturing.
4: Typical value for this parameter is 130 ns.
IS31 IS34
SCLx
SDAx
Start
Condition
Stop
Condition
IS30 IS33
dsPIC33FJ12MC201/202
DS70265D-page 252 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-21: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)
IS30 IS31 IS33
IS11
IS10
IS20
IS26 IS25
IS40 IS40 IS45
IS21
SCLx
SDAx
In
SDAx
Out
TABLE 24-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param. Symbol Characteristic(2) Min Max Units Conditions
IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 μs Device must operate at a
minimum of 1.5 MHz
400 kHz mode 1.3 μs Device must operate at a
minimum of 10 MHz
1 MHz mode(1) 0.5 μs—
IS11 THI:SCL Clock High Time 100 kHz mode 4.0 μs Device must operate at a
minimum of 1.5 MHz
400 kHz mode 0.6 μs Device must operate at a
minimum of 10 MHz
1 MHz mode(1) 0.5 μs—
IS20 TF:SCL SDAx and SCLx
Fall Time
100 kHz mode 300 ns CB is specified to be from
10 to 400 pF
400 kHz mode 20 + 0.1 CB300 ns
1 MHz mode(1) 100 ns
IS21 TR:SCL SDAx and SCLx
Rise Time
100 kHz mode 1000 ns CB is specified to be from
10 to 400 pF
400 kHz mode 20 + 0.1 CB300 ns
1 MHz mode(1) 300 ns
IS25 TSU:DAT Data Input
Setup Time
100 kHz mode 250 ns
400 kHz mode 100 ns
1 MHz mode(1) 100 ns
IS26 THD:DAT Data Input
Hold Time
100 kHz mode 0 μs—
400 kHz mode 0 0.9 μs
1 MHz mode(1) 00.3μs
IS30 TSU:STA Start Condition
Setup Time
100 kHz mode 4.7 μs Only relevant for Repeated
Start condition
400 kHz mode 0.6 μs
1 MHz mode(1) 0.25 μs
IS31 THD:STA Start Condition
Hold Time
100 kHz mode 4.0 μs After this period, the first
clock pulse is generated
400 kHz mode 0.6 μs
1 MHz mode(1) 0.25 μs
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
2: These parameters are characterized by similarity, but are not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 253
dsPIC33FJ12MC201/202
IS33 TSU:STO Stop Condition
Setup Time
100 kHz mode 4.7 μs—
400 kHz mode 0.6 μs
1 MHz mode(1) 0.6 μs
IS34 THD:ST
O
Stop Condition
Hold Time
100 kHz mode 4000 ns
400 kHz mode 600 ns
1 MHz mode(1) 250 ns
IS40 TAA:SCL Output Valid
From Clock
100 kHz mode 0 3500 ns
400 kHz mode 0 1000 ns
1 MHz mode(1) 0 350 ns
IS45 TBF:SDA Bus Free Time 100 kHz mode 4.7 μs Time the bus must be free
before a new transmission
can start
400 kHz mode 1.3 μs
1 MHz mode(1) 0.5 μs
IS50 CBBus Capacitive Loading 400 pF
TABLE 24-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param. Symbol Characteristic(2) Min Max Units Conditions
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
2: These parameters are characterized by similarity, but are not tested in manufacturing.
dsPIC33FJ12MC201/202
DS70265D-page 254 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-38: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min. Typ Max. Units Conditions
Device Supply
AD01 AVDD Module VDD Supply(2) Greater of
VDD – 0.3
or 3.0
Lesser of
VDD + 0.3
or 3.6
V
AD02 AVSS Module VSS Supply(2) VSS – 0.3 VSS + 0.3 V
Reference Inputs
AD05 VREFH Reference Voltage High AVSS + 2.7 AVDD VSee Note 1
AD05a 3.0 3.6 V VREFH = AVDD
VREFL = AVSS = 0, see Note 2
AD06 VREFL Reference Voltage Low AVSS —AVDD – 2.7 V See Note 1
AD06a 0 0 V VREFH = AVDD
VREFL = AVSS = 0, see Note 2
AD07 VREF Absolute Reference
Voltage(2)
2.7 3.6 V VREF = VREFH - VREFL
AD08 IREF Current Drain
250
550
10
μA
μA
ADC operating, See Note 1
ADC off, See Note 1
AD08a IAD Operating Current
7.0
2.7
9.0
3.2
mA
mA
10-bit ADC mode, See Note 2
12-bit ADC mode, See Note 2
Analog Input
AD12 VINH Input Voltage Range
VINH(2)
VINL —VREFH V This voltage reflects Sample
and Hold Channels 0, 1, 2,
and 3 (CH0-CH3), positive
input
AD13 VINL Input Voltage Range
VINL(2)
VREFL —AVSS + 1V V This voltage reflects Sample
and Hold Channels 0, 1, 2,
and 3 (CH0-CH3), negative
input
AD17 RIN Recommended Imped-
ance of Analog Voltage
Source(3)
200
200
Ω
Ω
10-bit ADC
12-bit ADC
Note 1: These parameters are not characterized or tested in manufacturing.
2: These parameters are characterized, but are not tested in manufacturing.
3: These parameters are assured by design, but are not characterized or tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 255
dsPIC33FJ12MC201/202
TABLE 24-39: ADC MODULE SPECIFICATIONS (12-BIT MODE)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic Min. Typ Max. Units Conditions
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(3)
AD20a Nr Resolution 12 data bits bits
AD21a INL Integral Nonlinearity -2 +2 LSb VINL = AVSS = VREFL = 0V, AVDD
= VREFH = 3.6V
AD22a DNL Differential Nonlinearity >-1 <1 LSb VINL = AVSS = VREFL = 0V, AVDD
= VREFH = 3.6V
AD23a GERR Gain Error 1.25 3.4 10 LSb VINL = AVSS = VREFL = 0V, AVDD
= VREFH = 3.6V
AD24a EOFF Offset Error -0.2 0.9 5 LSb VINL = AVSS = VREFL = 0V, AVDD
= VREFH = 3.6V
AD25a Monotonicity Guaranteed(1)
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(3)
AD20a Nr Resolution 12 data bits bits
AD21a INL Integral Nonlinearity -2 +2 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD22a DNL Differential Nonlinearity >-1 <1 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD23a GERR Gain Error 2 10.5 20 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD24a EOFF Offset Error 2 3.8 10 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD25a Monotonicity Guaranteed(1)
Dynamic Performance (12-bit Mode)(2)
AD30a THD Total Harmonic Distortion -75 dB
AD31a SINAD Signal to Noise and
Distortion
68.5 69.5 dB
AD32a SFDR Spurious Free Dynamic
Range
80 dB
AD33a FNYQ Input Signal Bandwidth 250 kHz
AD34a ENOB Effective Number of Bits 11.09 11.3 bits
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing
codes.
2: These parameters are characterized by similarity, but are not tested in manufacturing.
3: These parameters are characterized, but are tested at 20 ksps only.
dsPIC33FJ12MC201/202
DS70265D-page 256 Preliminary © 2009 Microchip Technology Inc.
