Rev.2.00 Feb 07, 2007 page 1 of 25
HA1630D01/02/03 Series
Ultra-Small Low Voltage Operation CMOS Dual Operational
Amplifier REJ03D0800-0200
Rev.2.00
Feb 07, 2007
Description
The HA1630D01/02/03 are dual CMOS Operational Amplifiers realizing low voltage operation, low input offset
voltage and low supply current. In addition to a low operating voltage from 1.8V , these device output can achieve full
swing output voltage cap ability extending to either supply. Available in an ultra-small TSSOP-8 and MMPAK-8
package that occupy more small area against the SOP-8.
Features
Low power and single supply operation VDD = 1.8 to 5.5 V
Low input offset voltage VIO = 4.0 mV Max
Low supply current (per channel) IDD = 15 μA Typ (HA1630D01)
I
DD = 50 μA Typ (HA1630D02)
I
DD = 100 μ/A Typ (HA1630D03)
Maximum output voltage VOH = 2.9 V Min (at VDD = 3.0 V)
Low input bias current IIB = 1 pA Typ
Ordering Information
Type No. Package Name Package Code
HA1630D01T
HA1630D02T
HA1630D03T TTP-8DA PTSP0008JC-B
HA1630D01MM
HA1630D02MM
HA1630D03MM MMPAK-8 PLSP0008JC-A
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 2 of 25
Pin Arrangement
VDD
VOUT2
VIN2(–)
VIN2(+)
VOUT1
VIN1(–)
VIN1(+)
VSS
8
7
5
6
1
2
4
3
+
+
Equivalent Circuit (per one channel)
VDD
VSS
VIN(+)
VIN(–) VOUT
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 3 of 25
Absolute Maximum Ratings
(Ta = 25°C)
Items Symbol Ratings Unit Note
Supply voltage VDD 7 V
Differential input voltage VIN(diff) –VDD to +VDD V
Input voltage VIN –0.3 to +VDD V *1
Power dissipation PT 240/145 mW TTP-8DA/MMPAK-8 *2
Operating temp. Range Topr –40 to +85 °C
Storage temp. Range Tstg –55 to +125 °C
Notes: 1. Do not apply Input Voltage exceeding VDD or 7 V.
2. The value of PTSP0008JC-B (TTP-8DAV) / PLSP0008JC-A (MMPAK-8). It computes from heat resistance
θja = 520°C/W, and 690°C/W each other.
Electrical Characteristics
(VDD = 3.0 V, Ta = 25°C)
Items Symbol Min Typ Max Unit Test Condition
Input offset voltage VIO 4.0 mV Vin = 1.5 V
Input offset current IIO (1.0) pA Vin = 1.5 V
Input bias current IIB (1.0) pA Vin = 1.5 V
Output high voltage VOH 2.9 V RL = 1 MΩ
6 12 VOH = 2.5 V (HA1630D01)
25 50 VOH = 2.5 V (HA1630D02)
Output source current IO SOURCE
50 100
μA
VOH = 2.5 V (HA1630D03)
Output low voltage VOL0.1 V RL = 1 MΩ
— (0.8) VOL = 0.5 V (HA1630D01)
— (1.0) VOL = 0.5 V (HA1630D02)
Output sink current IO SINK
— (1.2)
mA
VOL = 0.5 V (HA1630D03)
Common mode input voltage
range VCM –0.1 to 2.1 V
— (0.125) CL = 20 pF (HA1630D01)
— (0.50) CL = 20 pF (HA1630D02)
Slew rate SR
— (1.00)
V/μs
CL = 20 pF (HA1630D03)
Voltage gain AV 60 80 dB
— (200) CL = 20 pF (HA1630D01)
— (680) CL = 20 pF (HA1630D02)
Gain bandwidth product BW
— (1200)
kHz
CL = 20 pF (HA1630D03)
Power supply rejection ratio PSRR 60 80 dB
Common mode rejection ratio CMRR 60 80 dB
— 30 60 RL = (HA1630D01)
— 100 200 RL = (HA1630D02)
Supply current IDD
— 200 400
μA
RL = (HA1630D03)
Note: 1. ( ) : Design specification
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 4 of 25
Table of Graphs
Electrical Characteristics HA1630D01
Figure HA1630D02
Figure HA1630D03
Figure Test
Circuit
vs Supply voltage 1-1 2-1 3-1 Supply current IDD vs Ambient temperature 1-2 2-2 3-2 2
vs Output source current 1-3 2-3 3-3 Output high voltage VOH vs Supply voltage 1-4 2-4 3-4 4
