SWITCHMODE Series
NPN Silicon Power Darlington
Transistors with Base-Emitter
Speedup Diode
The MJ10015 and MJ10016 Darlington transistors are designed for
high–voltage, high–speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for
line–operated SWITCHMODE applications such as:
Switching Regulators
Motor Controls
Inverters
Solenoid and Relay Drivers
Fast Turn–Off Times
1.0 µs (max) Inductive Crossover Time — 20 Amps
2.5 µs (max) inductive Storage Time — 20 Amps
Operating Temperature Range –65 to +200C
Performance Specified for
Reversed Biased SOA with Inductive Load
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
MJ10015
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
MJ10016
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCEO
ÎÎÎÎÎ
ÎÎÎÎÎ
400
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
500
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCEV
ÎÎÎÎÎ
ÎÎÎÎÎ
600
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
700
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VEB
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
8.0
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (1)
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
50
75
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
10
15
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25C
@ TC = 100C
Derate above 25C
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
250
143
1.43
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
Watts
W/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
–65 to +200
ÎÎÎÎ
ÎÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
RθJC
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
0.7
ÎÎÎÎ
ÎÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎ
275
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
ON Semiconductor
Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 3 1Publication Order Number:
MJ10015/D
MJ10015
MJ10016
50 AMPERE
NPN SILICON
POWER DARLINGTON
TRANSISTORS
400 AND 500 VOLTS
250 WATTS
CASE 197–05
TO–204AE TYPE
(TO–3 TYPE)
50 8
MJ10015 MJ10016
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
Min
Typ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS (1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0, Vclamp = Rated VCEO) MJ10015
MJ10016
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎ
400
500
Î
ÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEV
ÎÎ
Î
ÎÎ
0.25
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 2.0 Vdc, IC = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IEBO
ÎÎ
Î
ÎÎ
350
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with Base Forward Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
See Figure 7
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
RBSOA
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
See Figure 8
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 20 Adc, VCE = 5.0 Vdc)
(IC = 40 Adc, VCE = 5.0 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎ
25
10
Î
ÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 20 Adc, IB = 1.0 Adc)
(IC = 50 Adc, IB = 10 Adc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎ
ÎÎ
Î
Î
ÎÎ
ÎÎ
2.2
5.0
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 20 Adc, IB = 1.0 Adc)
ÎÎÎÎÎ
ÎÎÎÎÎ
VBE(sat)
2.75
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Diode Forward Voltage (2)
(IF = 20 Adc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Vf
ÎÎ
Î
2.5
ÎÎ
5.0
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTIC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 100 kHz)
ÎÎÎÎÎ
ÎÎÎÎÎ
Cob
750
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
td
0.14
0.3
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 250 Vdc, IC = 20 A,
IB1 =10Adc V
BE( ff) = 5 Vdc t =25µs
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
0.3
1.0
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
IB1 = 1.0 Adc, VBE(off) = 5 Vdc, tp = 25 µs
Duty Cycle 2%).
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
0.8
2.5
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Duty
Cycle
2%).
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
0.3
1.0
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 20 A(pk), Vclamp = 250 V, IB1 = 1.0 A,
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
1.0
2.5
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC
20
A( k)
,
Vclam
250
V
,
IB1
1
.
0
A
,
VBE(off) = 5.0 Vdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
0.36
1.0
ÎÎÎ
ÎÎÎ
µs
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
(2) The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads.
(2) Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers.
MJ10015 MJ10016
http://onsemi.com
3
V, VOLTAGE (VOLTS)
-0.2
VBE, BASE-EMITTER VOLTAGE (VOLTS)
0
2.8
IC, COLLECTOR CURRENT (AMP)
2.4
2.0
1.6
1.2
IC/IB = 10
100
0.5
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
5.0 1.0 2.0 5.0 10 20 50
50
10
20
Figure 2. Collector–Emitter Saturation Voltage
0.5
IC, COLLECTOR CURRENT (AMP)
0.4 2.0 5.0
1.2
0.8
hFE, DC CURRENT GAIN
TC = 25°C
VCE = 5.0 V
10 20 50
Figure 3. Base–Emitter Saturation Voltage
+0.20.5 1.0 2.0 10 50205.0
Figure 4. Collector Cutoff Region
2.4
2.0
1.6
Figure 5. Output Capacitance
1500
0.4
VR, REVERSE VOLTAGE (VOLTS)
100 10
1000
100 400
C
200
FORWARD
0.8
VCE = 250 V
75°C
100°C
REVERSE
25°C
TJ = 125°C
1.0 4.0 40
300
500
TJ = 150°C
TJ = 25°C
104
103
102
101
100
10-1
, OUTPUT CAPACITANCE (pF)
ob
1.0
, COLLECTOR CURRENT ( A)µICV, VOLTAGE (VOLTS)
IC/IB = 10
TJ = 150°C
TJ = 25°C
+0.4 +0.6 +0.8
TJ = 25°C
TYPICAL CHARACTERISTICS
MJ10015 MJ10016
http://onsemi.com
4
Table 1. Test Conditions for Dynamic Performance
VCEO(sus) VCEX AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
INPUT
CONDITIONS
CIRCUIT
VALUES
TEST CIRCUITS
20 1
0
PW Varied to Attain
IC = 100 mA
Lcoil = 10 mH, VCC = 10 V
Rcoil = 0.7
Vclamp = VCEO(sus)
Lcoil = 180 µH
Rcoil = 0.05
VCC = 20 V
VCC = 250 V
RL = 12.5
Pulse Width = 25 µs
INDUCTIVE TEST CIRCUIT
TURN–ON TIME
IB1 adjusted to
obtain the forced
hFE desired
TURN–OFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
t1 Adjusted to
Obtain IC
Test Equipment
Scope — Tektronix
475 or Equivalent
RESISTIVE TEST CIRCUITOUTPUT WAVEFORMS
2
IB1
1
2
5 V
INDUCTIVE TEST CIRCUIT
1
INPUT
2
Rcoil
Lcoil
VCC
Vclamp
RS =
0.1
1N4937
OR
EQUIVALENT
TUT
SEE ABOVE FOR
DETAILED CONDITIONS
1
INPUT
2
Rcoil
Lcoil
VCC
Vclamp
RS =
0.1
1N4937
OR
EQUIVALENT
TUT
SEE ABOVE FOR
DETAILED CONDITIONS
t1
IC(pk) tf Clamped
tf
t
t
t2
TIME
VCE or
Vclamp
1
2
TUT
RL
VCC
t1 Lcoil (ICpk)
VCC
t2 Lcoil (ICpk)
VClamp
*Adjust –V such that VBE(off) = 5 V except as required for RBSOA (Figure 8).