TABLE 24-40: ADC MODULE SPECIFICATIONS (10-BIT MODE)
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic Min. Typ Max. Units Conditions
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-(3)
AD20b Nr Resolution 10 data bits bits
AD21b INL Integral Nonlinearity -1.5 +1.5 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V
AD22b DNL Differential Nonlinearity >-1 <1 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V
AD23b GERR Gain Error 0.4 3 6 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V
AD24b EOFF Offset Error 0.2 2 5 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V
AD25b Monotonicity Guaranteed(1)
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-(3)
AD20b Nr Resolution 10 data bits bits
AD21b INL Integral Nonlinearity -1 +1 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD22b DNL Differential Nonlinearity >-1 <1 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD23b GERR Gain Error 3 7 15 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD24b EOFF Offset Error 1.5 3 7 LSb VINL = AVSS = 0V, AVDD = 3.6V
AD25b Monotonicity Guaranteed(1)
Dynamic Performance (10-bit Mode)(2)
AD30b THD Total Harmonic Distortion -64 dB
AD31b SINAD Signal to Noise and
Distortion
57 58.5 dB
AD32b SFDR Spurious Free Dynamic
Range
72 dB
AD33b FNYQ Input Signal Bandwidth 550 kHz
AD34b ENOB Effective Number of Bits 9.16 9.4 bits
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing
codes.
2: These parameters are characterized by similarity, but are not tested in manufacturing.
3: These parameters are characterized, but are tested at 20 ksps only.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 257
dsPIC33FJ12MC201/202
FIGURE 24-22: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS
(ASAM = 0, SSRC<2:0> = 000)
TABLE 24-41: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min. Typ(2) Max. Units Conditions
Clock Parameters(1)
AD50 TAD ADC Clock Period 117.6 ns
AD51 tRC ADC Internal RC Oscillator
Period
250 ns
Conversion Rate
AD55 tCONV Conversion Time 14 TAD ns
AD56 FCNV Throughput Rate 500 Ksps
AD57 TSAMP Sample Time 3.0 TAD ——
Timing Parameters
AD60 tPCS Conversion Start from Sample
Trigger(2)
2.0 TAD 3.0 TAD Auto-convert trigger not
selected
AD61 tPSS Sample Start from Setting
Sample (SAMP) bit(2)
2.0 TAD 3.0 TAD ——
AD62 tCSS Conversion Completion to
Sample Start (ASAM = 1)(2)
0.5 TAD ——
AD63 tDPU Time to Stabilize Analog Stage
from ADC Off to ADC On(2)
——20μs—
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity
performance, especially at elevated temperatures.
2: These parameters are characterized but not tested in manufacturing.
AD55
TSAMP
Clear SAMPSet SAMP
AD61
ADCLK
Instruction
SAMP
AD60
DONE
ADxIF
1 2 3 4 5 6 87
1– Software sets ADxCON. SAMP to start sampling.
2– Sampling starts after discharge period. TSAMP is described in
3– Software clears ADxCON. SAMP to start conversion.
4– Sampling ends, conversion sequence starts.
5– Convert bit 11.
9– One TAD for end of conversion.
AD50
9
6– Convert bit 10.
7– Convert bit 1.
8– Convert bit 0.
Execution
Reference Manual”. Please see the Microchip web site
manual sections.
Section 28. “10/12-bit ADC without DMA” in the “dsPIC33F Family
(www.microchip.com) for the latest family reference
dsPIC33FJ12MC201/202
DS70265D-page 258 Preliminary © 2009 Microchip Technology Inc.
FIGURE 24-23: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)
FIGURE 24-24: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)
AD55
TSAMP
Clear SAMPSet SAMP
AD61
ADCLK
Instruction
SAMP
AD60
DONE
ADxIF
1 2 3 4 5 6 8 5 6 7
1– Software sets ADxCON. SAMP to start sampling.
2– Sampling starts after discharge period. TSAMP is described in Section 28. “10/12-bit ADC without DMA”
3– Software clears ADxCON. SAMP to start conversion.
4– Sampling ends, conversion sequence starts.
5– Convert bit 9.
8– One TAD for end of conversion.
AD50
7
AD55
8
6– Convert bit 8.
7– Convert bit 0.
Execution
in the dsPIC33F Family Reference Manual.
1 2 3 4 5 6 4 5 6 8
1– Software sets ADxCON. ADON to start AD operation.
2– Sampling starts after discharge period. TSAMP is described in
3– Convert bit 9.
4– Convert bit 8.
5– Convert bit 0.
7 3
6– One TAD for end of conversion.
7– Begin conversion of next channel.
8– Sample for time specified by SAMC<4:0>.
ADCLK
Instruction Set ADON
Execution
SAMP
TSAMP
ADxIF
DONE
AD55 AD55 TSAMP AD55
AD50
Section 28. “10/12-bit ADC without DMA” in the dsPIC33F Family
Reference Manual.
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 259
dsPIC33FJ12MC201/202
TABLE 24-42: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min. Typ(1) Max. Units Conditions
Clock Parameters(2)
AD50 TAD ADC Clock Period 76 ns
AD51 tRC ADC Internal RC Oscillator Period 250 ns
Conversion Rate
AD55 tCONV Conversion Time 12 TAD ——
AD56 FCNV Throughput Rate 1.1 Msps
AD57 TSAMP Sample Time 2.0 TAD ——
Timing Parameters
AD60 tPCS Conversion Start from Sample
Trigger(1)
2.0 TAD 3.0 TAD Auto-Convert Trigger
(SSRC<2:0> = 111) not
selected
AD61 tPSS Sample Start from Setting
Sample (SAMP) bit(1)
2.0 TAD 3.0 TAD ——
AD62 tCSS Conversion Completion to
Sample Start (ASAM = 1)(1)
0.5 TAD ——
AD63 tDPU Time to Stabilize Analog Stage
from ADC Off to ADC On(1)
——20μs—
Note 1: These parameters are characterized but not tested in manufacturing.
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity
performance, especially at elevated temperatures.
dsPIC33FJ12MC201/202
DS70265D-page 260 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 261
dsPIC33FJ12MC201/202
25.0 PACKAGING INFORMATION
25.1 Package Marking Information
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next
line, thus limiting the number of available characters for customer-specific information.
3
e
3
e
20-Lead PDIP
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
YYWWNNN
Example
dsPIC33FJ12MC
0730235
20-Lead SSOP
XXXXXXXXXXX
XXXXXXXXXXX
YYWWNNN
Example
dsPIC33FJ12
MC201-ISS
0730235
28-Lead SPDIP
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
YYWWNNN
Example
dsPIC33FJ12MC
0730235
28-Lead SOIC (.300”)
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
YYWWNNN
Example
dsPIC33FJ12MC
0730235
201-E/P
202-E/SP
202-E/SO
3
e
3
e
3
e
3
e
20-Lead SOIC (.300”)
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
YYWWNNN
Example
dsPIC33FJ12
MC201-ISO
0610017
3
e
dsPIC33FJ12MC201/202
DS70265D-page 262 Preliminary © 2009 Microchip Technology Inc.
