INTEGRATED CIRCUITS DIVISION
DS-CPC1560-R02 www.ixysic.com 1
Features
Fast Turn-On:
100s max with recommended values of CEXT
250s max with no CEXT
Activ e Current Limiting
Thermal Shutdown
1.1mA Input Control Current
Linear A C or DC Operation
High Surge Capability
Low Power Consu mption
Clean, Bounce-Free Switching
Surf ace Mount Version Available
Tape & Reel Packaging Availabl e
Applications
Security
Instrumentation
Battery P owered Systems
Transportation, Railroad Cont rols
12V, 24V Systems
Approvals
UL 508 Approved Component: File # E69938
Description
The CPC1560 is a Single Pole, Normally Open
(1-F orm A) optically isolated MOSFET switch that
provides fast turn-on of loads up to 600mADC in the
DC-Only configuration or 300mArms in the AC/DC
configuration; active current-limiting circuitry; and
3750Vrms of input to output isolation.
Turn-on is minimized with the use of an optional
e xternal stor age capacitor that provides the necessary
charge required b y the internal s wit ching MOSFETs.
The de vice charges this capacit or th rough bootstrap
diodes from the load voltage thereby alleviating the
need f or an additional power supply. A fast, b ut slightly
slow er turn-on is av ailab le without the e xternal charge
storage capacitor.
The CPC1560 incorporates current limiting and
thermal shut down circuitry f or improv ed surviv ability in
harsh environments and is designed to pass
regulatory voltage surge requirements when provided
with appropriate over-voltage protection.
Designed specifically for en vironmentally demand ing
AC and DC applications where printed circuit board
space is at a premium and additional power supplies
are not a vailable, the CPC1560 is an ideal solution.
Ordering Information
Figure 1. CPC1560 Block Diagram
Parameter Rating Units
Load Voltage 60 VP
Load Current
AC/DC 300 mArms/mADC
DC-Only 600 mADC
On-Resistance (max) 5.6
Input Control Current 1.1 mA
Part Description
CPC1560G 8-Pin, DIP Through-Hole (50/Tube)
CPC1560GS 8-Pin, Surface Mount (50/Tube)
CPC1560GSTR 8-Pin, Surface Mount (1000/Reel)
OUTPUT
OUTPUT
C+
Current
Limit
Control
C-
LED+
LED-
NC
NC
2
3
1
4
8
7
6
5
CPC1560
60V, 300mA, High Speed Normally Open
Relay with Integrated Current Limit
INTEGRATED CIRCUITS DIVISION
CPC1560
2 www.ixysic.com R02
1. Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Typical Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6.1 DC-Only Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 General Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.9 Switching Speed Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.10 Performance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4. Device Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 LED Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Storage Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5. Operational Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.1 Duty Cycle/Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.2 Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.3 Elements of Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Switching Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2.1 Effects of Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Current Limit and Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.1 Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.2 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4 dV/dt Fault Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 Power Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.6 Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.7 Over-Voltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.7.1 Stored Energy in the Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.7.2 Protection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6. Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1 Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 ESD Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Soldering Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4 Board Wash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 3
1. Specifications
1.1 Package Pinout 1.2 Pin Descriptio n
1.3 Absolut e Max imum Rating s
1Failure to comply will inhibi t the rmal shutdown.
2Derate In put Power linearly b y 1.3 3mW/° C.
3Derate Output Power linearly by 7.5mW/°C.
Absolute maximum electrical ratings are at 25°C,
unless otherwise specified.
Absolute maximum ratings are stress ratings. Stresses in
excess of these ratings can cause permanent damage to
the device . Functional operation of the de vice at conditions
beyond those indicated in the operational sections of this
data sheet is not implied.
