R1211x SERIES
STEP-UP DC/DC CONTROLLER
NO.EA-088-0604
1
OUTLINE
The R1211x Series are CMOS-based PWM step -up DC/DC converter controllers with low supply current.
Each of the R1211x Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error
amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple,
high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an
inductor, a diode, a power MOSFET, divider resisters, and capacitors.
Phase compensation has been made internally in the R1211x002B/D Series, while phase compensation can
be made externally as for R1211x002A/C Series. B/D version has stand-by mode.
Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set
typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the
soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211x Series latch the
external driver with its off state, or Latch-type protection circuit works.
The delay time for latch the st ate can be set with an external capacitor.
To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector
threshold level), or once after making the circuit be stand-by with chip enable pin and en able the circuit again.
FEATURES
Standby Current................................................Typ. 0µA (for B/D version)
Input Voltage Range .........................................2.5V to 6.0V
Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor)
Two Options of Basic Oscillator Frequency......300kHz, 700kHz
Max Duty Cycle.................................................Typ. 90%
High Reference Voltage Accuracy ....................±1.5%
U.V.L.O. Threshold level...................................Typ. 2.2V (Hysteresis Typ. 0.13V)
Small Packages ................................................SOT-23-6W or thin (package height Max. 0.85mm) SON-6
APPLICATIONS
Constant Voltage Power Source for portable equipment.
Constant Voltage Power Source for L CD and CCD.
R1211x
2
BLOCK DIAGRAMS
Version A/C Version B/D
V
FB
AMPOUT
EXT
V
IN
GND
DELAY
OSC
UVLO
Latch
+
-+
-
-
-
+
-
+
-
Vref
DTC
V
FB
CE
EXT
V
IN
GND
DTC
DELAY
OSC
UVLO
Latch
+
-+
-
-
-
+
-
+
-
Chip
Enable
Vref
SELECTION GUIDE
In the R1211x Series, the oscillator frequency, the optional function, and the package type for the ICs can be
selected at the user's requ est.
The selection can be made with designating the part number as shown below;
R1211x002x-TR Part Number
a b
Code Contents
a Designation of Packa ge Type:
D: SON-6
N: SOT23-6W
b
Designation of Optional Function
A : 700kHz, with AMPOUT pin (External Phase Compensation T y pe)
B : 700kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)
C : 300kHz, with AMPOUT pin (External Phase Compensation T y pe)
D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)
R1211x
3
PIN CONFIGURATIONS
SON-6 SOT-23-6W
Top View Bottom View
13
6
2
54
31
4
2
56
645
132
EXT GND V
IN
(MARK SIDE)
DELAY
AMPOUT/CE
V
FB
PIN DESCRIPTIONS
Pin No Symbol Pin Description
SON6 SOT23-6W
1 1 DELAY
Pin for External Capacitor
(for Setting Output Delay of Protection)
2 5 GND Ground Pin
3 6 EXT External FET Drive Pin (CMOS Output)
4 4 VIN Power Supply Pin
5 3 VFB Feedback Pin for monitoring Output Voltage
6 2 AMPOUT or CE Amplifier Output Pin(A/C Version) or
Chip Enable Pin(B/D Version, Active at "H")
* Tab in the parts have GND level. (They are connected to the reverse side of this IC.)
Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating Unit
VIN VIN Pin Voltage 6.5 V
VEXT EXT Pin Output Voltage 0.3 ~ VIN+0.3 V
VDLY DELAY Pin Voltage 0.3 ~ VIN+0.3 V
VAMP AMPOUT Pin Voltage 0.3 ~ VIN+0.3 V
VCE CE Pin Input Voltage 0.3 ~ VIN+0.3 V
VFB VFB Pin Voltage 0.3 ~ VIN+0.3 V
IAMP AMPOUT Pin Current ±10 mA
IEXT EXT Pin Inductor Drive Output Current ±50 mA
Power Dissipation (SOT-23-6W)* 430
PD Power Dissi pation (SON-6)* 500 mW
Topt Operating Temperature Range 40 ~ +85 °C
Tstg Storage Temperature Range 55 ~ +125 °C
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
R1211x
4
ELECTRICAL CHARACTERISTICS
R1211x002A Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.5 6.0 V
VFB VFB Voltage Tolerance VIN=3.3V
0.985 1.000 1.015
V
VFB/T VFB Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±150 ppm/°C
IFB VFB Input Current VIN=6V, VFB=0V or 6V 0.1 0.1
µA
fOSc Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 595 700 805 kHz
