INSULATED GATE BIPOLAR TRANSISTOR IRG7PH30K10PbF
1www.irf.com
06/23/09
VCES = 1200V
IC = 23A, TC = 100°C
tSC 10µs, TJ(max) =175°C
VCE(on) typ. = 2.05V
Features
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
10 µS short Circuit SOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) Temperature Co-Efficient
Tight Parameter Distribution
Lead Free Package
Benefits
High Efficiency in a Wide Range of Applications
Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
Rugged Transient Performance for Increased Reliability
Excellent Current Sharing in Parallel Operation GC E
Gate Collector Emitter
GCE
TO-247AC
C
E
C
G
n-channel
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Voltage 1200 V
I
C
@ T
C
= 25°C Continuous Collector Current 33
I
C
@ T
C
= 100°C Continuous Collector Current 23
I
NOMINAL
Nominal Current 9.0
I
CM
Pulse Collector Current Vge = 15V 27
I
LM
Clamped Inductive Load Current Vge = 20V
c
36
V
GE
Continuous Gate-to-Emitter Voltage ±30
P
D
@ T
C
= 25°C Maximum Power Dissipation 210
P
D
@ T
C
= 100°C Maximum Power Dissipation 110
T
J
Operating Junction and -55 to +175
T
STG
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
(IGBT) Thermal Resistance Junction-to-Case-(each IGBT)
f
––– ––– 0.70
R
θCS
Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 –––
R
θJA
Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40
A
W
°C/W
V
PD - 96156A
IRG7PH30K10PbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 51.
Pulse width 400µs; duty cycle 2%.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
Ref.Fig
V
(BR)CES
Collector-to-Emitter Breakdown Voltage 1200 V V
GE
= 0V, I
C
= 250µA
e
CT6
V
(BR)CES
/T
J
Temperature Coeff. of Breakdown Voltage —1.27—V/°C
V
GE
= 0V, I
C
= 1mA (25°C-175°C)
e
CT6
2.05 2.35 I
C
= 9.0A, V
GE
= 15V, T
J
= 25°C
d
5,6,7
V
CE(on)
Collector-to-Emitter Saturation Voltage 2.56 V I
C
= 9.0A, V
GE
= 15V, T
J
= 150°C
d
8,9,10
—2.65— I
C
= 9.0A, V
GE
= 15V, T
J
= 175°C
d
V
GE(th)
Gate Threshold Voltage 5.0 7.5 V V
CE
= V
GE
, I
C
= 400µA 8,9
V
GE(th)
/TJ Threshold Voltage temp. coefficient -16 mV/°C V
CE
= V
GE
, I
C
= 400µA (25°C - 175°C) 10,11
gfe Forward Transconductance 6.2 S V
CE
= 50V, I
C
= 9.0A, PW = 80µs
I
CES
Collector-to-Emitter Leakage Current 1.0 25 V
GE
= 0V, V
CE
= 1200V
—400— V
GE
= 0V, V
CE
= 1200V, T
J
= 175°C
I
GES
Gate-to-Emitter Leakage Current ±100 nA V
GE
= ±30V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Ref.Fig
Q
g
Total Gate Charge (turn-on) 45 68 I
C
= 9.0A
d
18
Q
ge
Gate-to-Emitter Charge (turn-on) 8.7 13 nC V
GE
= 15V CT1
Q
gc
Gate-to-Collector Charge (turn-on) 20 30 V
CC
= 600V
E
on
Turn-On Switching Loss 530 760 I
C
= 9.0A, V
CC
= 600V, V
GE
= 15V
d
CT4
E
off
Turn-Off Switching Loss 380 600 µJ R
G
= 22, L = 1000µH, L
S
= 150nH,T
J
= 25°C
E
total
Total Switching Loss 910 1360 Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 14 31 I
C
= 9.0A, V
CC
= 600V, V
GE
= 15V
d
CT4
t
r
Rise time 24 41 ns R
G
= 22, L = 1000µH, L
S
= 150nH,T
J
= 25°C
t
d(off)
Turn-Off delay time 110 130
t
f
Fall time 38 56
E
on
Turn-On Switching Loss 850 I
C
= 9.0A, V
CC
= 600V, V
GE
=15V
d
12,14
E
off
Turn-Off Switching Loss 750 µJ R
G
=22, L=1000µH, L
S
=150nH, T
J
= 175°C CT4
E
total
Total Switching Loss 1600 Energy losses include tail & diode reverse recovery WF1, WF2
t
d(on)
Turn-On delay time 12 I
C
= 9.0A, V
CC
= 600V, V
GE
=15V
d
13,15
t
r
Rise time 23 ns R
G
= 22, L = 1000µH, L
S
= 150nH CT4
t
d(off)
Turn-Off delay time 130 T
J
= 175°C WF1
t
f
Fall time 270 WF2
C
ies
Input Capacitance 1070 pF V