Typical values are characteristic of the device at +25°C,
and are the result of engineering ev aluations. The y are
provided for infor m ation purposes only, and are not part of
the manufacturing testing requirements
1.4 ESD Rating
1
3
2
4
6
7
8
5
NC
NC
LED +
LED -
C-
C+
OUTPUT
OUTPUT
Pin# Name Description
1 NC Not connected, no internal connection
2 LED + Positive input to LED
3 LED - Negative input to LED
4 NC Not connected, no internal connection
5 C- External Capacitor, Negative Terminal
6 OUTPUT Switch Output
7 OUTPUT Switch Output
8 C+ External Capacitor, Positive Terminal
Parameter Rating Units
Blocking Voltage (VL)60 VP
Reverse Input Voltage 5 V
Input LED Current
Continuous 50 mA
Peak (10ms) 1 A
Input Control Current 110 mA
Peak Turn-On Energy Dissipation
AC/DC Configuration (85°C) 0.67 mJ
DC-Only Configuration (85°C) 1.34
dV/dt Fault Tolerance
AC/DC Configuration 160 V/s
DC-Only Configuration 80
Input Power Dissipation 2150 mW
Output Power Dissipation 3787 mW
Total Power Dissipation 800 mW
Isolation Voltage (Input to Output) 3750 Vrms
Operating Temperature -40 to +85 °C
Storage Temperature -40 to +125 °C
ESD Rating
(Human Body Model)
1000 V
INTEGRATED CIRCUITS DIVISION
4www.ixysic.com R02
CPC1560
1.5 Recommended Operating Conditions
1Input control current must not exceed the maximum recommended value. Failure to comply may inhibit the thermal shutdown mechanism resulting in permanent
damage to the device.
2Required only when usin g the o ptio nal external storage capacit or, CEXT.
3Maximum load in ducta nce cor re spon ds to a maxi m um load capa citan ce. If a TVS or other p rote cti on me thod is used , the n no maximum load indu ctance app lies .
1.6 Typical Configurations
1.6.1 AC/DC Application
1.6.2 DC-Only Application
Parameter Symbol Min Max Units
Load Current, Continuous
AC/DC Configuration IL-300
mArms / mADC
DC-Only Configuration -600 mADC
Input Control Current 1IF2.5 10 mA
Load Voltage 2VL10 - V
External Storage Capacitor CEXT 26 nF
Load Inductance 3
AC/DC Configuration LLOAD,AC -3.0 mH
DC-Only Configuration LLOAD,DC -1.75
Operating Temperature TA-40 +85 °C
2
3C+
C-
8
5
+V
Control
Logic
7
6-/+ Supply
+/- Z
LOAD
+/- Supply
-/+
V
L
C+
C-
2
38
7
6
5
+V
Control
Logic
+Z
LOAD
+ Supply
- Supply
-
V
L
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 5
1.7 General Conditions
Unless otherwise specified, minimum and maximum v a lues are guar anteed by production testing at 25°C only.
Typical values are characte ristic of the de vice at 25°C and are the result of engineering ev aluations. They are
provided for informational purposes only and are not part of the manufacturing test ing requirements.
Operating temper ature r ange: TA= -40°C to +85°C
1.8 Electrical Sp ec if ic at io ns
1Measurement t ak e n wit hi n 1 second o f o n-ti me .
1.9 Switching Speed Test Circuits
Parameter Conditions Symbol Min Typ Max Units
Output Characteristics @ 25°C
Current Limit
AC/DC Configuration IF=5mA, VL=±4V, t=2ms ILMT 470 614 900 mAP
DC-Only Configuration IF=5mA, VL=4V, t=2ms 1.0 1.2 1.5 A
On-Resistance 1
AC/DC Configuration IF=5mA, IL=100mA RON -3.95.6
DC-Only Configuration - 1.09 1.4
Off-State Leakage Current VL=60V ILEAK --1A
Switching Speeds IF=5mA, IL=100mA, VL=10V
Turn-On CEXT=1nF ton -18100
s
Turn-On, No Capacitor No CEXT ton -112250
Turn-Off -toff -88400
Output Capacitance, AC/DC Configuration IF=0mA, VL=1.0V CO-220- pF
Ther mal Shutdown - TSD -130- °C
Input Characteristics @ 25°C
Input Control Current to Activate IL=100mA IF--1.1
mA
Input Control Current to Deactiv ate IL=100mA IF0.1 0.43 -
LED Forward Voltage IF=5mA VF0.9 1.22 1.50 V
Common Characteristics @ 25°C
Input to Output Capacitance - CI/O -3-pF
Thermal Characteristics
Ther mal Resistance, Junction-to-Ambient - RJA -114-°C/W
I
F
10%
90%
t
on
t
off
V
L
Pulse Width=5ms
With capacitor
C+
C-
2
3
8
7
6
5
IF
-/+ Supply
+/-
ZLOAD
+/- Supply
-/+