fOSc/T Oscillator Frequency
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±1.4 kHz/°C
IDD1 Supply Current 1 VIN=6V, VDLY=VFB=0V,
EXT at no load 600 900
µA
maxdty Maximum Duty Cycle VIN=3.3V,
EXT "H" side 82 90 94 %
REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=20mA 5 10
REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6
IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.5 5.0 7.5 µA
IDLY2 Delay Pin Discharge Cu rrent VIN=VFB=2.5V,
VDLY=0.1V 2.5 5.5 9.0 mA
VDLY Delay Pin Detector Threshold VIN=3.3V,
VFB=0V,VDLY=0V2V 0.95 1.00 1.05 V
TSTART Soft-start Time VIN=3.3V at 90% of
rising edge 4.5 9.0 13.5 ms
VUVLO1 UVLO Detector Threshold VIN=3.3V0V,
VDLY=VFB=0V 2.1 2.2 2.3 V
VUVLO2 UVLO Detector Hysteresis VIN=0V3.3V,
VDLY=VFB=0V 0.08 0.13 0.18 V
IAMP1 AMP "H" Output Current VIN=3.3V, VAMP=1V,
VFB=0.9V 0.45 0.90 1.50 mA
IAMP2 AMP "L" Output Current VIN=3.3V, VAMP=1V,
VFB=1.1V 30 60 90 µA
R1211x
5
R1211x002B Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.5 6.0 V
VFB VFB Voltage Tolerance VIN=3.3V 0.985 1.000 1.015 V
VFB/T VFB Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±150 ppm/°C
IFB VFB Input Current VIN=6V, VFB=0V or 6V 0.1 0.1
µA
fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 595 700 805 kHz
fOSC/ T Oscillator Frequency
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±1.4 kHz/°C
IDD1 Supply Current 1 VIN=6V, VDLY=VFB=0V,
EXT at no load 600 900
µA
maxdty Maximum Duty Cycle VIN=3.3V, EXT "H" side 82 90 94 %
REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10
REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6
IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.5 5.0 7.5 µA
IDLY2 Delay Pin Discharge Cu rrent VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA
VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V,
VDLY=0V2V 0.95 1.00 1.05 V
TSTART Soft-start Time VIN=3.3V 4.5 9.0 13.5 ms
VUVLO1 UVLO Detector Threshold VIN=3.3V0V,
VDLY=VFB=0V 2.1 2.2 2.3 V
VUVLO2 UVLO Detector Hysteresis VIN=0V3.3V,
VDLY=VFB=0V 0.08 0.13 0.18 V
ISTB Standby Current VIN=6V, VCE=0V 0 1
µA
ICEH CE "H" Input Current VIN=6V, VCE=6V 0.5 0.5
µA
ICEL CE "L" Input Current VIN=6V, VCE=0V 0.5 0.5
µA
VCEH CE "H" Input Voltage VIN=6V, VCE=0V6V 1.5 V
VCEL CE "L" Input Voltage VIN=2.5V, VCE=2V0V 0.3 V
R1211x
6
R1211x002C Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.5 6.0 V
VFB VFB Voltage Tolerance VIN=3.3V 0.985 1.000 1.015 V
VFB/T VFB Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±150 ppm/°C
IFB VFB Input Current VIN=6V, VFB=0V or 6V 0.1 0.1
µA
fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 240 300 360 kHz
fOSC/T Oscillator Frequency
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±0.6 kHz/°C
IDD1 Supply Current 1 VIN=6V, VDLY=VFB=0V,
EXT at no load 300 500
µA
maxdty Maximum Duty Cycle VIN=3.3V, EXT "H" side 82 90 94 %
REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10
REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6
IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 µA
IDLY2 Delay Pin Discharge Cu rrent VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA
VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V,
VDLY=0V2V 0.95 1.00 1.05 V
TSTART Soft-start Time VIN=3.3V 5.0 10.5 16.0 ms
VUVLO1 UVLO Detector Threshold VIN=3.3V0V,
VDLY=VFB=0V 2.1 2.2 2.3 V
VUVLO2 UVLO Detector Hysteresis VIN=0V3.3V,
VDLY=VFB=0V 0.08 0.13 0.18 V
IAMP1 AMP "H" Output Current VIN=3.3V, VAMP=1V,
VFB=0.9V 0.45 0.90 1.50 mA
IAMP2 AMP "L" Output Current VIN=3.3V, VAMP=1V,
VFB=1.1V 25 50 75 µA
R1211x
7
R1211x002D Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.5 6.0 V
VFB VFB Voltage Tolerance VIN=3.3V 0.985 1.000 1.015 V
VFB/T VFB Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±150 ppm/°C
IFB VFB Input Current VIN=6V, VFB=0V or 6V 0.1 0.1
µA
fOSC Oscillator Frequency VIN=3.3V, VDLY=VFB=0V 240 300 360 kHz
fOSC/T Oscillator Frequency
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±0.6 kHz/°C
IDD1 Supply Current 1 VIN=6V, VDLY=VFB=0V,
EXT at no load 300 500
µA
maxdty Maximum Duty Cycle VIN=3.3V, EXT "H" side 82 90 94 %
REXTH EXT "H" ON Resistance VIN=3.3V, IEXT=−20mA 5 10
REXTL EXT "L" ON Resistance VIN=3.3V, IEXT=20mA 3 6
IDLY1 Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V 2.0 4.5 7.0 µA
