O1 pe Bf sazsoax 0018344 4 Tt 3875081 GE SOLID STATE _ O1E 18344 p 739-07 Standard Power MOSFETs File Number 1576 IRF610, IRF611, IRF612, IRF613 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors 0 2.0A and 2.5A, 150V-200V fos(On) = 1.5 QO and 2.49 . Features: 6 @ SOA is power-dissipation limited Nanosecond switching speeds @ Linear transfer characteristics c @ High input impedance @ Majority carrier device s2C8-sa744 TERMINAL DIAGRAM The IRF610, IRF611, IRF612 and {AF613 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- TERMINAL DESIGNATION ing regulators, switching converters, motor drivers, relay 1 SOURCE drivers, and drivers for high-power bipolar switching tran- DRAIN == . toe : . ~~ DRAIN sistors requiring high speed and low gate-drive power. (FLANGE) O [eee These types can be operated directly from integrated circuits. [- . TOP VIEW GATE The IRF-types are supplied in the JEDEC TO-220AB plastic 92s-30s28 package. , JEDEC TO-220AB Absolute Maximum Ratings Parameter (RF610 IRF611 iRF612 IRF613 Units Vos Drawn - Source Voltage 200 150 200 150 Vv VpcR Orain - Gata Voltage (Ros = 20K) @ 200 150 200 160 v Ip @ Te = 25C Continuous Drain Current 2.5 2.5 2.0 20 A Ip@ Te 100C Continuous Drain Current 1.6 1.5 1.25 125 A lpm Pulsed Dran Current @ 10 10 80 80 A Vos Gate Source Voltage 220 v Pp @ Tc = 25C Max. Power Dissipation 20 (See Fig 14) Ww Linear Decating Factor 016 {See Fig. 14} wee tim inductive Current, Clamped [See Fig. 15 and 16}L = 100yH A 10 I 10 l 8.0 1 80 tg Seong. Een aS age ~56 to 150 c Lead Temperature 300 {0 063 in. (1 6mm] fram case for 105] C 6 287OL DEG 3875081 0018345 0 I 3875081 GE SOLID STATE Standard Power MOSFETs D1E 18345 D T-39-0F IRF610, IRF611, IRF612, IRF613 Etectrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type | Min | Typ | Max. | Units Test Conditions BYpss Oram - Source Breakdown Voltage IRF620 ~ = inei2 | 200 | - Vv Vgg = OV IRFE1t _ . inFeig | 150 | - v Ip = 250uA Vasiihy Gate Thrashotd Voltage ALL 2.0 - | 40 v Vos = Vgs-lp = 250nA Iggs _Gate Source Leakage Forward ALL - - | 500 aA Vgs = 20V . Igssg _ Gate-Source Leakage Reverse ALL = - 41-500 nA Vgs = -20V Ipsg _-Zere Gate Voltage Orain Current ALL - | 250 #A Vps = Max Rating. Vcs = OV = - 1000, 4A Vog = Max Ratingx0 8, VGgs = OV, Te = 125C Ioton? On State Orain Current @ IRFGIO 25 _ _ A . . Vos ) !pien * Rostani max.: Vas = 1OV iRF6t2 | 99 _ _ A IRF613 Rpstonp S'atic Oran Source On State (RE610 _ OM" Resistance G2 IRF6Ut yo} 16 a Vag = 10V.ip - 125A IRF612 151 24 a IRF613 " Bis Forward @ ALL oa [ta Sw Yos > 'ptont * Spstoni max: 'p = 1 254 Ciss__ Input Capacitance ALL - 135 | 150 oF Vos - OV. Vpg = 25V.t- 1 OM: Coss Output Capacitance ALL = 60 go pe See Fig 10 Crss A. verse Transfer Capacitance ALL = 16 25 pF tgtons _Tutn On Delay Time ALL = go | 15 ns Vop * 9 5BVogs: Ip = 125A. 2, = SOW t Rise Time ALL - 158 | 25 ns SeeFig 17 tgtott) Turn Off Delay Tune AtL 10 | 15 ns {MOSFET swuctung umes are essentially 1 Fatl Timo ALL 80 15 ns indapendent of aperating temperature | me) Total Gate Charge Vgg 7 10V. Ip = 3 0A, Vag = 0 8 Max Rating $ (Gate Source Pus Gate Dram) Aut 50] 75 | Ac SeeFig 18 far test cucunt (Gate charge is essentially Og; __ Gato Source Chae ALL 20 no independent of operating temperature.) Qgq Gate Drain {*Miller | Charge ALL 3.0 - ac tp -tetnal Drain Inductance 356 oH Measured from the Modified MOSFET contact screw on tab symbol show:ng the to center of die internal device ALL - 45 - aH Measured from the drain tead, 6mm {0 25 o in } from packege to center of Ge uw ls Internal Source Inductance ALL - 75] - aH Measured trom the source lead, 6mm. G Ls (0.25 in | from - package to source bonding pad Thermal Resistance FingC Junction to Case ALL = [64 | cw Rincs Case-fo Sink ALL - 10 - occ We Mounting surface tlal_ smooth. and greased Finga Junction to Ambrent ALL = = Eo Free Aw Operation Source-Drain Diode Ratings and Characteristics 15 Continuous Souree Current 