VL
No Capacitor
2
3
8
7
6
5
I
F
-/+ Supply
+/-
Z
LOAD
+/- Supply
-/+
V
L
INTEGRATED CIRCUITS DIVISION
6www.ixysic.com R02
CPC1560
1.10 Performance Data
Temperature (ºC)
-40 -20 0 20 40 60 80 100
IL Max (mArms, mADC)
150
200
250
300
350
400
Maximum Allowed Load Current
vs. Temperature
(AC/DC Configuration)
IF=10mA
IF=2.5mA
IF=5mA
Temperature (ºC)
-40 -20 0 20 40 60 80 100
IL Max (A)
0.5
0.6
0.7
0.8
0.9
1.0
1.1
Maximum Allowed Load Current
vs. Temperature
(DC-Only Configuration)
IF=10mA
IF=2.5mA
IF=5mA
VL (VAC)
-1.0 -0.8-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.81.0
IL (mA)
-300
-200
-100
0
100
200
300
Load Current vs. Load Voltage
(AC/DC Configuration)
(IF=5mA)
V
L
(V
DC
)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
I
L
(mA)
0
100
200
300
400
500
600
Load Current vs. Load Voltage
(DC-Only Configuration)
(I
F
=5mA)
The Performance data shown in the graphs abo v e is typical of de vice perf ormance. F or guar anteed par ameters not
indicated in the written specifications, please contact our application department.
Temperature (ºC)
-40 -20 0 20 40 60 80 100
VF (V)
1.10
1.15
1.20
1.25
1.30
1.35
1.40
LED Forward Voltage
vs. Temperature
IF=10mA
IF=2.5mA
IF=5mA
Temperature (ºC)
-40 -20 0 20 40 60 80 100
IF (mA)
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
Typical IF for Switch Operation
vs. Temperature
(IL=100mA)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
On-Resistance (Ω)
0
2
4
6
8
10
12
Typical On-Resistance vs. Temperature
(AC/DC Configuration)
(IF=5mA, IL=100mA)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
On-Resistance (Ω)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
Typical On-Resistance vs. Temperature
(DC-Only Configuration)
(IF=5mA, IL=100mA)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
ILIM (ADC)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
DC Current Limit vs. Temperature
(IF=5mA)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
ILIM+ (mA)
AC Positive Current Limit
vs. Temperature
450
500
550
600
650
700
750
800
900
IF=10mA
IF=2.5mA
IF=5mA
850
Temperature (ºC)
-40 -20 0 20 40 60 80 100
ILIM- (mA)
450
500
550
600
650
700
750
800
850
900
AC Negative Current Limit
vs. Temperature
(IF=5mA)
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 7
Temperature (ºC)
-40 -20 0 20 40 60 80 100
Energy (mJ)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Maximum Allowed
Energy Dissipation During tFALL
(AC/DC Configuration)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
Energy (mJ)
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
Maximum Allowed
Energy Dissipation During tRISE
(AC/DC Configuration)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
Energy (mJ)
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
Maximum Allowed
Energy Dissipation During tRISE
(DC-Only Configuration)
Temperature (ºC)
-40 -20 0 20 40 60 80 100
Energy (mJ)
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Maximum Allowed
Energy Dissipation During tFALL
(DC-Only Configuration)
The Performance data shown in the g r aphs abo ve is typical of de vice performance. For guaranteed parameters not
indicated in the written specifications, please contact o ur application department.
Temperature (ºC)
-40 -20 0 20 40 60 80 100
Blocking V oltage (VP)
Blocking V oltage vs. Temperature
50
60
70
80
90
100
INTEGRATED CIRCUITS DIVISION
8www.ixysic.com R02
CPC1560
2. Introduction
The CPC1560 is an optically coupled Solid State
Rela y (SSR) t hat is self- biased from the load sup ply.
An optional external charge storage capacitor is used
to speed up SSR turn-on. The CPC1560 also
incorporates current limiting and a thermal shutdo wn
f eature in the output circuit ry, making the device ideal
for use in harsh conditions.
3. Functional Description
Internally, the device is composed of an LED, a
photovoltaic array with control circuitry, and two
MOSFET output switches.
