General Description
The MAX6974 evaluation kit (EV kit) is an assembled and
tested printed circuit board (PCB) that demonstrates the
MAX6974/ MAX6975 precision current-sinking, 24-output
PWM LED drivers. The MAX6974/MAX6975 functionality
can be evaluated using the MAX6974 EV kit. The
MAX6975 has 14-bit individual PWM and 5-bit global
PWM, while the MAX6974 has 12-bit individual PWM and
7-bit global PWM. The evaluation kit comes with a
MAX6974ATL+ installed. The Windows®98/2000/XP
software supports only the MAX6974.
Features
Proven PCB Layout
Complete Evaluation System
Convenient On-Board Test Points
Fully Assembled and Tested
Multiplexed 4 x 8 RGB (96 LEDs Total) 20mA LED
Matrix
Evaluates: MAX6974
MAX6974 Evaluation Kit
________________________________________________________________ Maxim Integrated Products 1
19-0519; Rev 1; 2/07
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Ordering Information
PART
TYPE
INTERFACE REQUIREMENTS
MAX6974EVKIT+
EV kit
Windows PC with RS-232 serial port
DESIGNATION QTY DESCRIPTION
C1 1 100µF ± 20%, 10V X 5R cap aci tor ( 1812)
TD K C 4532X 5R1A107M
C2, C3 2 100µF ±20%, 6.3V X 5R cap acitor s ( 1210)
TD K C 3225X 5R0J107M
C4, C5, C25 3 10µF ± 10% , 6.3V X 5R cap aci tor s ( 0603)
TD K C 1608X 5R0J106K
C6–C9 4 0.47µF ± 10%, 6.3V X5R cap aci tors ( 0402)
TD K C 1005X 5R0J474K
C10–C16 7 0.1µF ± 10%, 6.3V X 5R cap aci tor s ( 0402)
TD K C 1005X 5R0J104K
C17, C18 2 0.001µF ±10%, 25V X5R capacitors (0402)
TD K C 1005X5R1E 102K
C19–C22 4 120p F ± 5% , 25V C 0G cap aci tor s ( 0402)
TD K C 1005C 0G1E 121J
C23, C24 2 10p F ± 5%, 25V C 0G cap aci tor s ( 0402)
TD K C 1005C 0G1E 100J
C26 1 0.01µF ± 10%, 6.3V X 5R cap aci tor ( 0402)
TD K C 1005X 5R1E 103K
D1–D32 32 RGB LED modules
Stanley URGB1308B-10-TF
J1 0 Not installed
J2 1 2 x 5 right-angle receptacle (0.1in)
J3 1 2 x 5 right-angle male header (0.1in)
J4 0 Not installed
Windows is a registered trademark of Microsoft Corp.
Component List
DESIGNATION
QTY
DESCRIPTION
JU1–JU13
13
2-pin headers
JU14–JU20
7
3-pin headers
P1
1
Female DB9 connector
Q1–Q4
4
pnp transistors
Zetex FMMTL717TA (SOT23)
R1–R8
8
200Ω ±1% resistors (0603)
R9–R12
4
182Ω ±1% resistors (0603)
R13–R16
4
562Ω ±1% resistors (0603)
R17
1
4.99kΩ ±1% resistor (0402)
R18
1
9.53kΩ ±1% resistor (0402)
R19
1
249kΩ ±1% resistor (0402)
R20
1
267kΩ ±1% resistor (0402)
TP1–TP10
0
Not installed
U1, U2
2
24-output LED drivers
Maxim MAX6974ATL+
(40-pin TQFN, 6mm x 6mm EP)
U3
1
Low-power microcontroller
Maxim MAXQ2000-RAX+
(68-pin QFN, 10mm x 10mm EP)
U4
1
Dual LVDS line driver
Maxim MAX9112EKA+ (8-pin SOT23)
U5
1
Dual LVDS line receiver
Maxim MAX9113EKA+ (8-pin SOT23)
+Denotes a lead-free and RoHS-compliant EV kit.
Evaluates: MAX6974
Quick Start
Required Equipment
Before you begin, you need the following equipment:
Maxim MAX6974EVKIT
DC power supply, 5VDC at 1A
Windows 98/2000/XP-compatible computer with a
serial (COM) port
9-pin I/O extension cable
Procedure
Do not turn on the power until all connections
are complete.
1) Ensure that all jumpers JU1–JU20 are in 1-2 posi-
tion (see Table 5).
2) Connect a 5VDC power source (7VDC maximum) to
the board at the VLED and GND terminals.