Output source current IO SOURCE vs Ambient temperature 1-5 2-5 3-5 6
Output low voltage VOL vs Output sink current 1-6 2-6 3-6 5
Output sink current IO SINK vs Ambient temperature 1-7 2-7 3-7 6
Distribution 1-8 2-8 3-8
vs Supply voltage 1-9 2-9 3-9
Input offset voltage VIO
vs Ambient temperature 1-10 2-10 3-10
1
Common mode input
voltage range VCM vs Ambient temperature 1-11 2-11 3-11 7
Power supply rejection
ratio PSRR vs Frequency 1-12 2-12 3-12 1
Common mode rejection
ratio CMRR vs Frequency 1-13 2-13 3-13 7
Voltage gain & phase
angle AV vs Frequency 1-14 2-14 3-14 10
vs Ambient temperature 1-15 2-15 3-15 Input bias current IIB vs Input voltage 1-16 2-16 3-16 3
Slew Rate (rising) SRr vs Ambient temperature 1-17 2-17 3-17
Slew Rate (falling) SRf vs Ambient temperature 1-18 2-18 3-18
Large signal transient
response 1-19 2-19 3-19
Slew rate
Small signal transient
response 1-20 2-20 3-20
9
(0 dB) vs. Output voltage p-p 2-21 3-21
Total harmonic distortion +
noise (40 dB) vs. Output voltage p-p 2-22 3-22
Maximum p-p output
voltage vs Frequency 1-21 2-23 3-23
8
Voltage noise density vs Frequency 1-22 2-24 3-24
Channel separation vs Frequency 1-23 2-25 3-25
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 5 of 25
Main Characteristics (HA1630D01)
Figure 1-1. HA1630D01
Supply Current vs. Supply Voltage
0
10
20
30
40
50
123456
Supply Voltage V
DD
(V)
Supply Current I
DD
(μA)
Figure 1-3. HA1630D01
Output High Voltage vs. Output Source Current
0
1
2
3
4
5
6
05101520
Output Source Current I
OSOURCE
(μA)
Output High Voltage V
OH
(V)
V
DD
= 5.5 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Ta = 25°C
Ta = 25°C
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 1-5. HA1630D01
Output Source Current vs. Ambient Temperature
0
10
20
30
40
50
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Output Source Current
I
OSOURCE
(μA)
Figure 1-2. HA1630D01
Supply Current vs. Ambient Temperature
0
10
20
30
40
50
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Supply Current I
DD
(μA)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
R
L
= 1 M
Ω
R
L
= 510 k
Ω
Ta = 25°C
Figure 1-4. HA1630D01
Output High Voltage vs. Supply Voltage
1
2
3
4
5
6
123456
Supply Voltage V
DD
(V)
Output High Voltage V
OH
(V)
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 6 of 25
Figure 1-6. HA1630D01
Output Low Voltage vs. Output Sink Current
0
0.5
1.0
1.5
2.0
0 0.5 1.0
Output Sink Current I
OSINK
(mA)
Output Low Voltage V
OL
(V)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 1-8. HA1630D01
Input Offset Voltage Distribution
0
10
20
30
40
50
432101234
Input Offset Voltage V
IO
(mV)
Percentage (%)
Figure 1-10. HA1630D01
Input Offset Voltage vs. Ambient Temperature
4
3
2
1
0
1
2
3
4
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Input Offset Voltage V
IO
(mV)
V
DD
= 5.0 V, V
IN
= 2.5 V
V
DD
= 1.8 V, V
IN
= 0.9 V
V
DD
= 3.0 V, V
IN
= 1.5 V
Figure 1-7. HA1630D01
Output Sink Current vs. Ambient Temperature
0
0.5
1.0
1.5
2.0
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Output Sink Current
I
OSINK
(mA)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 1-9. HA1630D01
Input Offset Voltage vs. Supply Voltage
4
3
2
1
0
1
2
3
4
123456
Supply Voltage V
DD
(V)
Input Offset Voltage V
IO
(mV)
Ta = 25°C
V
IN
= 0.5 V
Figure 1-11. HA1630D01
Common Mode Input Voltage vs.