Input current to the LED is t he signal to t urn-on the
SSR’ s output MOSFET s witches. The LED illuminates
the photov oltaics, which provide current to the gates of
the output MOSFETs, causing them to conduct. When
utilizing CEXT, the charge delivered to the MOSFET
gates initially includes the charge stor ed in th e
e x ternal capacitor, causing the SSR to conduct more
quickly than if only the photo v oltaic current were used.
When the Load Voltage (VL) is first applied to the
inactiv e outputs, the e xternal storage capacitor begins
to charge. To ensure proper operation, the storage
capacitor should be equal to or g reat er t han the tot al
gate capacitance of the two output MOSFET switches.
Charge from the load voltage is passed through
bootstrap diodes , which prevent the charge from
escaping and discharging the capacitor thr ough the
MOSFET output switch when the SSR is turned on.
The input control current is applied, then the charge is
transferred from the storage capacitor through the
internal NPN bipolar transistor along with the charge
from the photo voltaic, to the MOSFET gates to
accomplish a rapid turn-on. After the MOSFETs hav e
turned on and the capacitor has discharged current
from the photo voltaic continues to flow into the gates,
keeping t he MOSFETs turned on.
When the input control current is remov ed, gate
current from the photovoltaic stops flowing and the
PNP bipolar transistor turns on, discharging the
MOSFET gates. The MOSFETs ar e now off. At this
point, with load voltage applied, the capacitor begins
recharging for the next turn on cycle.
The non-conducting, optical coupling space between
the LED and the photovoltaics provides 3750Vrms of
isolation between the control input and the switched
output of the CPC1560.
Important things t o note about the oper a tion of the
CPC1560:
The device is designed to maintain its guaranteed
operating char acteristics with DC input control
current (IF) in the range of 2.5mA to 10mA (see
“Recommended Operating Conditions” on page 4). The
device will operate at input currents above and belo w
this range , but device operat ing char act eristics over
the operating temper ature range are not guar anteed.
There is a minimum LED input current required for
the de vice to shut off: 0.1mA at 25°C (see “Electrical
Specifications” on page 5).
The output switch will only withstand a maxim um o f
60 v olts across its t erminals bef or e breaking do wn
(see“Absolute Maximum Ratings” on page 3). Maximum
v olt age gener ally occurs wh en the output is o ff.
The CPC1560 has two different operating
configurations: unidirectional DC-only configur ation,
and bidirectional A C/DC configuration.
In the unidirectional DC-only configuration, the de vice
switches load v oltages with a fixed polarity, while in the
A C/DC configuration it can switch voltages with either
positive or negative polarities.
The adv antag e of oper ating t he device in the DC-only
configuration is the abilit y to switch larger load
currents. The advantage of operating it in the AC/DC
configuration is the f lexibility of switching load v oltages
of either polarity.
4. Device Configuration
4.1 LED Resistor
To assure proper operation of the CPC1560, the LED
resistor selection should comply with the
recommended operating conditions. Although the LED
is capable of being op er at ed up to the absolu te
maximum rat ings, this is not recommended. Oper ating
the LED bey ond the recommended oper ating
conditions may prevent the current limit and thermal
shutdown functions fro m performing properly. The
equation to calculate the maxim um resistor value is:
IF_MIN = Minimum Input Cont rol Curr ent
VIN_MIN = Minim um Input Pow er Source
VLOW_MAX = Maximum Logic Level Low Voltage
VF_MAX = Maximum Forward Voltage Drop of LED
RLED_MAX = Maximum Input Resistor to LED
RLED_MAX = VIN_MIN - VLOW_MAX - VF_MAX
IF_MIN
VIN
+
VF
-
VLOW
RLED
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 9
4.2 Storage Capac it o r
The CPC1560 utiliz es an optional external capacitor
(CEXT) to meet the device’s fastest turn-on
specification. This external storage capacitor enables
the rela y to turn on more quickly b y holding a reserv oir
of charge to be transf er red t o the gates of the
MOSFET switches. The capacit or m ust have a
minimum working voltage g reater than the load
v olt age and be connected between pin 8 (C+), the
capacitor’s positive voltage terminal, and pin 5 (C-),
the capacitor’s negative voltage terminal.
