68
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
GENERAL DESCRIPTION
AVX has combined the best electrical characteristics of its
TransGuard®Transient Voltage Suppressors (TVS) and its
Feedthru Capacitors into a single chip for state-of-the-art
overvoltage circuit protection and EMI reduction over a
broad range of frequencies. This unique combination of
multilayer ceramic construction in a feedthru configuration
gives the circuit designer a single 0805 chip that responds
to transient events faster than any TVS device on the mar-
ket today, and provides significant EMI attenuation when in
the off-state.
The reduction in parallel inductance, typical of the feedthru
chip construction when compared to the construction of
standard TVS or ceramic capacitor chips, gives the
TransFeed product two very important electrical advan-
tages: (1) faster “turn-on” time. Calculated response times
of <200 pSec are not unusual with this device, and mea-
sured response times range from 200 – 250 pSec. The
TransFeed “turn-on” characteristic is less than half that of
an equivalent TransGuard®part — and TransGuards®clamp
transient voltages faster than any other bipolar TVS solution
such as diodes; (2) the second electrical advantage of
lower parallel inductance, coupled with optimal series
inductance, is the enhanced attenuation characteristics of
the TransFeed product. Not only is there significantly
greater attenuation at a higher self-resonance frequency,
but the roll-off characteristic becomes much flatter, result-
ing in EMI filtering over a much broader frequency spec-
trum. Typical applications include filtering/protection on
Microcontroller I/O Lines, Interface I/O Lines, Power Line
Conditioning and Power Regulation.
TYPICAL APPLICATIONS
• Fingerprint ID Circuit
• Magnetic Field Circuit
• LCD Dashboard Driver
Where designers are concerned with both transient voltage
protection and EMI attenuation, either due to the electrical
performance of their circuits or due to required compliance
to specific EMC regulations, the TransFeed product is an
ideal choice.
Y
Capaci tance
Tolerance
Y = +100/-50%
2
DC
Resistance
1 = 0.150 Ohms
2 = 0.200 Ohms
3 = 0.250 Ohms
E
Feedthru
Current
D = 500 mA
E = 750 mA
F = 1.0 Amp
D
Packaging
Code
Pcs./Reel
D = 1,000
R = 4,000
T = 10,000
V
Varistor
2
Chip Size
2 = 0805
3 = 0612
F
Feedthru
Capacitor
1
No. of
Elements
05
Voltage
05 = 5.6VDC
09 = 9.0VDC
14 = 14.0VDC
18 = 18.0VDC
A
Energy
Rating
X = 0.05J
A = 0.1J
C = 0.3J
150
Varistor
Clamping
Voltage
150 = 18V
200 = 22V
300 = 32V
400 = 42V
500 = 50V
P
Termination Finish
P = Ni/Sn Alloy (Plated)
HOW TO ORDER
Schematic Diagram
Electrical Model
IN OUT
IN LSLS
RVCRP
RON
LP
OUT
69
TRANSFEED ELECTRICAL SPECIFICATIONS
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
18LC
18A
14A
9A
5A
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
TransFeed 0.1J
18C
5C
14C
9C
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
TransFeed 0.3J
dB Attenuation vs Frequency
AVX Working Working Breakdown Clamping Maximum Transient Peak Typical DC Maximum
Part Number Voltage Voltage Voltage Voltage Leakage Energy Current Cap Resistance Feedthru
(DC) (AC) Current Rating Rating Current
V2F105A150Y2E _ _ 5.6 4.0 8.5±20% 18 35 0.10 30 800 0.200 0.75
V2F105C150Y1F _ _ 5.6 4.0 8.5±20% 18 35 0.30 120 2500 0.150 1.00
V2F109A200Y2E _ _ 9.0 6.4 12.7±15% 22 25 0.10 30 575 0.200 0.75
V2F109C200Y1F _ _ 9.0 6.4 12.7±15% 22 25 0.30 120 1800 0.150 1.00
V2F114A300Y2E _ _ 14.0 10.0 18.5±12% 32 15 0.10 30 300 0.200 0.75
V2F114C300Y1F _ _ 14.0 10.0 18.5±12% 32 15 0.30 120 900 0.150 1.00
V2F118A400Y2E _ _ 18.0 13.0 25.5±10% 42 10 0.10 30 200 0.200 0.75