IDLY2 Delay Pin Discharge Cu rrent VIN=VFB=2.5V, VDLY=0.1V 2.5 5.5 9.0 mA
VDLY Delay Pin Detector Threshold VIN=3.3V, VFB=0V,
VDLY=0V2V 0.95 1.00 1.05 V
TSTART Soft-start Time VIN=3.3V 5.0 10.5 16.0 ms
VUVLO1 UVLO Detector Threshold VIN=3.3V0V,
VDLY=VFB=0V 2.1 2.2 2.3 V
VUVLO2 UVLO Detector Hysteresis VIN=0V3.3V,
VDLY=VFB=0V 0.08 0.13 0.18 V
ISTB Standby Current VIN=6V, VCE=0V 0 1
µA
ICEH CE "H" Input Current VIN=6V, VCE=6V 0.5 0.5
µA
ICEL CE "L" Input Current VIN=6V, VCE=0V 0.5 0.5
µA
VCEH CE "H" Input Voltage VIN=6V, VCE=0V6V 1.5 V
VCEL CE "L" Input Voltage VIN=2.5V, VCE=2V0V 0.3 V
R1211x
8
TYPICAL APPLICATIONS AND TECHNICAL NOTES
<R1211x002A/R1211x002C>
V
IN
DELAY
GND
EXT
V
FB
AMPOUT
Inductor
R3
C4 C3
R1
R2
V
OUT
Diode
NMOS
C1 C2
C5 R4
NMOS : IRF7601 (International Rectifier)
Inductor: LDR655312T-100 10µH (TDK) for R1211x002A
: LDR655312T-220 22µH (TDK) for R1211x002C
Diode : CRS02 (Toshiba)
C1 : 4.7µF (Ceramic)
C2 : 0.22µF (Ceramic)
C3 : 10µF (Ceramic)
C4 : 680pF (Ceramic)
C5 : 2200pF (Ceramic)
R1 : Output Voltage Setting Resistor 1
R2 : Output Voltage Setting Resistor 2
R3 : 30k
R4 : 30k
<R1211x002B/R1211x002D>
VIN
DELAY
GND
EXT
VFB
CE
Inductor
R3
C4 C3
R1
R2
VOUTDiode
NMOS
C1
C2
CE Control
NMOS : IRF7601 (International Rectifier)
Inductor: LDR655312T-100 10
µ
H (TDK) for R1211x002B
: LDR655312T-220 22
µ
H (TDK) for R1211x002D
Diode : CRS02 (Toshiba)
C1 : 4.7
µ
F (Ceramic)
C2 : 0.22
µ
F (Ceramic)
C3 : 10
µ
F (Ceramic)
C4 : 680pF (Ceramic)
R1 : Setting Output Voltage Resistor 1
R2 : Setting Output Voltage Resistor 2
R3 : 30k
[Note]
These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage
requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose
other external components.
R1211x
9
Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the
typical applications above.
In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of
the previous page, connect between Delay pin and G ND pin of the IC with the minimum wiring distance.
Connect a 1µF or more value of capacitor between V OUT and GN D, C3 as shown in typical application s of the
previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC
converter may be unstable, use a tantalum type capacitor instead of cera mic type.
Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous
page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is
between 100pF and 1000pF.
Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical
applications of the previous page. Refer to the next formula.
Output Voltage = VFB × (R1+R2)/R2
R1+R2=100k is recommended range of resistances.
The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to
an external capacitor, C2 of DELAY pin starts . And maximum duty cycle continues and the voltage of DELAY
pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power
MOSFET.
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in
terms of B/D version. Otherwise, restart with power on.
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in
the next formula.
t=C2×VDLY/IDLY1
Once after the maximum duty is detected and relea se d befo re d elay time, charge to the cap acitor is halt and
delay pin outputs "L".
As for R1211x002A/C version, the value s and positioni ng of C4, C5, R3, and R4 shown in the above diagram
are just an example combination. These are for making phase compensation. If the spike noise of VOUT may
be large, the spike noise m ay be picke d into VFB pin an d make the operatio n un stable. In this case, a resistor
R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the
range from 10k to 50k. Then, noi se level will be decreased.
As for R1211x002B/D version, EXT pin outputs GND level at standby mode.
Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC.
Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the
FET complet ely. Choose the diode with low VF such as Shott ky type with l ow reverse cu rrent I R, and with fa st
switching speed. When an external transistor is switching, spike voltage may be generated caused by an
inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting
voltage or mo re.
The performance of power circuit with using this IC depends on external components. Choose the most
suitable com ponents for your application.