3) Connect a cable from the computer’s serial port to
the EV kit. If using a 9-pin serial port, use a straight-
through, 9-pin female-to-male cable. If the only
available serial port uses a 25-pin connector, a
standard 25-pin-to-9-pin adapter is required.
4) Install the evaluation software on your computer by
launching MAX6974.msi. (The latest software can
be found on Maxim’s website www.maxim-ic.com.)
The program files are copied and icons are created
for them in the Windows Start menu.
5) Turn on the power supply. None of the LEDs light
up at this time.
6) Start the MAX6974 program by opening its icon in
the Start menu.
7) In the Select Maxim MAX6974 Evaluation Kit
Software Mode window, select Connect to EVKit on
port (Autodetect). Click OK. See Figure 1. Verify that
the blue M test pattern appears (test_0_blue_M.clr).
8) From the File menu, select Load Test Patterns...
and then pick the file test_01_all_white.clr. Verify
that all 32 RGB LEDs light up in white.
9) In the LED0 color grid, double-click one of the
large round color dots in the 4 x 8 grid (or select
one of the dots and click OK). The standard color
selector dialog box appears. Select a color and
click OK. Click Upload All to write the 4 x 8 color
grid data to the board. Verify that the LEDs light up
in colors corresponding to the software color grid
settings.
10) Set Global Intensity to 5/63 and click Upload All.
Verify that the LEDs are brighter.
Detailed Description of Software
The MAX6974 EV kit software controls one or more
MAX6974 EV kit boards, each of which has two
MAX6974s driving a 4 x 8 grid of LEDs.
MAX6974 Evaluation Kit
2 _______________________________________________________________________________________
DESIGNATION
QTY
DESCRIPTION
U6
1
RS - 232 tr anscei ver
M axi m M AX 3311E U B+ ( 10- p i n µM AX
®
)
U7, U8
2
LDO linear regulators
Maxim MAX1658ESA+ (8-pin SO)
U9
1
LDO linear regulator
Maxim MAX1659ESA+ (8-pin SO)
Component List (continued)
DESIGNATION
QTY
DESCRIPTION
Y1
1
20MHz crystal
Citizen HCM49-20.000MABJ-UT
Y2
1
32MHz oscillator
ECS ECS-3953M-320-B-TR
1
PCB: MAX6974 evaluation kit+
20
Shunts
Component Suppliers
Note: Indicate that you are using the MAX6974 when contacting these component suppliers.
µMAX is a registered trademark of Maxim Integrated Products, Inc.
Universal Options
The Cascaded Boards control must be set to the num-
ber of boards that are connected.
When Multiplexing is disabled, only the left half of the
4 x 8 grid is driven. See the Detailed Description of
Hardware section.
Clicking the Upload Control Command Only button
writes the control command to all cascaded MAX6974s
(see Figure 2). Refer to the MAX6974/MAX6975 data
sheet Commands section, Table 15.
Individual Board Options
The Individual Board Options controls apply to the
two MAX6974s on the selected board. If using a single
EV kit board, leave Select Board set at 1. See the
Cascading Boards section.
The Board Calibration controls determine the peak
LED current for each group of output ports. Because
the LEDs used on the EV kit board are only rated for
20mA, setting the calibration controls to a value greater
than about 50/255 can exceed the LED’s rated drive
current, causing permanent damage to the LED.
The 4 x 8 grid of circles inside Board LED Colors cor-
responds to the 4 x 8 grid of LEDs on the EV kit board.
These can be individually selected by clicking them
with the mouse. The Change… button chooses the
color of the single selected LED. Clicking the Change
All button sets all 32 LEDs to a chosen color.
Upload All
Clicking the Upload All button writes universal and
individual board options to all cascaded MAX6974s.
File-Load Test Patterns
Pressing the key combination Ctrl+T brings up a con-
venient window containing a list of test pattern files
(see Figure 3). All files whose names begin with “test_”
and end with “.clr” are listed as test patterns. Click on a
filename from the list, and the chroma pattern is
immediately loaded. For example, test pattern
test_921_ 2boards_all_white.clr loads a master and one
slave board with a 4 x 16 pattern where all of the LEDs
are on. The test pattern default.clr is loaded at startup.
Disabling LED Multiplexing
As shipped from the factory, the 4 x 8 grid of tricolor LEDs
is multiplexed. To disable multiplexing, and drive only the
left 4 x 4 half of the grid, two steps are necessary. First,
jumpers JU1–JU6 and JU19 and JU20 must be reconfig-
ured. See Table 5. Second, the Multiplexing must be set
to Disabled in Universal Options.
Cascading Boards
Two or more MAX6974 EV kit boards can be connected
together in a master-slave configuration, using the mas-
ter/slave connectors, J2 and J3.