Ambient Temperature
1.0
0
1.0
2.0
3.0
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Common Mode
Input Voltage V
CM
(V)
Ta = 25°C
V
DD
= 3.0 V
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 7 of 25
Figure 1-14. HA1630D01
Open Loop Voltage Gain and Phase Angle vs. Frequency
40
20
0
20
40
60
80
100
Frequency f (Hz)
Open Loop Voltage Gain
AVOL (dB)
90
45
0
45
90
135
180
225
Phase Angle (deg)
Open Loop Voltage Gain
Phase Angle
Phase Margin: 50 deg
Figure 1-13. HA1630D01
Common Mode Rejection Ratio vs. Frequency
0
20
40
60
80
100
120
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 1-12. HA1630D01
Power Supply Rejection Ratio vs. Frequency
0
20
40
60
80
100
120
10 100 1k 10k 100k 1M
10 100 1k 10k 100k 1M
10 100 1k 10k 100k 1M
Frequency f (Hz)
Power Supply Rejection Ratio
PSRR (dB)
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 8 of 25
Figure 1-15. HA1630D01
Input Bias Current vs. Ambient Temperature
200
100
0
100
200
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Input Bias Current IIB (pA)
Figure 1-16. HA1630D01
Input Bias Current vs. Input Voltage
200
100
0
100
200
0 0.5 1.0 1.5 2.0 2.5 3.0
Input Voltage VIN (V)
Input Bias Current IIB (pA)
Figure 1-20. HA1630D01
Small Signal Transient Response
Figure 1-19. HA1630D01
Large Signal Transient Response
Figure 1-17. HA1630D01
Slew Rate (rising) vs. Ambient Temperature
0
0.05
0.10
0.15
0.20
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Slew Rate SRr (V/μs)
Figure 1-18. HA1630D01
Slew Rate (falling) vs. Ambient Temperature
0
0.05
0.10
0.15
0.20
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Slew Rate SRf (V/μs)
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
Ta = 25°C
VDD = 3.0 V
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
VDD = 3.0 V
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 9 of 25
Figure 1-21. HA1630D01
Voltage Output p-p vs. Frequency
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
100 1 k 10k 100k 1M
Frequency f (Hz)
Output Voltage Vout p-p (V)
Figure 1-22. HA1630D01
Voltage Noise Density vs. Frequency
Voltage Noise Density (nV/Hz)
100
200
0
Frequency f (Hz)
Frequency f (Hz)
100 10k
Figure 1-23. HA1630D01
Channel Separation vs. Frequency
0
20
40
60
80
100
120
140
10 100 1k 10k 100k 1M
Channel Separation C.S. (dB)
Gain = 40 dB, Vp-p = 0.03 V
Gain = 20 dB, Vp-p = 0.3 V
Gain = 0 dB, Vp-p = 2.5 V
Ta = 25°C
VDD = 3.0 V
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
CH1CH2
CH2CH1
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 10 of 25
Main Characteristics (HA1630D02)
Figure 2-1. HA1630D02
Supply Current vs. Supply Voltage
0
40
80
120
160
200
123456
Supply Voltage VDD (V)
Supply Current IDD (μA)
Figure 2-3. HA1630D02
Output High Voltage vs. Output Source Current
0
1
2
3
4
5
6
02010 4030 50 60
Output Source Current IOSOURCE (μA)
Output High Voltage VOH (V)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Ta = 25°C
Ta = 25°C
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 2-5. HA1630D02
Output Source Current vs. Ambient Temperature
0
20
40
60
80
100
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Output Source Current
IOSOURCE (μA)
Figure 2-2. HA1630D02
Supply Current vs. Ambient Temperature
0
40
80
120
160
200