R1211x
10
Output Current and Selection of External Components
<Basic Circuit>
i1
CL
LX Tr
VIN
IOUT
VOUT
i2
Inductor
GND
Diode
<Circuit through L>
Discontinuous Mode Continuous Mode
IL
ILxmax
ILxmin Tf
t
Ton
T=1/fosc Toff
IL ILxmax
ILxmin
t
Ton
T=1/fosc
Iconst
Toff
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator
depending on the continuous characteristic of inductor current.
During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is
VIN×t/L. Therefore, the electric po wer, PON, which is supplied with input side, ca n be described a s in next formula.
dtt/LVP 2
IN
Ton
0
ON ×= .............................................................................................................................. Formula 1
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input
current is described as (VOUT VIN) ×t/L, therefore electric po wer, POFF is described as in next formula.
dtt/L)V(VVP INOUTIN
Tf
0
OFF ××= ........................................................................................................ Formula 2
In this formul a, Tf means t he ti me of which t he energ y saved in th e indu ctance is being emitted. Thus average
electric power, PAV is described as in the next formula.
dt}t/L)V(VVdtt/LV{)T1/(TP INOUTIN
Tf
0
2
IN
Ton
0
OFFONAV ××+××+= ................................................... Formula 3
In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of
switching regulator be comes continuous mode.
In the continuous mode, the deviation of the current is equal betwe en on time and off time.
Toff/L)V(V/LV INOUTONIN ×=×T................................................................................................... Formula 4
Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus,
{}
)VL/(2TV)V(VL2/TVfI OUTON
2
ININOUT
2
ON
2
INOSCOUT ×××=××××= .................................................... Formula 5
R1211x
11
When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes
continuous. The continuous current thro ugh the ind uctor is described as Iconst, then,
{}
OUTININOUT
2
ON
2
INOSCOUT Iconst/VV)V(VL2/TVfI ×+××××= ...............................................................Formula 6
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as
follows:
/LTVIconstILxmax ONIN×+= .................................................................................................................Formula 7
With the formula 4,6, and ILxmax is,
L)/(2TVI/VVILxmax ONINOUTINOUT ××+×= ..............................................................................................Formula 8
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,
and external components should be selected.
In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula.
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external
components is not included. The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the ILx is large, or VIN is low , the loss of V IN is generated with the on resist ance of the switch. As
for VOUT, Vf (as much as 0.3V) of the diode should be con sid ered.
R1211x
12
TIMING CHART
R1211x002A/R1211x002C
R1
R2
V
OUT
V
FB
+
-
V
REF
AMPOUT
-
+
-
-
SS
DTC
EXT PWM Comparator
EXT
OP AMP
R1211x002B/R1211x002D
R1
R2
V
OUT
V
FB
+
-
V
REF
AMPOUT
-
+
-
-
SS
DTC
EXT PWM Comparator
EXT
OP AMP
<Soft-start Operation>
Soft-start operation is starting from po wer-on as follows:
(Step1)
The voltage l evel of SS is rising graduall y by const ant current circuit of the IC and a cap a citor. VREF level which
is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on,
therefore, VFB voltage is risi ng up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT
is at "L", and switching does not start.
(Step2)
When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching
operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and
VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM
comparator.
R1211x
13
(Step3)
When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching
operation becomes normal mode.
SS
VFB,VREF
DTC
AMPOUT
AMPOUT
SS,VREF
Step1 Step2 Step3
VFB
VOUT
VIN
<Latch Protection Operation>
The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects
maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle
continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin
and turns of f the external power MOSFET.
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in
terms of R1211x002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower,
and make it rise up to the normal input voltage.
During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY
pin is fixed at GND level.
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in
the next formula.
t=C2 × VDLY/IDLY1
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and
delay pin outputs "L".