Proper selection of the external storage capacitor
begins with the recommended r ang e provided in the
“Recommended Operating Conditions” on page 4, and the
maximum voltage at the CPC1560 output s , including
transients and faults. The nominal value of the
capacitor needs to be chosen to ensur e the
capacitor’s value remains within the recommended
range o ver the operational conditions of the end
product the eff ects of toler ance, temperature
coefficient, and (for some types of capacitor) der ating
due to bias voltage are accounted for ,
5. Operational Behavior
5.1 Operating Frequency
5.1.1 Duty Cycle/Power Dissipation
Equation 1 shows the relationship between pow er
dissipation, operating frequency, and duty cycle f or the
CPC1560. F rom this equation, it can be seen that both
s witching frequency (fswitch) and duty cycle (D)
contribute to power dissipation. The first one by
generating switching losses, and the second one by
generating ON losses . Swit ching losses are those
caused by changes in the energy st ate of t he load
components when the de vice is s wit ching on and off
(i.e. ERISE and EFALL), and the ON losses are those
caused by the flo w of load current (IL) through the
output’s on-resistance (RON) when it is switch ed on.
Because a higher operating f requency translates into
higher pow er consumed by the part, care must be
taken to limit its v alue in order to protect the device
from exceeding its maximum pow er rating. When
doing this, both the maxim um allowed power
dissipation in the part and the O N duty cycle,
D=tON / (tON+tOFF), must be taken into consideration.
5.1.2 Temperature Effects
When setting the oper ating frequency of t he
CPC1560, the user must also tak e into account pow er
dissipation over temper ature.
5.1.3 Elements of Operating Frequency
In addition to ambient temper ature, the maximum
frequency of the CPC1560 is also determined by the
MOSFET’s turn-on and turn-off times and the load
v olt age rise and fall times as follows:
Where 1/3 is a multiplication factor f or te mper at ure
and process variations .
5.2 Switching Losses
During the transition intervals of the s witching process,
the load components change energy states, which
results in switching losses as the energy passes
through the MOSFETs . This energy transfer is
manif ested in the f orm of heat dissipation and m ust be
taken int o consideration.
Energy is transf erred during the turn-off interv als . This
energy, called Erise, will be absorbed by the MOSFET
output switches, and if present par asitic load
capacitance and the protect ion device.
Energy is also transferred during the turn-on intervals
and is called Efall. This energy, will be absorbed by the
MOSFET output switches, which is why it should be
limited to the “Peak Turn-On En ergy Dissipation”
v alues sp ecified in t he Absolute Maximum Ratings
Table of this datasheet.
The user of the CPC1560 de vice m ust understand the
details of the load behavior and k eep in mind t he
de vice’s recommended operat ing conditions in order
to adequately size t he load components and protect
the application circuit.
The av erage pow er of the CPC1560 output MOSFETs
f or any specific application and f or any load type giv en
by Equation 1 and rep eated her e is:
From this equation we can see ho w the switching
losses (ERISE and EFALL), together with the “on
losses,” contribute to the CPC1560’s output pow er
dissipation.
The user must also know that the recommended
operating conditions for IL, fSWITCH, load capacitance
(1) Pavg = IL2 • RON • D + fswitch(ERISE + EFALL)
(2) fMAX = (tON + tOFF)
1
3-1
(3) Pavg = IL2 • RON • D + fswitch(ERISE + EFALL)
INTEGRATED CIRCUITS DIVISION
10 www.ixysic.com R02
CPC1560
(CLOAD) and load Inductance (LLOAD), along with other
recommended operating conditions giv en in this
datasheet, are constr ained by t he 85°C operation of
most industrial applications. For lo w er operating
temperature r ang es , t hese values can be de-rated
using the inf ormation provided in the temperature
graphs in this datashe et.
5.2.1 Effects of Ambient Temperature
One of the most important factors is t he temper at ure
v ariation of the environment. F r om the Maximum
Allowed Ener gy Dissipat ion During tRISE graphs
(AC/DC and DC-Only) in this datasheet, the user can
see how the energy dissipated in the part during tRISE
increases with increasing ambient temperature .