25.1 Package Marking Information (Continued)
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next
line, thus limiting the number of available characters for customer-specific information.
3
e
3
e
28-Lead QFN
XXXXXXXX
XXXXXXXX
YYWWNNN
Example
33FJJ12MC
202EML
0730235
3
e
28-Lead SSOP
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
Example
33FJ12MC
202-E/SS
0730235
3
e
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 263
dsPIC33FJ12MC201/202
25.2 Package Details
20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units INCHES
Dimension Limits MIN NOM MAX
Number of Pins N 20
Pitch e .100 BSC
Top to Seating Plane A .210
Molded Package Thickness A2 .115 .130 .195
Base to Seating Plane A1 .015
Shoulder to Shoulder Width E .300 .310 .325
Molded Package Width E1 .240 .250 .280
Overall Length D .980 1.030 1.060
Tip to Seating Plane L .115 .130 .150
Lead Thickness c .008 .010 .015
Upper Lead Width b1 .045 .060 .070
Lower Lead Width b .014 .018 .022
Overall Row Spacing § eB .430
N
E1
NOTE 1
D
123
A
A1
A2
L
e
b1
b
E
c
eB
Microchip Technology Drawing C04-019B
dsPIC33FJ12MC201/202
DS70265D-page 264 Preliminary © 2009 Microchip Technology Inc.
20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units MILLIMETERS
Dimension Limits MIN NOM MAX
Number of Pins N 20
Pitch e 0.65 BSC
Overall Height A 2.00
Molded Package Thickness A2 1.65 1.75 1.85
Standoff A1 0.05
Overall Width E 7.40 7.80 8.20
Molded Package Width E1 5.00 5.30 5.60
Overall Length D 6.90 7.20 7.50
Foot Length L 0.55 0.75 0.95
Footprint L1 1.25 REF
Lead Thickness c 0.09 0.25
Foot Angle φ
Lead Width b 0.22 0.38
φ
L
L1
A2
c
e
b
A1
A
12
NOTE 1
E1
E
D
N
Microchip Technology Drawing C04-072B
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 265
dsPIC33FJ12MC201/202
  !"#
$%
  !"#$%&"' ()"&'"!&)&#*&&&#
 +%&,&!&
- '!!#.#&"#'#%!&"!!#%!&"!!!&$#/''!#
 '!#&.0/
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
$% 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 77..
'!7'&! 8 89 :
8"')%! 8 
& 1,
9 ;& < < =/
##44!!  / < <
&#%%+  < -
9 >#& . -1,
##4>#& . /1,
9 7& 1,
,'%?&@ / < /
3&7& 7  < 
3&& 7 .3
3& A < A
7#4!!  < --
7#>#& ) - < /
#%& /A < /A
#%&1&&' /A < /A
β
D
E
E1
e
b
123
NOTE 1
A
A1
A2
h
h
c
L1
L
φ
α
N
  * ,1
dsPIC33FJ12MC201/202
DS70265D-page 266 Preliminary © 2009 Microchip Technology Inc.
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units INCHES
Dimension Limits MIN NOM MAX
Number of Pins N 28
Pitch e .100 BSC
Top to Seating Plane A .200
Molded Package Thickness A2 .120 .135 .150
Base to Seating Plane A1 .015
Shoulder to Shoulder Width E .290 .310 .335
Molded Package Width E1 .240 .285 .295
Overall Length D 1.345 1.365 1.400
Tip to Seating Plane L .110 .130 .150
Lead Thickness c .008 .010 .015
Upper Lead Width b1 .040 .050 .070
Lower Lead Width b .014 .018 .022
Overall Row Spacing § eB .430
NOTE 1
N
12
D
E1
eB
c
E
L
A2
eb
b1
A1
A
3
Microchip Technology Drawing C04-070B
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 267
dsPIC33FJ12MC201/202
&'()* #
$%
  !"#$%&"' ()"&'"!&)&#*&&&#
 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
- '!#&.0/
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
$% 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 77..
'!7'&! 8 89 :
8"')%! 8 
& =/1,
9 ;& < < 
##44!!  =/ / /
&#%% / < <
9 >#& .   
##4>#& . / /- /=
9 7&   /
3&7& 7 // / /
3&& 7 /.3
7#4!!  < /
3& A A A
7#>#& )  < -
L
L1
c
A2
A1
A
E
E1
D
N
12
NOTE 1 b
e
φ
  * ,-1
dsPIC33FJ12MC201/202
DS70265D-page 268 Preliminary © 2009 Microchip Technology Inc.
28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units MILLMETERS
Dimension Limits MIN NOM MAX
Number of Pins N 28
Pitch e 1.27 BSC
Overall Height A 2.65
Molded Package Thickness A2 2.05
Standoff § A1 0.10 0.30
Overall Width E 10.30 BSC
Molded Package Width E1 7.50 BSC
Overall Length D 17.90 BSC
Chamfer (optional) h 0.25 0.75
Foot Length L 0.40 1.27
Footprint L1 1.40 REF
Foot Angle Top φ
Lead Thickness c 0.18 0.33
Lead Width b 0.31 0.51
Mold Draft Angle Top α 15°
Mold Draft Angle Bottom β 15°
c
h
h
L
L1
A2
A1
A
NOTE 1
123
b
e
E
E1
D
φ
β
α
N
Microchip Technology Drawing C04-052B
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 269
dsPIC33FJ12MC201/202
28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN]
with 0.55 mm Contact Length
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units MILLIMETERS
Dimension Limits MIN NOM MAX
Number of Pins N 28
Pitch e 0.65 BSC
Overall Height A 0.80 0.90 1.00
Standoff A1 0.00 0.02 0.05
Contact Thickness A3 0.20 REF
Overall Width E 6.00 BSC
Exposed Pad Width E2 3.65 3.70 4.20
Overall Length D 6.00 BSC
Exposed Pad Length D2 3.65 3.70 4.20
Contact Width b 0.23 0.30 0.35
Contact Length L 0.50 0.55 0.70
Contact-to-Exposed Pad K 0.20
DEXPOSED D2
e
b
K
E2
E
L
N
NOTE 1
1
2
2
1
N
A
A1
A3
TOP VIEW BOTTOM VIEW
PAD
Microchip Technology Drawing C04-105B
dsPIC33FJ12MC201/202
DS70265D-page 270 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 271
dsPIC33FJ12MC201/202
APPENDIX A: REVISION HISTORY
Revision A (January 2007)
Initial release of this document.
Revision B (May 2007)
This revision includes the following corrections and
updates:
Minor typographical and formatting corrections
throughout the data sheet text.