1) With power off, connect the J3 pins of one board to
the J2 socket of the next board.
2) The board on the left is the master. On the master
board, set the JU14–JU18 shunts to position 1-2.
On all other boards, set the JU14–JU18 shunts to
position 2-3.
3) The board on the right is the last slave. On the last
slave board, set the JU10–JU13 shunts closed. On
all other boards, remove the JU10–JU13 shunts.
4) Connect 5VDC power to the master board, between
the VLED and GND pads.
5) Connect a cable from the computer’s serial port to
the master board. If using a 9-pin serial port, use a
straight-through, 9-pin, female-to-male cable.
6) Install the evaluation software on your computer by
launching MAX6974.msi. The program files are
copied and icons are created for them in the
Windows Start menu.
7) Turn on the power supply. None of the LEDs light
up at this time.
8) Start the MAX6974 program by opening its icon in
the Windows Start menu.
9) In the Select Maxim MAX6974 Evaluation Kit
Software Mode window, select Connect to EVKit
on port (Autodetect). See Figure 1. Click OK.
10) Set the software’s Cascaded Boards to 2, 3, 4, or
5, depending on the number of boards used.
11) Set the software’s Select Board to 1 to work with
the master board.
12) In the Board 1 LED Colors grid, double-click one
of the large round color dots in the 4 x 8 grid (or
select one of the dots and click OK). The standard
color selector dialog box appears. Select a color
and click OK.
13) Click Upload All to write the 4 x 8 color grid data to
the board. Verify that the LEDs light up in colors
corresponding to the software color grid settings.
14) Set Board 1 Global Intensity to 5/63 and click
Upload All. Verify that the LEDs are brighter.
15) Set the software’s Select Board to 2 to work with
the next board, and repeat the process of setting
LED colors, global intensity, and upload all.
Evaluates: MAX6974
MAX6974 Evaluation Kit
_______________________________________________________________________________________ 3
Evaluates: MAX6974
Slideshow Demo
The EV kit software can load a sequence of test pat-
terns. From the Command menu, select Slideshow,
then choose a folder containing test pattern files (see
Figure 4). The time between patterns can be adjusted
between 50ms and 30s.
Detailed Description of Hardware
The MAX6974 precision current-sinking, 24-output PWM
LED drivers (U1, U2) drive a 4 x 8 multiplexed grid of
red-green-blue LEDs in the common-anode configura-
tion. Common-emitter pnp BJTs (Q1–Q4) switch the
LED supply voltage in the multiplexing configuration.
See Tables 1 and 2.
User-supplied DC power between 5V and 7V, applied
between the VLED and GND pads, is regulated by three
MAX1658/MAX1659 low-dropout linear regulators (U7,
U8, and U9) to produce 5V, 3.3V, and 2.5V supply rails.
The MAXQ2000 microcontroller (U3) drives the
MAX9112 LVDS level shifter (U4). When JU14–JU18 are
in the 1-2 position, this microcontroller drives the
MAX6974 LED display drivers (U1, U2). A 32MHz crys-
tal oscillator (Y2) is used to demonstrate optimum PWM
frequency by driving the LVDS clock signal between
command sequences. During command sequences,
the MAXQ2000 bit bangs the LVDS clock at 2.8MHz.
When used with the software, the MAX3311 (U6) trans-
lates the RS-232 signal levels from the COM port (P1) to
logic-level signals. Resistor-dividers R17/R18 convert
the 5V logic output into 3.3V logic.
When JU14–JU18 are in the 2-3 position, external LVDS
signals must be applied to connector J2. In this slave
configuration, the MAXQ2000 (U3), MAX9112 (U4), and
MAX3311 (U6) are not used.
LED Power Dissipation
Peak LED current is set by each port’s LED current cali-
bration register. This 8-bit DAC allows peak LED cur-
rent to be reduced to between 20% and 100% of the
full-scale rating, 30mA. Setting the current calibration
register to a value of 0 limits the peak LED current to
6mA (20% of 30mA). By writing different values to the
red, green, and blue ports’ current calibration registers,
the display’s color balance can be adjusted to compen-
sate for LED efficacy variations.
The evaluation kit is shipped from the factory with an
LED type (Stanley URGB1308B) that has a maximum rat-
ing of 20mA forward current or 84mW power dissipation.
Evaluating the MAX6975
The MAX6974 EV kit’s software and firmware are only
capable of driving 12-bit PWM values. If the EV kit were
used to drive the MAX6975s instead, then the two least
significant bits of the individual pixel PWM values are
not accessible. See Tables 3 and 4.