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Supply Current IDD (μA)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
R
L
= 1 M
Ω
R
L
= 120 k
Ω
Ta = 25°C
Figure 2-4. HA1630D02
Output High Voltage vs. Supply Voltage
1
2
3
4
5
6
123456
Supply Voltage VDD (V)
Output High Voltage VOH (V)
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 11 of 25
Figure 2-6. HA1630D02
Output Low Voltage vs. Output Sink Current
0
0.5
1.0
1.5
2.0
0 0.5 1.51.0
Output Sink Current IOSINK (mA)
Output Low Voltage VOL (V)
VDD = 5.0 V
VDD = 3.0 V
VDD = 3.0 V
VDD = 1.8 V
Figure 2-8. HA1630D02
Input Offset Voltage Distribution
0
10
20
30
40
50
43210 1 2 3 4
Input Offset Voltage VIO (mV)
Percentage (%)
Figure 2-10. HA1630D02
Input Offset Voltage vs. Ambient Temperature
4
3
2
1
0
1
2
3
4
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Input Offset Voltage VIO (mV)
VDD = 5.0 V, VIN = 2.5 V
VDD = 1.8 V, VIN = 0.9 V
VDD = 3.0 V, VIN = 1.5 V
Figure 2-7. HA1630D02
Output Sink Current vs. Ambient Temperature
0
0.5
1.0
1.5
2.5
2.0
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Output Sink Current
IOSINK (mA)
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
Figure 2-9. HA1630D02
Input Offset Voltage vs. Supply Voltage
4
3
2
1
0
1
2
3
4
123456
Supply Voltage VDD (V)
Input Offset Voltage VIO (mV)
Ta = 25°C
VIN = 0.5 V
Figure 2-11. HA1630D02
Common Mode Input Voltage vs.
Ambient Temperature
1.0
0
1.0
2.0
3.0
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Common Mode
Input Voltage VCM (V)
Ta = 25°C
VDD = 3.0 V
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 12 of 25
Figure 2-14. HA1630D02
Open Loop Voltage Gain and Phase Angle vs. Frequency
40
20
0
20
40
60
80
100
Frequency f (Hz)
Open Loop Voltage Gain
AVOL (dB)
90
45
0
45
90
135
180
225
Phase Angle (deg)
Figure 2-13. HA1630D02
Common Mode Rejection Ratio vs. Frequency
0
20
40
60
80
100
120
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 2-12. HA1630D02
Power Supply Rejection Ratio vs. Frequency
0
20
40
60
80
100
120
10 100 1k 10k 100k 1M
10 100 1k 10k 100k 1M
10 100 1k 10k 100k 1M 10M
Frequency f (Hz)
Power Supply Rejection Ratio
PSRR (dB)
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Open Loop Voltage Gain
Phase Angle
Phase Margin: 50 deg
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 13 of 25
Figure 2-15. HA1630D02
Input Bias Current vs. Ambient Temperature
200
100
0
100
200
0 25 50 75 100
Ambient Temperature Ta (°C)
Input Bias Current I
IB
(pA)
Figure 2-16. HA1630D02
Input Bias Current vs. Input Voltage
200
100
0
100
200
0 0.5 1.0 1.5 2.0 2.5 3.0
Input Voltage V
IN
(V)
Input Bias Current I
IB
(pA)
Figure 2-20. HA1630D02
Small Signal Transient Response
Figure 2-19. HA1630D02
Large Signal Transient Response
Figure 2-17. HA1630D02
Slew Rate (rising) vs. Ambient Temperature
0.3
0.5
0.4
0.6
0.7
0.8
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Slew Rate SRr (V/μs)
Figure 2-18. HA1630D02
Slew Rate (falling) vs. Ambient Temperature
0.3
0.5
0.4
0.6
0.7
0.8
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Slew Rate SRf (V/μs)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Ta = 25°C
V
DD
= 3.0 V
Ta = 25°C
V
DD
= 3.0 V
R
L
= 1 MΩ
C
L
= 20 pF
Ta = 25°C
V
DD
= 3.0 V
R
L
= 1 MΩ
C
L
= 20 pF
V
DD
= 3.0 V
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 14 of 25
Figure 2-21. HA1630D02
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
0.001
0.01
0.1
1
10
0 0.5 1.0 1.5 2.0 2.5 3.0
Output Voltage Vout p-p (V)
T.H.D. + Noise (%)
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
f = 10 kHz
f = 100 Hz
f = 1 kHz VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
f = 10 kHz
f = 100 Hz
f = 1 kHz
Figure 2-22. HA1630D02
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
0.001
0.01
0.1
1
10
0 0.5 1.0 1.5 2.0 2.5 3.0
Output Voltage Vout p-p (V)
T.H.D. + Noise (%)
Figure 2-23. HA1630D02
Voltage Output p-p vs. Frequency
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
100 1k 10k 100k 1M
Frequency f (Hz)
Voltage Output Vout p-p (V)
Gain = 40 dB, Vp-p = 0.03 V
Gain = 20 dB, Vp-p = 0.3 V
Gain = 0 dB, Vp-p = 2.5 V
Ta = 25°C
VDD = 3.0 V
Figure 2-24. HA1630D02
Voltage Noise Density vs. Frequency
Voltage Noise Density (nV/Hz)
100
200
0
Frequency f (Hz)
100 10k
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 15 of 25
Figure 2-25. HA1630D02
Channel Separation vs. Frequency
0
20
40
60
80
100
120
140
100 1k 10k 100k 1M
Frequency f (Hz)
Channel Separation (dB)
Ta = 25°C
V
DD
= 3.0 V
CH2CH1
CH1CH2
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 16 of 25
Main Characteristics (HA1630D03)
Figure 3-1. HA1630D03
Supply Current vs. Supply Voltage
0
100
200
300
400
123456
Supply Voltage V
DD
(V)
Supply Current I
DD
(μA)
Figure 3-3. HA1630D03
Output High Voltage vs. Output Source Current
0
1
2
3
4
5
6
0 50 100 150
Output Source Current I
OSOURCE
(μA)
Output High Voltage V
OH
(V)
V
DD
= 5.5 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Ta = 25°C
Ta = 25°C
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 3-5. HA1630D03
Output Source Current vs. Ambient Temperature
0
50
100
150
200
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Output Source Current
I
OSOURCE
(μA)
Figure 3-2. HA1630D03
Supply Current vs. Ambient Temperature
0
100
200
300
400
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Supply Current I
DD
(μA)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
R
L
= 1 M
Ω
R
L
= 51 k
Ω
Ta = 25°C
Figure 3-4. HA1630D03
Output High Voltage vs. Supply Voltage
1
2
3
4
5
6
123456
Supply Voltage V
DD
(V)
Output High Voltage V
OH
(V)
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 17 of 25
Figure 3-6. HA1630D03
Output Low Voltage vs. Output Sink Current
0
0.5
1.0
1.5
2.0
0 0.5 1.0 1.5
Output Sink Current I
OSINK
(mA)
Output Low Voltage V
OL
(V)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 3-8. HA1630D03
Input Offset Voltage Distribution
0
10
20
30
40
50
432101 2 34
Input Offset Voltage V
IO
(mV)
Percentage (%)
Figure 3-10. HA1630D03
Input Offset Voltage vs. Ambient Temperature
4
3
2
1
0
1
2
3
4
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Input Offset Voltage V
IO
(mV)
V
DD
= 5.0 V, V
IN
= 2.5 V
V
DD
= 1.8 V, V
IN
= 0.9 V
V
DD
= 3.0 V, V
IN
= 1.5 V
Figure 3-7. HA1630D03
Output Sink Current vs. Ambient Temperature
0
0.5
1.0
1.5
2.5
2.0
40 20020406080100
Ambient Temperature Ta (°C)
Output Sink Current
I
OSINK
(mA)
V
DD
= 5.0 V
V
DD
= 3.0 V
V
DD
= 1.8 V
Figure 3-9. HA1630D03
Input Offset Voltage vs. Supply Voltage
4
3
2
1
0
1
2
3
4
123456
Supply Voltage V
DD
(V)
Input Offset Voltage V
IO
(mV)
Ta = 25°C
V
IN
= 0.5 V
Figure 3-11. HA1630D03
Common Mode Input Voltage vs.
Ambient Temperature
1.0
0
1.0
2.0
3.0
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Common Mode
Input Voltage V
CM
(V)
Ta = 25°C
V
DD
= 3.0 V
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 18 of 25
Figure 3-14. HA1630D03
Open Loop Voltage Gain and Phase Angle vs. Frequency
40
20
0
20
40
60
80
100
Frequency f (Hz)
Open Loop Voltage Gain
AVOL (dB)
90
45
0
45
90
135
180
225
Phase Angle (deg)
Figure 3-13. HA1630D03
Common Mode Rejection Ratio vs. Frequency
0
20
40
60
80
100
120
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 3-12. HA1630D03
Power Supply Rejection Ratio vs. Frequency
0
20
40
60
80
100
120
10 100 1k 10k 100k 1M
10 100 1k 10k 100k 1M
10 100 1k 10k 100k 1M 10M
Frequency f (Hz)
Power Supply Rejection Ratio
PSRR (dB)
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Open Loop Voltage Gain
Phase Angle
Phase Margin: 50 deg
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 19 of 25
Figure 3-15. HA1630D03
Input Bias Current vs. Ambient Temperature
200
100
0
100
200
0 20 40 60 80 100
Ambient Temperature Ta (°C)
Input Bias Current IIB (pA)
Figure 3-16. HA1630D03
Input Bias Current vs. Input Voltage
200
100
0
100
200
0 0.5 1.0 1.5 2.0 2.5 3.0
Input Voltage VIN (V)
Input Bias Current IIB (pA)
Figure 3-20. HA1630D03
Small Signal Transient Response
Figure 3-19. HA1630D03
Large Signal Transient Response
Figure 3-17. HA1630D03
Slew Rate (rising) vs. Ambient Temperature
0
0.6
0.3
0.9
1.2
1.5
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Slew Rate SRr (V/μs)
Figure 3-18. HA1630D03
Slew Rate (falling) vs. Ambient Temperature
0
0.6
0.3
0.9
1.2
1.5
40 20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Slew Rate SRf (V/μs)
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
VDD = 5.0 V
VDD = 3.0 V
VDD = 1.8 V
Ta = 25°C
VDD = 3.0 V
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
VDD = 3.0 V
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 20 of 25
Figure 3-21. HA1630D03
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
0.001
0.01
0.1
1
10
0 0.5 1.0 1.5 2.0 2.5 3.0
Output Voltage Vout p-p (V)
T.H.D. + Noise (%)
V
DD
= 3.0 V
Ta = 25°C
Gain = 0 dB
f = 10 kHz
f = 100 Hz
f = 1 kHz V
DD
= 3.0 V
Ta = 25°C
Gain = 40 dB
f = 10 kHz
f = 100 Hz
f = 1 kHz
Figure 3-22. HA1630D03
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
0.001
0.01
0.1
1
10
0 0.5 1.0 1.5 2.0 2.5 3.0
Output Voltage Vout p-p (V)
T.H.D. + Noise (%)
Figure 3-23. HA1630D03
Voltage Output p-p vs. Frequency
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
100 1k 10k 100k 1M
Frequency f (Hz)
Voltage Output Vout p-p (V)
Gain = 40 dB, Vp-p = 0.03 V
Gain = 20 dB, Vp-p = 0.3 V
Gain = 0 dB, Vp-p = 2.5 V
Ta = 25°C
V
DD
= 3.0 V
Figure 3-24. HA1630D03
Voltage Noise Density vs. Frequency
Voltage Noise Density (nV/Hz)
100
200
0
Frequency f (Hz)
100 10k
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 21 of 25
Figure 3-25. HA1630D03
Channel Separation vs. Frequency
0
20
40
60
80
100
120
140
10 100 1k 10k 100k 1M
Frequency f (Hz)
Channel Separation (dB)
Ta = 25°C
V
DD
= 3.0 V
CH2CH1
CH1CH2
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 22 of 25
Test Circuits
Measure V
O
corresponding to V
DD1
= 1.8 V and V
DD2
= 5.5 V
1. Power Supply Rejection Ratio, PSRP & Voltage Offset, V
IO
2. Supply Current, I
DD
3. Input Bias Current, I
IB
4. Output High Voltage, V
OH
5. Output Low Voltage, V
OL
R
L
= 1 MΩ
V
IN1
= V
DD
/ 2 0.05 V
V
IN2
= V
DD
/ 2 + 0.05 V
+
A
V
DD
V
DD
2
+
A
V
DD
V
DD
2
+
V
DD
V
O
V
DD
2
R
S
R
S
R
F
V
IO
V
OH
R
L
= 1 MΩ
V
IN1
= V
DD
/ 2 + 0.05 V
V
IN2
= V
DD
/ 2 0.05 V
V
OL
PSRR = 20log ×R
S
R
S
+ R
F
V
O1
V
O2
V
DD1
V
DD2
V
IO
= V
O
− × R
S
+ R
F
R
S
2
V
DD
PSRR
+
V
DD
V
O
V
IN1
V
IN2
R
L
+
V
DD
V
O
V
IN1
V
IN2
R
L
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 23 of 25
Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V
6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK
7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR
10. Gain, AV & Phase, GBW
8. Total Harmonic Distortion, THD
9. Slew Rate, SR
Gain Variable
1 + RF / RS = 100
freq = 100 Hz, 1 kHz, 10 kHz
THD
VO = VDD 0.5 V
VIN1 = VDD / 2 0.05 V
VIN2 = VDD / 2 + 0.05 V
IOSOURCE
VO = + 0.5 V
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 0.05 V
IOSINK
CMRR = 20log ×RS
RS + RF
VO1 VO2
VIN1 VIN2
CMRR
+
VDD
VO
VIN1 VIN2
A
+
VDD
VO
VDD
2
RS
VIN
RS
RF
RF
+
VDD
VSS
VO
Gain Variable
VIN
RS
RF
+
VDD
VSS
VO
20 pF1 MΩ
Gain = +1
VIN
+
VDD
VSS
VO
RS
RS
RF
+
VDD
VSS
VO
20 pF1 MΩ
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 24 of 25
Package Dimensions
A
L
e
c1
b1
D
E
A2
bp
c
θ
x
y
HE
Z
L1
3.00
1.00
0.13
6.40
0.10 0.15 0.20
0.25
0.03 0.07 0.10
4.40
0.40 0.50 0.60
1.10
Reference
Symbol Dimension in Millimeters
Min Nom Max
3.30
A1
0.15 0.20
6.606.20 0.65
0.10
0.805
*1
85
E
*2
Index mark
14
*3pMx
y
F
A
D
E
H
Zb
Detail F
1
1
A
L
L
θ
p
Terminal cross section
( Ni/Pd/Au plating )
c
b
NOTE)
1. DIMENSIONS"*1 (Nom)"AND"*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION"*3"DOES NOT
INCLUDE TRIM OFFSET.
e
P-TSSOP8-4.4x3-0.65 0.034g
MASS[Typ.]
TTP-8DAVPTSP0008JC-B
RENESAS CodeJEITA Package Code Previous Code
MASS[Typ.]
PLSP0008JC-A 0.02 gP-LSOP8-2.8 x 2.95 - 0.65 RENESAS CodeJEITA Package Code Previous Code Unit: mm
Package Name
MMPAK-8
0.1M
0.1
2.95 ± 0.2
1.95
1.1 ± 0.1
4.0 ± 0.3
2.8 ± 0.1
0.6
0.3
0.13
0 to 0.1
0.65
+0.12
-0.03
0.2
+0.1
-0.05
HA1630D01/02/03 Series
Rev.2.00 Feb 07, 2007 page 25 of 25
Taping & Reel Specification
Package Code
Ordering Unit
W P Ao Ko E F Maximum Storage No.
TSSOP-8 8 1.7 1.5 3,000 pcs/reel
3,000 pcs
[Taping]
[Reel]
[Ordering Information]
Package Tape width
12 6.9 3.6 1.75 5.5
Bo D1
φ1.5 4.02.0
A
B
P
0
0
1
D
W
F1.75
K
0
Cover
Tape
Tape withdraw direction
W2
2.0 2.0
φ13.0 ± 0.5
W1
Unit: mm
TSSOP-8 W1 W2
17.4 13.4 33012 A
MMPAK-8 17.0 13.0 17812
MMPAK-8 4.0 1.05 3,000 pcs/reel12 3.15 4.35 5.5
φA
Mark Indication
Product Name
0D01: HA1630D01
0D02: HA1630D02
0D03: HA1630D03
TSSOP-8
Trace Code
MMPAK-8
0D01
Trace Code
D 0
Product Name
D01: HA1630D01
D02: HA1630D02
D03: HA1630D03
1
Notes:
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes
warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property
rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass
destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws
and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document,
please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be
disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com )
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a
result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability
of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular
application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications
or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality
and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or
undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall
have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing
applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages
arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain
rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage
caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software
alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as
swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have
any other inquiries.
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
RENESAS SALES OFFICES
© 2007. Renesas Technology Cor p., All rights res erved. P rinted i n Japan.
Colophon .7.0