AMPOUT AMPOUT
DTC
Output Short
Normal LatchedMaxduty Operation
EXT
DELAY
V
DLY
R1211x
14
TEST CIRCUITS
R1211x002A/R1211x002C
Oscillator Frequency,
Maximum Duty Cycle, VFB Voltage Test Consumption Current Test
OSCILLOSCOPE
VIN
GND
EXT
VFB
DELAY
3.3V
V
IN
GND
V
FB
DELAY
6V
A
EXT "H" ON Resistance EXT "L" ON Resist ance
OSCILLOSCOPE
V
IN
GND
EXT
V
FB
DELAY
3.3V
150
V
IN
GND
EXT
V
FB
DELAY
3.3V
150
V
DELAY Pin Charge Current DELAY Pin Discharge Current
VIN
GND
VFB
DELAY
3.3V
A
V
IN
GND
V
FB
DELAY
2.5V
A
0.1V
R1211x
15
DELAY Pin Detector Threshold Voltage Test AMP " H" Output Current/"L"
Output Current Test
OSCILLOSCOPE
V
IN
GND
EXT
V
FB
DELAY
3.3V
V
IN
GND
AMPOUT
V
FB
DELAY
3.3V
A
0.9V/1.1V
1V
UVLO Detector Threshold/Hysteresis Range Test
OSCILLOSCOPE
V
IN
GND
EXT
V
FB
DELAY
Sof t-start Ti me Test
V
IN
GND
EXT
AMPOUT
V
FB
DELAY
Coil
C5 C2
OSCILLOSCOPE
C4 R4
R3
C1 R1
R2
Rout
V
OUT
Diode
NMOS
C3
<Components>
Inductor (L) : 22µH (TDK LDR655312T-220)
Diode (SD) : CRS02 (Toshiba)
Capacitors C1:680pF(Ceramic), C2:22µF (Tantalum)+2.2µF (Ceramic),
C3:68µF (Tantalum)+2.2µF (Ce rami c), C4:2200 pF(Ceramic), C5:22µF(Tantalum)
NMOS T ran sistor : IRF7601 (International Rectifier)
Resistors : R1: 90k, R2:10k, R3:30k, R4:30k, Rout:1k/330
R1211x
16
R1211x002B/R1211x002D
Oscillator Frequency, Consumption Current Test
Maximum Duty Cycle, VFB Voltage Test
OSCILLOSCOPE
V
IN
GND
EXT
CE
V
FB
DELAY
3.3V
V
IN
GND
CE
V
FB
DELAY
6V
A
EXT "H" ON Resistance EXT "L" ON Resist ance
OSCILLOSCOPE
VIN
GND
EXT
CE
VFB
DELAY
3.3V
150
V
IN
GND
EXT
CE
V
FB
DELAY
3.3V
150
V
DELAY Pin Charge Current DELAY Pin Discharge Current
V
IN
GND
CE
V
FB
DELAY
3.3V
A
V
IN
GND
CE
V
FB
DELAY
2.5V
A0.1V
DELAY Pin Detector Threshold Voltage Test Standby Current Test
V
IN
GND
EXT
CE
V
FB
DELAY
3.3V
OSCILLOSCOPE
VIN
GND
CE
VFB
DELAY
6V
A
R1211x
17
UVLO Detector Threshold/ CE "L" Input Current/"H" Input Current Test
Hysteresis Range Test
VIN
GND
EXT
CE
VFB
DELAY
OSCILLOSCOPE
V
IN
GND
CE
V
FB
DELAY
6V
A
0V/6V
CE "L" Input Voltage/"H" Input Voltag e Test
VIN
GND
EXT
CE
VFB
DELAY
OSCILLOSCOPE
2.5V/6V
Sof t-start Ti me Test
V
IN
GND
EXT
CE
V
FB
DELAY
Coil
C5 C2
OSCILLOSCOPE
0V/3.3V
R3
C1 R1
R2
Rout
V
OUT
Diode
NMOS
C3
<Components>
Inductor (L) : 22µH (TDK LDR655312T-220)
Diode (SD) : CRS02 (Toshiba)
Capacitors C1 : 680pF (Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic),
C3 : 68µF (Tantalum)+2.2µF (Cerami c), C5: 22µF (Tantalum)
NMOS T ran sistor : IRF7601 (International Rectifier)
Resistors : R1: 90k, R2: 10k, R3: 30k
R1211x
18
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
R1211x002A R1211x002A
4.9
5.1
5.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=10
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
9.8
10.2
10.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=10
µ
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x002A R1211x002B
14.7
15.3
15.0
Output Current I
OUT(mA)
Output Voltage VOUT(V)
1 10 100 1000
L=10µH
VOUT=15V
V
IN=2.5V
VIN=3.3V
VIN=5.0V
4.9
5.1
5.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=10
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
R1211x002B R1211x002B
9.8
10.2
10.0
Output Current I
OUT(mA)
Output Voltage VOUT(V)
1 10 100 1000
L=10µH
VOUT=10V
V
IN=2.5V
VIN=3.3V
VIN=5.0V
14.7
15.3
15.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=10
µ
H
VOUT=15V
VIN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x
19
R1211x002C R1211x002C
4.9
5.1
5.0
Output Current IOUT(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=22µH
V
OUT
=5V
V
IN=2.5V
VIN=3.3V
9.8
10.2
10.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=22
µ
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x002C R1211x002D
14.7
15.3
15.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=22
µ
H
V
OUT
=15V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
4.9
5.1
5.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=22
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
R1211x002D R1211x002D
9.8
10.2
10.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=22
µ
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
14.7
15.3
15.0
Output Current I
OUT
(mA)
Output Voltage V
OUT
(V)
1 10 100 1000
L=22
µ
H
V
OUT