MAX6974 Evaluation Kit
4 _______________________________________________________________________________________
Table 1. LED Nonmultiplexing
IC/PORT LED DEVICES DRIVEN COLORS
U1 port R D1 to D8 Red
U1 port G D1 to D8 Green
U2 port R D9 to D16 Red
U2 port G D9 to D16 Green
U1 port B D1 to D8 Blue
U2 port B D9 to D16 Blue
Table 2. LED Multiplexing
IC/PORT LED DEVICES DRIVEN COLORS
D1 to D8
U1 port R D17 to D24 Red
D1 to D8
U1 port G D17 to D24 Green
D9 to D16
U2 port R D25 to D32 Red
D9 to D16
U2 port G D25 to D32 Green
D1 to D8
U1 port B D9 to D16 Blue
D17 to D24
U2 port B D25 to D32 Blue
Table 3. Device Comparison—
Nonmultiplexed Operation
M A X6 9 7 4
M A X6 9 7 5
O PER A T I O N
7 b i ts 5 b i ts
G l ob al - i ntensi ty contr ol P W M r esol uti on
3 ( R, G , B)
3 ( R, G , B)
N um b er of LE D cur r ent cal i b r ati on
r eg i ster s
8 b i ts 8 b i ts LE D cur r ent cal i b r ati on r esol uti on
30m A30m AM axi m um LE D d r i ve cur r ent
( LE D cur r ent cal i b r ati on = 255)
6m A6m ALE D d r i ve cur r ent
( LE D cur r ent cal i b r ati on = 0)
24 24 N um b er of p i xel s
12 b i ts 14 b i ts Ind i vi d ual p i xel P W M - i ntensi ty- contr ol
r esol uti on
Evaluates: MAX6974
MAX6974 Evaluation Kit
_______________________________________________________________________________________ 5
Table 4. Device Comparison—
Multiplexed Operation
M A X6 9 7 4
M A X6 9 7 5
O PER A T I O N
6 b i ts 4 b i ts
G l ob al - i ntensi ty contr ol P W M r esol uti on
3 ( R, G , B)
3 ( R, G , B)
N um b er of LE D cur r ent cal i b r ati on
r eg i ster s
8 b i ts 8 b i ts LE D cur r ent cal i b r ati on r esol uti on
30m A30m AM axi m um LE D d r i ve cur r ent
( LE D cur r ent cal i b r ati on = 255)
6m A6m ALE D d r i ve cur r ent
( LE D cur r ent cal i b r ati on = 0)
48 48 N um b er of p i xel s
12 b i ts
14 b i ts Ind i vi d ual p i xel P W M - i ntensi ty- contr ol
r esol uti on
Table 5. Jumper Functions Table
JUMPER
PINS FUNCTION
Closed*
Enables LED multiplexing.
JU1 Open Disables LED multiplexing.
Closed*
Enables LED multiplexing.
JU2 Open Disables LED multiplexing.
Closed*
Enables LED multiplexing.
JU3 Open Disables LED multiplexing.
Closed*
Enables LED multiplexing.
JU4 Open Disables LED multiplexing.
Closed*
Enables LED multiplexing.
JU5 Open Disables LED multiplexing.
Closed*
Enables LED multiplexing.
JU6 Open Disables LED multiplexing.
Closed*
Normal operation.
JU7 Open Force LED D1 red open fault condition.
Closed*
Normal operation.
JU8 Open Force LED D1 green open fault condition.
Closed*
Normal operation.
JU9 Open Force LED D1 blue open fault condition.
*Default jumper setting.
Evaluates: MAX6974
MAX6974 Evaluation Kit
6 _______________________________________________________________________________________
Table 5. Jumper Functions Table (continued)
JUMPER
PINS FUNCTION
Closed*
Single board mode: R9 terminates CLKO; nothing connects to J3.
JU10 Open No CLKO termination, allowing slave board to connect to J3.
Closed*
Single board mode: R9 terminates CLKO; nothing connects to J3.
JU11 Open No CLKO termination, allowing slave board to connect to J3.
Closed*
Single board mode: R10 terminates DOUT; nothing connects to J3.
JU12 Open No DOUT termination, allowing slave board to connect to J3.
Closed*
Single board mode: R10 terminates DOUT; nothing connects to J3.
JU13 Open No DOUT termination, allowing slave board to connect to J3.
1-2* Master mode; nothing connects to J2.
2-3 Slave mode; driven by another MAX6974 EV kit connected to J2.JU14
Open Not valid. Do not use.
1-2* Master mode; nothing connects to J2.