The operating frequency of the device is directly
related to the amount of energy dissipat ed in it during
the transition times, tRISE and tFALL, which increases
rapidly with temper at ure, as seen in the previously
mentioned gr aph s. Depending on t he oper at ing
temperature r ang e of the a pplication , t he use r m ust
derate the maximum allo wed energy in the part during
tRISE and tFALL (according to the temperat ure g raphs
provided) in order to limit the operating switching
frequency.
5.3 Current Limit and Thermal Shutdown
5.3.1 Current Limit
The CPC1560 has a current limit feature in which
current through the output switches is limited to a
v alue larger than the recommended operating current.
In the AC/DC configuration, the CPC1560 has
bidirectional current limiting, which consists of current
limit circuits f or both positive and negativ e polarities. In
the DC-only configuration, the DC current limit
consists of the parallel of the tw o AC current limit
circuits. The curr ent limit fu nction ha s a negative
temperature coeff icient in which incr easing
temperature lo w ers the current limit threshold of the
de vice.
Prolonged periods of current limiting will cause the
temperature of the device to increase, and, if allo wed
to continue, will activ at e th e device’s thermal
shutdown circuitry, f or cing the outpu t switches to turn
off.
5.3.2 Thermal Shutdown
The purpose of the thermal shut down f eat ure is to
completely shut down the operation of the device
when its junction temper ature has gone abo ve 130°C,
whether this is due to high power dissipation in the
de vice in the form of heat or an incre ase in t he
ambient temperature .
The thermal shutdown feature and the current limit
f eat ure p ro v ide g r eat p o wer cross immunity t o t he
de vice for improved survivability in harsh
environments.
5.4 dV/dt Fault Tolerance
The CPC1560 de vice has a finite dV/dt fault tolerance
f or both the A C /DC and DC-only configur ations, which
must not be e xceeded.
The dV/dt tolerance for the device in the AC/DC
configuration is double that of the DC-only
configuration (see “Absolute Maximum Ratings” on
page 3). This is because the dV/dt v alue of t he
CPC1560 is inversely proportional to the size of the
output switch’s Crss, or “re verse transf er capacitance,
and this capacitance in the DC-only configur ation is
double that in the AC/DC configuration.
5.5 Power Derating
Bear in mind the pow er rating of the CPC1560 when
operating the device at elevated tempera tures. The
Absolute Maximum Ratings table shows the maxim um
allow ed output po wer dissipation at 25°C is 787mW,
which is the maximum power the output can
dissipated before the junction temper atur e of the
de vice reaches 12 5°C.
In order to keep the CPC1560 operating within its
pow er rating, use the Maxim um Allowed Loa d Current
graphs pro v ided earlier in this document.
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 11
5.6 Rise and Fall Times
The CPC1560 has rise and fall times that are primarily
limited by int ernal parasitic e lements of the de vice; the
load components only play a secondary role. This can
be appreciated in the turn-off g r aph of an application
circuit operating at 45V, where the slope of the load
v oltage starts scooping down into a more capacitive
shape after approximately 15 volts .
5.7 Over-Voltage Protection
5.7.1 Stored Energy in the Load
During the CPC1560’s switching periods , energy is
transferred betwe en the loa d component s, the
CPC1560 device, and, if used, t he ov er-voltage
protection circuitry.
When the output switch turns off, inductive loads
(LLOAD) transf er their stored energy to the MOSFET
s w itches, the load capacitance, and the o ver-voltage
protector. (See the turn-off gr aph for a 45V inductive
load application circuit.)
When the output s wit ch turns on, the energy in the
load inductor is zero, and the load capacitor (CLOAD)
must tr ansfer its stored energy into the MOSFET.
Time (μs)
-80 -40 -20 0 20 40
MOSFET V oltage (V)
0
20
30
40
50
MOSFET Current (A)
0.0
0.4
0.6
0.8
1.0
DC-Only Application Circuit
Resistive Load Turn-Off Characteristics
(Supply=45VDC, RLOAD =75Ω)
8060
10 0.2
-60
t
RISE
=46μsV
L
I
L
Time (μs)
-80 -40 -20 0 20 40
MOSFET V oltage (V)
0
20
30
40
50
MOSFET Current (A)
0.0
0.4
0.6
0.8
1.0
DC-Only Application Circuit
Inductive Load Turn-Off Characteristics
(Supply=45V, RLOAD =75Ω, LLOAD= 630μH)
8060
10 0.2
-60
V
L
I
L
INTEGRATED CIRCUITS DIVISION
12 www.ixysic.com R02
CPC1560
5.7.2 Protection Methods
One way to protect the CPC1560 and application
circuit components from damage when excessive
stored energy is suddenly released into the output
MOSFETs of the CPC1560, is to add a Transient
Voltage Suppressor (TVS) across the output s witches .