V2F118C400Y1F _ _ 18.0 13.0 25.5±10% 42 10 0.30 120 500 0.150 1.00
V2F118X500Y3D _ _ 18.0 13.0 25.5±10% 50 10 0.05 20 75 0.250 0.50
V3F418A400Y3G _ _ 18.0 13.0 25.5±10% 42 10 0.10 20 150 0.200 0.30
V3F418X500Y3G _ _ 18.0 13.0 25.5±10% 50 10 0.05 15 65 0.250 0.20
Termination Finish Code
Packaging Code
VW(DC) DC Working Voltage (V)
VW(AC) AC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC)
VB Tol VB Tolerance is ± from Typical Value
VCClamping Voltage (V @ 1A 8x20μS )
ILMaximum Leakage Current at the Working Voltage (μA)
ETTransient Energy Rating (J, 10x1000μS)
IPPeak Current Rating (A, 8x20μS)
Cap Typical Capacitance (pF) @ 1MHz and 0.5 V
DCR DC Resistance (Ohms)
IFT Maximum Feedthru Current (A)
70
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
BW
T
SX
L
C
L
EW
W
BL
T
P
INPUT OUTPUT
LC
P
SW
DIMENSIONS mm (inches)
LWTBW BL EWX S
0805 2.01 ± 0.20 1.25 ± 0.20 1.143 Max. 0.46 ± 0.10 0.18 + 0.25 -0.08 0.25 ± 0.13 1.02 ± 0.10 0.23 ± 0.05
(0.079 ± 0.008) (0.049 ± 0.008) (0.045 Max.) (0.018 ± 0.004) (0.007 + 0.010 -0.003) (0.010 ± 0.005) (0.040 ± 0.004) (0.009 ± 0.002)
RECOMMENDED SOLDER PAD LAYOUT (Typical Dimensions) mm (inches)
TPSWLC
0805 3.45 (0.136) 0.51 (0.020) 0.76 (0.030) 1.27 (0.050) 1.02 (0.040) 0.46 (0.018)
4 Pad Layout
71
DIMENSIONS mm (inches)
mm (inches)
LW TBWBL ESP
1.60 ± 0.20 3.25 ± 0.15 1.22 Max. 0.41 ± 0.10 0.18 +0.25 -0.08 0.41 ± 0.10 0.76 REF
(0.063 ± 0.008) (0.128 ± 0.006) (0.048 Max.) (0.016 ± 0.004) (0.007 +0.010 -0.003) (0.016 ± 0.004) (0.030 REF)
AB CDE F
0.60 (0.024) 1.60 (0.064) 2.20 (0.088) 0.35 (0.014) 0.76 (0.030) 2.60 (0.104)
TransFeed Array - V3F4 Series
TVS Protection and EMI Attenuation in a 4-Element Array
W
BL
ES
P
BW
T
D
L
E
D
A
B
C
AF
V3F4
72
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F105A150Y2E
VC080505A150
5.6V, 0.1J
0
-10
-20
-30
-40
-50
-60
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F114A300Y2E
VC080514A300
14V, 0.1J
0
-10
-20
-30
-40
-50
-60
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F118A400Y2E
VC080518A400
18V, 0.1J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F118X500Y3D
VC08LC18A500
18V, 0.05J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F105C150Y1F
VC080505C150
5.6V, 0.3J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F118C400Y1F
VC080518C400
18V, 0.3J
0
-10
-20
-30
-40
-50
-60
-70
0.01 0.1 1
Frequency (GHz)
(dB)
10
V2F114C300Y1F
VC080514C300
14V, 0.3J
INSERTION LOSS COMPARISON
(TransFeed vs TransGuard®)
0805 – dB vs Frequency
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
73
CURRENT vs TEMPERATURE
0805 – 0.1 Joule
CURRENT vs TEMPERATURE
0805 – 0.3 Joule
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
18LC
18V
14V
5V
9V
30
25
Note:
Dashed
Portions
Not Guaranteed
20 0.3 0.5 0.75
Current (Amps)
Component Temperature (°C)
1
18V
14V
5V
30
25
20
0.250 0.5 0.75
Current (Amps)
Component Temperature (°C)
1
74
Discrete MLV Model
Where: Rv= Voltage Variable resistance
(per VI curve)
Rp≥10
12 Ω
C = defined by voltage rating and energy level
Ron = turn on resistance
Lp= parallel body inductance
Discrete MLVF Model
Where: Rv= Voltage Variable resistance
(per VI curve)
Rp= Body IR
C = defined by voltage rating and energy level
Ron = turn on resistance
Lp= minimized parallel body inductance
Ls= series body inductance
LSLS
RVCRP
Ron
LP
To Device
Requiring
Protection
Solder Pad Solder Pad
Solder Pad
PCB
Trace
To Device
Requiring
Protection
RVCRP
Ron
LP
Solder Pad
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
AVX Multilayer Feedthru Varistors (MLVF) are an ideal choice
for system designers with transient strike and broadband
EMI/RFI concerns.