2-3 Slave mode; driven by another MAX6974 EV kit connected to J2.
JU15
Open Not valid. Do not use.
1-2* Master mode; nothing connects to J2.
2-3 Slave mode; driven by another MAX6974 EV kit connected to J2.JU16
Open Not valid. Do not use.
1-2* Master mode; nothing connects to J2.
2-3 Slave mode; driven by another MAX6974 EV kit connected to J2.
JU17
Open Not valid. Do not use.
1-2* Master mode; nothing connects to J2.
2-3 Slave mode; driven by another MAX6974 EV kit connected to J2.
JU18
Open Not valid. Do not use.
1-2* Enables LED multiplexing.
2-3 Disables LED multiplexing.JU19
Open Not valid. Do not use.
1-2* Enables LED multiplexing.
2-3 Disables LED multiplexing.
JU20
Open Not valid. Do not use.
*Default jumper setting.
Evaluates: MAX6974
MAX6974 Evaluation Kit
_______________________________________________________________________________________ 7
Figure 1. Select Maxim MAX6974 EV Kit Software Mode
Screenshot
Figure 2. MAX6974 EV Kit—Connected to COM1 Main Window
Screenshot
Figure 3. Click to Upload Color Test Pattern Screenshot
Figure 4. Slideshow Screenshot
Evaluates: MAX6974
MAX6974 Evaluation Kit
8 _______________________________________________________________________________________
Figure 5a. MAX6974 EV Kit Schematic (Sheet 1 of 5)
2
VLED
IN
IN
OUT
1SET 7
6
5
IN 3
4
8
OUT
MAX1658
U7
SHDN
+3.3V
C2
100μF
+3.3V
GND VLED
2
VLED
IN
IN
OUT
1SET 7
6
5
IN 3
4
8
OUT
MAX1659
U9
SHDN
+5V
C25
10μF
+5V
GND VLED
VLED 2
IN
IN
OUT
1SET 7
6
5
IN 3
4
8
OUT
MAX1658
U8
SHDN
+2.5V
C3
100μF
GND VLED
+2.5V
R20
267kΩ
1%
R19
249kΩ
1%
VLED
C1
100μF
VLED 5.55V
GND
*PIN 31 OF MAX6974 SHOULD BE ROUTED TO GROUND SEPARATELY.
MAX6974
U1
EXPOSED PADDLE TO GND
LOADO 25
B7_A
32
B7
B3_A
36
B3
B4_A
35
B4
B6_A
33
B6
B5_A
34
B5
B2_A
37
B2
B1_A
38
B1
B0_A
39
B0
R4_A
12
R4
G3_A
19
G3
G2_A
G4_A
20
G4
18
G2
G1_A
17
G1
G0_A
16
G0
R7_A
15
R7
R6_A
14
R6
R5_A
R3_A
11
R3
13
R5
*31
GND
CLKO+ 29
CLKO- 28
R5
200Ω
1%
DOUT+ 27
DOUT- 26
R6
200Ω
1%
VDD
24
+3.3V
C6
0.47μF
GND
7
CLKI+
2
CLKI+
1
MUX0_A
DIN+
4
DIN+
3CLKI-
CLKI-
LOADI
6
LOADI
5DIN-
DIN-
R2
10
R2_A
9R1
R1_A
8R0
R0_A
30
MUX1
MUX0 MUX1_A
22
G6 G6_A
21
G5 G5_A
23
G7 G7_A
+3.3V
40
VDD
C7
0.47μF
C4
10μF
MAX6974
U2
EXPOSED PADDLE TO GND
LOADO 25
B7_B
32
B7
B3_B
36
B3
B4_B
35
B4
B6_B
33
B6
B5_B
34
B5
B2_B
37
B2
B1_B
38
B1
B0_B
39
B0
R4_B
12
R4
G3_B
19
G3
G2_B
G4_B
20
G4
18
G2
G1_B
17
G1
G0_B
16
G0
R7_B
15
R7
R6_B
14
R6
R5_B
R3_B
11
R3
13
R5
*31
GND
CLKO+ 29
CLKO- 28
DOUT+ 27
DOUT- 26
VDD
24
+3.3V
C8
0.47μF
GND
7
CLKI+
2
1
MUX0_B
DIN+
4
3CLKI-
LOADI
6
5DIN-
R2
10
R2_B
9R1
R1_B
8R0
R0_B
30
MUX1
MUX0 MUX1_B
22
G6 G6_B
21
G5 G5_B
23
G7 G7_B
+3.3V
40
VDD
C9
0.47μF
C5
10μF
CLKO-
TP7
DOUT+
TP8
CLKO+
TP6
DOUT-
TP9
LOADO
TP10
CLKO-
DOUT+
DOUT-
CLKO+
4
3OUT1
1
GND
MAX9113
U5
OUT2
DOUT
CLKO
2
VCC
+3.3V
C17
0.001μF
C10
0.1μF
JU12
JU13
IN2- 5
IN2+ 6
R8
200Ω
1%
J3-5 J3-6
J3-8
J3-7
J3-3
J3-1
J3
J3-4
J3-2
J3-10
J3-9
VLEDVLED
LOADO N.C.