=15V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x
20
2) Efficiency vs. Output Current
R1211x002A R1211x002A
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=10
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=10
µ
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x002A R1211x002B
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=10
µ
H
V
OUT
=15V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=10
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
R1211x002B R1211x002B
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=10
µ
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=10
µ
H
V
OUT
=15V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x
21
R1211x002C R1211x002C
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=22
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=22
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x002C R1211x002D
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=22
µ
H
V
OUT
=15V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=22
µ
H
V
OUT
=5V
V
IN
=2.5V
V
IN
=3.3V
R1211x002D R1211x002D
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=22
µ
H
V
OUT
=10V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
0
20
40
100
60
80
Output Current I
OUT
(mA)
Efficiency η(%)
1 10 100 1000
L=22
µ
H
V
OUT
=15V
V
IN
=2.5V
V
IN
=3.3V
V
IN
=5.0V
R1211x
22
3) VFB Voltage vs. Input Voltage (Topt=25°C)
R1211x002x
Input Voltage V
IN
(V)
1015
1010
1005
1000
995
990
985 23456
V
FB
Voltage(mV)
Topt=25°C
4) Oscillator Frequency vs. Input Voltage (Topt=25°C)
R1211x002A/B R1211x002C/D
Input Voltage VIN(V)
900
600
800
700
500 23456
Oscillator Frequency(kHz)
Topt=25°C
Input Voltage V
IN
(V)
400
250
350
300
200 23456
Oscillator Frequency(kHz)
Topt=25°C
5) Supply Current vs. Input Voltage (Topt=25°C)
R1211x002A R1211x002B
Input Voltage V
IN
(V)
600
500
400
300
200
100
023456
Supply Current(µA)
Topt=25°C
Input Voltage V
IN
(V)
600
100
200
400
500
300
023456
Supply Current(µA)
Topt=25°C
R1211x
23
R1211x002C R1211x002D
Input Voltage V
IN
(V)
100
200
400
300
023456
Supply Current(µA)
Topt=25°C
Input Voltage VIN(V)
100
200
400
300
023456
Supply Current(µA)
Topt=25°C
6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C)
R1211x002A/B R1211x002C/D
Input Voltage V
IN
(V)
84
86
88
90
94
96
92
80
82
23456
Maximum Duty Cycle(
%
)
Topt=25°C
Input Voltage V
IN
(V)
84
86
88
90
94
96
92
80
82
23456
Maximum Duty Cycle(
%
)
Topt=25°C
7) VFB Voltage vs. Temperature
R1211x002x
Temperature Topt(°C)
985
990
995
1000
1010
1015
1005
-50 -25 0 25 7550 100
V
FB
Voltage(mV)
V
IN
=3.3V
R1211x
24
8) Oscillator Frequency vs. Temperature
R1211x002A/B R1211x002C/D
Temperature Topt(°C)
500
600
700
800
900
-50 -25 0 25 7550 100
Oscillator Frequency(kHz)
VIN=3.3V
Temperature Topt(°C)
200
250
300
350
400
-50 -25 0 25 7550 100
Oscillator Frequency(kHz)
VIN=3.3V
9) Supply Current vs. Temperature
R1211x002A R1211x002B
Temperature Topt(°C)
0
100
300
500
600
-50 -25 0 25 7550 100
Supply Current(A)
400
200
VIN=3.3V
Temperature Topt(°C)
0
100
300
500
600
-50 -25 0 25 7550 100
Supply Current(µA)
400
200
VIN=3.3V
R1211x002C R1211x002D
Temperature Topt(°C)
0
100
300
400
-50 -25 0 25 7550 100
Supply Current(µA)
200
VIN=3.3V
Temperature Topt(°C)
0
100
300
400
-50 -25 0 25 7550 100
Supply Current(µA)
200
VIN=3.3V
R1211x
25
10) Maximum Duty Cycle vs. Temperature
R1211x002A/B R1211x002C/D
84
86
88
90
94
96
92
80
82
Maximum Duty Cycle(%)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
84
86
88
90
94
96
92
80
82
Maximum Duty Cycle(%)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
11) EXT "H" On Resistance vs. Temperature
R1211x002x
4
5
6
7
8
2
3
EXT "H" ON Resistance()
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
12) EXT "L" On Resistance vs. Temperature
R1211x002x
3
4
5
1
2
EXT "L" ON Resistance()
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
R1211x
26
13) Soft-start Time vs. Temperature
R1211x002A/B R1211x002C/D
10
14
12
16
6
8
Soft-start Time(ms)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
10
14
12
16
6
8
Soft-start Time(ms)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
14) UVLO Detector Threshold vs. Temperature
R1211x002x
2200
2250
2300
2100
2150