Feedthru Varistors utilize a ZnO varistor material and the
electrode pattern of a feedthru capacitor. This combination
allows the package advantage of the feedthru and material
advantages of the ZnO dielectric to be optimized.
ZnO MLV Feedthrus exhibit electrical and physical advantages
over standard ZnO MLVs. Among them are:
1. Faster Turn on Time
2. Broadband EMI attenuation
3. Small size (relative to discrete MLV and EMI filter schemes)
The electrical model for a ZnO MLV and a ZnO Feedthru MLV
are shown below. The key difference in the model for
the Feedthru is a transformation in parallel to series induc-
tance. The added series inductance helps lower the injected
transient peak current (by 2πfL) resulting in an additional ben-
efit of a lower clamping voltage. The lowered parallel induc-
tance decreases the turn on time for the varistor to <250ps.
FEEDTHRU VARISTORS
75
TransFeed
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip
PERFORMANCE CHARACTERISTICS
APPLICATIONS
• EMI Suppression
• Broadband I/O Filtering
• Vcc Line Conditioning
FEATURES
• Small Size
• Low ESR
• Ultra-fast Response Time
• Broad S21 Characteristics
MARKET SEGMENTS
• Computers
• Automotive
• Power Supplies
• Multimedia Add-On Cards
• Bar Code Scanners
• Remote Terminals
• Medical Instrumentation
• Test Equipment
• Transceivers
• Cellular Phones / Pagers
A comparison table showing typical element parameters and resulting
performance features for MLV and MLVF is shown above.
MLVF PARAMETER MLV
0805 0805
5ph Lstypical N/A
<600nh Lptypical <1.5nh
<0.025Ω Ron typical <0.1Ω
100pf to 2.5nf C typical 100pf to 5.5nf
see VI curves Rvtypical see VI curves
>0.25 x 1012ΩRptypical >1 x 1012Ω
<250ps Typical turn on time <500ps
Typical frequency response
TYPICAL CIRCUITS REQUIRING
TRANSIENT VOLTAGE
PROTECTION AND EMI FILTERING
The following applications and schematic diagrams
show where TransFeed TVS/ EMI filtering devices might
be used:
• System Board Level Interfaces: (Fig. 1)
Digital to RF
Analog to Digital
Digital to Analog
• Voltage Regulation (Fig. 2)
• Power Conversion Circuits (Fig. 3)
• GaAs FET Protection (Fig. 4)
Fig. 2 – Voltage Regulators
Fig. 3 – Power Conversion Circuits/Power Switching Circuits
Fig. 4 – GaAs FET Protection
DIGITAL�
BOARD
DIGITAL�
BOARD
RF BOARD
Sensor/Keyboard/
Touchscreen Input
By X Bus
ANALOG�
BOARD
ANALOG�
BOARD
Sensor Input Display
DIGITAL�
BOARD
Keyboard
Fig. 1 – System Interface
SPECIFICATION COMPARISON