New content:
- Addition of bullet item (16-word conversion
result buffer) (see Section 19.1 “Key
Features”)
Figure update:
- Oscillator System Diagram (see Figure 7-1)
- WDT Block Diagram (see Figure 20-2)
Equation update:
- Serial Clock Rate (see Equation 17-1)
Register updates:
- Clock Divisor Register (see Register 7-2)
- PLL Feedback Divisor Register (see
Register 7-3)
- Peripheral Pin Select Input Registers (see
Register 9-1 through Register 9-13)
- Note 2 in PWM Control Register 1 (see
Register 14-5)
- ADC1 Input Channel 1, 2, 3 Select Register
(see Register 19-4)
- ADC1 Input Channel 0 Select Register (see
Register 19-5)
Table updates:
- AD1CON3 (see Table 3-15 and Table 3-16)
- RPINR15 (see Table 3-17)
- TRISA (see Table 3-20)
- TRISB (see Table 3-22)
- Reset Flag Bit Operation (see Table 5-1)
- Configuration Bit Values for Clock Operation
(see Table 7-1)
Operation value update:
- IOLOCK set/clear operation (see
Section 9.4.3.1 “Control Register Lock”)
The following tables in Section 23.0 “Electrical
Characteristics” have been updated with prelim-
inary values:
- Updated Max MIPS for -40°C to +125°C
Temp Range (see Table 23-1)
- Updated parameter DC18 (see Table 23-4)
- Added new parameters for +125°C, and
updated Typical and Max values for most
parameters (see Table 23-5)
- Added new parameters for +125°C, and
updated Typical and Max values for most
parameters (see Table 23-6)
- Added new parameters for +125°C, and
updated Typical and Max values for most
parameters (see Table 23-7)
- Added new parameters for +125°C, and
updated Typical and Max values for most
parameters (see Table 23-8)
- Updated parameter DI51, added parameters
DI51a, DI51b, and DI51c (see Table 23-9)
- Added Note 1 (see Table 23-11)
- Updated parameter OS30 (see Table 23-16)
- Updated parameter OS52 (see Table 23-17)
- Updated parameter F20, added Note 2 (see
Table 23-18)
- Updated parameter F21 (see Table 23-19)
- Updated parameter TA15 (see Table 23-22)
- Updated parameter TB15 (see Table 23-23)
- Updated parameter TC15 (see Table 23-24)
- Updated parameter IC15 (see Table 23-26)
- Updated parameters AD05, AD06, AD07,
AD08, AD10, and AD11; added parameters
AD05a and AD06a; added Note 2; modified
ADC Accuracy headings to include
measurement information (see Table 23-38)
- Separated the ADC Module Specifications
table into three tables (see Table 23-38,
Table 23-39, and Table 23-40)
- Updated parameter AD50 (see Table 23-41)
- Updated parameters AD50 and AD57 (see
Table 23-42)
dsPIC33FJ12MC201/202
DS70265D-page 272 Preliminary © 2009 Microchip Technology Inc.
Revision C (June 2008)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
The major changes are referenced by their respective
section in the following table.
TABLE 25-1: MAJOR SECTION UPDATES
Section Name Update Description
“High-Performance, 16-bit
Digital Signal Controllers”
Added SSOP to list of available 28-pin packages (see “Packaging:” and
Tab le 1 ) .
Added External Interrupts column to Remappable Peripherals in the Controller
Families table and Note 2 (see Table 1).
Added Note 1 to all pin diagrams, which references RPn pin usage by
remappable peripherals (see “Pin Diagrams”).
Section 1.0 “Device Overview” Changed Capture Input pin names from IC0-IC1 to IC1-IC2 and updated
description for AVDD (see Table 1-1).
Section 3.0 “Memory
Organization
Added SFR definitions (ACCAL, ACCAH, ACCAU, ACCBL, ACCBH, and
ACCBU) to the CPU Core Register Map (see Table 3-1).
Updated Reset values for the following SFRs: IPC0, IPC2-IPC7, IPC16, and
INTTREG (see Table 3-4).
Updated all SFR names in QEI1 Register Map (see Table 3-11).
The following changes were made to the ADC1 Register Maps:
Updated the bit range for AD1CON3 from ADCS<5:0> to ADCS<7:0>)
(see Table 3-15 and Table 3-16).
Added Bit 6 (PCFG7) and Bit 7 (PCFG6) names to AD1PCFGL (Table 3-15).
Added Bit 6 (CSS7) and Bit 7 (CSS6) names to AD1CSSL (see Table 3-15).
Changed Bit 5 and Bit 4 in AD1CSSL to unimplemented (see Table 3-15).
Updated the Reset value for CLKDIV in the System Control Register Map
(see Table 3-23).
Section 4.0 “Flash Program
Memory”
Updated Section 4.3 “Programming Operations” with programming time
formula.
Section 5.0 “Resets” Entire section was replaced to maintain consistency with other dsPIC33F data
sheets.
Section 7.0 “Oscillator
Configuration”
Removed the first sentence of the third clock source item (External Clock) in
Section 7.1.1 “System Clock sources”
Updated the default bit values for DOZE and FRCDIV in the Clock Divisor
Register (see Register 7-2).
Added the center frequency in the OSCTUN register for the FRC Tuning bits
(TUN<5:0>) value 011111 and updated the center frequency for bits value
011110 (see Register 7-4)
Section 8.0 “Power-Saving
Features”
Added the following three registers:
PMD1: Peripheral Module Disable Control Register 1
PMD2: Peripheral Module Disable Control Register 2
PMD3: Peripheral Module Disable Control Register 3
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 273
dsPIC33FJ12MC201/202
Section 9.0 “I/O Ports” Added paragraph and Table 9-1 to Section 9.1.1 “Open-Drain Configuration”,
which provides details on I/O pins and their functionality.
Removed the following sections, which are now available in the related section
of the dsPIC33F Family Reference Manual:
9.4.2 “Available Peripherals”
9.4.3.3 “Mapping”
9.4.5 “Considerations for Peripheral Pin Selection”
Section 13.0 “Output Compare” Replaced sections 13.1, 13.2, and 13.3 and related figures and tables with
entirely new content.
Section 14.0 “Motor Control
PWM Module”
Removed the following sections, which are now available in the related section
of the dsPIC33F Family Reference Manual:
14.3 “PWM Time Base
14.4 “PWM Period”
14.5 “Edge-Aligned PWM”
14.6 “Center-Aligned PWM”
14.7 “PWM Duty Cycle Comparison Units”
14.8 “Complementary PWM Operation”
14.9 “Dead-Time Generators”
14.10 “Independent PWM Output”
14.11 “Single Pulse PWM Operation”
14.12 “PWM Output Override”
14.13 “PWM Output and Polarity Control
14.14 “PWM Fault Pins”
14.15 “PWM Update Lockout”
14.16 “PWM Special Event Trigger”
14.17 “PWM Operation During CPU Sleep Mode”
14.18 “PWM Operation During CPU Idle Mode
Section 15.0 “Quadrature
Encoder Interface (QEI) Module”
Removed the following sections, which are now available in the related section
of the dsPIC33F Family Reference Manual:
15.1 “Quadrature Encoder Interface Logic”
15.2 “16-bit Up/Down Position Counter Mode
15.3 “Position Measurement Mode”
15.4 “Programmable Digital Noise Filters”
15.5 “Alternate 16-bit Timer/Counter”
15.6 QEI Module Operation During CPU Sleep Mode”
15.7 “QEI Module Operation During CPU Idle Mode”
15.8 “Quadrature Encoder Interface Interrupts”
Section 16.0 “Serial Peripheral
Interface (SPI)”
Removed the following sections, which are now available in the related section
of the dsPIC33F Family Reference Manual:
16.1 “Interrupts”
16.2 “Receive Operations”
16.3 “Transmit Operations”
16.4 “SPI Setup: Master Mode”
16.5 “SPI Setup: Slave Mode” (retained Figure 16-1: SPI Module Block
Diagram)
TABLE 25-1: MAJOR SECTION UPDATES
Section Name Update Description
dsPIC33FJ12MC201/202
DS70265D-page 274 Preliminary © 2009 Microchip Technology Inc.