Use a unidirectional TVS from the outputs to C- for the
DC-only configuration, and use a bidirectional TVS
across the output pins for the AC/DC conf iguration as
shown in the diagrams below.
In order to calculate the r equir ed TVS value, the user
has to compare working voltage of the application
circuit to the breakdown voltage of the CPC1560 with
the TVS maximum clamping voltage ratings. The TVS
maximum clamping capability m ust be , at a minim um,
equal to the specific peak pulse current of the load.
This must be done to ensu re th e TVS can easily
absorb any excess energy coming from the inductive
load (LLOAD).
In addition to the TVS , other protection techniques are
also available depending on the type of load t he user
is trying to switch. For purely resistive loads the user
ma y rely on the output transistor to handle an y
parasitic energy. For very low to moderately inductive
loads (e.g. remote switching of a load through a long
cabl e), a voltage suppresso r or TVS can be used as
e xplained before. For hea vily inductive loads, a
fly-back diode connect ed across the load element is
recommended
F or m uch higher inductive loads, other circuit
techniques, de vice ratings and/or protector types m ust
be considered1. Of par amount importance is that the
designer know the characteristics of the load being
switched.
Figure 2. CPC1560 DC-Only Configuration with Over-Voltage Protection
Figure 3. CPC1560 AC/DC Configuration with Over-Voltage Protection
1 F or more o ver voltage protection techniques consult: Switchmode Power Supply Handbook, 2nd Edition, Keith
Billings, ISBN 0-07-006719-8, or Power MOSFET Design, B.E. Taylor, ISBN 0-471-93-802-5
Supply
Supply
DOVP
CEXT
CPC1560
RLED
VIN
1
2
3
4
8
7
6
5
ZLOAD
C+
C-
Output
Output
Supply
DOVP
CEXT
CPC1560
RLED
VIN
1
2
3
4
8
7
6
5
Supply
ZLOAD
C+
C-
Output
Output
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 13
6 Manufacturing Information
6.1 Moisture Sensitivity
All plastic encapsulated semiconductor packages are susceptible to moistur e ing r ession. IXYS Integ rated
Circuits Division classifies its plastic encapsulated devices for moisture se nsitivity according to the latest
v ersion o f the joint indust ry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation.
We test all of our products to t he maximum conditions set forth in the stan dard, and guarantee proper
operation of our devices when handled according to the limitations and information in that st andard as w ell as to any
limitations set forth in the information or standards referenced below.
Failure to adhere to the warnings or limitations as estab l ished by the listed specifications could result in reduced
product performance, reduction of operable lif e, and/or reduction of overall reliability.
This product carries a Moisture Sensitivity Level (MSL) classificat ion as shown belo w, and should be handled
according to the requirements of the latest version of the joint industry standa rd IPC/ JEDEC J-STD-033.
6.2 ESD Sensitivi ty
This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.
6.3 Soldering Profile
Provided in the table below is the Classification Temperature (TC) of this product and the maximum dwell time the
body temperature of this device may be (TC - 5)ºC or g reater. The classification temperat ure sets the Maxim um Body
Temperature allo w ed for this device during lead-free ref low processes. For through-hole de vices, and an y ot her
processes, the guidelines of J-STD- 020 must be observed.
6.4 Board Wash
IXYS Integr ated Circu it s Division recommends t he use of no-clean f lux formulations. Board w ashing to re duce or
remove flux residue following the solder reflow process is accep table prov ided proper precaut io ns are taken to
pre vent damage to the de vice. These precautions include but are not limited to: using a lo w pressure wash and
providing a follow up bake cycle suff icien t t o remov e any moisture trapped within the device due to the washing
process. Due to the v ariability of the w ash parameters used to clean the board, determination of the bak e temperature
and duration necessary t o remo v e the moisture tr apped within the package is the responsibility of t he user
(assembler) . Cleaning or drying methods that employ ultr asonic energy may damage the de vice and should not be
used. Additionally, the device must n ot be exposed to flux or solvents tha t are Chlorine- or Fluorine-based.