GE
= 0V 17
C
oes
Output Capacitance 63 V
CC
= 30V
C
res
Reverse Transfer Capacitance 26 f = 1.0Mhz
T
J
= 175°C, I
C
= 36A 4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 960V, Vp =1200V CT2
Rg = 10, V
GE
= +20V to 0V, T
J
=175°C
SCSOA Short Circuit Safe Operating Area 10 µs V
CC
= 600V, Vp =1200V ,T
J
= 150°C, 16, CT3
Rg = 22, V
GE
= +15V to 0V WF4
Conditions
µA
IRG7PH30K10PbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
25 50 75 100 125 150 175
TC (°C)
0
5
10
15
20
25
30
35
IC (A)
0 25 50 75 100 125 150 175
TC (°C)
0
25
50
75
100
125
150
175
200
225
Ptot (W)
10 100 1000 10000
VCE (V)
1
10
100
IC (A)
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
IC (A)
10µsec
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
DC
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
0246810 12 14 16 18
VCE (V)
0
5
10
15
20
25
30
35
40
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810 12 14 16 18
VCE (V)
0
5
10
15
20
25
30
35
40
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
IRG7PH30K10PbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
VCE (V)
ICE = 4.5A
ICE = 9.0A
ICE = 18A
0246810 12 14 16 18
VCE (V)
0
5
10
15
20
25
30
35
40
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
VCE (V)
ICE = 4.5A
ICE = 9.0A
ICE = 18A
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22; VGE = 15V
Fig. 11- Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
0 5 10 15
VGE (V)
0
5
10
15
20
25
30
35
40
ICE (A)
TJ = 25°C
TJ = 175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
VCE (V)
ICE = 4.5A
ICE = 9.0A
ICE = 18A
5 101520
IC (A)
0
400
800
1200
1600
2000
Energy (µJ)
EOFF
EON
IRG7PH30K10PbF
www.irf.com 5
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22; VGE = 15V Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V Fig. 16 - VGE vs. Short Circuit Time
VCC = 600V; TC = 150°C
8 10121416
VGE (V)
8
16
24
32
40
48
Time (µs)
10
20
30
40
50
60
Current (A)
Tsc
Isc
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 18- Typical Gate Charge vs. VGE
ICE = 9.0A; L = 1.0mH
0 1020304050
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES = 600V
VCES = 400V
0100 200 300 400 500
VCE (V)
1
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
010 20 30 40 50
RG ()
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
010 20 30 40 50
RG ()
600
700
800
900
1000
Energy (µJ)
EON
EOFF
0 5 10 15 20
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
IRG7PH30K10PbF
6www.irf.com
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.01068 0.000005
0.18156 0.000099
0.31802 0.001305
0.19105 0.009113
IRG7PH30K10PbF
www.irf.com 7
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit
100K
22K
DUT
D1
0.0075µ
G force
C fo rce
C sens
e
E force
E sens
e
L
Rg
80 V DUT
Vclamped
+
-
L
Rg
VCC
DIODE CLAMP
DUT /
DRIVER
1K
VCC
DUT
0
L
VCC
Rg
VCC
DUT
R = VCC
ICM
IRG7PH30K10PbF
8www.irf.com
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 150°C using Fig. CT.3
-100
0
100
200
300
400
500
600
700
800
900
-5 0 5 10
time(µs)
V
CE
(V)
-2
0
2
4
6
8
10
12
14
16
18
I
CE
(A )
90% I
CE
5% V
CE
5% I
CE
Eoff Loss
tf
-100
0
100
200
300
400
500
600
700
-1.8 -0.8 0.2 1.2 2.2 3.2
time (µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
I
CE
(A )
TEST CURRENT
90% test
current
5% V
CE
10% test
current
tr
Eon L os s
-100
0
100
200
300
400
500
600
700
800
-5 0 5 10
Time (uS )
Vc e (V )
-10
0
10
20
30
40
50
60
70
80
Ice (A)
ICE
VCE
IRG7PH30K10PbF
www.irf.com 9
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/2009
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/