UVLO Detector Threshold(mV)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
15) AMP "H" Output Current vs. Temperature
R1211x002A/C
800
1000
1200
1400
1600
400
600
AMP "H" Output Current(µA)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
R1211x
27
16) AMP "L" Output Current vs. Temperature
R1211x002A R1211x002C
40
50
60
70
80
20
30
AMP "L" Output Current(µA)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
40
50
60
70
80
20
30
AMP "L" Output Current(µA)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
17) DELAY Pin Charge Current vs. Temperature
R1211x002A/B R1211x002C/D
4
6
5
7
2
3
DELAY Pin Charge Current(µA)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
4
6
5
7
2
3
DELAY Pin Charge Current(µA)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
18) DELAY Pin Detector Threshold vs. Temperature
R1211x002x
1020
1000
1040
960
980
DELAY Pin Detector Threshold(mV)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=3.3V
R1211x
28
19) DELAY Pin Discharge Current vs. Temperature
R1211x002x
4
8
6
10
0
2
DELAY Pin Discharge Current(µA)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=2.5V
20) CE "L" Input Voltage vs. Temperature
R1211x002B/D
800
900
1000
1100
1200
600
700
CE "L" Input Voltage(mV)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=2.5V
21) CE "H" Input Voltage vs. Temperature
R1211x002B/D
800
900
1000
1100
1200
600
700
CE "H" Input Voltage(mV)
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=6.0V
R1211x
29
22) Standby Current vs. Temperature
R1211x002B/D
0.4
0.8
0.6
1.0
-0.2
0.2
Standby Current(µA)
0.0
-50 -25 0 25 7550 100
Temperature Topt(°C)
V
IN
=6.0V
23) Load Transient Response R1211x002A
5.6
5.0
4.4
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=10µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
IOUT
R1211x002A
R1211x
30
R1211x002A
16.8
15.0
13.2
300
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=10
µ
H
V
IN
=3.3V, C3=22
µ
F
V
OUT
=15V, I
OUT
=1-50mA
V
OUT
I
OUT
R1211x002B
5.6
5.0
4.4
300
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=10µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
IOUT
R1211x002B
11.2
10.0
8.8
300
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=10
µ
H
V
IN
=3.3V, C3=22
µ
F
V
OUT
=10V, I
OUT
=1-100mA
V
OUT
I
OUT
R1211x
31
R1211x002B
VOUT
IOUT
16.8
15.0
13.2
300
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=10µH
VIN=3.3V, C3=22µF
VOUT=15V, IOUT=1-50mA
R1211x002C
5.6
5.0
4.4
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=22µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
IOUT
R1211x002C
11.2
10.0
8.8
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=22
µ
H
V
IN
=3.3V, C3=22
µ
F
V
OUT
=10V, I
OUT
=1-100mA
V
OUT
I
OUT
R1211x
32
R1211x002C
16.8
15.0
13.2
300
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=22
µ
H
V
IN
=3.3V, C3=22
µ
F
V
OUT
=15V, I
OUT
=1-50mA
V
OUT
I
OUT
R1211x002D
5.6
5.0
4.4
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=22µH
VIN=3.3V, C3=22µF
VOUT=5V, IOUT=1-100mA
VOUT
IOUT
R1211x002D
11.2
10.0
8.8
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=22µH
VIN=3.3V, C3=22µF
VOUT=10V, IOUT=1-100mA
VOUT
IOUT
R1211x
33
R1211x002D
16.8
15.0
13.2
300
200
100
0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
L=22µH
VIN=3.3V, C3=22µF
VOUT=15V, IOUT=1-50mA
VOUT
IOUT
24) Power-on Response
R1211x002A R1211x002B
16
2
8
6
4
12
14
10
00 5 10 15 20 25
Output Voltage(V)
Time (5ms/div)
L=10
µ
H
V
IN
=3.3V, I
OUT
=10mA
(c)V
OUT
=15V
(b)V
OUT
=10V
(a)V
OUT
=5V
V
IN
16
2
8
6
4
12
14
10
00 5 10 15 20 25
Output Voltage(V)
Time (5ms/div)
L=10
µ
H
V
IN
=3.3V, I
OUT
=10mA
(c)V
OUT
=15V
(b)V
OUT
=10V
(a)V
OUT
=5V
V
IN
R1211x002C R1211x002D
16
2
8
6
4
12
14
10
00 5 10 15 20 25
Output Voltage(V)
Time (5ms/div)
L=22
µ
H
V
IN
=3.3V, I
OUT
=10mA
(c)V
OUT
=15V
(b)V
OUT
=10V
(a)V
OUT
=5V
V
IN
16
2
8
6
4
12
14
10
00 5 10 15 20 25
Output Voltage(V)
Time (5ms/div)
L=22
µ
H
V
IN
=3.3V, I
OUT
=10mA
(c)V
OUT
=15V
(b)V
OUT
=10V
(a)V
OUT
=5V
V
IN
R1211x
34
25) Turn-on speed with CE pin
R1211x002B R1211x002D
16
2
8
6
4
12
14
10
00 5 10 15 20 25
Output Voltage(V)
Time (5ms/div)
L=10
µ
H
V
IN
=3.3V, I
OUT
=10mA
(c)V
OUT
=15V
(b)V
OUT
=10V
(a)V
OUT
=5V
CE
16
2
8
6
4
12
14
10
00 5 10 15 20 25
Output Voltage(V)
Time (5ms/div)