1AF610 los A Modilied MOSFET symbol tBorly Diode! IRF615 showing He tegral 1RF612 _ reverse PN junction rectifier o IRF61a 2.0 Tsq Pulse Souree Current IRF610 {Body Diodei 3 IRF611 10 a G IRFG12 & IRFE13 80 & Vsp - Diode Forward Voltage +2, IRF610 . IRF611 20 v Te 25'C ts 25A.Vgg OV IRFE12 m . iRFe13 18 v Te 28C.lg 2 0A,Vgg - OV tee Reverse Recovery Time ALL 290 ns Ty= 150C. tp 2 5A, dip-dt = 100 Ans Cpa Reverse Recovered Charge ALL 20 ac Ty = 180C. ip = 2 5A, dip ot = 100A ys ton Forward Turn on Time ALL fatrasic turn on time is negtigible Turn on speed is substantially contealted bys = L, Q@Ty = 26Cto150"C. @ Pulse Test Puise width 300ys, Outy Cycle < 2% J & Repeuuve Raung Pulse width imned by Max junction temperature See Transient Thermal Impedance Curve (Fig Sl.Ol DEGP387508L OOLAS4b 1 i / OTE 18346 DT*S9-0F Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 _3875081 GE SOLID STATE > loton) * Boston) = 3 8 fs, TRANSCONDUCTANCE (SIEMENS) nN a Ipp. REVERSE DRAIN CURRENT (AMPERES) 16 T= 150C 12 + 250C 08 4 o4 q 9 10 20 a0 40 $0 0 10 70 30 aq 50 Jp, ORAIN CURRENT {AMPERES} Vsp. SOURCE TO DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs, Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 204 18g iM 186 8 143 8 2 128 {NORMALIZED} 8 413 s ie Osa ta = O82 8Vpss, DAAIN-TO SOURCE BREAKDOWN VOLTAGE Apstonj)- DRAIN-TO SOUACE ON RESISTANCE {NORMALIZED} O87 2 8 082 O89 5S -MS -16 65 27 475 68 885 109 1295 150 35-45-14 65 27 475 68 885 (109 1295 150 Ty. JUNCTION TEMPERATURE (C) Ty. JUNCTION TEMPERATURE (9C} Fig. 8 Breakdown Voltage Vs. Temperature Fig. Normalized On-Resistance Vs. Temperature S00 =0 . fr Me 400 Cis * Coe + Cog, Coe SHORTED : Crug * Cog Cost * on = Coy # wt Cog Cast Cog Vos SRFGIO, g s C, CAPACITANCE (pF) Vgs. GATE-TO SOURCE VOLTAGE (VOLTS) Ip =3A FOR TEST Q 0 nan x 0 0 z 4 6 Vos. DRAIN TO SOURCE VOLTAGE (VOLTS) Q,. TOTAL GATE CHARGE nC} Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 2893875081 GE SOLID STATE. Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 tp. DRAIN CURRENT (AMPERES) bp, ORAIN CURRENT (AMPERES) Bon > ow Zrucl Rye, NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE {PER UNIT) e o 2.58 290 _. 5.0 es - = we ee em om oa 9 Bw oD mw BH Go Hw ~ o bo ~ o 10 10 Vos. ORAIN-TO SOURCE VOLTAGE (VOLTS! o ve Bsa7soai OOVaa4? 3 Tv O1E 18347 p T*39-09 20 x _ Vos. ORAIN-TO SOURCE VOLTAGE (VOLTS) 20 30 Fig. 1 Typical Output Characteristics * 80 Fig. 3 Typical Saturation Characteristics 5 104 2 5 10-3 2 5 19-2 Vs i Ts E = 85C > o o 1 Vos > taton) x Roston} max p, ORAIN CURRENT (AMPERES) _ o 2 4 6 8 10 Vos GATE TO SOURCE VOLTAGE (VOLTS} Fig. 2 Typical Transfer Characteristics OPERATION IR AREAIS LIMITED ay Ip, ORAIN CURRENT (AMPERES) Ter Ty= 180C MAX Aric = 64 102 5 10 100-200 Vps. DRAIN T0- SOURCE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area po t1 2 Let2 1. DUTY FACTOR, D* t 2. PER UNIT BASE * Rinyc* 64 DEG. CW 3 Tym -Te= Pom Znsclth. 2 S$ ot 2 5 1 2 5 19 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse DurationO1 ve sazsoa1 00183548 3875061 GE SOLID STATE _ O1E 18348 2p 1 27-09 : Standard Power MOSFETs IRF610, IRF611, IRF612, IRF613 CURRERT OF INITIAL Ty = 25C. (HEATING iy Fosion). DRAIN-TOSOUACE ON RESISTANCE (OHMS) Jp, DRAIN CURRENT [AMPERES) 0 2 6 t 10 %e 60 75 100 125 180 Ip, ORAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (0C) Fig. 12 Typicat On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs, Case Temperature 20 Pp, POWER DISSIPATION (WATTS) s wn Q a 0 a ao 100 1200040 Tc. CASE TEMPERATURE {C} Fig. 14 Power Vs. Temperature Derating Curve VARY ty TD OBTAIN AEQUIRED PEAK fy - y = &) + 058Vogs FH Ve #0.18BVp 6 Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms o Vos CURRENT (ISOLATED AEGULATOA @ SUPPLY) ADJUST Ry, TO OBTAIN SPECIFIED Ip SAME TYPE AS OUT PULSE GENERATOR r TO SCOPE oor HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit CURRERT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 291