Section 17.0 “Inter-Integrated
Circuit™ (I2C™)”
Removed the following sections, which are now available in the related section
of the dsPIC33F Family Reference Manual:
17.3 “I2C Interrupts”
17.4 “Baud Rate Generator” (retained Figure 17-1: I2C Block Diagram)
17.5 “I2C Module Addresses
17.6 “Slave Address Masking”
17.7 “IPMI Support”
17.8 “General Call Address Support”
17.9 “Automatic Clock Stretch”
17.10 “Software Controlled Clock Stretching (STREN = 1)”
17.11 “Slope Control”
17.12 “Clock Arbitration”
17.13 “Multi-Master Communication, Bus Collision, and Bus Arbitration
17.14 “Peripheral Pin Select Limitations
Section 18.0 “Universal
Asynchronous Receiver
Transmitter (UART)”
Removed the following sections, which are now available in the related section
of the dsPIC33F Family Reference Manual:
18.1 “UART Baud Rate Generator”
18.2 “Transmitting in 8-bit Data Mode
18.3 “Transmitting in 9-bit Data Mode
18.4 “Break and Sync Transmit Sequence”
18.5 “Receiving in 8-bit or 9-bit Data Mode”
18.6 “Flow Control Using UxCTS and UxRTS Pins”
18.7 “Infrared Support”
Removed IrDA references and Note 1, and updated the bit and bit value
descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control
Register (see Register 18-2).
TABLE 25-1: MAJOR SECTION UPDATES
Section Name Update Description
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 275
dsPIC33FJ12MC201/202
Section 19.0 “10-bit/12-bit
Analog-to-Digital Converter
(ADC)”
Updated ADC Conversion Clock Select bits in the AD1CON3 register from
ADCS<5:0> to ADCS<7:0>. Any references to these bits have also been
updated throughout this data sheet (Register 19-3).
Replaced Figure 19-1 (ADC1 Module Block Diagram for dsPIC33FJ12MC201)
and added Figure 19-2 (ADC1 Block Diagram for dsPIC33FJ12MC202).
Removed Equation 19-1: ADC Conversion Clock Period and Figure 19-2: ADC
Transfer Function (10-Bit Example).
Added Note 2 to Figure 19-2: ADC Conversion Clock Period Block Diagram.
Updated ADC1 Input Channel 1, 2, 3 Select Register (see Register 19-4) as
follows:
Changed bit 10-9 (CH123NB - dsPIC33FJ12MC201 devices only)
description for bit value of 10 (if AD12B = 0).
Updated bit 8 (CH123SB) to reflect device-specific information.
Updated bit 0 (CH123SA) to reflect device-specific information.
Changed bit 2-1 (CH123NA - dsPIC33FJ12MC201 devices only)
description for bit value of 10 (if AD12B = 0).
Updated ADC1 Input Channel 0 Select Register (see Register 19-5) as follows:
Changed bit value descriptions for bits 12-8
Changed bit value descriptions for bits 4-0 (dsPIC33FJ12MC201 devices)
Modified Notes 1 and 2 in the ADC1 Input Scan Select Register Low (see
Register 19-6)
Modified Notes 1 and 2 in the ADC1 Port Configuration Register Low (see
Register 19-7)
Section 20.0 “Special Features” Added FICD register information for address 0xF8000E in the Device
Configuration Register Map (see Table 20-1).
Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the
dsPIC33FJ12MC201/202 Configuration Bits Description (see Table 20-2).
Added a note regarding the placement of low-ESR capacitors, after the second
paragraph of Section 20.2 “On-Chip Voltage Regulator” and to Figure 20-2.
Removed the words “if enabled” from the second sentence in the fifth paragraph
of Section 20.3 “BOR: Brown-Out Reset”
TABLE 25-1: MAJOR SECTION UPDATES
Section Name Update Description
dsPIC33FJ12MC201/202
DS70265D-page 276 Preliminary © 2009 Microchip Technology Inc.
Section 23.0 “Electrical
Characteristics”
Updated Max MIPS value for -40ºC to +125ºC temperature range in Operating
MIPS vs. Voltage (see Table 23-1).
Added 20-pin SOIC and 28-pin SSOP package information to Thermal
Packaging Characteristics and updated Typical values for all devices
(see Table 23-3).
Removed Typ value for parameter DC12 (see Table 23-4).
Updated Note 2 in Table 23-7: DC Characteristics: Power-Down Current (IPD).
Updated MIPS conditions for parameters DC24c, DC44c, DC72a, DC72f, and
DC72g (see Table 23-5, Table 23-6, and Table 23-8).
Added Note 4 (reference to new table containing digital-only and analog pin
information to I/O Pin Input Specifications (see Table 23-9).
Updated Program Memory parameters (D136a, D136b, D137a, D137b, D138a,
and D138b) and added Note 2 (see Table 23-12).
Updated Max value for Internal RC Accuracy parameter F21 for -40°C TA
+125°C condition and added Note 2 (see Table 23-19).
Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and
Power-up Timer parameter SY20 and updated conditions, which now refers to
Section 20.4 “Watchdog Timer (WDT)” and LPRC parameter F21
(Table 23-21).
Updated Min value for Input Capture Timing Requirements parameter IC15
(see Table 23-26).
The following changes were made to the ADC Module Specifications
(Table 23-38):
Updated Min value for ADC Module Specification parameter AD07.
Updated Typ value for parameter AD08
Added references to Note 1 for parameters AD12 and AD13
Removed Note 2.
The following changes were made to the ADC Module Specifications (12-bit
Mode) (Table 23-39):
Updated Min and Max values for both AD21a parameters (measurements
with internal and external VREF+/VREF-).
Updated Min, Typ, and Max values for parameter AD24a.
Updated Max value for parameter AD32a.
Removed Note 1.
Removed VREFL from Conditions for parameters AD21a, AD22a, AD23a,
and AD24a (measurements with internal VREF+/VREF-).
The following changes were made to the ADC Module Specifications (10-bit
Mode) (Table 23-40):
Updated Min and Max values for parameter AD21b (measurements with
external VREF+/VREF-).
Removed ± symbol from Min, Typ, and Max values for parameters AD23b
and AD24b (measurements with internal VREF+/VREF-).
Updated Typ and Max values for parameter AD32b.
