To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please
email any questions regarding the system integration to Fairchild_questions@onsemi.com.
Is Now Part of
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, afliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Afrmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
HGTG12N60C3D
24A, 600V, UFS Series N-Channel IGBT
with Anti-Parallel Hyperfast Diode
The HGTG12N60C3D is a MOS gated high voltage switching
device combining the best features of MOSFETs and bipolar
transistors. The device has the high input impedance of a
MOSFET and the low on-state conduction loss of a bipolar
transistor. The much lower on-state voltage drop varies only
moderately between 25
o
C and 150
o
C. The IGBT used is the
development type TA49123. The diode used in anti parallel
with the IGBT is the development type TA49061.
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential.
Formerly Developmental Type TA49117.
Symbol
Features
24A, 600V at T
C
= 25
o
C
Typical Fall Time . . . . . . . . . . . . . . . . 210ns at T
J
= 150
o
C
Short Circuit Rating
Low Conduction Loss
Hyperfast Anti-Parallel Diode
Packaging
JEDEC STYLE TO-247
Ordering Information
PART NUMBER PACKAGE BRAND
HGTG12N60C3D TO-247 G12N60C3D
NOTE: When ordering, use the entire part number.
C
G
E
C
E
G
Fairchild CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073 4,417,385 4,430,792 4,443,931 4,466,176 4,516,143 4,532,534 4,587,713
4,598,461 4,605,948 4,620,211 4,631,564 4,639,754 4,639,762 4,641,162 4,644,637
4,682,195 4,684,413 4,694,313 4,717,679 4,743,952 4,783,690 4,794,432 4,801,986
4,803,533 4,809,045 4,809,047 4,810,665 4,823,176 4,837,606 4,860,080 4,883,767
4,888,627 4,890,143 4,901,127 4,904,609 4,933,740 4,963,951 4,969,027
Data Sheet December 2001
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
HGTG12N60C3D UNITS
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV
CES
600 V
Collector Current Continuous
At T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C25
24 A
At T
C
= 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C110
12 A
Average Diode Forward Current at 110
o
C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
(AVG)
15 A
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
CM
96 A
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GES
±
20 V
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GEM
±
30 V
Switching Safe Operating Area at T
J
= 150
o
C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA 24A at 600V
Power Dissipation Total at T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
104 W
Power Dissipation Derating T
C
> 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.83 W/
o
C
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
-40 to 150
o
C
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
260
o
C
Short Circuit Withstand Time (Note 2) at V
GE
= 15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
4
µ
s
Short Circuit Withstand Time (Note 2) at V
GE
= 10V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t
SC
13
µ
s
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. V
CE(PK)
= 360V, T
J
= 125
o
C, R
G
= 25
Ω.
Electrical Specifications
T
C
= 25
o
C, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Collector to Emitter Breakdown Voltage BV
CES
I
C
= 250
µ
A, V
GE
= 0V 600 - - V
Emitter to Collector Breakdown Voltage BV
ECS
I
C
= 10mA, V
GE
= 0V 15 25 - V
Collector to Emitter Leakage Current I
CES
V
CE
= BV
CES
T
C
= 25
o
C - - 250
µ
A
V
CE
= BV
CES
T
C
= 150
o
C - - 2.0 mA
Collector to Emitter Saturation Voltage V
CE(SAT)
I
C
= I
C110
,
V
GE
= 15V
T
C
= 25
o
C - 1.65 2.0 V
T
C
= 150
o
C - 1.85 2.2 V
I
C
= 15A,
V
GE
= 15V
T
C
= 25
o
C - 1.80 2.2 V
T
C
= 150
o
C - 2.0 2.4 V
Gate to Emitter Threshold Voltage V
GE(TH)
I
C
= 250
µ
A,
V
CE
= V
GE
T
C
= 25
o
C 3.0 5.0 6.0 V
Gate to Emitter Leakage Current I
GES
V
GE
=
±
20V - -
±
100 nA
Switching SOA SSOA T
J
= 150
o
C,
V
GE
= 15V,
R
G
= 25
Ω,
L = 100
µ
H
V
CE(PK)
= 480V 80 - - A
V
CE(PK)
= 600V 24 - - A
Gate to Emitter Plateau Voltage V
GEP
I
C
= I
C110
, V
CE
= 0.5 BV
CES
- 7.6 - V
On-State Gate Charge Q
G(ON)
I
C
= I
C110
,
V
CE
= 0.5 BV
CES
V
GE
= 15V - 48 55 nC
V
GE
= 20V - 62 71 nC
Current Turn-On Delay Time t
d(ON)I
T
J
= 150
o
C,
I
CE
= I
C110,
V
CE(PK)
= 0.8 BV
CES,
V
GE
= 15V,
R
G
= 25
Ω,
L = 100
µ
H
-14-ns
Current Rise Time t
rI
-16-ns
Current Turn-Off Delay Time t
d(OFF)I
- 270 400 ns
Current Fall Time t
fI
- 210 275 ns
Turn-On Energy E
ON
- 380 -
µ
J
Turn-Off Energy (Note 3) E
OFF
- 900 -
µ
J
Diode Forward Voltage V
EC
I
EC
= 12A - 1.7 2.0 V
HGTG12N60C3D
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
Diode Reverse Recovery Time trr IEC = 12A, dIEC/dt = 100A/µs - 34 42 ns
IEC = 1.0A, dIEC/dt = 100A/µs - 30 37 ns
Thermal Resistance RθJC IGBT - - 1.2 oC/W
Diode - - 1.5 oC/W
NOTE:
3. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse, and ending
at the point where the collector current equals zero (ICE = 0A). The HGTG12N60C3D was tested per JEDEC Standard No. 24-1 Method for
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include
diode losses.
Electrical Specifications TC = 25oC, Unless Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Typical Performance Curves
FIGURE 1. TRANSFER CHARACTERISTICS FIGURE 2. SATURATION CHARACTERISTICS
FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE
ICE, COLLECTOR TO EMITTER CURRENT (A)
VGE, GATE TO EMITTER VOLTAGE (V)
6 8 10 12
0
10
20
40
50
60
70
14
30
80
PULSE DURATION = 250µs
DUTY CYCLE <0.5%, VCE = 10V
4
TC = 150oC
TC = 25oC
TC = -40oC
ICE, COLLECTOR TO EMITTER CURRENT (A)
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
PULSE DURATION = 250µs, DUTY CYCLE <0.5%, TC = 25oC
0
0246810
10
20
30
12.0V
8.5V
9.0V
8.0V
7.5V
7.0V
VGE= 15.0V
40
50
60
70
80
10.0V
ICE, COLLECTOR TO EMITTER CURRENT (A)
0
30
012345
40
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
PULSE DURATION = 250µs
DUTY CYCLE <0.5%, VGE = 10V
TC = 150oC
TC = 25oC
TC = -40oC
10
20
50
70
80
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
0
30
012345
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
TC = 25oC
TC = -40oC
TC = 150oC
DUTY CYCLE <0.5%, VGE = 15V
PULSE DURATION = 250µs
10
20
40
50
60
70
80
HGTG12N60C3D
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT vs CASE
TEMPERATURE
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO
EMITTER CURRENT
Typical Performance Curves (Continued)
25 50 75 100 125 150
0
5
10
15
20
25
ICE, DC COLLECTOR CURRENT (A)
TC, CASE TEMPERATURE (oC)
VGE = 15V
ISC, PEAK SHORT CIRCUIT CURRENT(A)
20
60
80
120
tSC, SHORT CIRCUIT WITHSTAND TIME (µs)
10 11 12
VGE , GATE TO EMITTER VOLTAGE (V)
14 1513
140
100
40
ISC
tSC
5
10
15
20 VCE = 360V, RG = 25, TJ = 125oC
td(ON)I, TURN-ON DELAY TIME (ns)
10
20
30
5101520
ICE, COLLECTOR TO EMITTER CURRENT (A)
100
25 30
50
VGE = 10V
VGE = 15V
TJ = 150oC, RG = 25, L = 100µH, VCE(PK) = 480V
ICE, COLLECTOR TO EMITTER CURRENT (A)
td(OFF)I, TURN-OFF DELAY TIME (ns)
400
300
200
100
51015202530
TJ = 150oC, RG = 25, L = 100mH, VCE(PK) = 480V
VGE = 10V
VGE = 15V
ICE, COLLECTOR TO EMITTER CURRENT (A)
trI, TURN-ON RISE TIME (ns)
5
10
100
51015202530
VGE = 15V
200
TJ = 150oC, RG = 25, L = 100µH, VCE(PK) = 480V
VGE = 10V
ICE, COLLECTOR TO EMITTER CURRENT (A)
tfI, FALL TIME (ns)
100
5 1015202530
200
300
TJ = 150oC, RG = 25, L = 100µH, VCE(PK) = 480V
VGE = 10V or 15V
90
80
HGTG12N60C3D
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
FIGURE 14. SWITCHING SAFE OPERATING AREA
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER
VOLTAGE
FIGURE 16. GATE CHARGE WAVEFORMS
Typical Performance Curves (Continued)
ICE, COLLECTOR TO EMITTER CURRENT (A)
0
5101520
EON, TURN-ON ENERGY LOSS (mJ)
VGE = 15V
0.5
1.0
1.5
2.0
25 30
VGE = 10V
TJ = 150oC, RG = 25, L = 100µH, VCE(PK) = 480V
ICE, COLLECTOR TO EMITTER CURRENT (A)
EOFF, TURN-OFF ENERGY LOSS (mJ)
510 15202530
0.5
1.0
1.5
2.0
2.5
3.0
0
TJ = 150oC, RG = 25, L = 100µH, VCE(PK) = 480V
VGE = 10V OR 15V
ICE, COLLECTOR TO EMITTER CURRENT (A)
fMAX, OPERATING FREQUENCY (kHz)
5102030
10
100
200
1
fMAX2 = (PD - PC)/(EON + EOFF)
PD = ALLOWABLE DISSIPATION
PC = CONDUCTION DISSIPATION
fMAX1 = 0.05/(tD(OFF)I + tD(ON)I)
(DUTY FACTOR = 50%)
RθJC = 1.2oC/W
TJ = 150oC, TC = 75oC
RG = 25, L = 100µH
VGE = 15V
VGE = 10V
VCE(PK), COLLECTOR TO EMITTER VOLTAGE (V)
ICE, COLLECTOR TO EMITTER CURRENT (A)
0 100 200 300 400 500 600
0
20
40
60
80
100 TJ = 150oC, VGE = 15V, RG = 25, L = 100µH
LIMITED BY
CIRCUIT
COES
CRES
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
0510152025
0
500
1000
1500
2000
2500
C, CAPACITANCE (pF)
CIES
FREQUENCY = 1MHz
VGE, GATE TO EMITTER VOLTAGE (V)
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
QG, GATE CHARGE (nC)
IG(REF) = 1.276mA, RL = 50, TC = 25oC
0
240
120
360
480
600 15
12
9
6
3
0
VCE = 600V
VCE = 200V
10 20 30 40 50 600
VCE = 400V
HGTG12N60C3D
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD
VOLTAGE DROP
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT
Typical Performance Curves (Continued)
t1, RECTANGULAR PULSE DURATION (s)
10-5 10-3 100101
10-4 10-1
10-2
100
ZθJC, NORMALIZED THERMAL RESPONSE
10-1
10-2
DUTY FACTOR, D = t1 / t2
PEAK TJ = (PD X ZθJC X RθJC) + TC
t1
t2
PD
SINGLE PULSE
0.01
0.5
0.2
0.1
0.05
0.02
0.5 1.0 1.5 2.5 3.0
IEC, FORWARD CURRENT (A)
VEC, FORWARD VOLTAGE (V)
0 2.0
10
0
20
30
40
50
100oC
25oC
150oC
40
30
20
10
0
tr, RECOVERY TIMES (ns)
IEC, FORWARD CURRENT (A)
510 20
trr
TC = 25oC, dIEC/dt = 100A/µs
015
tb
ta
Test Circuit and Waveform
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT FIGURE 21. SWITCHING TEST WAVEFORMS
RG = 25
L = 100µH
VDD = 480V
+
-
RHRP1560
tfI
td(OFF)I trI
td(ON)I
10%
90%
10%
90%
VCE
ICE
VGE
EOFF EON
HGTG12N60C3D
©2001 Fairchild Semiconductor Corporation HGTG12N60C3D Rev. B
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handler’s body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “ECCOSORBD LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means, for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage
rating of VGEM. Exceeding the rated VGE can result in
permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are
essentially capacitors. Circuits that leave the gate open-
circuited or floating should be avoided. These conditions
can result in turn-on of the device due to voltage buildup on
the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal
monolithic Zener Diode from gate to emitter. If gate
protection is required an external Zener is recommended.
Operating Frequency Information
Operating frequency information for a typical device (Figure 13)
is presented as a guide for estimating device performance
for a specific application. Other typical frequency vs collector
current (ICE) plots are possible using the information shown
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating
frequency plot (Figure 13) of a typical device shows fMAX1 or
fMAX2 whichever is smaller at each point. The information is
based on measurements of a typical device and is bounded
by the maximum rated junction temperature.
fMAX1 is defined by fMAX1 = 0.05/(tD(OFF)I + tD(ON)I).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. tD(OFF)I and tD(ON)I are defined in Figure 21.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than TJM. tD(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON). The
allowable dissipation (PD) is defined by PD = (TJM - TC)/RθJC.
The sum of device switching and conduction losses must not
exceed PD. A 50% duty factor was used (Figure 13) and the
conduction losses (PC) are approximated by
PC = (VCE x ICE)/2.
EON and EOFF are defined in the switching waveforms
shown in Figure 21. EON is the integral of the instantaneous
power loss (ICE x VCE) during turn-on and EOFF is the
integral of the instantaneous power loss during turn-off. All
tail losses are included in the calculation for EOFF; i.e. the
collector current equals zero (ICE = 0).
HGTG12N60C3D
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
Rev. H4
ACEx™
Bottomless™
CoolFET™
CROSSVOLT
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
STAR*POWER is used under license
VCX™
www.onsemi.com
1
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
www.onsemi.com
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
© Semiconductor Components Industries, LLC