Figure 6. Inductive Switching Measurements
trv
TIME
IC
VCE
90% IB1
tsv
IC pk Vclamp
90% Vclamp 90% IC
10% Vclamp 10%
IC pk 2% IC
IB
tfi tti
tc
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 1090% Vclamp
tfi = Current Fall Time, 9010% IC
tti = Current Tail, 102% IC
tc = Crossover Time, 10% Vclamp to 10% IC
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN–222:
PSWT = 1/2 VCC IC (tc) f
In general, trv + tfi tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified and has become a benchmark for
designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed.
MJ10015 MJ10016
http://onsemi.com
5
The Safe Operating Area figures shown in Figures 7 and 8 are
specified ratings for these devices under the test conditions
shown.
1.0
Figure 7. Forward Bias Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
5.0 50
0.005
50
20
2.0
1.0
5.0
0.5
100
0
10 100
0
Figure 8. Reverse Bias Switching Safe
Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0200 300
40
20
50
400
TC = 25°C
IC, COLLECTOR CURRENT (AMPS)
0.1
200
dc
IC, COLLECTOR CURRENT (AMPS)
2.0 20 500
30
10
0.2
0.02
0.01
500
VBE(off) = 5.0 V
TC = 25°C
MJ10015
0.05
10
TURN-OFF LOAD LINE
BOUNDARY FOR MJ10016
THE LOCUS FOR MJ10015
IS 100 V LESS
10 µs
IC
IB110
BONDING WIRE LIMIT
THERMAL LIMIT (SINGLE PULSE)
SECOND BREAKDOWN LIMIT
MJ10016
100
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two Iimitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation, i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 7 is based on TC = 25C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 7 may be found at
any case temperature by using the appropriate curve on
Figure 9.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished b y several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltage–current condition allowable
during reverse biased turn–off. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 8 gives the complete RBSOA
characteristics.
0
Figure 9. Power Derating
TC, CASE TEMPERATURE (°C)
040 80
80
40
100
120
POWER DERATING FACTOR (%)
160 200
60
20
THERMAL
DERATING
VBE(off), REVERSE BASE VOLTAGE (VOLTS)
12 34 5 6
10
8
6
5
4
3
2
0
, BASE CURRENT (AMP)IB2(pk)
0
SEE TABLE 1 FOR CONDITIONS,
FIGURE 6 FOR WAVESHAPE.
9
7
1
78
Figure 10. Typical Reverse Base Current
versus VBE(off) With No External Base
Resistance
IC = 20 A
FORWARD BIAS
SECOND BREAKDOWN
DERATING
MJ10015 MJ10016
http://onsemi.com
6
PACKAGE DIMENSIONS
CASE 197A–05
ISSUE J
TO–204AE (TO–3)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A1.530 REF 38.86 REF
B0.990 1.050 25.15 26.67
C0.250 0.335 6.35 8.51
D0.057 0.063 1.45 1.60
E0.060 0.070 1.53 1.77
G0.430 BSC 10.92 BSC
H0.215 BSC 5.46 BSC
K0.440 0.480 11.18 12.19
L0.665 BSC 16.89 BSC
N0.760 0.830 19.31 21.08
Q0.151 0.165 3.84 4.19
U1.187 BSC 30.15 BSC
V0.131 0.188 3.33 4.77
A
N
E
C
K
–T– SEATING
PLANE
2 PL
D
M
Q
M
0.30 (0.012) Y M
T
M
Y
M
0.25 (0.010) T
–Q–
–Y–
2
1
L
GB
V
H
U
MJ10015 MJ10016
http://onsemi.com
7
Notes
MJ10015 MJ10016
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MJ10015/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland