For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
General Description
The MAX618 CMOS, PWM, step-up DC-DC converter
generates output voltages up to 28V and accepts
inputs from +3V to +28V. An internal 2A, 0.3Ωswitch
eliminates the need for external power MOSFETs while
supplying output currents up to 500mA or more. A
PWM control scheme combined with Idle Mode™ oper-
ation at light loads minimizes noise and ripple while
maximizing efficiency over a wide load range. No-load
operating current is 500μA, which allows efficiency up
to 93%.
A fast 250kHz switching frequency allows the use of
small surface-mount inductors and capacitors. A shut-
down mode extends battery life when the device is not
in use. Adaptive slope compensation allows the
MAX618 to accommodate a wide range of input and
output voltages with a simple, single compensation
capacitor.
The MAX618 is available in a thermally enhanced 16-
pin QSOP package that is the same size as an industry-
standard 8-pin SO but dissipates up to 1W. An
evaluation kit (MAX618EVKIT) is available to help
speed designs.
Applications
Automotive-Powered DC-DC Converters
Industrial +24V and +28V Systems
LCD Displays
Palmtop Computers
Features
oAdjustable Output Voltage Up to +28V
oUp to 93% Efficiency
oWide Input Voltage Range (+3V to +28V)
oUp to 500mA Output Current at +12V
o500µA Quiescent Supply Current
o3µA Shutdown Current
o250kHz Switching Frequency
oSmall 1W, 16-Pin QSOP Package
MAX618
28V, PWM, Step-Up DC-DC Converter
________________________________________________________________
Maxim Integrated Products
1
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
GND GND
PGND
PGND
PGND
GND
VL
IN
GND
TOP VIEW
MAX618
QSOP
LX
LX
COMP
LX
SHDN
FB
GND
+
PGND
LX
FB
VL
VOUT
UP TO 28V
COMP
IN
SHDN
GND
VIN
3V TO 28V
MAX618
Typical Operating Circuit
+
Denotes a lead(Pb)-free/RoHS-compliant package.
19-1462; Rev 1; 12/09
Pin Configuration
Ordering Information
Idle Mode is a trademark of Maxim Integrated Products, Inc.
16 QSOP
PIN-PACKAGETEMP. RANGE
-40°C to +85°CMAX618EEE+
PART
EVALUATION KIT
AVAILABLE
MAX618
28V, PWM, Step-Up DC-DC Converter
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VIN = +6V, PGND = GND, CVL = 4.7μF, TA= 0°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
IN to GND ...............................................................-0.3V to +30V
LX to GND ..............................................................-0.3V to +30V
VL to GND ................................................................-0.3V to +6V
SHDN, COMP, FB to GND ............................-0.3V to (VL + 0.3V)
PGND to GND.....................................................................±0.3V
Continuous Power Dissipation (TA= +70°C) (Note 1)
16-Pin QSOP (derate 15mW/°C above +70°C)...................1W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Soldering Temperature (reflow) .......................................+260°C
Note 1: With part mounted on 0.9 in.2of copper.
Shutdown Supply Current IIN 38
μA
VIN = 28V, VFB = 1.6V, SHDN = GND
Maximum Duty Cycle DC 90 95 %
PARAMETER SYMBOL MIN TYP MAX UNITS
VL Output Voltage VVL 2.9 3.05 3.2 V
Supply Current, Full Load IIN 2.5 3.5 mA
Supply Current, Full Load, VL
Connected to IN IIN 5 6.5 mA
VL Load Regulation ΔVVL 25 40 mV
VL Undervoltage Lockout 2.58 2.7 2.8 V
FB Set Voltage VFB 1.47 1.5 1.53 V
FB Input Bias Current IFB 150
nA
Supply Current, No Load
Input Voltage VIN 328
V
IIN 500 700 μA
Line Regulation ΔVOUT 0.01 0.08 %/V
Load Regulation ΔVOUT 0.2 %
LX Voltage VLX 28 V
LX Switch Current Limit ILXON 1.7 2.2 2.7 A
Idle Mode Current-Limit
Threshold 0.25 0.35 0.45 A
LX On-Resistance RLXON 0.3 0.6 Ω
LX Leakage Current ILXOFF 0.02 10 μA
COMP Maximum Output Current ICOMP 100 200 μA
COMP Current vs. FB Voltage
Transconductance 0.8 1 mmho
SHDN Input Logic Low VIL 0.8 V
SHDN Input Logic High VIH 2.0 V
Shutdown Input Current 1μA
Switching Frequency f200 250 300 kHz
CONDITIONS
VIN = 3V to 6V, VOUT = 12V
VIN = 3.5V or 28V, no load
VOUT = 12V, ILOAD = 10mA to 500mA
VIN = 3.4V to 28V, VFB = 1.4V, SHDN = VL,
VVL < VIN
VIN = 3V to 5.5V, VFB = 1.4V, SHDN = VL = IN
ILOAD = 0 to 2mA, VFB = 1.6V
Rising edge, 1% hysteresis
PWM mode
VFB = 1.6V
VLX = 28V
FB = GND
VIN = 3V to 28V, VFB = 1.6V, SHDN = VL
ΔFB = 0.1V
SHDN = GND or VL
MAX618
28V, PWM, Step-Up DC-DC Converter
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS
(VIN = +6V, PGND = GND, CVL = 4.7μF, TA= -40°C to +85°C, unless otherwise noted.) (Note 2)
100
0
0.1 1 10 100 1000
EFFICIENCY vs. OUTPUT CURRENT
(VOUT = 12V)
20
30
10
MAX618 toc01
OUTPUT CURRENT (mA)
EFFICIENCY (%)
40
50
60
70
80
90
VIN = 8V
VIN = 5V
VIN = 3V
100
0
0.1 1 10 100 1000
EFFICIENCY vs. OUTPUT CURRENT
(VOUT = 28V)
20
30
10
MAX618 toc02
OUTPUT CURRENT (mA)
EFFICIENCY (%)
40
50
60
70
80
90
VIN = 12V
VIN = 5V
VIN = 3V
Typical Operating Characteristics
(Circuit of Figure 1, TA= +25°C.)
Note 2: Specifications to -40°C are guaranteed by design, not production tested.
PARAMETER SYMBOL MIN TYP MAX UNITS
Supply Current, Full Load IIN 4mA
Supply Current, Full Load,
VL Connected to IN IIN 7.5 mA
Supply Current Shutdown IIN 10 μA
VL Output Voltage VVL 2.85 3.3 V
Supply Current, No Load
Input Voltage VIN 328
V
IIN 800 μA
VL Undervoltage Lockout VVL 2.55 2.85 V
FB Set Voltage VFB 1.455 1.545 V
LX Voltage Range VLXON 28 V
LX Switch Current Limit ILXON 1.4 3 A
LX On-Resistance RLXON 0.6 Ω
Switching Frequency f188 312 kHz
CONDITIONS
Rising edge, 1% hysteresis
VIN = 3.4V to 28V, VFB = 1.4V, SHDN = VL,
VL < VIN
VIN = 3V to 5.5, VFB = 1.4V, SHDN = VL = IN
VIN = 28V, VFB = 1.6V, SHDN = GND
PWM mode
VIN = 3.5V or 28V, no load
VIN = 3V to 28V, VFB = 1.6V, SHDN = VL
MAX618
28V, PWM, Step-Up DC-DC Converter
4 _______________________________________________________________________________________
0
VOUT
(100mV/div)
VLX
(10V/div)
IL
(1A/div)
MEDIUM-LOAD SWITCHING
WAVEFORMS
MAX618 toc07
VIN = 5V, VOUT = 12V, IOUT = 200mA
2μs/div
0
VOUT
(100mV/
div)
VLX
(10V/div)
IL
(1A/div)
HEAVY-LOAD SWITCHING
WAVEFORMS
MAX618 toc08
VIN = 5V, VOUT = 12V, IOUT = 500mA
2μs/div
3V
6V
VOUT
(50mV/div)
VIN
(5V/div)
LINE-TRANSIENT RESPONSE
MAX618 toc09
IOUT = 200mA, VOUT = 12V
2ms/div
Typical Operating Characteristics (continued)
(Circuit of Figure 1, TA= +25°C.)
0
VOUT
(200mV/div)
IOUT
(100mA/div)
LOAD-TRANSIENT RESPONSE
MAX618 toc10
VIN = 5V, VOUT = 12V
5ms/div
5V
12V
0
SHDN
(2V/div)
VOUT
(2V/div)
SHUTDOWN RESPONSE
MAX618 toc11
VIN = 5V, VOUT = 12V, ILOAD = 500mA
500μs/div 0
0.4
0.2
0.6
1.2
1.4
1.0
0.8
1.6
2 4567389101112
MAXIMUM OUTPUT CURRENT
vs. INPUT VOLTAGE
MAX618 toc12
INPUT VOLTAGE (V)
MAXIMUM OUTPUT CURRENT (A)
VOUT = 12V
0.40
0.45
0.55
0.50
0.60
0.65
0105 15202530
NO-LOAD SUPPLY CURRENT
vs. INPUT VOLTAGE
MAX618 toc04
INPUT VOLTAGE (V)
SUPPLY CIRRENT (mA)
300
400
350
500
450
550
600
650
700
-50 -10 10-30 30507090110
SUPPLY CURRENT vs. TEMPERATURE
MAX618 toc05
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
VIN = 8V
VIN = 5V
VIN = 3V
INCLUDES CAPACITOR LEAKAGE CURRENT
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
2127 17222732
SHUTDOWN CURRENT
vs. SUPPLY VOLTAGE
MAX618 toc06
SUPPLY VOLTAGE (V)
SHUTDOWN CURRENT (μA)
_______________ Detailed Description
The MAX618 pulse-width modulation (PWM) DC-DC
converter with an internal 28V switch operates in a wide
range of DC-DC conversion applications including
boost, SEPIC, and flyback configurations. The MAX618
uses fixed-frequency PWM operation and Maxim’s pro-
prietary Idle Mode control to optimize efficiency over a
wide range of loads. It also features a shutdown mode
to minimize quiescent current when not in operation.
PWM Control Scheme and
Idle Mode Operation
The MAX618 combines continuous-conduction PWM
operation at medium to high loads and Idle Mode oper-
ation at light loads to provide high efficiency over a
wide range of load conditions. The MAX618 control
scheme actively monitors the output current and auto-
matically switches between PWM and Idle Mode to
optimize efficiency and load regulation. Figure 2 shows
a functional diagram of the MAX618’s control scheme.
The MAX618 normally operates in low-noise, continu-
ous-conduction PWM mode, switching at 250kHz. In
PWM mode, the internal MOSFET switch turns on with
each clock pulse. It remains on until either the error
comparator trips or the inductor current reaches the 2A
switch-current limit. The error comparator compares the
feedback-error signal, current-sense signal, and slope-
compensation signal in one circuit block. When the
switch turns off, energy transfers from the inductor to
MAX618
28V, PWM, Step-Up DC-DC Converter
_______________________________________________________________________________________________________ 5
Pin Description
PGND
ECB1Q503L
LX
FB
1μF
4.7μF
VL
COUT
CP
R1
R2
CIND
VOUT
IN
L
SHDN
GND
COMP
UP TO 28V
3V TO 28V
VIN
CCOMP
MAX618
VOUT R1 R2 CIND LC
OUT CPCCOMP
8V 402kΩ 93.1kΩ150μF12μH 150μF 220pF 0.082μF
12V 715kΩ 100kΩ100μF15μH 100μH 56pF 0.1μF
28V 574kΩ 32.4kΩ86μF39μH33μF 47pF 0.47μF
Figure 1. Single-Supply Operation
Feedback Input. Connect a resistor-divider network to set VOUT. FB threshold is 1.5V.FB7
LDO Regulator Supply Input. IN accepts inputs up to +28V. Bypass to GND with a 1μF ceramic capacitor
as close to pins 10 and 12 as possible.
IN10
Internal 3.1V LDO Regulator Output. Bypass to GND with a 4.7μF capacitor.VL11
Power Ground, source of internal N-channel switchPGND13, 14, 15
Compensation Input. Bypass to GND with the capacitance value shown in Table 2.COMP6
Shutdown Input. A logic low puts the MAX618 in shutdown mode and reduces supply current to 3μA.
SHDN must not exceed VL. In shutdown, the output falls to VIN less one diode drop.
SHDN
5
PIN
Drain of internal N-channel switch. Connect the inductor between IN and LX.LX2, 3, 4
GroundGND
1, 8, 9,
12, 16
FUNCTIONNAME
MAX618
the output capacitor. Output current is limited by the 2A
MOSFET current limit and the MAX618’s package
power-dissipation limit. See the
Maximum Output
Current
section for details.
In Idle Mode, the MAX618 improves light-load efficien-
cy by reducing inductor current and skipping cycles to
reduce the losses in the internal switch, diode, and
inductor. In this mode, a switching cycle initiates only
when the error comparator senses that the output volt-
age is about to drop out of regulation. When this
occurs, the NMOS switch turns on and remains on until
the inductor current exceeds the nominal 350mA Idle
Mode current limit.
Refer to Table 1 for an estimate of load currents at which
the MAX618 transitions between PWM and Idle Mode.
Compensation Scheme
Although the higher loop gain of voltage-controlled
architectures tends to provide tighter load regulation,
current-controlled architectures are generally easier to
compensate over wide input and output voltage
ranges. The MAX618 uses both control schemes in par-
allel: the dominant, low-frequency components of the
error signal are tightly regulated with a voltage-control
loop, while a current-control loop improves stability at
higher frequencies. Compensation is achieved through
the selection of the output capacitor (COUT), the inte-
grator capacitor (CCOMP), and the pole capacitor (CP)
from FB to GND. CPcancels the zero formed by COUT
and its ESR. Refer to the
Capacitor Selection
section for
guidance on selecting these capacitors.
VL Low-Dropout Regulator
The MAX618 contains a 3.1V low-dropout linear regula-
tor to power internal circuitry. The regulator’s input is IN
and its output is VL. The IN to VL dropout voltage is
100mV, so that when IN is less than 3.2V, VL is typically
100mV below IN. The MAX618 still operates when the
LDO is in dropout, as long as VL remains above the
2.7V undervoltage lockout. Bypass VL with a 4.7μF
ceramic capacitor placed as close to the VL and GND
pins as possible.
28V, PWM, Step-Up DC-DC Converter
6 _______________________________________________________________________________________
SHDN
MAX618
IDLE MODE
CURRENT LIMIT
PWM
CURRENT LIMIT
ERROR
COMPARATOR
250kHz
OSCILLATOR
SLOPE
COMPENSATION
LINEAR
REGULATOR
CURRENT-
SENSE
CIRCUIT
PGND IN
LX OUT
R
14R
VL
FB
COMP
IN
VL
NMOS
REFERENCE
INTEGRATOR
GND
SHUTDOWN
PWM
LOGIC
THERMAL
SHUTDOWN
Figure 2. Functional Diagram
MAX618
28V, PWM, Step-Up DC-DC Converter
_______________________________________________________________________________________ 7
45678910111213141516171819202122232425262728
3 0.20 0.20 0.18 0.15 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
4 0.18 0.21 0.20 0.17 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.07 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
5 0.16 0.20 0.21 0.19 0.17 0.16 0.14 0.13 0.11 0.10 0.09 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.04
6 0.15 0.20 0.21 0.20 0.19 0.18 0.16 0.15 0.13 0.12 0.11 0.10 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05
7 0.17 0.19 0.21 0.21 0.20 0.19 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.10 0.09 0.08 0.08 0.07 0.07 0.07
8 0.19 0.18 0.20 0.21 0.20 0.20 0.19 0.17 0.16 0.15 0.14 0.13 0.13 0.12 0.11 0.10 0.10 0.09 0.09 0.08
9 0.20 0.17 0.20 0.21 0.21 0.20 0.19 0.18 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10
10 0.21 0.16 0.19 0.20 0.21 0.21 0.20 0.19 0.18 0.17 0.17 0.16 0.15 0.14 0.13 0.13 0.12 0.11
11 0.22 0.15 0.19 0.20 0.21 0.21 0.20 0.20 0.19 0.18 0.17 0.17 0.16 0.15 0.14 0.14 0.13
12 0.23 0.15 0.18 0.20 0.21 0.21 0.21 0.20 0.20 0.19 0.18 0.18 0.17 0.16 0.15 0.15
13 0.24 0.16 0.17 0.19 0.20 0.21 0.21 0.20 0.20 0.19 0.19 0.18 0.17 0.17 0.16
14 0.25 0.17 0.17 0.19 0.20 0.21 0.21 0.21 0.20 0.20 0.19 0.19 0.18 0.17
15 0.25 0.18 0.16 0.18 0.20 0.20 0.21 0.21 0.21 0.20 0.20 0.19 0.19
16 0.26 0.19 0.16 0.18 0.19 0.20 0.21 0.21 0.21 0.20 0.20 0.20
17 0.26 0.20 0.15 0.17 0.19 0.20 0.20 0.21 0.21 0.21 0.20
18 0.27 0.20 0.15 0.17 0.19 0.20 0.20 0.21 0.21 0.21
19 0.27 0.21 0.16 0.17 0.18 0.19 0.20 0.21 0.21
20 0.27 0.21 0.17 0.16 0.18 0.19 0.20 0.20
21 0.28 0.22 0.17 0.16 0.18 0.19 0.20
22 0.28 0.22 0.18 0.15 0.17 0.19
23 0.28 0.23 0.18 0.15 0.17
24 0.28 0.23 0.19 0.15
25 0.29 0.24 0.19
26 0.29 0.24
27 0.29
VOUT
VIN
Table 1. PWM/Idle-Mode Transition Load Current (IOUT in Amps) vs. Input and Output Voltage
MAX618
28V, PWM, Step-Up DC-DC Converter
8 _______________________________________________________________________________________
GND
LX
COUT
L
PGND
R2
R1
CP
VL
COMP
CCOMP
IN
SHDN
UP TO 28V
VIND
UP TO 28V
CIND
IN OUT
MAX618
2.7V TO 5.5V
4.7μF
1μF
FB
LX
CIND
COUT
L
PGND
GND
R1
VL
COMP
CCOMP
IN
SHDN
UP TO 28V
VIND
UP TO 28V
OUT
MAX618
IN
3V TO 28V
4.7μF
1μF
R2
CP
FB
Figure 3. Dual-Supply Operation (VIN = 2.7V to 5.5V) Figure 4. Dual-Supply Operation (VIN = 3V to 28V)
Table 2. Input Configurations
VL can be overdriven by an external supply between
2.7V and 5.5V. In systems with +3.3V or +5V logic
power supplies available, improve efficiency by power-
ing VL and VIN directly from the logic supply as shown
in Figure 3.
Operating Configurations
The MAX618 can be connected in one of three configura-
tions described in Table 2 and shown in Figures 1, 3, and
4. The VL linear regulator allows operation from a single
supply between +3V and +28V as shown in Figure 1.
The circuit in Figure 3 allows a logic supply to power
the MAX618 while using a separate source for DC-DC
conversion power (inductor voltage). The logic supply
(between 2.7V and 5.5V) connects to VL and IN. VL =
IN; voltages of 3.3V or more improve efficiency by pro-
viding greater gate drive for the internal MOSFET.
The circuit in Figure 4 allows separate supplies to
power IN and the inductor voltage. It differs from the
connection in Figure 3 in that the MAX618 chip supply
is not limited to 5.5V.
CIRCUIT
Figure 1 Input voltage connects
to IN and inductor.
CONNECTION VIN
RANGE
3V to VOUT
(up to 28V) VIN
INDUCTOR
VOLTAGE BENEFITS/COMMENTS
Single-supply operation.
SHDN must be connected to or pulled up to VL. On/off
control requires an open-drain or open-collector connection
to SHDN.
Figure 3
Figure 4 0 to VOUT
(up to 28V)
0 to VOUT
(up to 28V)
Increased efficiency.
SHDN can be driven by logic powered from the supply con-
nected to IN and VL, or can be connected to or pulled up to
VL.
Input power source (inductor voltage) is separate from the
MAX618’s bias (VIN = VL) and can be less than or greater
than VIN.
Input power source (inductor voltage) is separate from the
MAX618’s bias (VIN) and can be less than or greater than
VIN.
SHDN must be connected to or pulled up to VL. On/off
control requires an open-drain or open-collector connection
to SHDN.
IN and inductor volt-
age supplied by sepa-
rate sources.
IN and VL connect
together. Inductor volt-
age supplied by a
separate source.
2.7V to 5.5V
3V to 28V
Shutdown Mode
In shutdown mode (SHDN = 0), the MAX618’s feed-
back and control circuit, reference, and internal biasing
circuitry turn off and reduce the IN supply current to
3μA (10μA max). When in shutdown, a current path
remains from the input to the output through the exter-
nal inductor and diode. Consequently, the output falls
to VIN less one diode drop in shutdown.
SHDN may not exceed VL. For always-on operation,
connect SHDN to VL. To add on/off control to the circuit
of Figure 1 or 4, pull SHDN to VL with a resistor (10kΩ
to 100kΩ) and drive SHDN with an open-drain logic
gate or switch as shown in Figure 5. Alternatively, the
circuit of Figure 3 allows direct SHDN drive by any
logic-level gate powered from the same supply that
powers VL and IN, as shown in Figure 6.
__________________Design Procedure
The MAX618 operates in a number of DC-DC converter
configurations including step-up, SEPIC, and flyback.
The following design discussion is limited to step-up
converters.
Setting the Output Voltage
Two external resistors (R1 and R2) set the output volt-
age. First, select a value for R2 between 10kΩand
200kΩ. Calculate R1 with:
where VFB is 1.5V.
Determining the Inductor Value
The MAX618’s high switching frequency allows the use
of a small value inductor. The recommended inductor
value is proportional to the output voltage and is given
by the following:
After solving for the above equation, round down as
necessary to select a standard inductor value.
When selecting an inductor, choose one rated to
250kHz, with a saturation current exceeding the peak
inductor current, and with a DC resistance under
200mΩ. Ferrite core or equivalent inductors are gener-
ally appropriate (see MAX618 EV kit data sheet).
Calculate the peak inductor current with the following
equation:
Note that the peak inductor current is internally limited
to 2A.
Diode Selection
The MAX618’s high switching frequency demands a
high-speed rectifier. Schottky diodes are preferred for
most applications because of their fast recovery time
and low forward voltage. Make sure that the diode’s
peak current rating exceeds the 2A peak switch cur-
rent, and that its breakdown voltage exceeds the out-
put voltage.
II
V
V2s V
L
VV
LX(PEAK) OUT OUT
IN
IN OUT I
=+
μNN
OUT
V
()
LVOUT
=710
5
RRV
V
OUT
FB
12 1=−
MAX618
28V, PWM, Step-Up DC-DC Converter
_______________________________________________________________________________________ 9
MAX618
VL
100k
ON/OFF
CONTROL
OPEN-DRAIN
LOGIC
SHDN
MAX618
IN
VL
SYSTEM LOGIC ON/OFF
CONTROL
SHDN
SYSTEM
LOGIC SUPPLY
Figure 5. Adding On/Off Control to Circuit of Figure 1 or 4 Figure 6. Adding On/Off Control to Circuit of Figure 3
MAX618
28V, PWM, Step-Up DC-DC Converter
10 ______________________________________________________________________________________
Maximum Output Current
The MAX618’s 2.2A LX current limit determines the
output power that can be supplied for most applica-
tions. In some cases, particularly when the input volt-
age is low, output power is sometimes restricted by
package dissipation limits. The MAX618 is protected
by a thermal shutdown circuit that turns off the switch
when the die temperature exceeds +150°C. When the
device cools by 10°C, the switch is enabled again.
Table 3 details output current with a variety of input and
output voltages. Each listing in Table 3 is either the limit
set by an LX current limit or by package dissipation at
+85°C ambient, whichever is lower. The values in Table
3 assume a 40mΩinductor resistance.
Capacitor Selection
Input Capacitors
The input bypass capacitor, CIND, reduces the input
ripple created by the boost configuration. High-imped-
ance sources require high CIND values. However, 68μF
is generally adequate for input currents up to 2A. Low
ESR capacitors are recommended because they will
decrease the ripple created on the input and improve
efficiency. Capacitors with ESR below 0.3Ωare gener-
ally appropriate.
In addition to the input bypass capacitor, bypass IN
with a 1μF ceramic capacitor placed as close to the IN
and GND pins as possible. Bypass VL with a 4.7μF
ceramic capacitor placed as close to the VL and GND
pins as possible.
Output Capacitor
Use Table 4 to find the minimum output capacitance
necessary to ensure stable operation. In addition,
choose an output capacitor with low ESR to reduce the
output ripple. The dominant component of output ripple
is the product of the peak-to-peak inductor ripple cur-
rent and the ESR of the output capacitor. ESR below
50mΩgenerates acceptable levels of output ripple for
most applications.
Integrator Capacitor
The compensation capacitor (CCOMP) sets the domi-
nant pole in the MAX618’s transfer function. The proper
compensation capacitance depends upon output
capacitance. Table 5 shows the capacitance value
needed for the output capacitances specified in Table
4. However, if a different output capacitor is used (e.g.,
a standard value), then recalculate the value of capaci-
tance needed for the integrator capacitor with the fol-
lowing formula:
Pole Compensation Capacitor
The pole capacitor (CP) cancels the unwanted zero
introduced by COUT’s ESR, and thereby ensures stabil-
ity in PWM operation. The exact value of the pole
capacitor is not critical, but it should be near the value
calculated by the following equation:
where RESR is COUT’s ESR.
Layout Considerations
Proper PC board layout is essential due to high current
levels and fast switching waveforms that radiate noise.
Use the MAX618 evaluation kit or equivalent PC layout
to perform initial prototyping. Breadboards, wire-wrap,
and proto-boards are not recommended when proto-
typing switching regulators.
It is important to connect the GND pin, the input
bypass capacitor ground lead, and the output filter
capacitor ground lead to a single point to minimize
ground noise and improve regulation. Also, minimize
lead lengths to reduce stray capacitance, trace resis-
tance, and radiated noise, with preference given to the
feedback circuit, the ground circuit, and LX. Place the
feedback resistors as close to the FB pin as possible.
Place a 1μF input bypass capacitor as close as possi-
ble to IN and GND.
Refer to the MAX618 evaluation kit for an example of
proper board layout.
Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns,
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or
“-” in the package code indicates RoHS status only. Package
drawings may show a different suffix character, but the drawing
pertains to the package regardless of RoHS status.
CRC(R1R2)
R1 R2
PESR OUT
=+
CC Table C
C Table
COMP COMP OUT
OUT
=()
()
5
4
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
16 QSOP EF16+8F 21-0055
MAX618
28V, PWM, Step-Up DC-DC Converter
______________________________________________________________________________________ 11
45678910111213141516171819202122232425262728
3 0.77 0.59 0.49 0.41 0.34 0.29 0.25 0.22 0.20 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.07
4 0.96 0.76 0.64 0.56 0.49 0.43 0.38 0.34 0.31 0.28 0.26 0.24 0.22 0.21 0.19 0.18 0.17 0.16 0.16 0.15 0.14 0.14 0.13 0.12
5 1.09 0.89 0.76 0.67 0.60 0.54 0.50 0.45 0.41 0.37 0.34 0.32 0.30 0.28 0.26 0.25 0.23 0.22 0.21 0.20 0.19 0.18 0.18
6 1.18 0.99 0.85 0.76 0.68 0.63 0.58 0.54 0.50 0.46 0.42 0.39 0.37 0.34 0.32 0.31 0.29 0.28 0.26 0.25 0.24 0.23
7 1.26 1.07 0.93 0.83 0.76 0.70 0.65 0.60 0.57 0.53 0.50 0.46 0.43 0.41 0.38 0.36 0.35 0.33 0.31 0.30 0.29
8 1.32 1.13 1.00 0.90 0.82 0.76 0.71 0.66 0.62 0.59 0.56 0.53 0.50 0.47 0.44 0.42 0.40 0.38 0.36 0.35
9 1.37 1.19 1.06 0.96 0.88 0.81 0.76 0.71 0.67 0.64 0.61 0.58 0.55 0.53 0.50 0.47 0.45 0.43 0.41
10 1.41 1.24 1.11 1.01 0.93 0.86 0.81 0.76 0.72 0.68 0.65 0.62 0.59 0.57 0.55 0.52 0.50 0.47
11 1.44 1.28 1.15 1.05 0.97 0.91 0.85 0.80 0.76 0.72 0.69 0.66 0.63 0.61 0.58 0.56 0.54
12 1.47 1.31 1.19 1.10 1.02 0.95 0.89 0.84 0.80 0.76 0.73 0.70 0.67 0.64 0.62 0.60
13 1.49 1.34 1.23 1.13 1.05 0.99 0.93 0.88 0.83 0.80 0.76 0.73 0.70 0.67 0.65
14 1.52 1.37 1.26 1.16 1.09 1.02 0.96 0.91 0.87 0.83 0.79 0.76 0.73 0.71
15 1.53 1.40 1.29 1.19 1.12 1.05 0.99 0.94 0.90 0.86 0.82 0.79 0.76
16 1.55 1.42 1.31 1.22 1.14 1.08 1.02 0.97 0.93 0.89 0.85 0.82
17 1.57 1.44 1.33 1.25 1.17 1.11 1.05 1.00 0.95 0.91 0.88
18 1.58 1.46 1.36 1.27 1.20 1.13 1.07 1.02 0.98 0.94
19 1.59 1.47 1.37 1.29 1.22 1.15 1.10 1.05 1.00
20 1.60 1.49 1.39 1.31 1.24 1.18 1.12 1.07
21 1.61 1.50 1.41 1.33 1.26 1.20 1.14
22 1.62 1.51 1.42 1.35 1.28 1.22
23 1.63 1.53 1.44 1.36 1.29
24 1.64 1.54 1.45 1.38
25 1.64 1.55 1.46
26 1.65 1.56
27 1.66
VIN
VOUT
Table 3. Typical Output Current vs. Input and Output Voltages
MAX618
28V, PWM, Step-Up DC-DC Converter
12 ______________________________________________________________________________________
45678910111213141516171819202122232425262728
3 173 128 100 80 65 54 46 40 35 31 28 25 23 21 19 18 17 15 15 14 13 12 12 11 10
4 151 118 96 80 68 59 51 45 39 35 32 29 27 24 23 21 20 18 17 16 15 15 14 13
5 132 107 90 77 67 59 52 46 41 37 34 31 29 26 25 23 21 20 19 18 17 16 15
6 117 97 83 72 64 57 51 46 42 38 35 32 30 28 26 24 23 21 20 19 18 17
7 104 89 77 68 61 55 50 45 42 39 35 33 30 28 26 25 23 22 21 20 19
8 9482726458524844413835333129272524222120
9 86766761555046423937343230292725242321
10 79 70 63 57 52 48 44 41 38 36 34 32 30 28 27 25 24 23
11 73 66 59 54 50 46 43 40 37 35 33 31 29 28 26 25 24
12 68 62 56 51 47 44 41 38 36 34 32 30 29 27 26 25
13 64 58 53 49 45 42 39 37 35 33 31 29 28 27 25
14 60 55 50 47 43 40 38 36 34 32 30 29 27 26
15 56 52 48 44 42 39 37 35 33 31 29 28 27
16 53 49 46 43 40 37 35 33 32 30 29 27
17 50 47 44 41 38 36 34 32 31 29 28
18 48 45 42 39 37 35 33 31 30 28
19 46 43 40 38 36 34 32 30 29
20 43 41 38 36 34 33 31 29
21 42 39 37 35 33 32 30
22 40 38 36 34 32 31
23 38 36 34 33 31
24 37 35 33 32
25 35 34 32
26 34 33
27 33
VIN
VOUT
Table 4. Minimum COUT for Stability (μF)
MAX618
28V, PWM, Step-Up DC-DC Converter
______________________________________________________________________________________ 13
45678910111213141516171819202122232425262728
3 40 46 54 64 73 83 94 105 118 130 143 157 172 187 203 219 236 253 271 290 309 329 349 370 391
4 42 45 51 58 66 74 82 91 100 109 119 130 141 152 164 176 188 201 214 228 242 257 272 287
5 43 45 49 54 60 67 75 81 88 96 103 111 120 128 137 147 156 166 176 187 197 209 220
6 44 45 48 52 57 62 68 74 80 86 92 99 105 112 119 127 134 142 150 159 167 176
7 45454750545863687479859095101107113119125132139146
8 464547495256606468737883889398103108113119124
9 4646474851545761646873778286919599104109
10 47 46 46 48 50 52 55 58 61 65 69 72 77 81 85 89 93 97
11 47 46 46 48 49 51 54 56 59 62 65 69 72 76 80 84 88
12 48 47 47 47 49 50 52 55 57 60 63 66 69 72 75 79
13 48 47 47 47 48 50 52 54 56 58 61 63 66 69 72
14 49 47 47 47 48 49 51 53 55 57 59 61 64 66
15 49 47 47 47 48 49 50 52 53 55 57 59 62
16 49 48 47 47 48 49 50 51 53 54 56 58
17 49 48 47 47 48 48 49 51 52 53 55
18 50 48 47 47 48 48 49 50 51 53
19 50 48 47 47 48 48 49 50 51
20 50 48 48 47 48 48 49 49
21 50 49 48 47 48 48 48
22 50 49 48 48 48 48
23 50 49 48 48 48
24 51 49 48 48
25 51 49 48
26 51 49
27 51
VOUT
VIN
Table 5. Minimum CCOMP for Stability (nF)
MAX618
28V, PWM, Step-Up DC-DC Converter
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
14
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
0 6/99 Initial release
1 12/09
Updated part to lead-free, added soldering temperatures (reflow), and corrected error in
equation 1, 2, 10