JU11
JU10
IN1- 8
IN1+ 7
R7
200Ω
1%
Evaluates: MAX6974
MAX6974 Evaluation Kit
_______________________________________________________________________________________ 9
Figure 5b. MAX6974 EV Kit Schematic (Sheet 2 of 5)
SEG11
1
SEG12
2
SEG13
3
SEG14
4
SEG15
5
SEG16
6
SEG17
7
SEG18
8
SEG19
9
SEG20
10
SEG21
11
SEG22
12
SEG23
13
SEG24
14
SEG25
15
SEG26
16
SEG27
17
T0 48
T0B 47
VDD
49
HFXIN 51
T2 46
T2B 45
T1 44
T1B 43
GND 42
MISO 41
SCLK 40
MOSI 39
32KOUT 35
38
TX1 37
RX1 36
OSC_EN
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
VADJ
VLCD2
VLCD1
VLCD
RXO
19 20 21 22 23 24 25 26 29 30 31 32 33
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53
TXO
52
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
COM0
27 28
VDDIO
GND
TCK
34
32KIN
TDI
TMS
TDO
50
HFXOUT
Y1
C23
10pF
C24
10pF
SS
RESET
C12
0.1μF
+2.5V
U3
MAXQ2000
EXPOSED PADDLE UNCONNECTED
SEG28
18
+3.3V
C13
0.1μF
J1-7 J1-8
J1-2
J1-9
J1-5
J1-3
J1
J1-6
J1-4
J1-10
J1-1
+3.3V
N.C.N.C.
TXO
RXO
CLKO
DOUT
LOADO
+5V
4
1VCC
C1- C1+
MAX3311
U6
TIN
TXO
5ROUT
RXO
3
29
C15
0.1μF
C14
0.1μF
RIN 6
TOUT 7
GND 10
SHDN
R17
4.99kΩ
1%
R18
9.53kΩ
1%
V- 8
C16
0.1μF
P1-3
P1-8
P1-4
P1-2
P1-1
P1
P1-7
P1-6
N.C.
P1-9 N.C.
N.C.
N.C.
N.C.
P1-5
N.C.
J2-6 J2-5
J2-7
J2-9
J2-8
J2-4
J2-2
J2
J2-3
J2-1
J2-10
VLEDVLED
3
1DIN1
4
GND
MAX9112
U4
DIN2
2
VCC
C11
0.1μF
C18
0.001μF
DO2- 5
DO2+ 6
R4
200Ω
1%
DO1- 8
DO1+ 7
R3
200Ω
1%
23
1TRI
GND OUT
OSC_EN VCC 4
+3.3V +3.3V
C26
0.01μF
Y2
1
2
3
JU15
1
2
3
JU17
1
2
3
JU18 DIN-
1
2
3
JU16 CLKI+
1
2
3
JU14 LOADI
R1
200Ω
1%
CLKI-
CLKI+
TP1
TP3
TP2
R2
200Ω
1%
DIN+
TP4
TP5
N.C.
DIN-
Evaluates: MAX6974
MAX6974 Evaluation Kit
10 ______________________________________________________________________________________
Figure 5c. MAX6974 EV Kit Schematic (Sheet 3 of 5)
D19-A
PR2_A
PVMUX1_A
D19-B
PG2_A
PVMUX1_A
D19-C
PB2_A
PVMUX1_A
D20-A
PR3_A
PVMUX1_A
D20-B
PG3_A
PVMUX1_A
D20-C
PB3_A
PVMUX1_A
D21-A
PR4_A
PVMUX1_A
D21-B
PG4_A
PVMUX1_A
D21-C
PB4_A
PVMUX1_A
D22-A
PR5_A
PVMUX1_A
D22-B
PG5_A
PVMUX1_A
D22-C
PB5_A
PVMUX1_A
D23-A
PR6_A
PVMUX1_A
D23-B
PG6_A
PVMUX1_A
D23-C
PB6_A
PVMUX1_A
D24-A
PR7_A
PVMUX1_A
D24-B
PG7_A
PVMUX1_A
D24-C
PB7_A
PVMUX1_A
D25-A
PR0_B
PVMUX1_B
D25-B
PG0_B
PVMUX1_B
D25-C
PB0_B
PVMUX1_B
D26-A
PR1_B
PVMUX1_B
D26-B
PG1_B
PVMUX1_B
D26-C
PB1_B
PVMUX1_B
D27-A
PR2_B
PVMUX1_B
D27-B
PG2_B
PVMUX1_B
D27-C
PB2_B
PVMUX1_B
D13-A
PR4_B
PVMUX0_B
D13-B
PG4_B
PVMUX0_B
D13-C
PB4_B
PVMUX0_B
D14-A
PR5_B
PVMUX0_B
D14-B
PG5_B
PVMUX0_B
D14-C
PB5_B
PVMUX0_B
D15-A
PR6_B
PVMUX0_B
D15-B
PG6_B
PVMUX0_B
D15-C
PB6_B
PVMUX0_B
D16-A
PR7_B
PVMUX0_B
D16-B
PG7_B
PVMUX0_B
D16-C
PB7_B
PVMUX0_B
D17-A
PR0_A
PVMUX1_A
D17-B
PG0_A
PVMUX1_A
D17-C
PB0_A
PVMUX1_A
D18-A
PR1_A
PVMUX1_A
D18-B
PG1_A
PVMUX1_A
D18-C
PB1_A
PVMUX1_A
D7-A
PR6_A
PVMUX0_A
D7-B
PG6_B
PVMUX0_A
D7-C
PB6_A
PVMUX0_A
D8-A
PR7_A
PVMUX0_A
D8-B
PG7_A
PVMUX0_A
D8-C
PB7_A
PVMUX0_A
D9-A
PR0_B
PVMUX0_B
D9-B
PG0_B
PVMUX0_B
D9-C
PB0_B
PVMUX0_B
D10-A
PR1_B
PVMUX0_B
D10-B
PG1_B
PVMUX0_B
D10-C
PB1_B
PVMUX0_B
D11-A
PR2_B
PVMUX0_B
D11-B
PG2_B
PVMUX0_B
D11-C
PB2_B
PVMUX0_B
D12-A
PR3_B
PVMUX0_B
D12-B
PG3_B
PVMUX0_B
D12-C
PB3_B
PVMUX0_B
D2-A
PR1_A
PVMUX0_A
D2-B
PG1_A
PVMUX0_A
D2-C
PB1_A
PVMUX0_A
D3-A
PR2_A
PVMUX0_A
D3-B
PG2_A
PVMUX0_A
D3-C
PB2_A
PVMUX0_A
D4-A
PR3_A
PVMUX0_A
D4-B
PG3_A
PVMUX0_A
D4-C
PB3_A
PVMUX0_A
D5-A
PR4_A
PVMUX0_A
D5-B
PG4_A
PVMUX0_A
D5-C
PB4_A
PVMUX0_A
D6-A
PR5_A
PVMUX0_A
D6-B
PG5_A
PVMUX0_A
D6-C
PB5_A
PVMUX0_A
D1-A
PR0_A
JU7
PVMUX0_A
D1-C
PB0_A
JU9
PVMUX0_A
D1-B
PG0_A
JU8
PVMUX0_A
Evaluates: MAX6974
MAX6974 Evaluation Kit
______________________________________________________________________________________ 11
Figure 5d. MAX6974 EV Kit Schematic (Sheet 4 of 5)
D28-A
PR3_B
PVMUX1_B
D28-B
PG3_B
PVMUX1_B
D28-C
PB3_B
PVMUX1_B
D29-A
PR4_B
PVMUX1_B
D29-B
PG4_B
PVMUX1_B
D29-C
PB4_B
PVMUX1_B
D30-A
PR5_B
PVMUX1_B
D30-B
PG5_B
PVMUX1_B
D30-C
PB5_B
PVMUX1_B
D31-A
PR6_B
PVMUX1_B
D31-B
PG6_B
PVMUX1_B
D31-C
PB6_B
PVMUX1_B
D32-A
PR7_B
PVMUX1_B
D32-B
PG7_B
PVMUX1_B
D32-C
PB7_B
PVMUX1_B
123
JU19
R9
182Ω
1%
23
1
Q1
VMUXO_A
JU1
R13
562Ω
1%
MUXO_A
C19
120pF
123
JU20
R10
182Ω
1%
23
1
Q2
VMUXO_B
JU2
R14
562Ω
1%
MUXO_B
C20
120pF
JU5
R11
182Ω
1%
23
1
Q3
VMUX1_A
JU3
R15
562Ω
1%
MUX1_A
C21
120pF
JU6
R12
182Ω
1%
23
1
Q4
VMUX1_B
JU4
R16
562Ω
1%
MUX1_B
C22
120pF
VLED
Evaluates: MAX6974