Removed Note 1.
Removed VREFL from Conditions for parameters AD21a, AD22a, AD23a,
and AD24a (measurements with internal VREF+/VREF-).
Updated Min and Typ values for parameters AD60, AD61, AD62, and AD63 and
removed Note 3 (see Table 23-41 and Table 23-42).
TABLE 25-1: MAJOR SECTION UPDATES
Section Name Update Description
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 277
dsPIC33FJ12MC201/202
Revision D (June 2009)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
Global changes include:
Changed all instances of OSCI to OSC1 and
OSCO to OSC2
Changed all instances of PGCx/EMUCx and
PGDx/EMUDx (where x = 1, 2, or 3) to PGECx
and PGEDx
Changed all instances of VDDCORE and VDDCORE/VCAP
to VCAP/VDDCORE
All other major changes are referenced by their
respective section in the following table.
Section 24.0 “Packaging
Information”
Added 28-lead SSOP package marking information.
“Product Identification System” Added Plastic Shrink Small Outline (SSOP) package information.
TABLE 25-1: MAJOR SECTION UPDATES
Section Name Update Description
TABLE 25-2: MAJOR SECTION UPDATES
Section Name Update Description
“High-Performance, 16-bit Digital Signal
Controllers”
Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams,
which references pin connections to VSS.
Section 2.0 “Guidelines for Getting
Started with 16-bit Digital Signal
Controllers”
Added new section to the data sheet that provides guidelines on getting
started with 16-bit Digital Signal Controllers.
Section 8.0 “Oscillator Configuration” Updated the Oscillator System Diagram (see Figure 8-1).
Added Note 1 to the Oscillator Tuning (OSCTUN) register (see
Register 8-4).
Section 10.0 “I/O Ports” Removed Table 10-1 and added reference to pin diagrams for I/O pin
availability and functionality.
Section 17.0 “Serial Peripheral Interface
(SPI)”
Added Note 2 to the SPIx Control Register 1 (see Register 17-2).
Section 19.0 “Universal Asynchronous
Receiver Transmitter (UART)”
Updated the UTXINV bit settings in the UxSTA register and added Note
1 (see Register 19-2).
Section 24.0 “Electrical Characteristics” Updated the Min value for parameter DC12 (RAM Retention Voltage)
and added Note 4 to the DC Temperature and Voltage Specifications
(see Table 24-4).
Updated the Min value for parameter DI35 (see Table 24-20).
Updated AD08 and added reference to Note 2 for parameters AD05a,
AD06a, and AD08a (see Table 24-38).
dsPIC33FJ12MC201/202
DS70265D-page 278 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 279
dsPIC33FJ12MC201/202
INDEX
A
AC Characteristics ............................................................ 230
Internal RC Accuracy ................................................ 232
Load Conditions ........................................................ 230
ADC
Initialization ............................................................... 187
Key Features............................................................. 187
ADC Module
ADC1 Register Map .................................................... 40
ADC11 Register Map .................................................. 39
Alternate Vector Table (AIVT)............................................. 67
Analog-to-Digital Converter (ADC).................................... 187
Arithmetic Logic Unit (ALU)................................................. 22
Assembler
MPASM Assembler................................................... 218
B
Barrel Shifter ....................................................................... 26
Bit-Reversed Addressing .................................................... 47
Example ...................................................................... 48
Implementation ........................................................... 47
Sequence Table (16-Entry)......................................... 48
Block Diagrams
16-bit Timer1 Module ................................................ 135
Connections for On-Chip Voltage Regulator............. 205
Device Clock ....................................................... 99, 101
DSP Engine ................................................................ 23
dsPIC33FJ12MC201/202.............................................. 8
dsPIC33FJ12MC201/202 CPU Core .......................... 16
Input Capture ............................................................ 143
Output Compare ....................................................... 145
PLL............................................................................ 101
PWM Module .................................................... 150, 151
Quadrature Encoder Interface .................................. 163
Reset System.............................................................. 59
Shared Port Structure ............................................... 113
SPI ............................................................................ 167
Timer2 (16-bit) .......................................................... 139
Timer2/3 (32-bit) ....................................................... 138
UART ........................................................................ 181
Watchdog Timer (WDT) ............................................ 206
C
C Compilers
MPLAB C18 .............................................................. 218
MPLAB C30 .............................................................. 218
Clock Switching................................................................. 106
Enabling .................................................................... 106
Sequence.................................................................. 106
Code Examples
Erasing a Program Memory Page............................... 57
Initiating a Programming Sequence............................ 58
Loading Write Buffers ................................................. 58
Port Write/Read ........................................................ 114
PWRSAV Instruction Syntax..................................... 107
Code Protection ........................................................ 201, 207
Configuration Bits.............................................................. 201
Configuration Register Map .............................................. 201
Configuring Analog Port Pins............................................ 114
CPU
Control Register .......................................................... 18
CPU Clocking System ...................................................... 100
PLL Configuration..................................................... 100
Selection................................................................... 100
Sources .................................................................... 100
Customer Change Notification Service............................. 285
Customer Notification Service .......................................... 285
Customer Support............................................................. 285
D
Data Accumulators and Adder/Subtracter .......................... 24
Data Space Write Saturation ...................................... 26
Overflow and Saturation ............................................. 24
Round Logic ............................................................... 25
Write Back .................................................................. 25
Data Address Space........................................................... 29
Alignment.................................................................... 29
Memory Map for dsPIC33FJ12MC201/202 Devices
with 1 KB RAM ................................................... 30
Near Data Space ........................................................ 29
Software Stack ........................................................... 44
Width .......................................................................... 29
DC Characteristics............................................................ 222
I/O Pin Input Specifications ...................................... 227
I/O Pin Output Specifications.................................... 228
Idle Current (IDOZE) .................................................. 226
Idle Current (IIDLE) .................................................... 225
Operating Current (IDD) ............................................ 224
Power-Down Current (IPD)........................................ 226
Program Memory...................................................... 229
Temperature and Voltage Specifications.................. 223
Development Support....................................................... 217
Doze Mode ....................................................................... 108
DSP Engine ........................................................................ 22
Multiplier ..................................................................... 24
E
Electrical Characteristics .................................................. 221
AC............................................................................. 230
Equations
Device Operating Frequency.................................... 100
Errata.................................................................................... 6
F
Flash Program Memory ...................................................... 53
Control Registers........................................................ 54
Operations .................................................................. 54
Programming Algorithm.............................................. 57
RTSP Operation ......................................................... 54
Table Instructions ....................................................... 53
Flexible Configuration ....................................................... 201
I
I/O Ports ........................................................................... 113
Parallel I/O (PIO) ...................................................... 113
Write/Read Timing.................................................... 114
I2C
Addresses................................................................. 174
Operating Modes ...................................................... 173
Registers .................................................................. 173
I2C Module
I2C1 Register Map...................................................... 37
In-Circuit Debugger........................................................... 207
d sP IC 33FJ12M C 201/202
DS70265D-page 280 Preliminary © 2009 Microchip Technology Inc.
In-Circuit Emulation........................................................... 201
In-Circuit Serial Programming (ICSP) ....................... 201, 207
Input Capture .................................................................... 143
Registers................................................................... 144
Input Change Notification.................................................. 114
Instruction Addressing Modes............................................. 44
File Register Instructions ............................................ 44
Fundamental Modes Supported.................................. 45
MAC Instructions......................................................... 45
MCU Instructions ........................................................ 44
Move and Accumulator Instructions............................ 45
Other Instructions........................................................ 45
Instruction Set
Overview ................................................................... 212
Summary................................................................... 209
Instruction-Based Power-Saving Modes ........................... 107
Idle ............................................................................ 108
Sleep......................................................................... 107
Internal RC Oscillator
Use with WDT ........................................................... 206
Internet Address................................................................ 285
Interrupt Control and Status Registers................................ 71
IECx ............................................................................ 71
IFSx............................................................................. 71
INTCON1 .................................................................... 71
INTCON2 .................................................................... 71
IPCx ............................................................................ 71
Interrupt Setup Procedures ................................................. 97
Initialization ................................................................. 97
Interrupt Disable.......................................................... 97
Interrupt Service Routine ............................................ 97
Trap Service Routine .................................................. 97
Interrupt Vector Table (IVT) ................................................ 67
Interrupts Coincident with Power Save Instructions.......... 108
J
JTAG Boundary Scan Interface ........................................ 201
JTAG Interface .................................................................. 207
M
Memory Organization.......................................................... 27
Microchip Internet Web Site .............................................. 285
Modulo Addressing ............................................................. 46
Applicability ................................................................. 47
Operation Example ..................................................... 46
Start and End Address................................................ 46
W Address Register Selection .................................... 46
Motor Control PWM........................................................... 149
Motor Control PWM Module
2-Output Register Map................................................ 37
4-Output Register Map................................................ 36
6-Output Register Map................................................ 36
MPLAB ASM30 Assembler, Linker, Librarian ................... 218
MPLAB ICD 2 In-Circuit Debugger.................................... 219
MPLAB ICE 2000 High-Performance Universal
In-Circuit Emulator .................................................... 219
MPLAB Integrated Development Environment Software .. 217
MPLAB PM3 Device Programmer..................................... 219
MPLAB REAL ICE In-Circuit Emulator System................. 219
MPLINK Object Linker/MPLIB Object Librarian ................ 218
N
NVM Module
Register Map............................................................... 43
O
Open-Drain Configuration................................................. 114
Output Compare ............................................................... 145
P
Packaging ......................................................................... 261
Details....................................................................... 263
Marking............................................................. 261, 262
Peripheral Module Disable (PMD) .................................... 108
PICSTART Plus Development Programmer..................... 220
Pinout I/O Descriptions (table).............................................. 9
PMD Module
Register Map .............................................................. 43
PORTA
Register Map .............................................................. 42
PORTB
Register Map for dsPIC33FJ12MC201....................... 42
Register Map for dsPIC33FJ12MC202....................... 42
Power-on Reset (POR)....................................................... 64
Power-Saving Features .................................................... 107
Clock Frequency and Switching ............................... 107
Program Address Space..................................................... 27
Construction ............................................................... 49
Data Access from Program Memory
Using Program Space Visibility .......................... 52
Data Access from Program Memory
Using Table Instructions ..................................... 51
Data Access from, Address Generation ..................... 50
Memory Map............................................................... 27
Table Read Instructions
TBLRDH ............................................................. 51
TBLRDL.............................................................. 51
Visibility Operation ...................................................... 52
Program Memory
Interrupt Vector........................................................... 28
Organization ............................................................... 28
Reset Vector............................................................... 28
PWM Time Base............................................................... 152
Q
Quadrature Encoder Interface (QEI)................................. 163
Quadrature Encoder Interface (QEI) Module
Register Map .............................................................. 37
R
Reader Response............................................................. 286
Registers
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)... 195
ADxCHS0 (ADCx Input Channel 0 Select ................ 197
ADxCON1 (ADCx Control 1)..................................... 191
ADxCON2 (ADCx Control 2)..................................... 193
ADxCON3 (ADCx Control 3)..................................... 194
ADxCSSL (ADCx Input Scan Select Low) ................ 198
ADxPCFGL (ADCx Port Configuration Low)............. 199
CLKDIV (Clock Divisor) ............................................ 103
CORCON (Core Control) ...................................... 20, 72
DFLTxCON (QEI Control)......................................... 166
I2CxCON (I2Cx Control) ........................................... 175
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 179
I2CxSTAT (I2Cx Status) ........................................... 177
IEC0 (Interrupt Enable Control 0) ............................... 81
IEC1 (Interrupt Enable Control 1) ............................... 83
IEC3 (Interrupt Enable Control 3) ............................... 84
IEC4 (Interrupt Enable Control 4) ............................... 85
IFS0 (Interrupt Flag Status 0) ..................................... 76
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 281
dsPIC33FJ12MC201/202
IFS1 (Interrupt Flag Status 1) ..................................... 78
IFS3 (Interrupt Flag Status 3) ..................................... 79
IFS4 (Interrupt Flag Status 4) ..................................... 80
INTCON1 (Interrupt Control 1).................................... 73
INTCON2 (Interrupt Control 2).................................... 75
INTTREG Interrupt Control and Status Register......... 96
IPC0 (Interrupt Priority Control 0) ............................... 86
IPC1 (Interrupt Priority Control 1) ............................... 87
IPC14 (Interrupt Priority Control 14) ........................... 93
IPC15 (Interrupt Priority Control 15) ........................... 94
IPC16 (Interrupt Priority Control 16) ........................... 94
IPC18 (Interrupt Priority Control 18) ........................... 95
IPC2 (Interrupt Priority Control 2) ............................... 88
IPC3 (Interrupt Priority Control 3) ............................... 89
IPC4 (Interrupt Priority Control 4) ............................... 90
IPC5 (Interrupt Priority Control 5) ............................... 91
IPC7 (Interrupt Priority Control 7) ............................... 92
NVMCON (Flash Memory Control) ............................. 55
NVMKEY (Nonvolatile Memory Key) .......................... 56
OCxCON (Output Compare x Control) ..................... 147
OSCCON (Oscillator Control) ................................... 102
OSCTUN (FRC Oscillator Tuning) ............................ 105
P1DC3 (PWM Duty Cycle 3)..................................... 161