L=22
µ
H
V
IN
=3.3V, I
OUT
=10mA
(c)V
OUT
=15V
(b)V
OUT
=10V
(a)V
OUT
=5V
CE
PACKAGE INFORMATION PE-SOT-23-6W-0512
SOT-23-6W Unit: mm
PACKAGE DIMENSIONS
+0.1
0.075
0.15
0.2 MIN.
45
2
6
1
1.9±0.2
0.8±0.1
0 to 0.1
0.4+0.1
0.2
1.1 +0.2
0.1
2.9±0.2
2.8±0.3
1.8±0.2
(0.95) (0.95)
TAPING SPECIFICATION
3.2
1.1±0.1
564
213
2.0±0.05
4.0±0.1
0.3±0.1 1.5+0.1
0
3.3
4.0±0.1
2.0MAX.
TR
8.0±0.3
1.75
±
0.1
User Direction of Feed
3.5±0.05
TAPING REEL DIMENSIONS
(1reel=3000pcs)
21±0.8
2±0.5
13±0.2
180
60
0
1.5
+1
0
11.4±1.0
9.0±0.3
PACKAGE INFORMATION PE-SOT-23-6W-0512
POWER DISSIPATION (SOT-23-6W)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment Mounting on Board (Wind velocity=0m/s)
Board Material Glass cloth epoxy plactic (Double sided)
Board Dimensions 40mm × 40mm × 1.6mm
Copper Ratio Top side : Approx. 50% , Back side : Approx. 50%
Through-hole φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation 430mW
Thermal Resistance θja=(12525°C)/0.43W=233°C/W
0 50 10025 75 85 125 150
Ambient Temperature (°C)
0
200
100
300
400
430
500
600
Power Dissipation P
D
(mW)
On Board
40
40
Power Dissipation Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN (SOT-23-6W)
0.7 MAX.
0.95
0.95
1.9
2.4
1.0
(Unit: mm)
PACKAGE INFORMATION PE-SON-6-0510
SON-6 Unit: mm
PACKAGE DIMENSIONS
3.0±0.15
2.6±0.2
0.13±0.05
1.6±0.2
0.2±0.1
0.85MAX.
(0.3) 1.34 (0.3)
Attention: Tab suspension leads in the
parts have V
DD
or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
Bottom View
0.1
0.5
13
64
TAPING SPECIFICATION
1.7MAX.
0.2±0.1
4.0±0.1
2.0±0.05
4.0±0.1
1.9
3.2
8.0±0.3
1.75±0.1
3.5±0.05
1.5+0.1
0
1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
21
±
0.8
2
±
0.5
13
±
0.2
180
60
0
1.5
+1
0
11.4
±
1.0
9.0
±
0.3
PACKAGE INFORMATION PE-SON-6-0510
POWER DISSIPATION (SON-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment Mounting on Board (Wind velocity=0m/s)
Board Material Glass cloth epoxy plactic (Double sided)
Board Dimensions 40mm × 40mm × 1.6mm
Copper Ratio Top side : Approx. 50% , Back side : Approx. 50%
Through-hole φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern Free Air
Power Dissipation 500mW 250mW
Thermal Resistance θja=(12525°C)/0.5W=200°C/W -
0 50 10025 75 85 125 150
Ambient Temperature (°C)
0
200
250
100
300
400
500
600
Power Dissipation P
D
(mW)
Free Air
On Board
40
40
Power Dissipation Measurement Board Pattern
IC Mount Area (Unit : mm)
RECOMMENDED LAND PATTERN
0.5
0.751.05
0.25
(Unit: mm)
MARK INFORMATION ME-R1211N-0310
R1211N SERIES MARK SPECIFICATION
SOT-23-6W
1234
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
Part Number vs. Product Code
Product Code
Part Number
1
2
R1211N002A L 0
R1211N002B L 1
R1211N002C L 2
R1211N002D L 3
MARK INFORMATION ME-R1211D-0310
R1211D SERIES MARK SPECIFICATION
SON-6
1 2
3 4
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
Part Number vs. Product Code
Product Code Product Code
Part Number
1
2
Part Number
1
2
R1211D002A L 0 R1211D102A L 6
R1211D002B L 1 R1211D101C L 7
R1211D002C L 2 R1211D102C L 8
R1211D002D L 3 R1211D103A L 9
R1211D100A L 4 R1211D103C L A
R1211D101A L 5
R1211D104A L B