Device Moisture Sensitivity Level (MSL) Classification
CPC1560G / CPC1560GS MSL 1
Device Classification Temperature (TC)Dwell Time (tp)Max Reflow Cycles
CPC1560G / CPC1560GS 250°C 30 seconds 3
INTEGRATED CIRCUITS DIVISION
14 www.ixysic.com R02
CPC1560
6.5 Mechanical D ime ns io n s
6.5.1 CPC1560G DIP Package Dimensions
6.5.2 CPC1560GS Surface Mount Package Dimensions
Dimensions
mm
(inches)
PCB Hole Pattern
2.540 ± 0.127
(0.100 ± 0.005)
6.350 ± 0.127
(0.250 ± 0.005) 9.144 ± 0.508
(0.360 ± 0.020)
0.457 ± 0.076
(0.018 ± 0.003)
9.652 ± 0.381
(0.380 ± 0.015)
7.239 TYP.
(0.285)
7.620 ± 0.254
(0.300 ± 0.010)
4.064 TYP
(0.160)
0.813 ± 0.102
(0.032 ± 0.004)
8-0.800 DIA.
(8-0.031 DIA.) 2.540 ± 0.127
(0.100 ± 0.005)
7.620 ± 0.127
(0.300 ± 0.005)
7.620 ± 0.127
(0.300 ± 0.005)
3.302 ± 0.051
(0.130 ± 0.002)
Pin 1
0.254 ± 0.0127
(0.010 ± 0.0005)
Dimensions
mm
(inches)
PCB Land Pattern
2.540 ± 0.127
(0.100 ± 0.005)
9.652 ± 0.381
(0.380 ± 0.015)
6.350 ± 0.127
(0.250 ± 0.005) 9.525 ± 0.254
(0.375 ± 0.010)
0.457 ± 0.076
(0.018 ± 0.003)
0.813 ± 0.102
(0.032 ± 0.004)
4.445 ± 0.127
(0.175 ± 0.005)
7.620 ± 0.254
(0.300 ± 0.010)
0.635 ± 0.127
(0.025 ± 0.005)
0.254 ± 0.0127
(0.010 ± 0.0005)
2.54
(0.10)
8.90
(0.3503)
1.65
(0.0649)
0.65
(0.0255)
3.302 ± 0.051
(0.130 ± 0.002)
Pin 1
INTEGRATED CIRCUITS DIVISION
CPC1560
R02 www.ixysic.com 15
6.5.3 CPC1560GSTR Tape and Reel Specification
Dimensions
mm
(inches)
User Direction of Feed
NOTES:
1. Dimensions carry tolerances of EIA Standard 481-2
2. Tape complies with all “Notes” for constant dimensions listed on page 5 of EIA-481-2
Embossment
Embossed Carrier
Top Cover
Tape Thickness
0.102 MAX.
(0.004 MAX.)
330.2 DIA.
(13.00 DIA.)
K1 =4.20
(0.165)
0
K =4.90
(0.193)
P1=12.00
(0.472)
W=16.00
(0.63)
Bo=10.30
(0.406)
Ao=10.30
(0.406)
For additional information please visit www.ixysic.com
IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at an y time without notice. Neither circuit patent licenses or indemnity are expressed
or implied. Except as set forth i n IXYS Integrated Circuits Division’s Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability
whatsoever, and disclaims any express or implied warranty relating to its products, including, but not limited to, the implied warranty of merchantability, fitness for a
particular purpose, or infringement of any intell ectual property right.
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into
the body, or in other applications intended to support or sustain lif e , or where mal funct ion of I XYS Integ rated Circuits Division’s product may result in direct physical
harm, injury, or death to a person or sev ere property or environment al damage . IX YS Integr ate d Circuits Division reserves the right to disconti nue or mak e changes
to its products at any time without notice.
Specification: DS-CPC1560-R0 2
©Copyright 2017, IXYS Integrated Circuits Division
All rights reserved. Printed in USA.
11/3/2017