PLLFBD (PLL Feedback Divisor).............................. 104
PMD1 (Peripheral Module Disable
Control Register 1)............................................ 109
PMD2 (Peripheral Module Disable
Control Register 2)............................................ 110
PMD3 (Peripheral Module Disable
Control Register 3)............................................ 111
PWMxCON1 (PWM Control 1).................................. 155
PWMxCON2 (PWM Control 2).................................. 156
PxDC1 (PWM Duty Cycle 1) ..................................... 161
PxDC2 (PWM Duty Cycle 2) ..................................... 161
PxDTCON1 (Dead-Time Control 1) .......................... 157
PxDTCON2 (Dead-Time Control 2) .......................... 158
PxFLTACON (Fault A Control).................................. 159
PxOVDCON (Override Control) ................................ 160
PxSECMP (Special Event Compare)........................ 154
PxTCON (PWM Time Base Control)......................... 152
PxTMR (PWM Timer Count Value)........................... 153
PxTPER (PWM Time Base Period) .......................... 153
QEICON (QEI Control).............................................. 164
RCON (Reset Control) ................................................ 60
SPIxCON1 (SPIx Control 1)...................................... 169
SPIxCON2 (SPIx Control 2)...................................... 171
SPIxSTAT (SPIx Status and Control) ....................... 168
SR (CPU Status)................................................... 18, 72
T1CON (Timer1 Control)........................................... 136
T2CON Control ......................................................... 140
T3CON Control ......................................................... 141
TCxCON (Input Capture x Control)........................... 144
UxMODE (UARTx Mode).......................................... 182
UxSTA (UARTx Status and Control)......................... 184
Reset
Illegal Opcode ....................................................... 59, 65
Trap Conflict................................................................ 65
Uninitialized W Register........................................ 59, 65
Reset Sequence ................................................................. 67
Resets................................................................................. 59
S
Serial Peripheral Interface (SPI) ....................................... 167
Software Reset Instruction (SWR) ...................................... 65
Software Simulator (MPLAB SIM)..................................... 218
Software Stack Pointer, Frame Pointer
CALLL Stack Frame ................................................... 44
Special Features of the CPU ............................................ 201
SPI Module
SPI1 Register Map ..................................................... 38
Symbols Used in Opcode Descriptions ............................ 210
System Control
Register Map .............................................................. 43
T
Temperature and Voltage Specifications
AC............................................................................. 230
Timer1 .............................................................................. 135
Timer2/3 ........................................................................... 137
Timing Characteristics
CLKO and I/O ........................................................... 233
Timing Diagrams
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,
ASAM = 0, SSRC = 000).................................. 259
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,
ASAM = 1, SSRC = 111, SAMC = 00001) ....... 259
12-bit A/D Conversion (ASAM = 0, SSRC = 000)..... 258
Brown-out Situations .................................................. 64
External Clock .......................................................... 231
I2Cx Bus Data (Master Mode) .................................. 251
I2Cx Bus Data (Slave Mode) .................................... 253
I2Cx Bus Start/Stop Bits (Master Mode)................... 251
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 253
Input Capture (CAPx) ............................................... 239
Motor Control PWM .................................................. 241
Motor Control PWM Fault ......................................... 241
OC/PWM .................................................................. 240
Output Compare (OCx) ............................................ 239
QEA/QEB Input ........................................................ 242
QEI Module Index Pulse........................................... 243
Reset, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer............................... 234
SPIx Master Mode (CKE = 0) ................................... 244
SPIx Master Mode (CKE = 1) ................................... 245
SPIx Slave Mode (CKE = 0) ..................................... 247
SPIx Slave Mode (CKE = 1) ..................................... 249
Timer1, 2 and 3 External Clock ................................ 236
TimerQ (QEI Module) External Clock ....................... 238
Timing Requirements
CLKO and I/O ........................................................... 233
DCI AC-Link Mode.................................................... 255
DCI Multi-Channel, I2S Modes ................................. 255
External Clock .......................................................... 231
Input Capture............................................................ 239
Timing Specifications
10-bit A/D Conversion Requirements ....................... 260
12-bit A/D Conversion Requirements ....................... 258
I2Cx Bus Data Requirements (Master Mode)........... 252
I2Cx Bus Data Requirements (Slave Mode)............. 254
Motor Control PWM Requirements........................... 241
Output Compare Requirements................................ 239
PLL Clock ................................................................. 232
QEI External Clock Requirements............................ 238
QEI Index Pulse Requirements ................................ 243
Quadrature Decoder Requirements ......................... 242
Reset, Watchdog Timer, Oscillator Start-up
Timer, Power-up Timer and Brown-out
Reset Requirements......................................... 235
Simple OC/PWM Mode Requirements ..................... 240
SPIx Master Mode (CKE = 0) Requirements............ 244
SPIx Master Mode (CKE = 1) Requirements............ 246
SPIx Slave Mode (CKE = 0) Requirements.............. 248
dsPIC33FJ12MC201/202
DS70265D-page 282 Preliminary © 2009 Microchip Technology Inc.
SPIx Slave Mode (CKE = 1) Requirements .............. 250
Timer1 External Clock Requirements ....................... 236
Timer2 External Clock Requirements ....................... 237
Timer3 External Clock Requirements ....................... 237
U
UART Module
UART1 Register Map.................................................. 38
Universal Asynchronous Receiver Transmitter (UART).... 181
Using the RCON Status Bits ............................................... 66
V
Voltage Regulator (On-Chip)............................................. 205
W
Watchdog Time-out Reset (WDTR) .................................... 65
Watchdog Timer (WDT) ............................................ 201, 206
Programming Considerations ................................... 206
WWW Address.................................................................. 285
WWW, On-Line Support........................................................ 6
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 283
dsPIC33FJ12MC201/202
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com, click on Customer Change
Notification and follow the registration instructions.
CUSTOMER SUPPORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers should contact their distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://support.microchip.com
dsPIC33FJ12MC201/202
DS70265D-page 284 Preliminary © 2009 Microchip Technology Inc.
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To: Technical Publications Manager
RE: Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
Application (optional):
Would you like a reply? Y N
Device: Literature Number:
Questions:
FAX: (______) _________ - _________
DS70265DdsPIC33FJ12MC201/202
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
© 2009 Microchip Technology Inc. Preliminary DS70265D-page 285
dsPIC33FJ12MC201/202
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Architecture: 33 = 16-bit Digital Signal Controller
Flash Memory Family: FJ = Flash program memory, 3.3V
Product Group: MC2 = Motor Control family
Pin Count: 01 = 20-pin
02 = 28-pin
Temperature Range: I = -40°C to+85°C (Industrial)
E=-40°C to+125°C (Extended)
Package: P = Plastic Dual In-Line - 300 mil body (PDIP)
SS = Plastic Shrink Small Outline -209 mil body (SSOP)
SP = Skinny Plastic Dual In-Line - 300 mil body (SPDIP)
SO = Plastic Small Outline - Wide, 300 mil body (SOIC)
ML = Plastic Quad, No Lead Package - 6x6 mm body (QFN)
SS = Plastic Shrink Small Outline - 5.3 mm body (SSOP)
Examples:
a) dsPIC33FJ12MC202-E/SP:
Motor Control dsPIC33, 12 KB program
memory, 28-pin, Extended temperature,
SPDIP package.
Microchip Trademark
Architecture
Flash Memory Family
Program Memory Size (KB)
Product Group
Pin Count
Temperature Range
Package
Pattern
dsPIC 33 FJ 12 MC2 02 T E / SP - XXX
Tape and Reel Flag (if applicable)
DS70265D-page 286 Preliminary © 2009 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
03/26/09