MAX6974 Evaluation Kit
12 ______________________________________________________________________________________
Figure 5e. MAX6974 EV Kit Schematic (Sheet 5 of 5)
J4-11
J4-13
J4-9
J4-7
J4
J4-8
J4-16
J4-14
J4-12
J4-10
J4-15
J4-5 J4-6
J4-3
J4-1
J4-4
J4-2
J4-27
J4-29
J4-25
J4-23
J4-32
J4-18
J4-20
J4-22
J4-24
J4-26
J4-28
J4-30
J4-31
R7_A
R4_A
R3_A
R5_A
R6_A
PR3_A
PR4_A
PR5_A
PR6_A
J4-21
J4-19
J4-17
R1_A
R0_A
R2_A
PRO_A
PR1_A
PR2_A
PR7_A
J4-43
J4-45
J4-41
J4-39
J4-48
J4-34
J4-36
J4-38
J4-40
J4-42
J4-44
J4-46
J4-47
G7_A
G4_A
G3_A
G5_A
G6_A
PG3_A
PG4_A
PG5_A
PG6_A
J4-37
J4-35
J4-33
G1_A
G0_A
G2_A
PGO_A
PG1_A
PG2_A
PG7_A
(ODD PINS CONNECT TO EVEN PINS ON TOP OF PCB)
VMUX0_A
VMUX0_B
VMUX1_A
VMUX1_B
PVMUX0_A
PVMUX0_B
PVMUX1_A
PVMUX1_B
J4
J4-59
J4-61
J4-57
J4-55
J4-64
J4-50
J4-52
J4-54
J4-56
J4-58
J4-60
J4-62
J4-63
B7_A
B4_A
B3_A
B5_A
B6_A
PB3_A
PB4_A
PB5_A
PB6_A
J4-53
J4-51
J4-49
B1_A
B0_A
B2_A
PBO_A
PB1_A
PB2_A
PB7_A
J4-75
J4-77
J4-73
J4-71
J4-80
J4-66
J4-68
J4-70
J4-72
J4-74
J4-76
J4-78
J4-79
R7_B
R4_B
R3_B
R5_B
R6_B
PR3_B
PR4_B
PR5_B
PR6_B
J4-69
J4-67
J4-65
R1_B
R0_B
R2_B
PRO_B
PR1_B
PR2_B
PR7_B
(ODD PINS CONNECT TO EVEN PINS ON TOP OF PCB)
J4
J4-91
J4-93
J4-89
J4-87
J4-96
J4-82
J4-84
J4-86
J4-88
J4-90
J4-92
J4-94
J4-95
G7_B
G4_B
G3_B
G5_B
G6_B
PG3_B
PG4_B
PG5_B
PG6_B
J4-85
J4-83
J4-81
G1_B
G0_B
G2_B
PGO_B
PG1_B
PG2_B
PG7_B
J4-107
J4-109
J4-105
J4-103
J4-112
J4-98
J4-100
J4-102
J4-104
J4-106
J4-108
J4-110
J4-111
B7_B
B4_B
B3_B
B5_B
B6_B
PB3_B
PB4_B
PB5_B
PB6_B
J4-101
J4-99
J4-97
B1_B
B0_B
B2_B
PBO_B
PB1_B
PB2_B
PB7_B
(ODD PINS CONNECT TO EVEN PINS ON TOP OF PCB)
Evaluates: MAX6974
MAX6974 Evaluation Kit
______________________________________________________________________________________ 13
Figure 6. MAX6974 EV Kit Component Placement Guide—Component Side
Evaluates: MAX6974
MAX6974 Evaluation Kit
14 ______________________________________________________________________________________
Figure 7. MAX6974 EV Kit PCB Layout—Component Side
Evaluates: MAX6974
MAX6974 Evaluation Kit
______________________________________________________________________________________ 15
Figure 8. MAX6974 EV Kit PCB Layout—Ground Layer 2
Evaluates: MAX6974
MAX6974 Evaluation Kit
16 ______________________________________________________________________________________
Figure 9. MAX6974 EV Kit PCB Layout—Signal Layer 3
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17
© 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Evaluates: MAX6974
MAX6974 Evaluation Kit
Figure 10. MAX6974 EV Kit PCB Layout—Solder Side
Springer
Revision History
Pages changed at Rev 1: 1, 2, 8–12, 14–17
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
MAX6974EVKIT+